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Abstract

To solve a quadratic total risk minimization problem, we minimizes the difference between
the option payoff and the final value of a self-financing hedging portfolio. To reduce
the computational complexity, a method is proposed by Coleman et al. (2008) that a
specific function is used to describe the relationship between the holding in the hedging
portfolio and the underlying asset price. The spline kernel function with regularization is
introduced to model the relationship. We use cross validation to investigate the out-of-
sample performance. The results obtained from Monte Carlo simulation indicate that using
spline kernel function with regularization could allow more complexity and may lead to a
relatively smaller total risk. In addition, the total risk is affected more by the regularization
penalty parameter while shows robustness with respect to the number of reference points.
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Chapter 1

Introduction

Hedging plays a very important role in risk management. It helps to reduce the risk
caused by asset price movements in the financial market, making a portfolio less sensitive
to the market changes. For an option, one can hedge it by creating a portfolio containing
the underlying asset and a risk-free asset. In the Black-Scholes framework, a method called
delta hedging was proposed as a hedging strategy. Delta is the first-order partial derivative
of the option value against the underlying asset price, which measures the sensitivity of
the option value to the changing of the underlying asset price. Delta hedging uses a self-
financing portfolio to exactly replicate the option and hedge the market risk arising from
asset price movements. The self-financing portfolio means that the portfolio only needs the
initial investment and it does not generate any capital inflow or outflow from the portfolio
after the strategy begins.

In the Black-Scholes model, the financial market is complete under a unique risk-neutral
probability measure, and the contingent claims are attainable. In addition, the market is
arbitrage-free. However, the assumption of the Black-Scholes model is very restrictive.
There are a lot of unpredictable factors and restrictions in the real financial market, such
as jump risks, transaction limitations, taxes, bid-ask spreads, and so on, which make the
completeness impossible to achieve. Since the real market is incomplete, we cannot find a
strategy that can hedge the risk of an option completely. What’s more, in practice, hedging
cannot be done continuously in time to offset perfectly the fluctuations of the underlying
asset price. We can only trade the market asset at discrete time points and hedging is
also under transaction costs. Therefore, it is difficult to replicate and hedge an option
completely in reality.

Many researchers have studied the topic of hedging an option in an incomplete market.



El Karoui and Quenez (1995) tried to price an option by a super-replication method. The
idea of this method is to obtain the minimum initial cost of an option with a self-financing
hedging strategy such that the final value of the hedging portfolio is always larger than the
option payoff. Although the fair value of an option cannot be obtained by the no-arbitrage
principle in the incomplete market, the super-replication method succeeds to give a range
for the actual value of an option. However, this method has some limitations and we
do not pursue it in this project. For instance, the super-replicating strategy for a call
option suggested by this method for the Hull-White stochastic model (1987) is to hold the
underlying asset (Frey, 1997).

Minimizing a certain measure for the risk of an option is another widely used approach
to obtain the value of an option and to get the optimal discretely hedging strategy in the
incomplete market. Instead of minimizing the initial cost, this approach aims to obtain the
minimum risk which is defined in an appropriate criterion. There are two criteria studied
by the researchers, which are the local risk-minimization first studied by Schél (1994) and
the total risk-minimization criterion proposed by Follmer and Schweizer (1989). The local
risk strategy assumes that the final value of the hedging portfolio is equal to the option
payoff. It then finds the optimal strategy by minimizing the incremental cost to adjust the
portfolio at each hedging time. The local risk-minimization criterion is not self-financing
and the optimization problem is solved backwards from the expiry to the beginning. An-
other approach is to find an optimal hedging strategy that best approximates the option
payoff by the final value of a hedging portfolio. For the total risk minimization problem,
the optimal strategy is self-financing. It assumes that, except the initial investment, the
hedging portfolio does not need any extra funding to adjust the hedging position, which
is very different from the local risk minimization problem. In this project, we investigate
the total risk minimization problem.

There are two different objective functions studied for the risk minimization problem,
which are quadratic functions and piecewise linear functions. Follmer and Schweizer (1989),
Schél (1994), Schweizer (1995, 2001) studied the quadratic risk-minimization criteria. Cole-
man et al. (2003) investigate the piecewise linear criterion for local risk minimization and
total risk minimization (2008). The quadratic function and piecewise linear function may
lead to very different optimal strategies since they penalize the residuals in different ways.
The quadratic function penalizes more when the hedging strategy give a bad performance
while the piecewise linear function treat all the situations equally. Since the piecewise lin-
ear function is computationally more expensive to optimize, Coleman et al. (2008) propose
a method to obtain the optimal strategy by using Monte Carlo simulation.

Solving the total risk minimization problem by Monte Carlo simulation introduce a
large number of unknowns. In order to reduce the complexity of solving this optimization



problem, Coleman et al. (2008) make an assumption that the holding of the risky asset
(stock) in the hedging portfolio is determined by a function of the current and past stock
prices. Since the value of option is affected mostly by the current and past trading infor-
mation of the underlying asset, using such a function is reasonable from the financial point
of view. By this assumption, Coleman et al. (2008) investigate piecewise linear total risk
optimization and assume the relationship between holdings and the asset prices can be
described by the cubic spline functions. They generate stock price paths using the Monte
Carlo simulation and obtain the best strategy by solving for the parameters in the cubic
spline functions.

In this project, we solve the quadratic total risk minimization problem as an illustration.
The whole framework can also be applied to the total risk minimization problem with the
piecewise linear objective function. Based on the assumption proposed by Coleman et
al. (2008), we solve the optimization problem using Monte Carlo simulation. In addition,
when obtaining the optimal strategy, we generate both training set and testing set and
determine the best parameters by cross validation. However, instead of using the cubic
spline function, we treat the holding as a spline kernel function of the underlying asset.

When using the cubic spline function, a finite number of fixed knots is introduced and
the cubic spline function only guarantees the continuity and the derivative continuity at
those specific knots. Thus, it may cause the discontinuity problem when a data point is
not chosen to be a knot. Unlike cubic spline function, the spline kernel function maps the
input values into a space with infinite number of knots. Furthermore, it is unnecessary
to choose a certain set of knots since the knots are implicit in the spline kernel function,
which avoids the explicit placement of spline knots that need to be determined when using
cubic spline function.

Since the holding depends nonlinearly on the stock price, Coleman et al. (2012) propose
a method that the nonlinear relationship can be approximated by a linear combination of
spline kernels. By this method, we assume that the holding of the underlying asset is
a linear combination of spline kernel functions evaluated at some reference points. The
reference points are chosen from the training set of the underlying asset prices.

Moreover, since the spline kernel function is easier to regularize, we introduce the regu-
larization term to the objective function. Regularization puts constraints on the flexibility
of a model, thereby increasing the stability of the model. Using the spline kernel function
with regularization, we examine the total risk to see if there is any improvement of the
hedging performance.



Chapter 2

Risk Minimization Criteria

In this chapter, we review the literature to show and compare the risk minimization
criteria in a mathematical way. For clear notation, we introduce a financial market which is
modeled by a filtered probability space (€2, F, P). The time horizon is [0, 7] and the discrete
hedging times are denoted by 0 = tg < t; < ty < ... < tpy =T, where T > 0 and M is
the total number of the discrete hedging times. The filtration {F;} j—01, am corresponds
to the time ¢;. The stock price process {S;} j—01, m is measurable with respect to {F;},
which means that F; represents all history information about the stock up to time ¢;. It
is obvious that F, = {®, Q} is trivial.

We consider a hedging portfolio V; containing a risky asset (stock) S; and a risk-
free asset (bond) B;. At each time point ¢;, the discounted stock price is defined by
X = %,Vj =0,...,M. At each time ¢;, value of the hedging portfolio is

J

Vi =§X;+n, (2.1)

where stochastic processes §; and 7; are holdings of the stock and the bond respectively.

For all j =0,1,..., M — 1, we define the change of the discounted stock price between
every two hedging times as follows,

AX; = Xji1— Xj,j =0,1,.., M — 1.

Then the value of the hedging portfolio is changed by £;AX; due to the change in the
discounted stock price before making any portfolio adjustment. We define accumulated



gain G as the change of the portfolio value caused by the change of the discounted stock
price. Therefore, the accumulated gain G; can be represented by

Gy =&(Xj — X;) = §AX;,j=0,1,...,M — 1 (2.2)

and Gy = 0.

The cumulative cost C; is defined as the cash flow of the portfolio at time ¢; after con-
sidering the change of the portfolio value from the stock price fluctuation. The cumulative
cost has the relationship below with the accumulated gain.

C;=V;—Gy,j=0,1,...,M—1. (2.3)

Assume that we need to hedge a claim, whose payoff at time T is denoted by H and H
is Fy-measurable. A market is complete if any claim H is attainable, which means that
there exists a self-financing strategy with V3, = H (a.s.). Self-financing indicates that the
cumulative cost process {C}} j—o.1,..a 1s constant over time, that is, Cp = Cy = ... = Cjyy_;.
However, in the case of discrete hedging, the financial market is not complete and the
hedging strategy is obtained by using some optimality criterion.

One criterion to obtain the optimal strategy is to minimize the local risk of an option.
Local risk is defined as the incremental cost of adjusting the hedging portfolio at each time.
In this approach, the final value of trading strategy is assumed to be equal to the option
payoff, that is H = V);. Then the optimal solution is obtained by minimizing the expected
incremental cost at every hedging spot, which leads to the following optimization problem.

E((Cjy1 —Cj)? | F3),0<j <M -1

where E(- | F;) denotes the expected value with respect to the probability measure P and
the filtration {F;}.

The holding at each intermediate hedging time is given by solving the optimization
problem at that time. The optimal holding at ¢;; is served as the condition when solving
the optimization problem at t;. With the end condition that H = V), the local risk
minimization problem can be solved from the maturity to the initial time. In addition,
by considering the definition (2.2), and the relationship between the cumulative cost and
the accumulated gain shown in the equation (2.3), the objective function for the local risk
minimization criterion is as follows,

E((Cjs1 — C))* | Fy) = E((Vir1 = Vi = §( X — X)) | F).



After applying the equation (2.1) to replace V; with the holdings &;,7; in the trading
portfolio, we can obtain the objective function for the local risk minimization criterion.

E((Vigr =V = &(X — X)) | i) = E((Xj1 (&1 = &) + (e —my))? | F).

Schél (1994) proves the existence of an explicit local risk minimizing strategy when the
option payoff H is squared integrable and the discounted stock price X has a bounded
mean-variance trade-off, that is:

(E(AX; | F5))?

Var(AX; [ F)) is P — a.s. uniformly bounded, (2.4)

where Var(- | ;) denotes the variance of a random variable with respect to the probability
measure P and the filtration {F;}. The analytic solution proposed by Schél (1994) for the
quadratic local risk minimization problem is:

l
f(l) COU(5J+1XJ+1+77J+1’ Xjt1175) 07 <M-1

(I) Var(X;1lFj5)
n; E((&1 — &)X +mj41 | F5),0<j <M — 1.
where Cou(-,- | F;) denotes the covariance of two random variables with respect to the

probability measure P and the filtration {F;}.

The quadratic total risk minimization criterion aims to minimize the Ls-norm of the
difference between option payoff and the hedging portfolio value. In other words, we need
to minimize the expectation of squared difference between H and V),. This strategy is
self-financing, which means Cy = C = ... = Cy;_1. Therefore, the quadratic total risk
minimization criterion is to minimize the formula (2.5):

E(H-Vy)?) =E ( (H—Vy— Z &AX;) > (2.5)

The optimal solution is given by Schweizer (1995) with the condition that the discounted
stock price X has a bounded mean-variance trade-off shown in the formula (2.4). The
analytic solution is:

V(t) E(HT]ML (1-8;AX5))

. - E(HJM_OIO BiAX;))

&y =0,

g(t) 5@ +5j(V}(l) _ Vo(t) _ Gj(ﬁ(t))) +7,0<j<M-1,

J
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where the process 3; and «; are given by the formula:

g, = EAX 554 (1B AX)| 7))

T E(AXZ L (1-BedXi)F;)

B =Gr W)=V 465 () AX; TG (1-BrAXK)IF))
i BAX2 TS, (1-BAX2|F) ‘

The existence and uniqueness of this solution have been proven by Schweizer (1995).
But the condition for this analytic solution is a bit restrictive so that it cannot be applied
to many models, e.g., the stochastic volatility models.

Besides the limited application of the explicit solutions to the quadratic local risk min-
imization and the total risk minimization criteria, Coleman et al. (2003) propose to use
piecewise linear risk minimization criteria. Minimizing quadratic criteria puts more em-
phasis on the larger errors while minimizing piecewise linear criteria considers the weighted
average error. Coleman et al. (2003, 2008) investigate the piecewise linear criterion for
local risk minimization and total risk minimization. They also prove that the discrete
hedging put-call parity works for both piecewise linear local and total risk minimization
criteria. However, there is no analytic solutions for the piecewise linear criteria and it is
very expensive to compute. Therefore, Coleman et al. (2003, 2008) propose a method to
compute the optimal solution by using Monte Carlo simulation. They generate simulations
of a binomial tree model to approximate the stock price path that follows the stochastic

differential equation:
ds
— = pdt + odZ,. (2.6)
St
Coleman et al. (2003) give the piecewise linear local risk minimization criterion, which
is similar to the quadratic ones, given the final condition &£, = 0 and 7, = H, and get the
optimal holdings by minimizing:

E(| Xjs1(§541 — &) + (jer —mi) 1| F5)-

The optimal strategy can be computed by solving the L;-optimization problem back-
wards in time. From the numerical results, Coleman et al. (2003) conclude that piecewise
linear local risk minimization may lead to a large probability of smaller cost and risk but
also could result in a small probability of larger cost and risk than the explicit solution of
the quadratic local risk minimization criterion.

Coleman et al. (2008) investigate the piecewise linear total risk minimization criterion.
This problem is also solved by Monte Carlo simulation. Suppose L simulations are gener-
ated, and the option payoff at the maturity for each simulation is denoted by H*), where
k=1,2 .. L.



For each hedging time 0 < 7 < M — 1, the discounted stock price and the change of
the discounted stock price are denoted by X ](k) and AX j(k) respectively for each simulation.
The holding position of the underlying asset is denoted as fj(k) in each simulation path.
The objective function for the total risk minimization problem becomes:

L M—-1
min 37| H® v - gAxP - 3 ePax®
Vo,ﬁoéj(- ) k—1 j=1

The dimension of this problem is L x M, which makes it computationally more ex-
pensive and much harder to solve than the local risk minimization criterion. To solve this
optimization problem, Coleman et al. (2008) put forward a method that the holdings in
the hedging strategy is supposed to follow a function of the current and past discounted
stock prices. They examine two assumptions of the relationship between the holding and
the discounted stock price.

One assumption is that the holding at each hedging time is a function of the discounted
stock price at that hedging time.
& = D;(X) (2.7)

This method reduces the number of parameters in the optimization problem to N x M
where N is the number of the parameters in the function D;(-), which is chosen to represent
the relationship between the holding and the discounted stock price at each hedging time.
The function Dy = &, and is a constant. With this assumption, the piecewise linear total
risk minimization problem becomes:

L M—1
: k) _ v _ (x ) (k)
‘1%1%1; H® — v, z; D;(XV)AX]
= ]:

Coleman et al. (2008) apply it to the stochastic differential equation (2.6) by assuming
the function D,(-) as cubic spline functions. Thus, the parameters in the optimization
problem become the unknowns in each cubic spline function. However, this constraint may
introduce extra risk if the number and the placement of the spline knots are not specified
appropriately.

Another assumption is that the holding relates not only to the current discounted stock
price at that hedging date, but also to the past discounted stock prices. Thus, Coleman
et al. (2008) assume the holding is a linear combination of functions with respect to the
current and past discounted stock prices. They introduce more degrees of freedom by



allowing the effect of the current discounted stock price X; at t; to be different from the
effect of the past discounted stock prices Xy, ..., X;_;. In this assumption, the holdings in
the hedging portfolio becomes:

—

1 =
X;

A

& = Di(X;) + Di(X)AX;,¥Vj=1,..,M —1 (2.8)

I
=)

where D;(+) is a function with the different parameters from D;(-).

After replacing §; in the piccewise total risk minimization problem, the optimization
objective function becomes:

mln E
Vo,D

’ Jkl

M-1 -1 X(k)

> (’f) (k)
-3 (p)+ S he) 2 a
J=0 =0

J

This method reduces the complexity of the optimization problem and makes it easier to
compute optimal strategy. The assumptions 2.7 and 2.8 are applied to both Black-Scholes
model and a stochastic volatility framework. With the numerical results, Coleman et al.
(2008) illustrate the pattern of the holdings with different discounted stock prices after a
rebalancing time and find that the optimal strategy obtained under such assumptions is
similar to the analytic solution, which shows the reliability of this method.

Coleman et al. (2008) use the cubic spline function with a few knots to model the
function D;(-) in their research. The cubic spline function only allows a finite number
of knots and the continuity is achieved by constraining the first and second derivatives
on either side of each break point to be the same. This create discontinuity at the data
points that are not chosen to be the knots. In addition, the result may be sensitive to the
choice of the knots, which may not be appropriate when approximating the mathematical
relationship between the holding and the discounted stock price.

Instead of the cubic spline function, we introduce the spline generating kernels with an
infinite number of knots to model the relationship The kernel function k(z,y) is the inner
product of two mappings {¢,(x)}/2% and {6, (y)}125 as shown below, which allows infinite

number of knots.
H(%@/) = <{¢n(x)}a {¢7L(y)}>

In our case, the mapping is a function of the discounted stock price X. However, instead
of giving definition to the mapping {¢,(-)}/25, the kernel function is usually specified
directly in practice, which leads to computational convenience. In this project, the kernel



generating spline with an infinite number knots has the function representation proposed
by Vapnik (1998). The detail is shown in Chapter 3.

To model the complex nonlinear relationship between the holding and the underlying
asset price, Coleman et al. (2012) propose a method to approximate the nonlinear rela-
tionship by a linear combination of spline kernels. By this method, the hedging position
function D;(X) is represented as a linear combination of kernel function values with respect
to a chosen set of reference points X*, i.e.,

D;(X) = Z k(X X7 ;)
i=1

where n is the number of the reference points at each hedging time ¢; and «;; are the
cocfficients.

In this project, we focus on the quadratic total risk minimization criterion using spline
kernel function. The relationship between holdings and discounted stock prices at each
hedging time is modelled by a linear combination of spline kernels with some reference
points. We change the number of the reference points to obtain the best hedging strategy
and examine the difference in the hedging performance when the number of reference
points changes. Then the regularization term is introduced to the objective function of
the optimization problem to see if the hedging performance would be affected more by the
regularization penalty parameter compared with the number of the reference points. Cross
validation is used when determining the best values of the parameters to avoid overfitting
when introducing too many degrees of freedom. The best parameters are chosen when
minimizing the total risk for the testing set.

10



Chapter 3

Total Risk Minimization Using
Spline Kernel With Regularization

3.1 Spline Kernel Function

In this project, we use the quadratic total risk minimization criterion as an illustration,
which is shown as the formula (2.5). The framework can be applied to the piecewise
linear total risk minimization problem. We note that the quadratic total risk minimization
criterion aims to minimize the squared difference between the option payoff and the final
value of the hedging portfolio, which is an Lg-norm minimization problem. By using the
assumption proposed by Coleman et al. (2008) that the holding at each hedging time is
a function of the current and past discounted stock prices, we can get the new formulas
of the quadratic total risk minimization criterion instead of the formula (2.5). To get the
formula (3.1) below, we first assume the holding at each hedging time to be a function of
the discounted stock price at that time as shown in the formula (2.7).

Suppose that the number of simulations is L and the number of total hedging times is
M. The quadratic total risk minimization becomes the following.

L M-1 2
1
min > (H(’“) —Vo— DoAXSY =) Dj(XJ(k))AX;k)) (3.1)
j=1

To model the function D;(-), we assume a set of the reference points Xini=1..,n,

where n is the number of the reference points at each hedging time. As we mention in

11



Chapter 2, the function Dj(-) is a linear combination of x(-, X7,), i = 1, ...,n, as follows,

Za” (X, X)) (3.2)

where (-, X7;) is a spline kernel function proposed by Vapnik (1998), that is

(XAXF; + Xp)3
3

* * 1 * * *
(X, XE) =1+ XX+ 5|X — X5 I(XAX]S + X0)* + (3.3)
and
XAXY, =min(X, X)), Xy = H}EnXZ*J

In this project, the holding D; depends on the discounted stock price X; and some
selected reference discounted stock prices X7;. At each hedging date, the reference price
values are pre-determined and X; is the global minimum value of all the reference dis-
counted price values in time. The number of the reference points, n, in the summation
sets the degrees of freedom of the function, which needs to be determined.

In addition, for the spline kernel function, the placement of the reference points need to
be determined. We assume the reference points to be evenly distributed within the range
of the discounted stock price values at each hedging time. The range of the values is given
by the minimum and maximum values at that hedging time. Therefore, the placement of
the reference points is shown in (3.4).

* * i—1 * * .
X=X+ p— 1(X = X{;),1<i<n (3.4)
where
X, ; = max(X;), X7 ; = min(X})

After introducing the spline kernel function, the original quadratic total risk minimiza-
tion problem becomes:

L M—-1 n 2
1 .
i _ (k) _ _ (k) o (k) X* (k)
Vo,%lolgi,j L ; (H VO DOAXO Z Z QWH(XJ J)AXj ) (3'5)

j=1 i=1

The formula (3.5) is an Lo-norm optimization problem with unknowns V4, Dy and n
parameters o ;, 1 <7 < n, in the kernel function at each hedging time ¢;. We denote the

12



number of unknowns in total as N and N = n x (M — 1) + 2, where n is the number of
reference price values and M represents the total number of the hedging times. To show
the optimization problem more clearly, we can express the formula (3.5) in the matrix
version. We define z as the vector containing all unknowns, b as the vector of the option
payoffs from all the simulations and A as the parameter matrix.

R SR
& H®)
a1 H®)
7z = Q1 7b: H(4)
Qp—1,M~1 HE-1
Qn, M1 4 Nx1 L H(L) 4 Lx1
B 1 1 " 1 1 " 1
1 AX{); K;(XIEQ;,XM)AX%Q; m(XJE\g;_l,XTL7M_1)AX§g;_1
L AXp k(X ’Xik,l)AXl “(XM—pX;,Mq)AXM—l
A=|: : g :
L—1 -1 " L-1 L—1 N L—1
1 AX(S(L)) k(X! (L;,XM)AX%L)> K(X}Véﬁ),XmM_l)AX%l)
_1 AX, /<;(X1 ,Xil)AX1 K“(XMfle;,Mfl)AXMfl P

Hence, z, including all unknowns, has the size N x 1, where N is the number of all the
parameters in the kernel function plus two constant unknowns. The vector b has the size
L x 1, where L is the total number of the Monte Carlo simulations, and the matrix A has
the size L x N.

Then the quadratic total risk minimization problem can be rewritten as the following
formula (3.6).

. 1 T
min Z(AZ —b)"(Az —b) (3.6)

By taking the first derivative of the objective function (3.6), we can obtain the optimal
solution for this optimization problem as shown in (3.7).

z=(ATA) AT (3.7)
We then consider another assumption that the holding at each hedging time is the

function of all the current and past discounted stock prices since the hedging positions
may also be affected by the past discounted stock prices. The assumption (2.8) is used
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to define the relationship between the hedging positions and the discounted stock prices.
By assuming the holding at each hedging time to be a function of the current and past
discounted stock prices, the quadratic total risk minimization problem becomes:

L M-1 -1 (k 2
Z ( -y (Dj(x§k>) +3 Di(x" )AXL(> AX! > (3.8)

VO’ k: j=0 1=0 j

where

Z k(X X))

=1

The functions D;(-) and D;(-) are different functions with n reference points for all
1<j<M-1and 1< j < M — 2 respectively while D, and Do are constants. The
values of all coefficients o ; and &; ; need to be determined. Thus, the size of unknowns
becomes N =n x (M —1)+n x (M —2) + 3. Since the information of all the discounted
stock prices X;, 0 < j < M, is known, the problem 3.8 can also be solved as a linear least
squares problem.

In the reality, the hedging strategy is generated by mathematical models and then
applied to the real financial market, which means the data used to create the model is
usually different from the realized market data. Thus, we decide to use cross validation
and generate two data sets to determine the best model, which are training set and testing
set. After obtaining the optimal strategy, we can apply it to the new testing data set to
see its hedging performance.

In the spline kernel function, we need to determine the number of the reference points
n. This parameter is determined by solving the optimization problems (3.6) and (3.8) to
get the smallest total risk for the testing set by cross validation.

3.2 Regularization

When we learn a model by solving an optimization problem, we need to avoid overfit-
ting. Over fitting can be a common problem when computing the best parameters when
solving the optimization problems. To obtain the optimal value of the target function, the
best model usually can introduce more complexity since it is more likely to obtain a better
fitting when the number of parameters increases. However, such an estimation is not the
best fitting since it causes the problem that the model over explains the given data set.
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In other words, although the estimated function is close to the data points, it can be too
complex and sensitive to errors.

Therefore, to solve the over fitting problem, we can introduce an Lo-regularization. For
the total risk minimization problem, since reference point placement does not affect spline
knots and their placement, spline kernel function is easier for introducing regularization
than the cubic spline function, which is another reason that we use the spline kernel functio
in this project.

We then combine the objective function (3.5) with the regularization to avoid over-
fitting of the function estimation. Therefore, by the method of Lo-regularization, we add
the sum of squared values of parameters in the spline kernel function to the objective
function (3.5) and multiply the sum with a regularization penalty parameter A\. Then the
regularized quadratic total risk minimization problem becomes the formula (3.9).

L M—-1 n M-1 n
1
i — k) _ vy _ (k) k) * (k)
VofgsgiijZ<H Vo DAXSY = 3L D augn(X), XiAX; ) A D ol
’ =1 Jj=1 = J =
(3.9)

For the other assumption 2.8, we also introduce the regularization term to the objective
function to restrict the complexity for the both two functions, which are D;(-) and Dj(-).
With the new assumption, the number of parameters is larger than the assumption 2.7
and the hedging results may be affected more after introducing the regularization. The
optimization problem to be solved is shown as the following formula.

1L M—1 AX 2
min  — H® — v, — DX+ 3" Dy(x) =" | Ax Y
Vo,D;,0; L kz::l ( ; Z X(k) ’ (3.10)
M-1 n M-2 n
2 ~2
RY03) 3R 3 o)
j=1

j=1 i=1 i=1

In this project, we examine four quadratic total risk minimization formulations. The
four criteria consider whether the regularization is used and the different assumptions of
the relationship between the holding and the discounted stock price. The two relationships
are that holding only depends on the current discounted stock prices (assumption (2.7))
at the hedging time and depends both on the current and past discounted stock prices
(assumption (2.8)) respectively. The four criteria are shown as the following:
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e Strategy 1: quadratic total risk minimization using spline kernel with assumption
(2.7);

e Strategy 2: quadratic total risk minimization using spline kernel with assumption
(2.8);

e Strategy 3: quadratic total risk minimization using spline kernel with regularization
and assumption (2.7);

e Strategy 4: quadratic total risk minimization using spline kernel with regularization
and assumption (2.8).

We get the optimal parameter values by generating and fitting data through Monte
Carlo simulation. With the optimal strategy computed from each strategy, we report its
hedging performance at different hedging frequencies and different discounted strike prices.
The evaluation is based on the following two criteria.

e Total risk:
E(|H—-Vy|) (3.11)

This is the expected difference between the option payoff and the final value of the
hedging portfolio.

e Total cost:
M—1

H - &AX; (3.12)
k=0

This is the total amount of money necessary for the writer to implement the self-
financing hedging strategy and honor the option payoff at expiry.

With these two criteria, we need to find the optimal number of reference points and the
best regularization penalty parameter that lead to the smallest total risk for the quadratic
total risk minimization problems shown above. With the assumption that the holding
of the underlying asset in the hedging portfolio is a function of the current and past
discounted stock prices, we then use cross validation to find the best parameters in the
holding functions for both assumptions.

Cross validation is used to examine the hedging performance for the out-of-sample
data. Solving the quadratic total risk optimization problem always tends to minimize the
squared sum of the residuals on the given data set. However, the optimal strategy obtained
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by achieving the smallest total risk on training set may lead to a relatively bad performance
when applying the model to a new data set. By cross validation, the optimal parameters
are obtained by minimizing the total risk of the testing set.

We show the hedging performances for the above four quadratic total risk minimization
criteria in the next chapter. In addition, we show the similarity and difference of their
performances for the discrete hedging.
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Chapter 4

Simulation Results

4.1 Simulation Settings

In this chapter, we use Monte Carlo simulation to solve the quadratic total risk min-
imization problem. To find the optimal parameters in the holding functions, we generate
two data sets, which are the training set and the testing set. The two data sets contain two
different sets of the discounted stock price paths. The time horizon is [0, T], where T' > 0.
The whole time horizon is divided into 600 time steps and the stock price process {S;} is
generated at each time spot, which follows the stochastic differential equation below:

d
DSt _ it + 0dz, (4.1)
St

where Z, follows a Brownian motion.

The stock price path is generated at each time step during the whole time horizon based
on the above stochastic differential equation (4.1). In other words, the whole stock price
path is generated at the total 600 time steps. Since we focus on discrete hedging, we only
have a few hedging opportunities. We then choose several number of hedging times to show
the hedging performance under cach hedging frequency. The number of the rebalancing
opportunities during the whole time horizon is denoted by M. It also can be represented
as the number of the total time steps, which is 600 according to the above settings, divided
by the number of time steps per rebalancing time as shown below.

B 600
# of timesteps per rebalancing time
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The discrete hedging times are denoted by 0 = ty < t; < ty < ... < tpy = T. For
example, when hedging only once initially, we only hedge on ¢; to see its performance.
The best parameters are calculated for several time steps per rebalancing time. If there
are 25 time steps per rebalancing time, the number of hedging opportunities m = 24. In
this report, we examine several number of hedging times at each discounted strike price
K =90,95,100,105,110. Each optimal strategy is used to calculate the average total risk
and the average total cost.

Suppose we implement the discrete hedging based on a European put with the dis-
counted strike price K and the option payoff H. The two data sets contain two different
sets of the discounted stock price paths, which are calculated by the original stock price
paths {S;} and the continuously compounded bond price processes {B;}. The basic as-
sumptions for the European put option payoff H and the discounted stock price process
{X;} are as the following.

e Continuously compounded bond price: B; = e"

e Discounted stock price: X; = %tt

e Option payoff: H = (K — X7)4

To generate the Monte Carlo simulations, we give some specific settings to the param-
eter values in the stochastic differential equation and the number of simulations as shown
in Table 4.1.

Maturity T' 1
Risk-free rate r 0.04
Initial stock price Sy 100
The instantaneous expected return of the stock price | 0.15
Volatility o 0.2
# of simulations L 40000

Table 4.1: Basic settings for the Monte Carlo simulation

With the above settings, we compute the optimal holding positions for the quadratic
total risk minimization problem with the spline kernel function by cross validation. To
obtain the best strategy, two sets of the discounted stock price paths are generated, which
are the training set S; and the testing set S;. The two sets are created under the same
stochastic differential equation (4.1) but with different random seeds. The parameters of
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the holding functions obtained from the training set are applied to the testing set to see its
testing performance. The number of the reference points n and the regularizing penalty
parameter A\ are treated as the parameters to be determined. The best parameters n*, A\*
are those that could minimize the total risk of the testing set. The total risk and total
cost are reported at five different discounted strike price from 90 to 110 to see strategy
performances for both in-the-money and out-of-the-money situations.

4.2 Comparison With Delta Hedging

As we mentioned in Chapter 1, delta hedging provides a perfect hedging performance
in the complete market under the Black-Scholes framework. In the incomplete market,
many practitioners are still using delta hedging even if the hedging is discrete. We then
make a comparison between the delta hedging and the hedging method used in our project
to see their hedging performance under some measures.

4.2.1 Convergence

Under the Black-Scholes framework, delta hedging provide the smallest cost for the
continuous hedging. In practice, we can only hedge at discrete times. In addition, we
would like to hedge as infrequently as possible due to the transaction cost. However, as
the hedging frequency becomes higher, the cost of the hedge should converge to the Black-
Scholes price. We then examine the convergence to the Black-Scholes price of our hedging
strategy. The Black-Scholes price for the option can be obtained by the function blsprice
in MATLAB. We use Strategy 1 as an illustration to see the convergence.

Strike M (# of rebalancing times during the whole time horizon)

Delta 600 120 60 24 12 6 2 1
90 2.5315  2.5455 25291  2.5194  2.4860 24336  2.3372  2.0581 1.7423
95 4.0325 4.0368 4.0217 4.0112 39704 39135 3.7889  3.4130 2.9704
100 6.0040  6.0208 6.0003 5.9869 5.9415 58681  5.7204 5.2631 4.6870
105 8.4499  8.4515 8.4340 8.4209 8.3748 83019 8.1433 7.6238 6.9308
110 11.3456 11.3473 11.3227 11.3065 11.2611 11.1927 11.0330 10.4794 9.7067

Table 4.2: Convergence to the Black Scholes price
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From the above table, we can see that the cost of Strategy 1 converges to the Black-
Scholes price at each strike price as the number of hedging times M becomes large. In
addition, for very frequent rebalancing, the cost for implementing Strategy 1 is larger
than the Black-Scholes price, which means that the Strategy 1 can’t beat Black-Scholes
delta hedging when the number of hedging times M is very large. Thus, there is no need
to use other hedging strategies except the Black-Scholes delta hedging when the hedging
frequency is very high. We then focus on examine the hedging performance at some lower
level of hedging frequency. When hedging at a lower level of rebalancing frequency, the
cost for Strategy 1 becomes smaller.

Since we focus on the discrete hedging, we then examine the hedging performance of
our strategy compared with the discrete Black-Scholes delta hedging. Instead of hedging
continuously, the discrete Black-Scholes delta hedging only rebalances at some specific
times.

4.2.2 Normalized P&L

To examine the hedging performance more clearly, we introduce the density plot of the
normalized P&L, which is the actual P&L divided by the Black-Scholes price as shown

below.
Actual P&L

Black-Scholes price

Normalized P&L =

The density plots of the normalized P&L for Black-Scholes discrete delta hedging and
the hedging method Strategy 1 when hedging 24 times, 60 tines and 600 times are shown
in Figure 4.1.

From the plot, we can see that the patterns of the density plots of Strategy 1 are similar
with the patterns of the delta hedging. When hedging more frequently, the volatility of the
normalized P&L is getting smaller. This means that we can make effective risk management
if we hedge at a high frequency. However, in reality we need to consider the transaction
cost and try to achieve a balance between the hedging effectiveness and the hedging cost.
In this project, we would like to focus on hedging at a lower level of frequency.

The density plot shows the stability of the hedging performance. To compare the
hedging performance between the Black-Scholes discrete delta hedging and our hedging
strategy thoroughly, we also introduce some other risk measures.
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4.2.3 Other Risk Measures

The hedging performance can also be compared based on some other risk measures like
VaR and CVaR. Value at risk (VaR) and Conditional Value at Risk (CVaR) (Rockafellar
and Uryasev, 2000) are statistical measures of the riskiness of financial portfolios.

VaR is defined as the maximum dollar amount expected to be lost over a given time
horizon, at a pre-defined confidence level, which is

VaR,(X) =min{z | Fx(z) > a}.

The Conditional Value at Risk (CVaR) is the conditional expectation of X, given that
X > VaR,(X), ie.
CVaR,(X)=FE[X | X > VaR,(X)].

In this project, we use the confidence level & = 95% to examine the VaR and CVaR for
the Black-Scholes discrete delta hedging and our hedging strategy. The VaR and CVaR
values when strike price K = 100 are used as illustrations to make comparison. The values
of VaR and CVaR for the P&L when hedging 24 times and 600 times are shown below.

Strike  Mean Standard deviation  VaR CVaR

90 -0.0111 0.3582 -0.5960 -0.8942
95 -0.0104 0.2726 -0.4594 -0.6644
100 -0.0070 0.2114 -0.3550 -0.5012
105 -0.0063 0.1653 -0.2783  -0.3899
110 -0.0052 0.1290 -0.2194  -0.3056

Table 4.3: Statistics for the P&L of Delta hedging (hedging 24 times)

Strike Mean Standard deviation VaR CVaR

90 -1.66E-10 0.3448 -0.5888 -0.8858
95 -1.22E-10 0.2647 -0.4496 -0.6396
100 -9.94E-11 0.2021 -0.3362  -0.4752
105 -8.17E-11 0.1589 -0.2632 -0.3633
110 -7.29E-11 0.1234 -0.2049 -0.2869

Table 4.4: Statistics for the P&L of Strategy 1 (hedging 24 times)
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Strike  Mean Standard deviation  VaR CVaR

90 -0.0018 0.0745 -0.1181 -0.1757
95 -0.0012 0.0559 -0.0903 -0.1299
100 -0.0009 0.0435 -0.0701  -0.0991
105 -0.0005 0.0337 -0.0547 -0.0751
110 -0.0001 0.0268 -0.0429 -0.0592

Table 4.5: Statistics for the P&L of Delta hedging (hedging 600 times)

Strike Mean Standard deviation VaR CVaR

90 -1.89E-11 0.2115 -0.3068 -0.4177
95 -4.61E-12 0.1264 -0.1888 -0.2325
100 -2.68E-12 0.0910 -0.1379 -0.1857
105 -2.21E-12 0.0884 -0.1284 -0.1653
110 -9.02E-13 0.0730 -0.1029 -0.1238

Table 4.6: Statistics for the P&L of Strategy 1 (hedging 600 times)

Since the total risk minimization strategy aims to minimize the difference between the
option payoff and the final value of the hedging portfolio, the mean value of P&L for this
strategy is naturally very small. Therefore, we do not focus on the mean values of P&L.
Instead, the hedging performance can be compared based on the standard deviation, VaR
and CVaR.

From the results, we can see that Strategy 1 shows smaller standard deviation than
the Black-Scholes discrete delta hedging when hedging 24 times, while it shows larger
volatility when hedging 600 times. This result indicates that when hedging at a high
level of frequency, the hedging performance of Strategy 1 is not as stable as that of the
Black-Scholes discrete delta hedging.

In terms of VaR and CVaR, Strategy 1 has smaller absolute values than the Black-
Scholes discrete delta hedging when hedging 24 times, which indicate a better hedging
performance at such a level of hedging frequency. However, for very frequent rebalancing
like hedging 600 times during the time horizon, Strategy 1 shows larger absolute values
of VaR and CVaR than the Black-Scholes discrete delta hedging. In this case, Strategy 1
can’t beat Black-Scholes discrete delta hedging as it may lead to larger loss with a certain
confidence level.
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Thus, for discrete rebalancing, when the number of hedging times M is large, the
strategy introduced in this project will not be able to exceed the Black-Scholes discrete
delta hedging while when M is small, the strategy could beat the delta hedging. Since
we are interested in the discrete hedging at lower frequency due to the transaction cost
in reality, we focus on examine the hedging performance at a lower level of rebalancing
frequency in this project. The hedging performances of our four strategies are examined
when the number of hedging times M = 24,12,6,2,1 at each discounted strike price K =
90, 95,100, 105,110. The optimal parameters for each strategy are obtained to calculate
the average total risk and the average total cost to see the hedging performance.

4.3 Spline Kernel Without Regularization

In this chapter, four strategies are examined. Strategy 1 and Strategy 2 using the
assumption (2.7) and (2.8) respectively without regularization. Strategy 3 and 4 introduce
the regularization method to see if there is any improvement in reducing the total risk and
the total cost after adding the regularization term to the optimization objective function.
We first consider the cases without regularization.

4.3.1 Benchmark

Coleman et al. (2008) give the average total risk and the average total cost of the
Monte Carlo simulation by solving the quadratic total risk minimization with cubic spline
function. We treat the results as the benchmark. The total risk and the total cost are
defined in Chapter 3, and the average values among all the simulations for both criteria are
reported in this project. The results for the benchmark given by Coleman et al. (2008) with
the assumption 2.7 are shown in Table 4.7 and 4.8 while the results with the assumption
2.8 are in Table 4.13 and 4.14.

The results of the benchmark come from the situation that the cross validation is not
used. Therefore, we compare the total risk and total cost obtained from the training set
with the values from the benchmark. Here we do not add the regularization term to the
optimization problem, and use strategy 1 and strategy 2 as illustrations.
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4.3.2 Strategy 1

We first consider Strategy 1, whose assumption is that the holding is a linear combina-
tion of spline kernel values with respect to some reference points which are selected among
the training discounted stock prices. With Strategy 1, we assume there is no regularization
and we obtain the optimal strategy by solving the following optimization problem for each
discounted strike price K and each hedging frequency.

L M-1 2
1
min 3 (H(’“) — Vo — DoAXST = Dj(X§k>)AX§k>> (4.2)
k=1 j=1

Vo,Do;--,Dar—1

To solve the quadratic total risk minimization problem, we need to determine the
number of the reference points. We randomly choose the number of reference points n = 60
to see its performance and make the comparison with the results using the cubic spline
function implemented in Coleman et al. (2008).

By using the spline kernel representation, we can see the average total risk and the
average total cost at different discounted strike price and different number of time steps
per rebalancing time in Table 4.7 and 4.8 respectively. Compared with the benchmark
implemented in Coleman et al. (2008), using spline kernel function provides smaller total
risk and total cost than using the cubic spline function, which indicates that the relationship
between the holding and the underlying asset price could be better described by using the
spline kernel function with infinite number of knots. The result that using the cubic spline
does not perform as well as the spline kernel does may come from the inappropriate choices
of the number and the placement of the knots in the cubic spline function.

In the real financial market, we cannot have the information of the future discounted
stock price to create the best model for hedging. For the optimal hedging strategies
obtained from the training set, we would like to know if the hedging strategy could perform
well in a new series of discounted stock prices. Usually, the optimal strategy for the training
set is not the best for the testing set due to the problem of overfitting. Therefore, we need
to get the optimal strategy model using cross validation.

The reference discounted stock price values X7, are assumed to be evenly distributed
at each hedging time. We consider the number of the reference points from 1 to 100 to see
the total risk patterns for both training set and testing set. By cross validation, the best
choice for the number of the reference points n is the one that minimizes the total risk for
the testing set.
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Strike  Strategy M (# of hedging times)
24 12 6 2 1

90 Benchmark 0.6312 0.8410 1.1212 1.5727 1.7707
Strategy 1 0.5896 0.8147 1.1109 1.5674 1.7707
95 Benchmark 0.7918 1.0771 1.4687 2.1945 2.6222
Strategy 1 0.7587 1.0546 1.4667 2.1892 2.6231
100 Benchmark 0.9877 1.3144 1.7784 2.7944 3.5117
Strategy 1 0.9076 1.2675 1.7718 2.7733 3.5157
105 Benchmark 1.1068 1.4677 2.0051 3.2892 4.3184
Strategy 1 1.0123 1.4254 1.9971 3.2544 4.3107
110 Benchmark 1.1308 1.5344 2.1240 3.6189 4.9366
Strategy 1 1.0706 1.5200 2.1217 3.5800 4.9328

Table 4.7: Average total risk for the Benchmark and Strategy 1 with n = 60

Strike  Strategy M (# of hedging times)
24 12 6 2 1

90 Benchmark 2.4540 24033  2.3155  2.0400 1.7421
Strategy 1 24183  2.3884  2.2963  2.0351 1.7423
95 Benchmark 3.9512  3.8830  3.7647  3.4006 2.9735
Strategy 1 3.9066  3.8647  3.7472  3.3919 2.9704
100 Benchmark 5.9183 58396  5.6983  5.2566 4.6948
Strategy 1 5.8663  5.8138  5.6826  5.2412 4.6870
105 Benchmark 8.3613  8.2809  8.1280 7.6307 6.9449
Strategy 1 8.3086  8.2453  8.1128  7.6066 6.9308
110 Benchmark 11.2566 11.1789 11.0264 10.4994 9.7148
Strategy 1 11.2136 11.1459 11.0189 10.4794 9.7067

Table 4.8: Average total cost for the Benchmark and Strategy 1 with n = 60
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Figure 4.2: Average total risk for strategy 1 with cross validation at K = 90

Figure 4.2 shows the total risks with different number of the reference points for K = 90
and hedging 24 times, where n* = 15 in this case. From the above figure, we can see that
the values of total risk for the testing set first increases when n increases and then starts
to decrecase when n reaches certain value and keeps going large, which is common to sce
in the cross validation patterns. The total risk reaches its minimum when the number of
reference points is 15. Therefore, we determine it as the best choice for Strategy 1 when
K =90 and hedging 24 times, and repeat the process to report the optimal average total
risk and total cost with the best choice of the number of the reference points for other
discounted strike prices and hedging frequencies. When the hedging frequency is high,
the best number of the reference points is around 15 while when the hedging frequency
is low, like hedging twice, the value of n* is around 8, which is a bit smaller since there
is no need to introduce much complexity when the number of features in the problem is
relatively small. For different discounted strike price, the best value of n does not show a
large difference.

By cross validation, the best choice for the number of the reference points n for Strategy
1 is the one that makes the total risk for the testing set be minimum. Thus, we focus on
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examining the total risk and the total cost for the testing set. The values of the average
total risk and the average total cost for the testing set using Strategy 1 at each discounted
strike price K and hedging frequency are reported as follows.

Strike M (# of hedging times)
24 12 6 2 1

90 0.6371 0.8543 1.1338 1.5720 1.7945
95 0.8118 1.0965 1.4803 2.1831 2.6380
100 0.9476 1.3002 1.7820 2.7714 3.5225
105 1.0708 1.4554 2.0070 3.2588 4.3300
110 1.1256 1.5388 2.1410 3.5868 4.9525

Table 4.9: Average total risk for testing set using Strategy 1

Strike M (# of hedging times)

24 12 6 2 1
90 2.4620 24202 2.3342  2.0576 1.7423
95 3.9477  3.8946  3.7783  3.4081 2.9704

100 5.9089  5.8438 5.7155  5.2604 4.6870
105 8.3503  8.2765 8.1421 7.6218 6.9308
110 11.2522  11.1759 11.0358 10.4785 9.7067

Table 4.10: Average total cost for testing set using Strategy 1

We then analyze the distributions of the total risk and the total cost. The density plots
of the total risk and the total cost when hedging 24 times at strike price K = 100 are
shown in the Figure 4.3. As shown in the Table 4.9 and 4.10, the average total risk and
total cost in this case are 0.9476 and 5.9089 respectively.

From the plot, we can see that the distribution of the total risk is asymmetric. The
total risk has a large probability to have small values and a small probability to have large
values. The total cost has a more symmetric distribution. The values in the neighborhood
of the mean are most possible to achieve.
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Figure 4.3: Density plot of total risk and total cost for Strategy 1

We can also examine of values of VaR and CVaR for the total risk and total cost to
see its hedging performance in the extreme cases. Given the confidence level o = 95%,
the values of VaR and CVaR for the total risk and total cost at the right tail when using
Strategy 1 are shown in the tables below.

Strike Risk Measure M (# of hedging times)
24 12 6 2 1
90 VaR 1.9789 2.6940 3.4896 4.3930 4.8491
CVaR 2.7875 3.6619 4.9306 8.0370 10.3693
95 VaR 2.3657 3.1827 4.2031 6.0468  7.5196
CVaR 3.1871 4.1863 5.6074 9.4070 12.7732
100 VaR 2.6060 3.5588 4.7723 7.2628  9.6788
CVaR 3.5143 4.5954 6.1826 10.2829 14.4387
105 VaR 2.8829 3.9006 5.2730 7.9769 11.2036
CVaR 3.8801 4.9556 6.6993 10.9249 15.5210
110 VaR 3.0069 4.0936 5.5014 8.3088  12.2248

CVaR 4.1129 5.2398 7.1485 11.4839 16.2611

Table 4.11: VaR and CVaR of total risk for testing set using Strategy 1
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Strike Risk Measure M (# of hedging times)

24 12 6 2 1
90 VaR 4.0199 45942 53230 6.4505  6.6256
CVaR 49075 57834 7.0703 10.0945 12.1458
95 VaR 0.8540  6.5272  7.4809  9.4549 10.5241
CVaR 6.7586  7.7301  9.1760 12.8150 15.7777
100 VaR 8.0472 88154  9.9271 12.5231 14.4052
CVaR 9.0273 10.0691 11.6430 15.5432 19.1651
105 VaR 10.7025 11.5162 12.7112 15.5987 18.1699
CVaR 11.7740 12.8145 14.5284 18.5467 22.4873
110 VaR 13.6992 14.5899 15.8118 18.7874 21.9496

CVaR 14.9304 15.9968 17.8127 21.9625 25.9859

Table 4.12: VaR and CVaR of total cost for testing set using Strategy 1

4.3.3 Strategy 2

In Strategy 2, we use a different assumption to model the relationship between the
holding and the discounted stock price from Strategy 1. In this strategy, the holding of the
underlying asset at each hedging date is the function of the current and past discounted
stock prices. In addition, this strategy assumes that the effect of the current discounted
stock prices is different from the effect of the past discounted stock prices. Thus, we assume
that the holding of the underlying asset follows different functions of the current and past
discounted stock prices, which are denoted as D;(-), where 0 < 7 < M — 1, and ﬁj(-),
where 0 < 7 < M — 2.

After introducing the new relationship between the holdings and the discounted stock
price, the quadratic total risk optimization problem becomes the formula recalled as the
following.

| L M-1 -1 AX® 2
in — k) _ vy _ lc ~ (k
min LZ (H Vo— ) < (X} z;D (X, X )AX > (4.3)

Vo,Dj,D; - )
053> k=1 j7=0 j

The average total risk and cost of using Strategy 2 with the number of reference points
n = 60 compared with the benchmark is shown in Table 4.13 and 4.14. Again we can
see the total risk and the total cost of using Strategy 2 are smaller than those of the
benchmark, which confirms the better performance by using the spline kernel function.
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Strike  Strategy M (# of hedging times)
24 12 6 2 1

90 Benchmark 0.5450 0.7497 1.0325 1.5722 1.7707
Strategy 2 0.4933 0.7104 1.0182 1.5674 1.7707
95 Benchmark 0.6952 0.9662 1.3551 2.1908 2.6222
Strategy 2 0.6463 0.9308 1.3474 2.1892 2.6231
100  Benchmark 0.8563 1.1789 1.6518 2.7843 3.5117
Strategy 2 0.7868 1.1340 1.6357 2.7733 3.5157
105  Benchmark 0.9722 1.3319 1.8802 3.2738 4.3184
Strategy 2 0.8940 1.2906 1.8551 3.2543 4.3107
110  Benchmark 1.0460 1.4279 2.0079 3.6025 4.9366
Strategy 2 0.9623 1.3938 1.9956 3.5800 4.9328

Table 4.13: Average total risk for the Benchmark and Strategy 2 with n = 60

Strike  Strategy M (# of hedging times)
24 12 6 2 1

90 Benchmark 2.4504  2.4086  2.3224  2.0388 1.7421
Strategy 2 2.3609  2.3706  2.2867  2.0347 1.7423
95 Benchmark 3.9443  3.8885  3.7741 3.3983 2.9735
Strategy 2 3.8494  3.8470  3.7395 3.3915 2.9704
100 Benchmark 5.9118 5.8455 5.7119  5.2530 4.6948
Strategy 2 5.8114  5.7969  5.6770  5.2407 4.6870
105 Benchmark 8.3584  8.2882 8.1412 7.6261 6.9449
Strategy 2 8.2579  8.2295 8.1095 7.6061 6.9308
110 Benchmark 11.2569 11.1881 11.0413 10.4945 9.7148
Strategy 2 11.1690 11.1317 11.0176 10.4790 9.7067

Table 4.14: Average total cost for the Benchmark and Strategy 2 with n = 60
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The number of the parameters in the above formula is more than that of Strategy 1,
which introduces more complexity to the optimization problem. We then find the best n

for Strategy 2 at each discounted strike price K and each hedging frequency by using cross
validation.

With the number of the reference points n from 1 to 100, the total risks for the training
set and the testing set when the discounted strike price K = 90 and hedging 24 times
are shown in Figure 4.4, where we can find that the best choice of the number of the
reference points at this discounted strike price and hedging frequency is around 12. This
is the number of the reference points at each hedging time for both the holding functions
D;(-) and Dj(-). The figure has a similar pattern to Strategy 1 that also does not include
the regularization term for the optimization problem. We then find the best number of
reference points for each discounted strike price and hedging frequency and report the
optimal average total risk and the average total cost for the testing set.

testing set
training set

25F i 4

total risk

05 1 Il Il Il Il 1 Il Il
0 10 20 30 40 50 60 70 80 90 100
n - number of reference points

Figure 4.4: Average total risk for strategy 2 with cross validation at K = 90

By using the best choice of the number of the reference points, the average total risk and
the average total cost for the testing set is shown in Table 4.15 and Table 4.16 respectively.
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Strike M (# of hedging times)
24 12 6 2 1

90 0.5641 0.7668 1.0498 1.5715 1.7945
95 0.7100 0.9802 1.3647 2.1823 2.6380
100 0.8566 1.1853 1.6513 2.7702 3.5225
105 0.9708 1.3421 1.8745 3.2580 4.3300
110 1.0362 1.4272 2.0111 3.5858 4.9525

Table 4.15: Average total risk for testing set using Strategy 2

Strike M (# of hedging times)

24 12 6 2 1
90 2.4630 24213  2.3270  2.0556 1.7423
95 3.9505  3.8987  3.7813  3.4092 29704

100 5.9130  5.8504  5.7177  5.2609 4.6870
105 8.3955  8.2844  8.1474  7.6256 6.9308
110 11.2582 11.1835 11.0327 10.4801 9.7067

Table 4.16: Average total cost for testing set using Strategy 2
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Using the different assumptions of the relationship between the holding and the under-
lying asset price, we can see that the total risks at different discounted strike prices and
different numbers of time steps per rebalancing time for the testing set all show reduction
compared with Strategy 1. However, for the total cost, the values obtained from Strategy
2 do not show an obvious improvement compared with Strategy 1.

The distributions of the total cost and total risk for Strategy 2 are in the following
density plot. Compared with the density plot of Strategy 1 in Figure 4.3, Strategy 2 seems
to have more values located near the neighborhood of the mean value.
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(a) Total risk (M = 24) (b) Total cost (M = 24)

Figure 4.5: Density plot of total risk and total cost for Strategy 2

The following tables show the VaR and CVaR of total risk and total cost when using
Strategy 2. Compared with the values shown in Table 4.11 and 4.12 for Strategy 1, we
notice that the values of VaR and CVaR for Strategy 2 are smaller than the values for
Strategy 1. This result indicates that in terms of the VaR and CVaR, Strategy 2 makes
better risk management than Strategy 1, which is consistent with the comparison in terms
of the total risk.
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Strike Risk Measure M (# of hedging times)

24 12 6 2 1
90 VaR 2.0202 2.7151 3.5053 4.4020 4.8491
CVaR 2.8824 3.7708 4.9850 8.0460 10.3693
95 VaR 2.3798 3.1897 4.2121 6.0480  7.5196
CVaR 3.2346  4.3274 5.7325 9.4167 12.7732
100 VaR 2.7097 3.5941 4.8101 7.2715  9.6788
CVaR 3.5850 4.7640 6.3534 10.2859 14.4387
105 VaR 2.8996 3.9082 5.2896 7.9890 11.2036
CVaR 4.0084 5.0713 6.8603 10.9313 15.5210
110 VaR 3.0139 4.1018 5.6150 8.3142 12.2248

CVaR 4.1371 5.3112 7.2807 11.4920 16.2611

Table 4.17: VaR and CVaR of total risk for testing set using Strategy 2

Strike Risk Measure M (# of hedging times)
24 12 6 2 1
90 VaR 3.9278  4.4552  5.2185 6.4496  6.6256
CVaR 4.8931 57782  7.0544 10.0937 12.1458
95 VaR 5.7657  6.4179  7.3257  9.4501 10.5241
CVaR 6.7512 77111  9.1547 12.8148 15.7777
100 VaR 7.9995  8.7184  9.8085 12.5218 14.4052
CVaR 9.0147 10.0374 11.5671 15.5402 19.1651
105 VaR 10.6258 11.4332 12.4996 15.5909 18.1699
CVaR 11.7433 12.8077 14.4696 18.5432 22.4873
110 VaR 13.6301 14.4807 15.6188 18.7729 21.9496

CVaR 14.8543 15.0730 17.7426 21.9606 25.9859

Table 4.18: VaR and CVaR of total cost for testing set using Strategy 2
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4.4 Spline Kernel With Regularization

4.4.1 Strategy 3

For Strategy 3, we would like to see how the optimal strategies perform after we add
the regularization term to the objective function of the quadratic total risk optimization
problem.

L M-1 2 M-1 n
1 )
mi — E H* v — (k) E : _ X(k) X(k) } : 2 : 2
VO,Do,-},nDMfl L Pt ( 0 DOAXO fo D]( J )A J > +A == Qij (44)

We need to determine the best regularizing penalty parameter A and the number of the
reference points n for each discounted strike price K and each hedging frequency. Again
we get the optimal values for A and n by cross validation. Since the objective function
always tends to minimize its value, the best number of A on the training set is 0 all the
time. Thus, we find the best parameters based on the pattern of the total risk for the
testing set.

For Strategy 1 and Strategy 2, with the range of n in [1,100], the total risk achieves
its minimum at a relatively small number of reference points. In Strategy 3, with the
introduction of the regularization parameter, we can choose a wider range for the number of
reference points, since the regularization parameter A\ can be used to restrict the complexity
of the model. For each discounted strike price K and hedging frequency, we find the optimal
strategy by considering the different pairs of A\ and n. The range of X is set to be from
1071° to 10~ and the number of the reference points n are selected from 10 to 200.
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Figure 4.6: Average total risk for testing set with pairs of A and n using Strategy 3

Using the discounted strike price K = 90 as an example, Figure 4.6 shows the total
risk obtained from the optimal strategy with the different pairs of n and A when hedging
24 times and hedging twice respectively for Strategy 3. The optimal hedging strategy for
Strategy 3 can be found by comparing the minimum total risk for each pair of n and A.
We can see that the total risk reaches its minimum at a specific pair of n and A, and
begins to increase when going away from that pair. For example, the optimal choices in
the case of hedging 24 times with K = 90 are n* = 160 and \* = 10~7. By implementing
at each strike price and hedging frequency, we find that the optimal choice for n is in the
range of [50, 160] while the optimal choice for A is in the range of [10~7, 107°]. If we fix one
parameter and examine the relationship between the total risk and the other parameter, we
could also see that total risk first decreases and then increases after the parameter reaches
its optimal value.

In addition, from Figure 4.6, we could find that the total risk seems to change more
with respect to A\ than n. For a fixed value of A, the total risk seems to change slightly
when the number of reference points n changes. However, with a fixed value of n, the total
risk provides a obvious change with the change of .

To show it clearly, we can examine the change of the total risk with respect to the
change of parameter A when fixing the number of the reference points n. The results can
be seen in Figure 4.7, where the number of the reference points is chosen to be n = 10,
50, 100, 200. On the other hand, we can compare the total risk with the fixed value of A
for different numbers of the reference points n. Using the discounted strike price K = 90
as an example, Figure 4.8 shows the relationship between the total risk and the number
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of the reference points n with the fixed value of A when hedging 24 times for 4.8(a) and
hedging twice for 4.8(b).

From the results in the following figures, we notice that when choosing different \ for a
fixed n, the total risk changes in a wide range. However, the value of the total risk changes
in a relatively smaller range when changing n for a fixed A\. When the value of A\ becomes
much larger, the total risk increases quickly for each fixed number of the reference points n
shown in Figure 4.7. In addition, for different choices of n, the optimal values of A tend to
be the same. From Figure 4.8, we can also see that when the hedging frequency gets lower,
the optimal strategy tends to have smaller n at certain A, although the difference for the
value of the total risk with different n is relatively small. Therefore, we may conclude that
in this optimization problem, the value of the total risk is affected more by the value of .
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Figure 4.8: Change of total risk with respect to n for fixed A

After obtaining the optimal choice of the parameter pairs (A*, n*) for each discounted
strike price K and hedging frequency with the two-dimensional (2D) cross validation, we
report the value of the minimum total risk and the total cost for the testing set in Table
4.19 and 4.20 respectively.

Strike  Strategy M (# of hedging times)
24 12 6 2 1

90 Strategy 1 0.6371 0.8543 1.1338 1.5720 1.7945
Strategy 3 0.6229 0.8505 1.1332 1.5715 1.7945
95 Strategy 1 0.8118 1.0965 1.4803 2.1831 2.6380
Strategy 3 0.7909 1.0001 1.4782 2.1827 2.6380
100 Strategy 1 0.9476 1.3002 1.7820 2.7714 3.5225
Strategy 3 0.9352 1.2083 1.7817 2.7710 3.5225
105  Strategy 1 1.0708 1.4554 2.0070 3.2588 4.3300
Strategy 3 1.0398 1.4482 2.0054 3.2581 4.3300
110 Strategy 1 1.1256 1.5388 2.1410 3.5868 4.9525
Strategy 3 1.1070 1.5369 2.1388 3.5859 4.9525

Table 4.19: Average total risk using Strategy 3 with 2D cross validation
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Strike  Strategy M (# of hedging times)
24 12 6 2 1

90 Strategy 1 2.4620  2.4202  2.3342  2.0576 1.7423
Strategy 3 2.4627  2.4198  2.3362  2.0574 1.7423
95 Strategy 1 3.9477  3.8946  3.7783  3.4081 2.9704
Strategy 3 3.9509  3.8969  3.7785  3.4085 2.9704
100 Strategy 1 5.9089  5.8438  5.7155  5.2604 4.6870
Strategy 3 5.9107  5.8460  5.7160  5.2602 4.6870
105 Strategy 1 8.3503  8.2765  8.1421  7.6218 6.9308
Strategy 3 8.3506  8.2768  8.1422  7.6213 6.9308
110 Strategy 1 11.2522 11.1759 11.0358 10.4785 9.7067
Strategy 3 11.2526 11.1751 11.0366 10.4780 9.7067

Table 4.20: Average total cost using Strategy 3 with 2D cross validation

From the total risk for the testing set shown in Table 4.19, we can see that the total
risks for Strategy 3 become smaller than those for Strategy 1, especially when the number
of time steps per rebalancing time is relatively small. Table 4.20 shows the total cost
for Strategy 3 compared with Strategy 1, which is using the assumption 2.7 without the
regularization. From the results shown in the above tables, we can find that the total costs
obtained from Strategy 1 and Strategy 3 do not show an obvious difference when using the
optimal choice of the parameters to implement both hedging strategies. By comparing the
results obtained from Strategy 1 and Strategy 3, we find that adding the regularization
term to the objective function of the optimization problem could reduce the total risk by
maintaining the similar values for the total cost, which possibly gives a better hedging
performance.

However, with the observations from the above figure, we may consider that for Strategy
3, the parameter \ possibly plays a more important role than the number of the reference
points n. Thus, to obtain an optimal strategy, we may choose a relatively large number of
n to set the complexity of the holding function to a certain level, and then only focus on
changing the value of A\ to get the minimum total risk. Then it becomes much easier and
more efficient to compute the optimal strategy. To show the reliability of this way, we fix
the number of reference points n = 100 and use the one-dimensional (1D) cross validation
by only changing the value of A. After obtaining the best value of the regularization
parameter, which is A\*, at each discounted strike price and hedging frequency, we can get
the optimal total risk.
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Strike Cross validation M (# of hedging times)

24 12 6 2 1
90 2D 0.6229 0.8505 1.1332 1.5715 1.7945
1D 0.6229 0.8506 1.1336 1.5716 1.7945
95 2D 0.7909 1.0901 1.4782 2.1827 2.6380
1D 0.7911 1.0903 1.4785 2.1828 2.6380
100 2D 0.9352 1.2983 1.7817 2.7710 3.5225
1D 0.9355 1.2985 1.7819 2.7711 3.5225
105 2D 1.0398 1.4482 2.0054 3.2581 4.3300
1D 1.0399 1.4484 2.0058 3.2582 4.3300
110 2D 1.1070 1.5369 2.1388 3.5859 4.9525
1D 1.1071 1.5371 2.1393 3.5859 4.9525

Table 4.21: Comparison of average total risk using 2D and 1D cross validation

The average total risk for Strategy 3 using 1D cross validation with fixed number of
reference points n = 100 is reported in Table 4.21. With the results, we make a comparison
between the best results obtained from the 2D cross validation with the best pairs of (A*, n*)
and the 1D cross validation with the best \* at n = 100. We can find that the values of
total risk obtained from the 2D cross validation and the 1D cross validation do not show
obvious differences. In some cases, it is even hard to tell the difference of the total risk
values between the two types of cross validation.

This result suggests that regularization using A has effect of choosing the number of
reference points. Since the number of the reference points n = 100, which is relatively
large, some of the reference points are unnecessary. The introduction of the regularization
penalty parameter A could force the coefficients before this kind of reference points to be
0 or very close to 0, which makes the number of reference points that actually work be
smaller than n.

Thus, instead of using the 2D cross validation to determine the best pairs of (\*, n*),
we may only need to use the 1D cross validation to determine the optimal value of the
regularization penalty parameter \* with fixed n when solving the total risk minimization
problem with regularization.
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4.4.2 Strategy 4

Finally, we try Strategy 4, which is using the assumption 2.8 and introducing the
regularization term to the objective function. The optimization problem to be solved is
shown below:

|~ M-1 . i-1 o AX® . 2
min ZZ H® —vo =" | Dyx) + Y Dy(x™) =L | ax® )
_ 4.5

VoD Dj 17 j=0

M—-1 n M-2 n
+A(z zamzzcazj)

j=1 i=1 j=1 i=1

The settings for Strategy 4 is similar to Strategy 3, where the reference points are
evenly located. The range of \ is set to be from 107'° to 10~* and the number of reference
points is in the range from 10 to 200. We plot the total risk with respect to different pairs
of A and n to find the best choice of the parameters. Figure 4.9(a) shows the total risk of
different pairs of A and n. For Strategy 4, a smaller number of reference points is needed
while the optimal value of A remains at the same magnitude compared with Strategy 3.
The optimal value of n is in the range of [20,60] while the optimal range for \ is still in
[107°,1077]. In addition, the optimal value of A tends to decrease a bit as the number of
reference points increases. When the number of reference points is big enough, the value of
A remains at the magnitude of 1077, which is the same optimal value of the regularization
parameter in Strategy 3 when n is large.

The total risk versus different n for a fixed value of A is shown in Figure 4.9(a) and
the total risk versus different A when n = 50,60 are shown in Figure 4.9(c) and 4.9(d)
respectively.
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Similar to the Strategy 3, the value of the total risk is affected more by the value of A
while the change of n has a much smaller influence. It is hard to tell the difference of the
total risk between Figure 4.9(c) and 4.9(d) using n = 50 and 60 respectively. However,
for Strategy 4, the optimal hedging strategy can be obtained with a smaller number of
reference points n compared with Strategy 3. If we take the complexity of computation into
consideration, we may still need to roughly choose a number of n based on the complexity
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of the model although the value of total risk does not increase much as n increases.

With the best choice of the parameter pairs (A*,n*) for each discounted strike price
and hedging frequency, we then report the average total risk and total cost for Strategy 4.
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Strike  Strategy M (# of hedging times)
24 12 6 2 1

90 Strategy 2 0.5641 0.7668 1.0498 1.5715 1.7945
Strategy 4 0.5393 0.7528 1.0446 1.5712 1.7945
95 Strategy 2 0.7100 0.9802 1.3647 2.1823 2.6380
Strategy 4 0.6939 0.9749 1.3628 2.1814 2.6380
100 Strategy 2 0.8566 1.1853 1.6513 2.7702 3.5225
Strategy 4 0.8310 1.1743 1.6482 2.7694 3.5225
105  Strategy 2 0.9708 1.3421 1.8745 3.2580 4.3300
Strategy 4 0.9382 1.3253 1.8680 3.2564 4.3300
110 Strategy 2 1.0362 1.4272 2.0111 3.5858 4.9525
Strategy 4 1.0153 1.4219 2.0096 3.5854 4.9525

Table 4.22: Average total risk for Strategy 4 with testing data set

Strike  Strategy M (# of hedging times)

24 12 6 2 1

90 Strategy 2 2.4630  2.4213  2.3270  2.0556 1.7423
Strategy 4 2.4613  2.4223  2.3259  2.0559 1.7423
95 Strategy 2 3.9505  3.8987  3.7813  3.4092 2.9704
Strategy 4  3.9508  3.9006  3.7805  3.4095 2.9704
100 Strategy 2 59130  5.8504  5.7177  5.2609 4.6870
Strategy 4 59125  5.8513  5.7183  5.2611 4.6870
105 Strategy 2 8.3555  8.2844  8.1474  7.6256 6.9308
Strategy 4 8.3539  8.2834  8.1495  7.6258 6.9308
110 Strategy 2 11.2582 11.1835 11.0327 10.4801 9.7067
Strategy 4 11.2564 11.1820 11.0347 10.4801 9.7067

Table 4.23: Average total cost for Strategy 4 with testing data set
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Table 4.22 shows the total risk using Strategy 4 compared with Strategy 2 with the
testing data set. From the results, we can see that the total risk obtained from solving the
optimization problem with regularization is smaller when the hedging frequency is high.
In this case, the hedging strategy with regularization could perform better.

Table 4.23 shows the total cost for Strategy 4 compared with Strategy 2. From the
results shown in the above table, we can see that the total costs obtained from Strategy
2 without the regularization and Strategy 4 with the regularization do not show much
difference, which leads to a similar conclusion when comparing the total cost from Strategy
3 and Strategy 1.

4.4.3 New Placement of Reference Points

Using the Monte Carlo simulation with the Black Scholes model, the range of the
discounted stock price is relatively small when the time ¢; is close to 0. However, the best
number of the reference points n for Strategy 3 is over 100 and n for Strategy 4 is around
50, which is very large for a narrow range of the discounted stock price. Using a large
n when the range of X; is small may introduce unnecessary complexity and leads to a
negative effect for the minimization of the total risk.

In addition, the quadratic total risk minimization problem is robust when changing the
number of reference points. Since the value of the total risk is not very sensitive to the
number of reference points n, we then see if the total risk is sensitive to the placement of
the reference points.

We then try another placement method, where the number of the reference points n
follows a increasing trend as the hedging date gets closer to maturity and the width of the
discounted stock price range increases. Thus, we put less reference points at the beginning
of the stock path while more points near the maturity. By this assumption, we assume
the number of the reference points n follows a function of the ¢th hedging date before the
maturity. The number of reference points at t; is set to be n = f(j) = kj + 1, where

= 1,2, ... representing k times of a certain variable while j is the jth hedging date.

We define this new placement method for the reference points as method b, where we
have less reference points at the beginning of the stock path while more near the end, and
the former method as method a, where we have a fixed number of reference points at each
hedging time.

For Strategy 1 and Strategy 2 that are without regularization, the best choices of k are
always k = 1. Without regularization, these two strategies only allow very few complexity.
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This result is consistent with the best choice obtained before. For Strategy 3 and Strategy
4, we consider different pairs of A and k. Here, we use Strategy 3 as an illustration. The
best choice of k for Strategy 3 when the discounted strike price K = 90 and hedging 24
times is around 10, which is n = f(j) = 105+ 1. The best A is 10~7. The results are shown
in Figure 4.10.
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(b) Total risk versus k for A = 1077

Figure 4.11: Average total risk for testing set using Strategy 3-b

The best results of the total risk and the total cost obtained from this method for
Strategy 3 are shown in Table 4.24 and Table 4.25 respectively.
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Strike Strategy M (# of hedging times)

24 12 6 2 1
90 3-a 0.6229 0.8505 1.1332 1.5715 1.7945
3-b 0.6227 0.8503 1.1330 1.5714 1.7945
95 3-a 0.7909 1.0901 1.4782 2.1827 2.6380
3-b 0.7908 1.0899 1.4781 2.1824 2.6380
100 3-a 0.9352 1.2983 1.7817 2.7710 3.5225
3-b 0.9351 1.2979 1.7815 2.7709 3.5225
105 3-a 1.0398 1.4482 2.0054 3.2581 4.3300
3-b 1.0396 1.4477 2.0051 3.2580 4.3300
110 3-a 1.1070 1.5369 2.1388 3.5859 4.9525

3-b 1.1069 1.5363 2.1384 3.5857 4.9525

Table 4.24: Average total risk for Strategy 3 with new placement of n

Strike Strategy M (# of hedging times)
24 12 6 2 1
90 3-a 2.4627 24198  2.3362  2.0574 1.7423
3-b 2.4629 24205  2.3380  2.0577 1.7423
95 3-a 3.9509  3.8969 3.7785  3.4085 2.9704
3-b 3.9511  3.8977 3.7796  3.4089 2.9704
100 3-a 5.9107  5.8460  5.7160  5.2602 4.6870
3-b 5.9108  5.8468  5.7167  5.2607 4.6870
105 3-a 8.3506  8.2768  8.1422  7.6213 6.9308
3-b 83509  8.2777 81439 7.6218 6.9308
110 3-a 11.2526 11.1751 11.0366 10.4780 9.7067

3-b 11.2529 11.1759 11.0383 10.4785 9.7067

Table 4.25: Average total cost for Strategy 3 with new placement of n

49



For the total risk of testing set which is shown in the above table, we can see that the
method b with changing number of the reference points at each hedging time performs very
closely to the method a with the fixed number of reference points. This result confirms
that the total risk is relatively robust to the reference points when using the spline kernel
function. The robustness makes it easier to solve the total risk minimization problem
using the spline kernel function by 1D cross validation instead of 2D cross validation. To
obtain the optimal hedging strategy, we could introduce the regularization term to the
optimization problem and get the minimum total risk by only adjusting the regularization
penalty parameter \.

In terms of the total cost, by using the new placement of the reference points, the
method b also have very similar total cost to the method a. A possible advantage to use
the method b is that it introduces less complexity than the method a by using less number
of the reference points in total and could result in a similar hedging performance with the
method a.
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Chapter 5

Conclusion

In this project, we use the method proposed by Coleman et al. (2003) that model the
relationship between the holding and the underlying asset price with a specific function
to solve the quadratic total risk minimization problem. Instead of a cubic spline function,
we use spline kernel function to model the relationship and introduce the regularization
term to improve the hedging performance. To investigate the out-of-sample performance,
we use cross validation where two data sets are generated. The regularization parameter
and the number of reference points are chosen by minimizing the total risk of the testing
set and the evaluation is based on the average total risk and the average total cost.

By using cross validation, we examine the performance on the testing set, which needs
to be considered when implementing in practice. The results obtained in Chapter 4 in-
dicate that using spline kernel function performs better than using cubic spline function.
Introduction of regularization allows more model complexity and may lead to a relatively
smaller total risk. In addition, the total risk shows robustness with respect to the number
of reference points to some extent. After adding the regularization term, the optimal hedg-
ing strategy can be obtained by only changing the value of the regularization parameter,
which is easier to implement. However, there is no obvious improvement for the total cost
after introducing the regularization term. Sometimes, the reduction of total risk leads to
some rise in the total cost.

In this chapter, we would like to discuss some technical issues when implementing the
method and some future work that can be further examined for the total risk minimization
problem.
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5.1 Technical Issues

When solving the quadratic total risk hedging optimization problem, there may exist
some technical issues related to the implementation.

One problem is that after introducing the regularization term to the total risk mini-
mization problem, we use a relatively large number of the reference points. Since we use
40000 simulations of the stock price paths, rise in the number of the reference points leads
to a significant increase in the dimension of the optimization problem. Solving such a
problem is very time-consuming and may not be efficient with a large size of data.

Another problem is that we use MATLAB to solve the optimization problem that
the result is sometimes limited by the calculation ability of MATLAB. In practice, the
frequency of hedging may be higher than what we use in this project. If we would like to
increase the number of simulations and the hedging frequency, the size of the input matrix
may exceed the limit of the matrix size in this programming environment.

5.2 Future Work

For the total risk minimization problem with the spline kernel function discussed in
this project, there is some potential work that can be examined in the future.

In this project, we assume that the hedging position is a function of the discounted
stock price. However, in the real market, the stock price may not be the only factor
that affects the hedging position. Other features like the volatility of the underlying price
may also play a important role when hedging the intrinsic risk of an option. We could
also use other models to simulate the relationship between the holding and some features.
When introducing more features, we may use the neural network or other machine learning
methods. In addition, the framework discussed in this project can be applied to the
piecewise linear risk minimization problem and the L, regularization can also be changed
to other common used methods like the L, regularization.

On the other hand, the way to generate the data set can be changed. The Black Scholes
model used in this project is very basic to model the asset price. Other models that
considers the jump risk or changing volatility may bring a different hedging performance.
In addition, it is possible to consider historical market price as training and testing data
sets.
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