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Abstract

Put-write strategy and trend following strategy are both popular investment strategies
in finance industry. In this research paper, we investigate an asset allocation problem in
a portfolio comprised of the put-write and trend following indices. The ultimate goal on
this combination of assets is to reduce the loss side risk of the put-write strategy, while
generating a similar level of return. We define the loss side risk as the risk of generating
negative returns and we look at the entire loss side of the distribution of return, instead of
just focusing on the left tail.

We formulate the multi-period asset allocation strategy as a stochastic optimization
problem. We use the target based objective function and the neural network framework
introduced in [31, 28]. The one-sided quadratic function is chosen to penalize the expected
shortfall, which focuses on minimizing the loss side risk. The neural network optimiza-
tion satisfies constraints of no shorting and no leverage automatically, converting the con-
strained optimization problem to an unconstrained one. We consider three optimal control
strategies based on optimizing the objective function: (i) an optimal constant weight con-
trol, (ii) an optimal deterministic control which is a function of the time only, and (iii)
an optimal stochastic control which is a function of the time and the current wealth. The
benchmark portfolio is a constant weight strategy that is based on optimizing the Sharpe
ratio. We constrain the median of our three strategies to be the same as the benchmark
portfolio. In general, the optimal constant and optimal deterministic controls are very
similar to the benchmark strategy, and the optimal stochastic control outperforms the
benchmark strategy by obtaining a smaller loss side risk.
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Chapter 1

Introduction

In the investment world, one significant behavioral bias is risk aversion. Given investments
with the same expected return, investors prefer strategies with less volatility. It is common
to see professionals in portfolio allocation sacrifice some returns for more stable income
streams and downside protection. In finance, hedging refers to the process of eliminating
or mitigating the undesirable risk of adverse price movements in an asset. One of the
most common hedging instruments to transfer downside risk is the put option. The fact
that market participants naturally have long equity positions creates a high demand for put
options to reduce the downside risk. This brings the put-write strategy to many investment
professionals’ attention.

Put-write is a strategy that writes put options and collects premiums. When writing
put options, the writer accepts a future contingent liability that is less than or equal to
the option’s strike price. Meanwhile, the put option holder transfers the downside risk
to the writer. Therefore, the put-write strategy is subject to huge losses during market
downturns. It is of great importance to mitigate these losses in order to achieve superior
performance in the long term. In this research paper, we seek for a solution to reduce the
loss side risk of the put-write strategy. We define the loss side risk as the risk of generating
negative returns and we look at the entire loss side of the distribution of return, instead of
just focusing on the extreme left tail.

A traditional approach to mitigating risk is through delta hedging. However, while
delta hedging removes the downside risk, it also eliminates the opportunities for gains.
Alternatively, we look for an investment strategy or instrument to protect the put-write
strategy when the market goes down, but does not eliminate the possibilities of gains when
the market goes up. An investment strategy that generates positive returns in bear markets
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would be optimal to hedge against the downside risk of the put-write strategy. Ideally,
the strategy should be able to generate positive return as well when the market goes up.
One strategy with such property would be a trend following strategy. A trend following
strategy is based on the commonly held belief that prices of financial assets tend to follow
their trends. By taking a long position in an up trend and a short position in a down
trend, a trend following strategy is expected to generate possible returns as long as the
market is showing a trend. Specifically, most bear markets historically occurred gradually
over several months, rather than abruptly over a few days, which allows a trend following
strategy to be in a short position after an initial drop and profit from sustained market
declines. It has been shown in [25] that a time series momentum strategy, one of the most
naive trend following strategies, experienced positive returns during eight out of ten of
major US bear markets. Significant positive returns are observed during a number of these
events. From historical evidence, we believe a trend following strategy can potentially
protect the put-write strategy in a market downturn. Of course, such a strategy can never
perfectly predict trends, so the best we can do is to reduce the losses of the put-write
strategy in market downturns. The two investment strategies will be discussed in more
detail in Chapter 2.

We consider an asset allocation problem in a portfolio comprised of the put-write and
trend following indices. Asset allocation refers to the process where investors decide how
their funds are allocated among different assets. The mean–variance criterion of Markowitz
in [30] has been widely recognized as the foundation of the asset allocation problem. Under
mean-variance analysis, investors attempt to achieve the greatest expected return at a given
level of risk or the least risk at a given level of return. However, Markowitz’s mean-variance
framework is limited to the single-period asset allocation problem. Dynamic programming
has been introduced in [4] for solving multi-period allocation problem by breaking it into
single-period problems in a recursive manner. We note that solving an optimal control
problem via a Hamilton Jacobi Bellman (HJB) Partial Differential Equation (PDE) has
been applied to continuous time mean-variance asset allocation in [40, 41]. Numerical so-
lutions of the HJB PDE which account for discrete rebalancing and practical assumptions,
such as no shorting and no leverage, are developed in [15, 12]. However, these methods are
only limited to a small (≤ 3) number of assets and we use a framework which in theory
can accommodate asset allocation with multiple assets.

We use the target-based objective function introduced in [31]. The one-sided quadratic
function is chosen to penalize the expected shortfall, which focuses on reducing the left
tail. We remark that an alternative method of optimizing Conditional Value at Risk
(CVaR) (see [14]) focuses on minimizing the risk in the left tail. In this research paper, we
choose the one-sided quadratic function in order to generate a greater region of stochastic
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dominance. The concept of stochastic dominance is explained in detail in Chapter 7. We
consider three optimal control strategies based on optimizing the objective function: (i) an
optimal constant weight control, (ii) an optimal deterministic control which is a function
of the time only, and (iii) an optimal stochastic control which is a function of the time and
the current wealth. The benchmark portfolio is a constant weight strategy that is based
on optimizing the Sharpe ratio.

We use a data-driven machine learning optimization framework proposed in [28] for
the asset allocation problem. We compute the optimal controls represented by a Neural
Network(NN). The data-driven NN approach was originally applied to solve an asset al-
location problem for defined contribution pension plans and has been shown to generate
comparable results to a provably optimal strategy in [28]. Here, we extend the method to
an investment portfolio consisting of the put-write and trend following indices. The neural
network optimization satisfies the constraints of no shorting and no leverage automatically,
converting the constrained optimization problem to an unconstrained one. We remark that
machine learning approaches have been recently suggested for investment problems. In [7],
NN approaches are used for global asset allocation. In [1, 29], machine learning approaches
have been considered to predict asset returns.

We constrain the median of our three strategies to be the same as the benchmark
portfolio. The three control strategies are directly learned from market return sample paths
generated by bootstrap resampling. We show that the optimal constant weight and optimal
deterministic controls are very similar to the benchmark strategy, and the stochastic control
outperforms the benchmark strategy by obtaining a smaller loss side risk. To illustrate
the robustness of our approach, we test the optimal controls on bootstrap resampling data
sets with different blocksizes, as well as actual historical paths.

In this research paper, we also investigate the impact of the expected blocksize on the
distribution of the overall return generated from bootstrap resampling. In addition, we
discuss four optimization techniques, including (i) the trust region method, (ii) the gradi-
ent descent method, (iii) the mini-batch gradient descent method, and (iv) the adaptive
moment estimate (ADAM) method. We compare the performance of these methods by
considering the computation time, the terminal objective function value and the “smooth-
ness” of the objective function value trajectory.
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Chapter 2

Background

2.1 Put-write Strategy

2.1.1 Put Option

A financial derivative is a contract whose value is derived from an underlying asset or a
basket of assets. A put option is a common type of financial derivatives. A European put
option provides the holder the right to sell an underlying asset at a strike price SK at the
maturity time T . If the price of the underlying asset is lower than the strike price SK
at time T , the put option holder can buy the asset from the market at a lower price and
sell it at the strike price SK . In this case, the put option expires “in-the-money” and the
put option holder has a positive payoff. On the other hand, if the price of the underlying
asset is higher than the strike price SK at the maturity time T , a rational person will
not exercise the option to sell the underlying asset at the lower strike price SK . This is
commonly referred to as expiring “out-of-the-money” and the payoff of the put option will
be zero. The profit (or loss) for the option holder is just the payoff minus the premium of
the put. Figure 2.1a illustrates the payoff and profit of a long put option. In industry, a
put option is usually considered as an insurance to provide downside protection.

When financial institutions write put options, they take downside risk for the premiums.
If a put option expires “out-of-the-money”, the payoff will be zero. Then, put writers can
walk away with the premiums as their profit. Statistical analysis has shown in [38] that put
options on the S&P 500 Index expiring worthless outnumber those expiring “in-the-money”.
However, if the market crashes, put options will be deeply “in-the-money” and unhedged
put writers will suffer huge losses from short puts. Therefore, the put-write strategy is
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(a) Long put option (b) Short put option

Figure 2.1: Payoff and profit of put options

profitable most of the time, but it has a large loss side risk due to the uncertainty of
occasional market crashes. Figure 2.1b presents the payoff and profit of a short put option.
An unhedged put-write position is also known as a “naked put-write”.

2.1.2 Collateralized Put-write Strategy

Put writers are usually required to post collateral so that the collateral can cover the max-
imum potential loss from the short puts. Consequently, they typically create a collateral
portfolio within the put-write strategy. When short-term U.S. Treasuries are held in the
collateral portfolio, such as one-month and three-months Treasury Bills (T-bills), we call
it a cash-collateralized put-write strategy. In general, there are three benefits of the cash
collateral portfolio. In addition to creating an extra income stream from the short-term
T-bills to enhance the long-term performance, the collateral portfolio has a smaller overall
volatility. Previous studies (see [2, 39]) have shown that a cash collateralized put-write
strategy on the S&P 500 Index is able to achieve smaller volatility and generate better
risk-adjusted return, as measured by the Sharpe ratio. Another important advantage it
gives over a “naked put-write” strategy is that it decreases the maximum drawdown. Dur-
ing periods of market stress, yields tend to decline, which leads to the increase in the value
of the collateral portfolio. This mechanism can offset a portion of the losses from writ-
ing puts. For simplicity, we refer to the collateralized put-write strategy as the put-write
strategy in this research paper.

In addition to the collateral income, the put-write strategy also generates return from
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put option premiums. There are two principal risk components accounting for put option
premiums, volatility risk premium and equity risk premium. The volatility risk premium
is measured by the difference between implied volatility and realized volatility of the same
underlying asset over time. Implied volatility is the volatility at which the market price
of an option equals the price suggested by the Black-Scholes model. It is calculated using
the market price together with the remaining parameters in the pricing model. Implied
volatility is usually interpreted as the market’s forecast of the volatility of the return of
the underlying asset. Realized volatility, on the other hand, is the volatility based on the
actual return of the underlying asset.

Intuitively, the volatility risk premium refers to the phenomenon that investors tend to
over-estimate volatility. It has been shown in [26] that out-of-the-money put options are
systematically overpriced. It is also found in [39] that the put-write strategy outperforms
the covered-call-write strategy over the period 1986 - 2008. These findings are explained
by the higher volatility risk premium in the left tail in [37] and high demand for downside
protection in [17]. Such occurrence originates from investors’ behavioral bias towards risk
aversion and investors’ bias towards overestimating downside risk, as described in [19].

The other important risk component is the equity risk premium, which comes from the
long exposure to the market in a short put option. Market risk can be also understood as
delta risk or beta risk (see [21]). Delta, calculated as the partial derivative of the option
value with respect to the underlying asset price, is a measure of the sensitivity of the option
value to the underlying asset. A short put option has a positive delta, which translates
into a positive exposure to the market. Therefore, the value of a short put option increases
if the market goes up. Another way to understand this is to isolate the volatility risk
premium. Assume that the volatility risk premium is zero and options are fairly priced.
Then the option premium only compensates for taking the downside risk. Put writers, who
assume the downside risk, expect to be rewarded by the equity risk premium the same way
as owning the underlying asset.

2.2 Trend Following Strategy

Trend following strategies have existed for a very long time. In the early 19th century,
the legendary economist David Ricardo’s quote “Cut short your losses; let your profits run
on” marks an early exposition of the trend following strategies (see [20]). Trend following
exploits the phenomenon that financial assets tend to exhibit return momentum. Investors
in trend following strategies expect price movements to continue under certain market
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conditions. Specifically, they take a long position in the market when it is in an up trend
and they take a short position in the market when it is in a down trend.

The most basic trend following strategy would be based on market price momentum,
which uses recent market returns to identify trends. Positive recent returns may signal an
up trend and negative recent returns may imply a down trend. [32] provides the evidence of
existence of trends in futures markets. It is also shown in [18] that time series momentum
strategy generates consistent returns across all conventional asset classes from 1969 to
2015. Similar findings are reported when the backtesting period is extended to 135 years
(see [25]). Another classic example of a trend following strategy uses moving average
crossover, which is to long the market if 50-day moving average rises above 200-day moving
average, and to short the market if 50-day moving average drops below 200-day moving
average. [11] investigates the optimality of a trend following trading strategy based on
moving average crossover. Previous study has also shown that trend following strategies
are effective in reducing volatility and drawdowns (see [8]). Generally speaking, trend
following is a popular strategy that is based on identifying trends and it appears to have
worked well in the past.

The efficient Market Hypothesis (EMH) is a theory that financial asset prices reflect all
publicly available information. Under EMH, securities are rationally priced and are always
traded at their fair values. The existence of trends in financial asset prices clearly challenges
EMH, and it allows sophisticated investors to generate profits by taking advantage of the
trends without assuming extra risk. In general, under-reaction to market information is
the universally accepted cause for trends to exist (see [8]). Under-reaction refers to the
phenomenon that investors under-react or slowly react to new market information, causing
stocks to slowly moving to their intrinsic value. On the contrary, over-reaction, which
causes either overselling or overbuying, can lead to another price anomaly, mean reversion.
Empirical research (see [3]) has shown security prices under-react to market information
over horizons of one to twelve months and shows evidence of over-reaction over long horizons
of three to five years.

Previous literature discusses a number of behavioral biases that can explain why in-
vestors under-react to market information. [3] relates under-reaction to conservativeness
that causes slow updating of models in the face of new evidence. It is also discussed in [24]
that the slow diffusion of news can explain why stock prices appear to drift after major
corporate news announcements. The disposition effect, which is to sell winners too early
and hold on to losers too long is found to contribute to the under-reaction effect, which
further explains the price trends (see [16]).
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2.3 Problem Description

Considering the attractive risk-adjusted return of the put-write strategy, we are interested
in creating a trading strategy that achieves a similar return of the put-write strategy
with an improved loss side risk. We suggest using another financial instrument or trading
strategy to hedge the downside risk of put-write strategy. We consider the trend following
strategy in this research paper.

We analyze how the two strategies behave under different market scenarios. Recall
that the put-write strategy is subject to huge losses only when the market crashes. On the
other hand, trend following strategy promises to be profitable as long as there is a trend
in the market. Suppose that the market is trending down, then a trend following strategy
can potentially protect the put-write strategy. Therefore, we expect that, by using these
strategies together, some downside risk can be hedged.
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Chapter 3

Formulation for Dynamic Asset
Allocation

3.1 Multi-period Asset Allocation

We formulate the investment problem as a multi-period asset allocation problem. The
wealth of the portfolio is allocated into two assets: the put-write and trend following
indices, which represent the return of the put-write and trend following strategies. We
assume the initial cash injection is $1 and there is no other cash injection thereafter. The
investment lasts N periods and portfolio is rebalanced at the beginning of each period. We
further place a constraint that neither shorting nor leverage of the indices is allowed.

Let the initial time t0 = 0 and the investment horizon tN = T . Consider a set of
rebalancing times

τ ≡ {t0 = 0 < t1 < ... < tN−1}.

Then the fraction of the total wealth allocated to each asset is adjusted at time tn, where
n = 0, ..., N − 1. Let ~ρn be the allocation control vector at tn. The allocation is held
constant in period (tn, tn+1). We assume ~R(tn) is the vector of returns on assets in period
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(tn, tn+1). Then the terminal wealth of the portfolio W (T ) is determined as follows,

W (t0) = 1

for n = 0, 1, ..., N − 1

W (tn+1) = W (tn)~ρ ᵀ
n e

~R(tn)

end

subject to 0 ≤ ~ρ ᵀ
n ≤ 1, 1ᵀ~ρn = 1, ∀n = 0, ..., N − 1,

(3.1)

where we have two constraints on the control vector. The inequality 0 ≤ ~ρ ᵀ
n ≤ 1 translates

into the constraint that no shorting or leverage of either index is allowed. And the other
constraint 1ᵀ~ρn = 1 means that we invest 100% of the wealth into these two indices and
we do not hold cash in our portfolio.

3.2 Objective Function

We consider using the quadratic based objective function advocated in [31] as follows,

min
~ρ0,...,~ρN−1

E

[(
W ∗ −W (T )

)2]
, (3.2)

where W ∗ is a pre-defined target value. The objective function penalizes for missing or
exceeding the target at terminal. The objection function in (3.2) has been shown to
generate pre-commitment multi-period mean variance optimal strategy in [42].

In this research paper, we choose a one-sided quadratic function used in [28] where it
is used to generate optimal control for defined contribution pension plan. The objective
function is as follows,

min
~ρ0,...,~ρN−1

E

[
max(W ∗ −W (T ), 0)2 + λW (T )

]
, (3.3)

where λ is a negative constant with a small absolute value. This objective function in (3.3)
penalizes only the shortfall if terminal wealth does not meet target wealth W ∗. In other
words, the objective function is a performance measure focusing on the loss side risk. Here
we add a small weight λ to push for higher terminal wealth when W (T )� W ∗. We choose
λ = −10−6 in our numerical experiments. By minimizing the objective function in (3.3),
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we expect the loss side risk of the portfolio to be reduced. Adding constraints in (3.1), our
problem becomes a constrainted optimization problem, as follows,

min
~ρ0,...,~ρN−1

E

[
max(W ∗ −W (T ), 0)2 + λW (T )

]
s.t. 0 ≤ ~ρn ≤ 1, 1ᵀ ~ρn = 1, ∀n = 0, ..., N − 1.

(3.4)

3.3 Three Optimal Controls and the Benchmark

We consider three optimal control strategies: (i) an optimal constant weight control, (ii)
an optimal deterministic control, and (iii) an optimal stochastic control. All three optimal
controls minimize the objective function, but they have different feature variables. The
optimal constant weight control is the optimal constant holding strategy through the entire
investment horizon. The optimal deterministic control is the optimal control that is only
a function of the time. In the optimal stochastic control, the feature variables include
the time tn and a stochastic state variable W (tn), i.e. the portfolio wealth at time tn. In
other words, the optimal stochastic control is the optimal control which is a function of
the time and current wealth. For simplicity, we omit the word “optimal” and refer to these
strategies as the constant weight, deterministic and stochastic controls from now on. We
only have two features for the stochastic control in this research paper, but we can consider
adding additional features in the future. Additional features may include implied volatility
and technical indicators which identify the strength of a trend in the market.

For the benchmark strategy, we consider a constant weight strategy, which is optimized
for the Sharpe ratio. The Sharpe ratio is a measurement of the excess return per unit of
risk, typically estimated by the standard deviation of returns. The optimal weight for the
Sharpe ratio is determined as follows,

argmax
ρput

(
ρput · µ̂(Rp) + (1− ρput) · µ̂(Rt)− rf√

ρ2putσ̂
2(Rp) + (1− ρput)2σ̂2(Rt) + 2(1− ρput)ρput ˆCov(Rp, Rt)

)
s.t 0 ≤ ρput ≤ 1.

(3.5)

Here, ρput is the proportion of wealth invested in the put-write index. µ̂(Rp) and µ̂(Rt)
are the annualized mean returns of the put-write index and trend following index. σ̂(Rp)

and σ̂(Rt) are the annualized volatility of the return of the two indices. ˆCov(Rp, Rt) is the
annualized covariance of the return of the two indices. We first calculate µ̂(Rp), µ̂(Rt),

σ̂(Rp), σ̂(Rt), and ˆCov(Rp, Rt) using the daily return, then we scale them to the annualized
level. rf is the risk-free rate.
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We use historical data for the above calculation, where µ̂(Rp), µ̂(Rt), σ̂(Rp), and σ̂(Rt)
are reported in Table 5.1. The expected returns µ̂(Rp) and µ̂(Rt) are calculated using
log returns and they are geometric mean returns. The risk-free rate rf is 2.5%. The
optimized weight in the put-write strategy is 50.7%. We also calculate the optimized weight
using arithmetic mean returns, where simple returns are used to calculate the expected
returns. The optimized weight in the put-write strategy is 50.5%. Since the two weights
are very close, we choose the constant strategy with 50.7% in the put-write strategy as
the benchmark strategy and we refer to 50.7% as the Sharpe ratio weight in the following
context. In the numerical experiment section, we will compare the three proposed control
strategies with the benchmark strategy, in terms of loss side risk.

3.4 Represent Controls by a Neural Network

Now we consider solving for the optimal controls in the constrained optimization problem
in (3.4). Assume that we want to use L sample paths for training and the investment
lasts N periods. Let M be the number of assets in the portfolio. For a general multi-
asset allocation problem, the optimization problem in (3.4) has O(MNL) variables with
O(MNL) constraints, as it solves for the controls at each rebalancing time along each
path. Since L is typically a large number, the problem becomes computationally difficult
to solve. In addition, it does not provide a solution at different paths.

Here, we compute the optimal controls using a simple Neural Network (NN) with one
hidden layer. Taking the stochastic control for an example, the control vector at time tn,
~ρn, is a function of the feature vector F (tn), which includes time and current wealth, i.e.,
F (tn) = [tn,W (tn)]. In other words, input into the NN is the feature vector F (tn) and
output from the NN is the control vector ~ρn. In this study, instead of using a deep neural
network, we use a simple neural network with one hidden layer, shown in Figure 5.1, to
represent the control vector. We note that “shallow learning” is found to outperform “deep
learning” in an asset pricing problem, which is likely due to low signal-to-noise ratio in
asset pricing problems (see [22]). Good results are also obtained in an variable annuities
portfolio valuation problem with a NN with only one hidden layer (see [23]).

As shown in Figure 3.1, there are two nodes in the input layer, three nodes in the hidden
layer, and two nodes in the output layer. In the input layer, the two nodes represent two
features of the stochastic control, namely time and the current wealth. In the hidden layer,
we use the sigmoid function as the activation function,

σ(u) =
1

1 + eu
. (3.6)
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Figure 3.1: A NN representing the stochastic control function

Let h ∈ R3 be the output of the hidden layer. Assume the matrix z ∈ R2×3 is the weight
matrix from the inputs layer F (tn) ∈ R2 to the hidden layer h ∈ R3. Vector z FT (tn)
corresponds to the values stored in the three nodes in the output layer. Assume (z FT (tn))j
is the j-th element in the vector. The output of the hidden layer h becomes

hj = σ
(
(zᵀF (tn))j

)
for j = 1, 2, 3. (3.7)

In the output layer, we use the logistic sigmoid function as the activation function.
Assume the matrix x ∈ R3×2 is the weight matrix from the hidden layer h ∈ R3 to the
output layer ~ρn ∈ R2. Vector x hT corresponds to the values stored in the two nodes in the
output layer and let (x hT)m is the m-th element in the vector. Then the output layer ρn
becomes

(~ρn)m =
e(x hT)m∑2
i=1 e

(x hT)i
for m = 1, 2. (3.8)

One benefit of using this activation function is that controls automatically satisfy the
constraints,

0 ≤ ~ρn ≤ 1, 1ᵀ~ρn = 1.

These constraints are originally introduced in the formulation of the problem (3.1). Then
for the stochastic control, the constrained optimization problem (3.4) becomes an uncon-
strained optimization problem with 12 variables which correspond to the weight matrices
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z and x. The problem is as follows,

min
z∈R2×3,x∈R3×2

E

[
max(W ∗ −W (T ), 0)2 + λW (T )

]

s.t hj = σ
(
(zᵀF (tn))j

)
for j = 1, 2, 3

(ρn)m =
e(x hT)m∑2
i=1 e

(x hT)i
for m = 1, 2.

(3.9)

We can also compute the constant weight and deterministic controls using the same NN
framework by allowing the feature to be a constant or a function of time.

14



Chapter 4

Optimization Technique

It is well known that numerical optimization is the cornerstone of training a neural network.
Generally speaking, there are two major types of optimization techniques, first-order and
second-order methods. First-order methods, also known as gradient based methods, use
the first-order derivative gradient to construct each optimization iteration, whereas the
second-order methods use the second-order derivative, Hessian matrix, to decrease the
objective function. In this section, we consider four optimization methods, including (i)
the trust region method, (ii) the gradient descent method, (iii) the mini-batch gradient
descent method, and (iv) the adaptive moment estimate (ADAM) method.

We will use the bootstrap resample data set with the expected blocksize of 5.8 days
for training. We will explain the bootstrap resampling algorithm in detail in Chapter 6.
The data set contains 100, 000 sample paths for the two indices and each path lasts 63
days (three business months). We refer to this data set as the training set in this chapter.
We use the above four optimization methods to train the stochastic control by solving
the unconstrained optimization problem (3.9). Then we compare the computation times
and the “smoothness” of the objective function value trajectory. The experiments are
performed using MATLAB 2017 on a computer with an Intel Core i5-8600k CPU. Then we
investigate how the choice of the learning rate impacts the convergence of gradient-based
method. We also study how the batch size impacts the optimization of mini-batch gradient
descent. Finally, we show why we choose ADAM over the other three methods.
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4.1 Trust Region Method

The trust region method is one of the most popular second-order optimization methods.
A trust region is the subset of the region in which the objective function is closely approx-
imated by a quadratic function f̃ . The method is an iterative method. Assume xk−1 is
given. The quadratic approximation can be written as follows,

f(x) ≈ f̃(x) = f(xk−1) +∇f(xk−1)
ᵀ(x− xk−1) +

1

2
(x− xk−1)ᵀH(xk−1)(x− xk−1),

where ∇f(xk−1)
ᵀ is the first-order derivative of f and H(xk−1) is the Hessian matrix, the

second-order derivative of f at xk−1. Then we solve for the simpler sub-problem

x∗ = argmin
||x−xk−1||2≤δ

f̃(x),

where δ is the size of the trust region. The next step is to use the following formula to
examine if the solution to the sub-problem leads to a sufficient reduction of the objective
function.

αk = [f(xk)− f(xk−1)]/[f̃(xk)− f(xk−1)].

The numerator gives the actual reduction of f and the denominator represents the esti-
mated reduction of f . If αk is greater than a small threshold 0 < γ < 1 , the iteration is
said to be successful. We accept xk and increase the trust region by enlarging δ. Otherwise,
the iteration is unsuccessful. We set xk = xk−1 and decrease the trust region by reducing
δ.

For computational comparison in this chapter we use the trust region method intro-
duced in [10]. The first-order derivative is calculated explicitly, while the Hessian matrix is
approximately using the finite difference method. The pseudo-code is shown in Algorithm
1. The details to update δ is not presented here and we refer the interested readers to [10].
One of the major advantages of second-order methods over gradient based methods is their
faster convergence rate. The trust region method can be shown to have a quadratic conver-
gence rate. However, in practice, computing the Hessian matrix is usually computationally
expensive and overshadows its fast convergence rate.

In our experiment, we find the computation time for the trust region method is signif-
icantly longer than the gradient based methods. We use the trust region method to solve
the optimization problem (3.9) on a smaller data set with only 10, 000 paths. This data set
is sampled randomly from the training set that has 100, 000 paths. The input parameters
of the trust region method are defined as follows:

K = 100, ε = 10−7, γ = 0.1, ν = 10−12.
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Here, K is the maximum number of iterations. ε is the stopping criterion for gradient
(minimum L∞ norm for ∇f(xk−1)) and ν is the stopping criterion for trust region size
(minimum δ).

Figure 4.1 shows the plot of objective function value at each iteration. We remark that
the optimization takes 19.5 minutes on the smaller data set with 10, 000 paths. Using the
trust region method on the training set will take hours. Due to its long computation time,
we need a faster method to optimize the objective function on the training set.

Algorithm 1 Trust Region Method

Input: Objective function f(x); Maximum number of iterations K ; Stopping criterion
for gradient (minimum L∞ norm) ε ; Stopping criterion for trust region size (minimum δ)
ν; Threshold for a successful iteration 0 < γ < 1;

Initialize: Size of the trust region δ0; Starting point x0; Number of iterations k = 0

1: Compute the first order derivative vector ∇f(x0)
and the second order derivative Hessian matrix H(x0) at x0

2: while k < K and ||∇f(xn)||∞ ≥ ε and δ ≥ ν do
3: k = k + 1
4: Let f̃(x) = f(xk−1) +∇f(xk−1)

ᵀ(x− xk−1) + 1
2
(x− xk−1)ᵀH(xk−1)(x− xk−1)

5: Solve the subproblem xk = argmin f̃(x) s.t. ||x− xk−1||2 ≤ δ
6: if [f(xk)− f(xk−1)]/[f̃(xk)− f(xk−1)] ≤ γ then
7: xk = xk−1 (Unsuccessful Iteration)
8: end if
9: Compute the first order derivative vector ∇f(xn)

and the second order derivative Hessian matrix H(xn) at xn
10: Adjust δk
11: end while
12: return xk
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Figure 4.1: Trust region method: objective function value at each iteration (10,000 sample
paths); computation time is 19.5 mins; terminal objective value is 0.000748

4.2 Gradient Descent

The gradient descent method is one of the most popular optimization algorithms and
it is commonly used for training neural networks. The gradient descent method can be
understood as iteratively moving in the opposite direction of the gradient in order to
minimize the objective function, which can be described by the formula below,

xk = xk−1 − η∇f(xk−1),

where η > 0 is the learning rate. The process is repeated until the maximum number
of iterations is reached or the magnitude of the gradient is small enough. In the later
case, it corresponds to converging to a stationary point. There is a trade-off in selecting
an appropriate learning rate. With a large learning rate, the objective function is often
quickly reduced, but the risk of overshooting the lowest point is high. If a small learning
rate is chosen, it is less likely to overshoot, but it takes a painfully long time to get to
the solution. We show such findings later in Figure 4.2. The pseudo-code of the gradient
descent method is shown in Algorithm 2. Compared to the trust region method, the
gradient descent method has a much lower convergence rate. For convex and differential
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objective function f with Lipschitz continuous gradient with a constant L > 0, i.e.,

||∇f(x)−∇f(y)|| ≤ L||x− y|| for any x, y,

the gradient descent method with η = 1
L

has a convergence rate O(1/I), where I is the
number of iterations (see [6]). We refer to it as sublinear convergence rate. In practice,
the objective function may not have such properties, so it can be difficult to determine the
convergence rate of the gradient descent method.

Algorithm 2 Gradient Descent Method

Input: Objective function f(x); Maximum number of iterations K ; Stopping criterion
(minimum L∞ norm) for gradient ε ; Learning rate η

Initialize: Starting point x0; Number of iterations k = 0

1: Compute the first order derivative vector ∇f(x0) at x0
2: while k < K and ||∇f(xn)||∞ ≥ ε do
3: k = k + 1
4: xk = xk−1 − η∇f(xk−1)
5: Compute the first order derivative vector ∇f(xn) at xn
6: end while
7: return xk

We use the gradient descent method to solve the optimization problem (3.9) on the
training set. We use the following input parameters:

K = 1000, ε = 10−7,

where K is the maximum number of iterations and ε is the stopping criterion for gradient
(minimum L∞ norm for∇f(xk−1)). Figure 4.2 shows the plot of the objective function with
two different learning rates at each iteration. We note that the objective function oscillates
near the minimum for the larger learning rate η = 200. With the smaller learning rate
η = 100, it appears that the algorithm smoothly converges to a minimum. We notice that
the gradient descent method is much faster than the trust region method, but spending an
hour to solve one optimization problem is still not efficient enough, as we seek to fix the
median of the three control strategies to the same as benchmark strategy by a bisection
method.
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(a) η = 200, computation time is 64.8 mins,
terminal objective function value is 0.000749

(b) η = 100, computation time is 64.4 mins,
terminal objective function value is 0.000747

Figure 4.2: Gradient descent method: objective function value at each iteration

4.3 Mini-batch Gradient Descent

The gradient descent method takes all training data into consideration in every iteration.
We use the mean of the gradients of all the training examples to update xk. The method
is computationally heavy for a large data set. Here, we consider using the mini-batch
gradient descent method to overcome this challenge.

A mini-batch refers to a subset of training examples which is usually a lot smaller
than the entire data set. At each iteration, we randomly sample from the data set and
use that a smaller sample set for the gradient evaluation. When the sample size is equal
to one, the method is called stochastic gradient descent. This family of methods offer
convergence faster than the gradient descent, because each iteration takes less computation
time. Since the sample used to evaluate the gradient is randomly selected at each iteration,
the objective function tends to fluctuate around a minimum. Algorithm 3 describes how
the method is implemented.
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Algorithm 3 Mini-batch Gradient Descent Method

Input: Objective function f(x); Maximum number of iterations K ; Stopping criterion
(minimum L∞ norm) for gradient ε ; Learning rate η ; Batchsize B

Initialize: Starting point x0; Number of iterations k = 0

1: Random select a subset S of size B from the entire data set
2: Compute the first order derivative vector ∇f(x0) at x0 on S
3: while k < K and ||∇f(xn)||∞ ≥ ε do
4: k = k + 1
5: xk = xk−1 − η∇f(xk−1)
6: Random select a sample S of size B from the entire data set
7: Compute the first order derivative vector ∇f(xn) at xn on S
8: end while
9: return xk

We use the mini-batch gradient descent method to solve the optimization problem (3.9)
on the training set. We use the following input parameters:

K = 1000, ε = 10−7,

where K is the maximum number of iterations and ε is the stopping criterion for gradient
(minimum L∞ norm for ∇f(xk−1)). We adjust the learning rate and batch size to study
their impact on optimization. Figure 4.3 shows the plot of objective function with two
different learning rates. We note that the objective function value fluctuates more for the
larger learning rate η = 200 and it declines more smoothly with the smaller learning rate
η = 100, which is in line with our result for the gradient descent method in Figure 4.2.
Figure 4.4 shows the plot of objective function with two different batch sizes. We notice
that as batch size gets smaller, computation time is shorter, but the objective function
value declines in a more volatile manner. Using a batch size of one, namely stochastic
gradient descent, will cause the optimization to be very volatile. Here, we believe that
batch size equal to 10000, which is 10% of the entire training set, gives a good balance
between computation time and the “smoothness” of the objective function value trajectory.
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(a) η = 200, computation time is 22.1 mins,
terminal objective function value is 0.000747

(b) η = 100, computation time is 21.7 mins,
terminal objective function value is 0.000750

Figure 4.3: Mini-batch gradient descent method: objective function value at each iteration,
B = 10000

(a) B = 5000, computation time is 19.7 mins,
terminal objective function value is 0.000752

(b) B = 1000, computation time is 18.4 mins,
terminal objective function value is 0.000750

Figure 4.4: Mini-batch gradient descent method: objective function value at each iteration,
η = 100
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4.4 ADAM

One common problem from the gradient descent and mini-batch gradient descent methods
is that choosing a proper learning rate is difficult. As we can see from the results above, a
very small learning rate leads to painfully slow convergence, whereas a very large learning
rate can hinder convergence and causes the objective function to fluctuate around the
minimum or even to diverge. One way to tackle this problem is to pre-define a learning
rate schedule. Nonetheless, such a schedule needs to be defined in advance and it is not
able to adapt to a data set’s own characteristics.

Another difficulty of finding a proper learning rate arises from the fact that we apply
the same learning rate to all parameter updates in the gradient descent and mini-batch
gradient descent methods. In the case where the features are on different scales, we might
want to choose a bigger learning rate for some features. It is argued in [36] that a constant
learning makes it difficult to escape from a saddle point, at which the gradient is zero in
all directions, making it difficult for the gradient descent and mini-batch gradient descent
methods to escape. The better alternative is to use a method that computes adaptive
learning rates for each parameter.

Now we consider the ADAM method introduced in [27]. ADAM, short for adaptive
moment estimate, uses the first and second moments of the gradient to calculate the
adaptive learning rates for each parameter. The n-th moment of a random variable is
defined as the expected value of the variable to the power of n, i.e.,

mk = E[Xn] .

The ADAM method stores an exponentially decaying average of the past squared gradients,
as well as an exponentially decaying average of the past gradients:

mk = β1mk−1 + (1− β1)gk

vk = β2vk−1 + (1− β2)g2k .

Here, mk and vk refer to the estimate of the first moment and second moment of the
gradients, respectively. g2k stands for the element-wise square gk � gk. All operations on
vectors are element-wise in this method. Since mk and vk are initialized as vectors of zero,
the estimates are biased towards zero during the initial steps. The biases are corrected as
follows,

m̂k = mk/(1− βt1)

v̂k = vk/(1− βt2) .
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Then the parameters are updated:

xk = xk−1 −
η√

v̂k + τ
m̂k ,

where η > 0 is the learning rate and τ is a constant to adjust the learning rate. We
implement the ADAM method based on mini-batch gradient descent and the complete
algorithm is shown in Algorithm 4.

Algorithm 4 ADAM Method

Notation: We use gk to indicate the first-order derivative and g2k stands for the
element-wise square gk � gk. All operations on vectors are element-wise. βt1 and βt2
represent β1 and β2 to be power of t

Input: Objective function f(x); Maximum number of iterations K ; Stopping criterion
(minimum L∞ norm) for gradient ε ; Learning rate η ; Batchsize B; Exponential decay
rates for the moment estimates β1 and β2; A constant to adjust the learning rate τ

Initialize: Starting point x0; Number of iterations k = 0; Estimate of the first moment
m0 = 0; Estimate of the second moment v0 = 0

1: Random select a subset S of size B from entire data set
2: Compute the gradient g0 at x0 on S
3: while n < N and ||gk||∞ ≥ ε do
4: k = k + 1
5: mk = β1mk−1 + (1− β1)gk
6: vk = β2vk−1 + (1− β2)g2k
7: m̂k = mk/(1− βt1)
8: v̂k = vk/(1− βt2)
9: xk = xk−1 − η√

v̂k+τ
m̂k

10: Random select a subset S of size B from entire data set
11: Compute the gradient gk at xn on S
12: end while
13: return xk

We use the ADAM method to solve the optimization problem (3.9) on the training set.
We use the following input parameters:

K = 1000, ε = 10−7, B = 10000,

where K is the maximum number of iterations, B is the batchsize and ε is the stopping
criterion for gradient (minimum L∞ norm for∇f(xk−1)). We also choose the recommended
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setting
β1 = 0.9, β2 = 0.999, τ = 10−8,

from [27]. β1 and β2 are the exponential decay rates for the moment estimates and τ is a
constant to adjust the learning rate.

Here, we show the optimization results of two small learning rates η = 0.001 or η =
0.002 in Figure 4.5. We remark that both learning rates generate a generally smooth
reduction in objective function value. Even though both learning rates are significantly
smaller than the ones used in the gradient descent and mini-batch gradient descent methods
(η = 100 or η = 200), the ADAM method dynamically adjusts the learning rates, leading to
less fluctuation and relatively good convergence. As shown in Figure 4.6, we choose learning
rate η = 0.001 and increase the maximum number of iterations to 2000. We observe that
objective function value continues declining after 1000 iterations, but the improvement
in optimized objective function is negligible compared to using the bigger learning rate
and less iteration, i.e., η = 0.002, K = 1000. In conclusion, the ADAM method with
η = 0.002, K = 1000, B = 10000 gives the best balance between computation time among
the four optimization methods, “smoothness” of the objective function value trajectory
and terminal objective function value. Therefore, we use the ADAM method with these
parameters to solve the stochastic optimization problems (3.9).

(a) η = 0.002, computation time is 21.2 mins,
terminal objective function value is 0.000746

(b) η = 0.001, computation time is 22.3 mins,
terminal objective function value is 0.000749

Figure 4.5: ADAM method: objective function value at each iteration
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Figure 4.6: ADAM method: objective function value at each iteration, η = 0.001, compu-
tation time is 45.5 mins, terminal objective function value is 0.000746
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Chapter 5

Data

We use the S&P 500 Put Write Index (PUT Index) as a proxy for the put-write strategy.
The PUT Index measures the performance of a hypothetical strategy that sells a sequence
of one-month, at-the-money, put options on the S&P 500 Index and then invests the
premiums in the one-month and three-month Treasury Bills. The number of puts sold is
limited to the amount such that Treasury Bills held in the collateral portfolio can finance
the maximum potential loss from final settlement of the puts.

For the trend following strategy, the Societe Generale (SG) Commodity Trading Advisor
(CTA) Index is selected as the proxy. The SG CTA Index is a pool of CTA funds selected
from the larger managers that are open to new investment. A CTA fund uses trend
following strategy as its primary trading strategy. It originates from commodity futures
trading, but has now been extended to other asset classes. The SG CTA Index consists of
CTA funds on equity, fixed income, currency and commodities.

Both time series range from January 2002 to April 2019. There are 4362 daily close
prices for the PUT Index, while the SG CTA Index has 4522 daily close prices over the
same time period. This is because the SG CTA Index consists of not only funds on the
S&P 500, but also funds on the currency and commodity market. Therefore, the index is
published on New York Stock Exchange (NYSE) non-trading holidays as well. We remove
these extra data points, so that these two time series have the same amount of daily
close prices. Then we calculate the daily log returns. By removing the closing price on a
holiday, we combine the daily returns on the holiday and the next business day together.
For example, suppose the close price of the SG CTA Index is Ph on a holiday and Ph−1
and Ph+1 are the business day before and after the holiday. Then we omit the close price
on the holiday and let rh+1 = log(Ph+1

Ph−1
). In this way, the total return over the entire time
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horizon remains the same. Here, we make an assumption that no trading of either index
is performed on the NYSE non-trading holidays.

Figure 5.1 shows the historical performance of the two indices. Over the 17 years, the
PUT Index outperformed the SG CTA Index in terms of the cumulative return. However,
the put-write strategy is the more risky strategy as the PUT Index is subject to substantial
losses in every major bear markets. For example, big drawdowns are observed in 2002, 2008
and 2018. These years correspond to the tech bubble, the great financial crisis and the 2018
Q4 sell-off respectively. It is interesting to notice that the SG CTA Index shows strong
performance while the PUT Index falls together with the market. The observation shows
that combining the put-write strategy with the trend following strategy seems promising.
We can also see from the plot that the trend following index yields less return, but it is
the relatively safer strategy of the two.

Figure 5.1: Historical Performance of the PUT Index and SG CTA Index

Table 5.1 shows the median, mean, volatility for annualized return, Sharpe ratio, and
maximum drawdown for the two indices. After removing the extra data points, there are
4362 daily close prices for each index. Median, mean and volatility are calculated using
the 4361 daily log returns, then scaled to annualized returns. Sharpe ratios are calculated
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as follows,
E(rp)− rf

σp
,

using the mean return and volatility reported in this table. We assume the risk-free rate is
2.5%. We also report the skewness and kurtosis calculated using the 4361 daily log returns
in Table 5.2. We observe that the daily log returns of both strategies are negatively-
skewed and the put-write strategy has a very long tail. Figure 5.2 shows the cumulative
distribution function (cdf) comparison of the daily log returns of the two indices and we
can see that the put-write strategy has a large loss side risk with many extreme values. We
aim to develop a strategy that can significantly reduce the loss side risk of the put-write
strategy in this study.

Strategy Median Mean Volatility Sharpe ratio Max drawdown
Put-write 11.5% 6.4% 12.8% 0.30 -37.1%
Trend Following 7.3% 3.9% 8.0% 0.17 -16.5%

Table 5.1: Statistics for annualized log returns and maximum drawdown

Strategy Skewness Kurtosis
Put-write -0.58 29.4
Trend Following -0.46 5.4

Table 5.2: Skewness and kurtosis of daily log returns
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(a) cdf comparison (b) cdf comparison (loss side)

Figure 5.2: Cumulative distribution function (cdf) comparison of daily log returns
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Chapter 6

Bootstrap Resampling

In order to use the proposed data driven approach, we need to generate more data than
what is historically observed. We adopt the bootstrap resampling technique to generate
the training and testing data sets. For each training and testing data set, 100,000 paths
are sampled from the historical data and we construct each bootstrap resampled path as
follows. If we divide the total investment horizon (T days) into h blocks of size b days, so
that T = hb. Then h blocks of size b days are randomly selected with replacement from
the historical data (from both the PUT Index and SG CTA Index). These blocks are then
concatenated to form a single path. However, a randomly sampled block can exceed the
range of time series. We use circular block bootstrap introduced in [34], which is wrapping
around the historical data, to avoid end effects.

We sample in blocks in order to preserve possible serial correlation in the historical
data. The choice of the blocksize is important and can have a large influence on the
results (see [9]). We use the stationary bootstrap resampling technique introduced in [33]
to reduce the impact of a fixed blocksize. Instead of using a fixed blocksize, we use a
geometric distribution with an expected blocksize b̂ to sample the blocksize. Then the
blocksize b follows a geometric distribution and let c = 1

b̂
, we have

P (b = k) = (1− c)k−1c (6.1)

The pseudo-code to generate one sample path is described in Algorithm 5.
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Algorithm 5 Use stationary bootstrap resampling to generate one sample path

Input: Vector of returns X(s): s = 1, · · · , Ntotal ; Expected blocksize b̂ ; Path length
N

Initialize: current length l = 0 ; sampled path P = zeros (N, 1)

1: while l < N do
2: Generate blocksize b from a geometric distribution with expected value b̂,

i.e. b ∼ geo(b̂) (Stationary bootstrap)
3: Generate random starting index i from a uniform distribution from 1 to Ntotal,

i.e. i ∼ rand(1, Ntotal)
4: br = min(b,N − l)
5: for m = 1, · · · , br do
6: index =mod(i+m− 1, N) (Circular bootstrap)
7: P (l) = X(index)
8: l = l + 1
9: end for
10: end while
11: return P

We use the algorithm described in [33] to determine the optimal expected blocksize
b̂. This approach has been previously used in other tests of portfolio allocation problems
as well (see [13]). Table 6.1 shows the calculated optimal values for b̂ for both indexes.
When we perform bootstrap resampling, we need to simultaneously sample the same block
from both historical time series (the PUT Index and SG CTA Index). It is unclear what
blocksize is the best in our simultaneous resampling method. We use the average of the
two values, 5.8 days, as the optimal expected blocksize for generating bootstrap resample
data sets. We will test the control strategies on bootstrap resample data sets with different
expect blocksizes, as well as the historical data paths.

Data Series Optimal expected blocksize b̂ (days)
PUT Index 7.3
SG CTA Index 4.4

Table 6.1: Optimal expected blocksize

In this research paper, we choose the investment horizon to be three months, which
is equivalent as 63 business days. We use the stationary bootstrap resampling technique
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to generate 100,000 sample paths from the historical data. As a result, we have one
bootstrap resample data set, a matrix of dimension 100, 000×63 for each index. We study
the impact of the expected blocksize on the distribution of the overall return generated
from bootstrap resampling. We generate bootstrap resample data sets with the expected
blocksize b̂ = 1, 5.8, 10, 20 days and study the distribution of 100,000 three-month log
return. Figure 6.1 show the probability density function (pdf) comparison of three-month
log return. As we can see from Figure 6.1a, bootstrap resample data set for the PUT Index
with a larger expected blocksize has higher degree of peakedness and a longer left tail. For
the SG CTA Index, no major difference can be observed from Figure 6.1b.

(a) PUT Index (Put-write) (b) SG CTA Index (Trend following)

Figure 6.1: Probability density (pdf) comparison of three-month log return

The skewness and kurtosis of each distribution are reported in Table 6.2 & 6.3. They
are calculated using 100,000 three-month log returns. We observe that as the expected
blocksize decreases from 20 to 1, skewness approaches 0 and kurtosis approaches 3 for
the PUT Index. In other words, the three-month return distribution transforms into a
normal distribution from a negatively-skewed long-tailed distribution. We remark that
when the expected blocksize is 1 day, the actual blocksize is 1 day. Plug c = 1

b̂
= 1 into

equation 6.1 and we have P (b = 1) = (1− 1)0 × 1 = 1. In other words, we are essentially
sampling i.i.d. from historical data. By central limit theorem, the three-month return will
tend to be normally distributed. The transformation is less obvious for SG CTA Index, as
distributions of all expected blocksizes all resemble the normal distribution to some extent.
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Expected Blocksize (days) 1 5.8 10 20
PUT Index -0.09 -0.87 -1.14 -1.55
SG CTA Index -0.06 -0.16 -0.10 0.05

Table 6.2: Skewness of bootstrap resample data sets

Expected Blocksize (days) 1 5.8 10 20
PUT Index 3.4 5.8 6.9 8.7
SG CTA Index 3.0 3.3 3.3 3.2

Table 6.3: Kurtosis of bootstrap resample data sets

Figure 6.2 compares the loss side of the four pdf’s. Table 6.4 shows the 95%-CVaR of
bootstrap resample data sets. For the PUT Index, we find that the bootstrap resample
data sets with larger expected blocksizes have more and bigger extreme values. When the
market crashes, stocks decline for several days or even weeks consecutively. With large
blocksizes, significant market crashes can be captured and it is possible that multiple bear
markets are concatenated into one path. It is less likely for a smaller blocksize to include
the consecutive declines, as the bootstrap algorithm randomly selects blocks from historical
data more frequently. The four pdf’s of the SG CTA Index are alike. We believe this is due
to the fact that the historical daily log return of this index has less and smaller extreme
values (see Table 5.2 and Figure 5.2).

(a) PUT Index (Put-write) (b) SG CTA Index (Trend following)

Figure 6.2: Probability density comparison of three-month log returns (loss side)
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Expected Blocksize (days) 1 5.8 10 20
PUT Index -12.3% -13.1% -13.5% -14.1%
SG CTA Index -7.4% -8.1% -8.0% -7.5%

Table 6.4: 95%-CVaR of bootstrap resample data sets

We conclude that bootstrap resample data sets with different expected blocksizes have
different distributions. Later we present results where we train the Neural Network on the
data set with the expected blocksize b̂ = 5.8 days and test it on the other three data sets.
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Chapter 7

Optimal Allocation Analysis

In this chapter, we analyze and assess performance of optimal controls. Recall that we
formulate the problem as a multi-period asset allocation problem. We have a portfolio
of two assets, the PUT Index and the SG CTA Index. We place two constraints on the
portfolio. The first constraint is that no shorting or leverage of any index is allowed. The
other constraint is that 100% of the portfolio wealth is allocated into these two assets. The
two constraints are automatically satisfied by adopting the Neural Network framework in
Chapter 3.

We assume the initial wealth is $1 and there is no subsequent cash injection. Transaction
costs are not taken into consideration. The investment horizon is 3 months, which is
equivalent as 63 trading days. The portfolio is rebalanced at the beginning of each day.
We use the stationary bootstrap resampling technique introduced in Chapter 6 to generate
100,000 paths for training and testing. With each path spanning 63 days, each training
and testing data set is of a matrix of dimension 100, 000 × 63. The training data set is
bootstrap resample data set with the optimal expected blocksize, 5.8 days. During training,
we constrain the median return to be the same as that of the benchmark, by adjusting the
target terminal wealth W ∗ in problem (3.9) using the bisection method. Then we compare
the loss side risk of the three control strategies to the benchmark. We test the control
strategies on bootstrap resample data sets with the expected blocksize = 1, 10 and 20
days. We also test the stochastic control on historical paths.

Three proposed control strategies are obtained by solving the unconstrained optimiza-
tion problem (3.9). For neural networks, scaling input data is of great importance for
efficient training. In practice, it is nearly always advantageous to apply pre-processing
transformations to the features before it is presented to a neural network (see [5]). Since
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the initial wealth is $1 and there is no cash injection thereafter, the portfolio wealth at
each timestep is approximately centered around $1. We standardize the wealth with mean
= 1 and standard deviation = 0.001. Then we normalize the other feature, i.e. time, on
a scale of 0 to 1, i.e. tn = n/N . We explicitly compute the objective function and its
gradient. Then we solve the optimization problem using the ADAM method.

7.1 Training Results

Table 7.1 reports the training statistics for the three month returns of the three control
strategies, as well as the benchmark strategy, the put-write strategy and the trend following
strategy. Terminal wealth at the end of three months is first converted into three month
log returns, i.e. log

(W (T )
W (0)

)
. Median, mean and standard deviation are calculated using

100,000 three month log returns. The 95%-CVaR reflects the mean log return of the worst
5% terminal wealth. CVaR is a common measure of tail risk.

Strategy Median Mean Standard Deviation 95%-CVaR
Constant Control 1.6% 1.3% 3.4% -6.6%
Deterministic Control 1.6% 1.3% 3.4% -6.6%
Stochastic Control 1.6% 1.5% 3.3% -6.2%
Benchmark 1.6% 1.4% 3.4% -6.7%
Put-write 2.2% 1.6% 5.7% -13.1%
Trend Following 1.1% 1.0% 4.2% -8.1%

Table 7.1: Training Results: Expected Blocksize = 5.8 days

We look at the constant weight and deterministic controls first. We observe that the
two controls have exactly the same statistics for three month returns. This implies that the
two controls might be similar. After fixing the median to be the same as the benchmark
strategy, we observe that the mean return is slightly less than the benchmark and 95%-
CVaR is marginally better, while the standard deviations are the same. When we compare
the stochastic control to the benchmark strategy, we achieve a better mean return, a smaller
standard deviation and a better 95%-CVaR, while maintaining the same median returns.
In this table, we also report the statistics of the put-write and trend following strategies.
The put-write strategy clearly gives the best mean return, but it is also the most volatile
strategy and has the largest left tail risk. Compared to the put-write strategy, the trend
following strategy is the safer strategy with a smaller standard deviation and a smaller loss
side risk. The compromise is that the mean return of the stochastic control is much less
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than the put-write strategy. Since the trend following strategy is inferior to the benchmark
strategy in terms of smaller median and mean returns, a larger standard deviation and a
larger 95%-CVaR, we will not focus on the comparison of the three control strategies to
the trend following strategy.

Next, we analyze the constant weight control and the deterministic control. The con-
stant weight control suggests allocating 50.2% of the asset in the put-write strategy. We
note that the deterministic control is a function of time only. The deterministic control is
centered around 50.1% in the put-write strategy. Figure 7.1 shows the deterministic con-
trol over 3 months and we observe negligible time dependence. The benchmark strategy
allocates 50.7% of wealth in the put-write strategy. Hence, the constant weight and de-
terministic controls are not significantly different from the benchmark. This also explains
why the statistics in Table 7.1 are so close for these three strategies.

Figure 7.1: Deterministic control

We now focus on the comparison between the benchmark and the stochastic control.
Figure 7.2 compares the probability density of the stochastic control and the benchmark.
The vertical line at W (T ) = 1 separates the gains and the losses. Since we are more
interested in the loss scenarios, we will focus on the comparison of the loss side. The
benchmark strategy obviously has a larger loss side than the stochastic control.
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Figure 7.2: Training: density histogram

We also compare the cumulative distribution function (cdf) of the stochastic control,
benchmark and put-write strategy in Figure 7.3a. From the cdf plot on the loss side, it
can be observed that the stochastic control is relatively more similar to the benchmark
strategy than the put-write strategy. We also note that the put-write strategy not only
has the largest loss side, but the largest right side as well. When we incorporate the trend
following strategy into the put-write strategy, we are giving up some positive expected
return to reduce the downside risk. If we zoom into the loss side (7.3b), we remark that
stochastic control has the smallest loss side, followed by the benchmark strategy, while the
put-write strategy has a much larger loss side than the other two control strategies. The
concept of the first-order stochastic dominance was first introduced in [35]. It is defined
as, at a certain probability level, if strategy A has a better outcome than strategy B, then
A is stochastically dominant over B. Further, if it is true on an interval of probability,
it is called a region of stochastic dominance. The plot demonstrates that the stochastic
control strategy has a region of stochastic dominance over the benchmark strategy and the
put-write strategy over the entire loss side. Therefore, the goal to reduce the loss side risk
has been achieved.

39



(a) Whole distribution (b) Loss side

Figure 7.3: Training: cdf comparison

Figure 7.4 shows the allocation heatmap of the stochastic control. We observe that
the greater the current wealth is, the less the stochastic control invests in the put-write
strategy. Intuitively, when the portfolio is losing money, we should invest more wealth in
the more aggressive put-write strategy in order to reach the target terminal wealth. On the
other hand, if the current wealth is high, we can derisk the portfolio and invest more in the
safer trend following strategy. Even though the feature time seems to have a smaller impact
on the allocation decision, it is also observed that the closer it is to the terminal time T ,
the more wealth is invested in the put-write strategy. This can be understood instinctively
that it is generally easier to reach the target terminal wealth when the time remaining is
long. When there is not much time left to hit the target wealth, the stochastic control will
be slightly more aggressive by allocating more wealth into the put-write strategy.

Figure 7.5 shows the stochastic control’s distribution of allocation in the put-write
strategy. We remark that the majority of allocation in the put-write strategy falls in the
range of 15% to 70%. We also note that, on average, median of holding in put-write is less
than 40%. Recall that the Sharpe ratio weight of the benchmark strategy is 50.7%. This
implies that the stochastic control is quite distinct from the benchmark. The difference
explains why the stochastic control is able to achieve a smaller loss side risk to some extent.
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Figure 7.4: Stochastic control heatmap

Figure 7.5: Stochastic control: distribution of allocation
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7.2 Testing on Bootstrap Resample Data

We validate the robustness of control strategies on bootstrap resample data sets with the
expected blocksize = 1, 10 and 20 days. Recall that as shown in Chapter 6, changing the
expected blocksize changes the distribution of returns. Table 7.2 presents the statistics for
three month returns of the six strategies on bootstrap resample data set with the expected
blocksize = 20 days. We have similar findings with the training results (see Table 7.1).
The constant weight and deterministic controls are all on par with the benchmark strategy.
While the stochastic control demonstrates an edge over the benchmark strategy in training,
the advantage seems more substantial on this test set in terms of larger improvements on
mean, standard deviation and 95%-CVaR. The put-write strategy still yields the best
median return with the largest loss side risk. Figure 7.6 shows the probability density
and cdf comparison on this test set. From the probability density histogram, we remark
that the loss side of the stochastic control is covered by the benchmark, suggesting the
stochastic control’s smaller loss side risk. Then we look at the cdf comparison on the loss
side. It can be observed that the stochastic control has a region of stochastic dominance
over the put-write strategy and the benchmark. Table 7.3 shows the testing results on the
bootstrap resample data set with the expected blocksize equals to 10 days. The test results
are very similar to the training results (see Table 7.1).

Then we test the controls on the bootstrap resample data set with the expected blocksize
equal to one day. The testing results are presented in Table 7.4. In general, the results are
less ideal. Comparing to the benchmark, the stochastic control is less volatile, but has a
smaller mean return and a larger 95%-CVaR. It is hard to tell which strategy has a smaller
loss side risk from these statistics. Figure 7.7 presents the probability density and cdf
comparison on this test set. From the density histogram, we observe that the stochastic
control has a smaller probability density than the benchmark strategy on the majority of
the loss side. However, the stochastic control has more extreme values on the loss side,
which causes the CVaR of the stochastic control to be less than the benchmark. In the
cdf comparison, we remark that the benchmark has stochastic dominance over stochastic
control on (−∞,−6%). On interval (−6%, 0%), the stochastic control is stochastically
dominant over the benchmark, but the region of stochastic dominance is relatively small
compared to the training results and the other two test cases.

We believe the distortion of the serial correlation explains this observation. As dis-
cussed earlier in Chapter 6, we sample i.i.d. from historical return when the expected
blocksize equal to one day. Consider a case where the stochastic control overweights the
put-write strategy, because stochastic control expects it to outperform in the next several
days. Nevertheless, the subsequent returns are sampled i.i.d. and it is possible that the
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subsequent path is selected when the put-write strategy underperforms the trend follow-
ing strategy. We expect that the trend following index incorporates some path-dependent
market information into the index itself. However, the put-write index does not reserve
path-dependent market information into its index construction. We do not believe that the
serial correlation in the time series can be fully reflected by daily returns. With a larger
expected blocksize, more serial correlation is preserved and these data sets reflects more
realistic scenarios whereas the serial correlation is completely distorted when the expected
blocksize equals to one day. From this point of view, choosing the expected blocksize equal
to one day does not give a realisitc replication of the market return scenarios.

(a) Density comparison (b) cdf comparison

Figure 7.6: Testing Results on bootstrap resample data, expected blocksize = 20 days

Strategy Median Mean Standard Deviation 95%-CVaR
Constant Control 1.6% 1.4% 3.2% -6.3%
Deterministic Control 1.6% 1.4% 3.1% -6.2%
Stochastic Control 1.6% 1.6% 3.0% -5.2%
Benchmark 1.6% 1.4% 3.2% -6.3%
Put-write 2.5% 1.6% 5.5% -14.1%
Trend Following 1.0% 1.0% 4.1% -7.5%

Table 7.2: Testing Results on bootstrap resample data, expected blocksize = 20 days
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Strategy Median Mean Standard Deviation 95%-CVaR
Constant Control 1.6% 1.4% 3.3% -6.5%
Deterministic Control 1.6% 1.4% 3.3% -6.4%
Stochastic Control 1.6% 1.5% 3.2% -5.8%
Benchmark 1.6% 1.4% 3.3% -6.5%
Put-write 2.4% 1.6% 5.6% -13.5%
Trend Following 1.0% 1.0% 4.2% -8.0%

Table 7.3: Testing Results on bootstrap resample data, expected blocksize = 10 days

(a) Density comparison (b) cdf comparison

Figure 7.7: Testing Results on bootstrap resample data, expected blocksize = 1 day

Strategy Median Mean Standard Deviation 95%-CVaR
Constant Control 1.4% 1.4% 3.7% -6.5%
Deterministic Control 1.4% 1.4% 3.7% -6.4%
Stochastic Control 1.4% 1.3% 3.4% -6.6%
Benchmark 1.4% 1.4% 3.7% -6.5%
Put-write 1.7% 1.6% 6.4% -12.2%
Trend Following 1.0% 1.0% 4.0% -7.4%

Table 7.4: Testing Results on bootstrap resample data, expected blocksize = 1 day
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7.3 Testing on the Historical Data

We also test the stochastic control on the actual historical data paths. We note that the
training data is on the bootstrapped data and the actual historic path is not in the training
data set. We take the first 4347 daily returns ranging from January 2, 2002 to April 9,
2019. We divide 4347 data points into 69 investment periods, and each period is 63 days
long, or three months equivalently. In other words, the test set consists of 69 historical
paths, with each path lasting 63 days. We test the control strategies on these paths and
then we stack the results of all investment periods to see the historical performance.

Table 7.5 shows the statistics for annualized returns as well as the maximum drawdown,
which is a common method to measure downside risk in historical backtesting. Median,
mean, and volatility are calculated using 4347 daily log returns, then scaled to annualized
returns. Mean return and volatility reported in this table are used to calculate Sharpe
ratios. The risk-free rate is assumed to be 2.5%. We do not report results for constant
weight and deterministic controls due to their similarity to the benchmark. From the table,
we note that the stochastic control has the best risk-adjusted return, measured by Sharpe
ratio. Compared to the benchmark, the stochastic control has a similar level of volatility
and maximum drawdown, but its mean return has outperformed the benchmark strategy
by 0.9%. The put-write strategy gives the same level of mean return as the stochastic
control, but comes with much a larger volatility and maximum drawdown, leading to a less
attractive risk-adjusted return. The trend following strategy is the safer strategy with a
smaller volatility and maximum drawdown, compared to put-write strategy. Nevertheless,
the mean return is so low that trend following strategy has the lowest Sharpe ratio.

Strategy Median Mean Volatility Sharpe ratio Max. drawdown
Stochastic Control 10.2% 6.3% 7.9% 0.48 -13.7%
Benchmark 11.5% 5.4% 7.4% 0.39 -11%
Put-write 11.5% 6.3% 12.8% 0.30 -37.1%
Trend Following 7.2% 3.8% 8.0% 0.16 -16.5%

Table 7.5: Testing results on the actual historical data paths (Annualized)

Figure 7.8a shows the historical performance of the four control strategies. We see that
the stochastic control shows a smoother path while achieving the same level of return as
the put-write strategy. The put-write strategy suffers substantial losses from major market
crashes, while the stochastic control seems to be able to avoid the large drawdowns. The
benchmark strategy also gives a stable historical performance, but is outperformed by the
stochastic control. Figure 7.8b shows the stochastic control’s allocation over the 18 years
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period. Allocation in put-write ranges from 15% to 80%. Since we are interested in how
stochastic control behaves in a bear market, we choose the period from September 2008 to
December 2008 to further analyze the allocation decision made by the stochastic control
and its relative performance.

(a) Historical Performance (b) Stochastic control allocation over time

Figure 7.8: Testing results on the actual historical data paths

Figure 7.9 presents the stochastic control’s allocation decision and the relative perfor-
mance of the four strategies in that period. From September to the mid November, the
trend following strategy has a steady gain, while the put-write strategy loses more than
30%. We expect the stochastic control to underweight the put-write strategy in order
to outperform the benchmark in this period. The put-write index drops since the mid
September, so portfolio wealth has been shrinking ever since and more wealth is allocated
into the put-write strategy. The stochastic control expects the put-write index to bounce
back. We observe that the stochastic control increases its holding in the put-write strategy
until it reaches its peak in the mid November 2008. In the mid November, the put-write
strategy starts to climb back, and the stochastic control still overweights in the put-write
strategy since the portfolio wealth remains low. In summary, when the put-write strategy
underperforms the trend following strategy from September to mid November, the stochas-
tic control underweights in the put-write strategy for majority of the time. And when the
put-write strategy outperforms the trend following strategy from the mid November to
the end of December, the stochastic control overweights in the put-write strategy. Such
allocation decision allows the stochastic control to outperform the benchmark in a period
when the put-write strategy loses more than 30%.
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(a) Stochastic control allocation

(b) Relative performance

Figure 7.9: Testing results on the actual historical data paths (2008)
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Chapter 8

Conclusion

In this research paper, we formulate the put-write and trend following investment problem
as a multi-period asset allocation problem. We propose using a one-sided quadratic function
to penalize the expected shortfall, if the terminal wealth fails to reach a target. We convert
the constrained optimization problem (3.4) into an unconstrained optimization problem
(3.9) with less variables by the use of a neural network. The neural network optimization
framework makes it computationally efficient to solve the multi-period allocation problem
with many sample paths and a multi-period investment horizon.

We consider three control strategies based on solving the unconstrained optimization
problem (3.9): (i) a constant weight control, (ii) a deterministic control which is a function
of time only, and (iii) a stochastic control which is a function of time and the current
wealth. The benchmark portfolio is a constant weight strategy that is based on optimizing
the Sharpe ratio. We constrain the median of the three strategies to be the same as the
benchmark portfolio.

The constant weight and deterministic controls make similar allocation decisions with
the benchmark strategy, so their performances are close to the benchmark strategy. The
stochastic control is able to achieve a smaller loss side risk during training. We observe
similarly promising test results on the bootstrap resample data sets with larger expected
blocksizes. Test results are less ideal for the data set with a smaller expected blocksize, as
we observe more extreme values at the left tail and smaller region of stochastic dominance.

We believe that this can be explained by the distortion of the serial correlation when
the expected blocksize b̂ equals one day. We also test the stochastic control on the historical
data paths. Historical performance of the stochastic control achieves a similar cumulative
return with the put-write strategy, and it gives a much smoother ride with smaller volatility
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and drawdown. Overall, the performance of stochastic control is superior to the benchmark
strategy, achieving a higher mean return, a smaller volatility and a smaller left tail risk.

We also investigate the impact of the expected blocksize on the distribution of the
overall return generated from bootstrap resampling. We observe that as the expected
blocksize decreases to one day, the three-month return distribution for the PUT Index
changes from a negatively-skewed, long-tailed distribution to a normal distribution. We
also note that resample data sets with larger expected blocksizes have more and bigger
extreme values.

In addition, we compare four optimization techniques on this allocation problem, in-
cluding (i) the trust region method, (ii) the gradient descent method, (iii) the mini-batch
gradient descent method, and (iv) the ADAM method. We find that the trust region
method is the slowest algorithm among the four and it is impractical when data size be-
comes large due to its long computation time. Both the gradient descent and mini-batch
gradient descent methods face the dilemma where small learning rates lead to slow con-
vergence and large learning rates cause the objective to oscillate around the minimum.
Therefore, we use ADAM, an optimization method with adaptive learning rates to solve
the optimization problem. Using this method, the objective function converges smoothly
to a minimum within a short period of time.
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