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Abstract

We study the framework of the Fourier space time-stepping (FST) method for pric-
ing contingent claims in financial markets. By using the semi-Lagrangian method, the
FST method is extended to the pricing of commodity contingent claims. We study the
commodity one-factor and two-factor models and the related semi-Lagrangian schemes for
these models. Numerical results of pricing commodity European and American options are
presented.
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Chapter 1

Introduction

In finance, a derivative is a type of contract whose price is dependent on and derived from a
particular underlying asset or a basket of underlying assets. The most common underlying
assets include stocks, bonds, commodities, currencies, interest rates and market indexes. A
derivative is generally used to insure against the risk of price movement, which is usually
called hedging. It can also be used in many other areas in financial markets, even for
speculative purposes.

Options, futures contracts, forward contracts and swaps are the most common types of
derivatives. An option is a type of contract which gives the owner the right, but not the
obligation, to buy or sell an underlying asset or instrument at a specified strike price on or
before a specified date (maturity). An option that can only be exercised on expiration is
called a European option. The type of option which gives the owner the right to exercise
on any trading day before expiry is called an American option. A futures contract is a
contract between two parties to buy or sell a specified asset of standardized quantity and
quality for a price agreed upon today (futures price) with delivery and payment occurring
at a specified future date, the delivery date.

As various types of financial derivatives play more significant roles in financial markets,
accurate and efficient methods to value derivative contracts are in high demand. The
Black-Scholes model was first proposed by Black and Scholes (1973) [1]. In this model,
they assume the underlying asset price follows a geometric Brownian motion, which de-
scribes the stochastic behaviour of the underlying asset. They then determine the price as
the solution of a partial differential equation (PDE). Based on this Black-Scholes partial



differential equation, there are various numerical methods to solve the valuation of the
option, such as finite difference, finite volume and finite element methods.

The Fourier space time-stepping method was first developed by Jackson, Jaimungal and
Surkov (2008) [6]. This method uses the Fourier transform to numerically solve the partial
differential equation. The continuous Fourier transform is a linear operator which maps
spatial derivatives into multiplications in Fourier space. Due to convenient properties of
the Fourier transform, we can convert the valuation in real space to Fourier space, where
the partial differential equation will become an ordinary differential equation (ODE). We
then have various straightforward methods to solve the ODE. Meanwhile, it is easy to
add constraints or other conditions between two timesteps to allow for using the Fourier
transform method to price American or other path dependent options.

We know that many financial derivatives, such as options, are dependent on the underlying
assets of the stock prices, which can be modelled as a geometric Brownian motion. How-
ever, there are also many contingent claims based on commodity prices. Straightforwardly,
by assuming interest rates and convenience yields!' are constant, we can extend our pricing
methods for common stock options? to derivatives based on commodities. However, this
assumption is not very suitable for commodity prices since it implies that the volatility
of future prices® is equal to the volatility of spot prices*. Intuitively, in a commodity
market, when prices are relatively high, supply will increase since higher cost producers
of the commodity will enter the market. This will put a downward pressure on prices.
Conversely, when prices are relatively low, supply will decrease since some of the higher
cost producers will exit the market. This will put an upward pressure on prices [13]. The
impact of relative prices on the supply of the commodity will induce mean reversion in
commodity prices. Gibson (1990) [4], Ross (1997) [l 1], and Schwartz (2000) [13] developed
models that describe mean reversion properties of commodity prices and derived the cor-
responding partial differential equations for valuation of the futures and options based on
commodity prices.

LConvenience yield can be seen as the flow of services accruing to the holder of the spot commodity
but not to the owner of a futures contract [13].

2Options whose underlying assets are stock prices.

3The market price under the condition that an commodity asset can be bought or sold for delivery in
the future.

4The current market price under the condition that an commodity asset is bought or sold for immediate
payment and delivery.



In the commodity price models, including one-factor and two-factor models; an Ornstein-
Uhlenbeck process is introduced to describe the mean-reverting behaviour of commodity
prices. This induces a non-constant drift term in the pricing partial differential equa-
tion. In order to solve the option pricing PDE by the Fourier space time-stepping method,
we can use the semi-Lagrangian method to deal with the non-constant velocity term in
the advection-diffusion equation [16]. The purpose of this paper is to combine the semi-
Lagrangian method and the Fourier space time-stepping method to compute the values of
some typical options based on commodity prices.

This paper is structured as follows. In Chapter 2, we introduce the Black-Scholes model
and two models for commodity prices. Chapter 3 presents the framework of the Fourier
space time-stepping method and its application to some typical stock options. In Chapter
4, we will provide the introduction of the semi-Lagrangian method and its application to
commodity options valuation. Chapter 5 gives the numerical examples for one-factor and
two-factor models. Chapter 6 lists the conclusions.



Chapter 2

Mathematical Models

2.1 Black-Scholes-Merton Model

In the Black-Scholes-Merton (BSM) model [1], the price of an underlying asset is assumed to
follow a geometric Brownian motion. The stochastic differential equation for the underlying
asset price S can be written as:

d
gs = pdt + odZ, (2.1)

where:

4 is the drift rate,
o is the volatility,
dZ is the increment of a standard Wiener process.

Moreover, by no-arbitrage arguments, we can write the dynamics of the process under the
cquivalent martingale measure! as:

d
?S = rdt + 0dZ*, (2.2)

'Equivalent martingale measure, also called risk-neutral measure, is used in the pricing of financial
derivatives due to the fundamental theorem of asset pricing. Under this measure, the current value of
financial assets is equal to their expected payoffs in the future discounted at the risk-free rate.




where:

r is the risk-free rate,
dZ* is the increment of a standard Wiener process
under the equivalent martingale measure.

Let V(S, 1) be the value of a European option where 7 is the time to maturity. Assuming
the payoff of the option at maturity V(.5,0) is known, we can derive a partial differential
equation to solve the price of the option by Ito’s Lemma. This is the Black-Scholes equation:

1
V, = §J2SQVSS +rSVs —1rV, (23)

with the initial condition (for a call):

V(S,0) = max(S — K,0), (2.4)

or (for a put):

V(S,0) = max(K — S,0). (2.5)

Here K is the strike price.

2.2 Commodity Price Models

Commodity price models are used to describe the stochastic behaviour of the commodity
spot price, which is the current market price under the condition that a commodity asset is
bought or sold for immediate payment and delivery. Commodity prices are assumed to be
mean reverting. A straightforward approach is to use a mean-reverting Ornstein-Uhlenbeck
process to model the commodity spot price, which is a one-factor model. However, this
model has an implicit assumption that the convenience yield has a certain relation with
the spot price. The convenience yield can be seen as the flow of services accruing to
the holder of the spot commodity but not to the owner of a futures contract [13]. If we
let the convenience yield also follow a mean-reverting Ornstein-Uhlenbeck process that is
correlated with the spot price, this leads to a two-factor model. Moreover, by assuming
the interest rate is non-constant, we then have a three-factor model. In this paper, we will
focus on one-factor and two-factor models.



2.2.1 One-factor Model

We first assume that the interest rate r is constant, and the logarithm of the spot price S
of the commodity follows a mean-reverting Ornstein-Uhlenbeck process:

% = k(p — log S)dt + 0dZ, (2.6)

where:

k is the magnitude of the speed of adjustment, x > 0,
i is the drift rate,
o is the volatility,

dZ is the increment of a standard Wiener process.

By no-arbitrage arguments, we can write the dynamics of the process under the equivalent
martingale measure as:

% — k(i — A — log S)dt + 0dZ", (2.7)

where:

A is the market price of risk,
dZ* is the increment of a standard Wiener process
under the equivalent martingale measure.

Let V(S, 7) be the value of a commodity option price where 7 is the time to maturity. Then
by Ito’s Lemma, we can derive a partial differential equation to solve the option price:

1
Y, — 50—2521;55 4w — A —log S)SVs, (2.8)

with initial condition given in equation (2.4) or (2.5).

2.2.2 Two-factor Model

Unlike the one-factor model, a two-factor model was developed by Gibson and Schwartz
(1990) [4]. The first factor is the spot price of the commodity S and the second is the

6



instantaneous convenience yield 9. These factors are assumed to follow a joint Ornstein-
Uhlenbeck process:

ds
— = (u—9)dt dz
g = =0+ od, (2.9)
do = k(o — §)dt + o9dZs,
where the increments of two standard Wiener processes are correlated with:

where:

k is the magnitude of the speed of adjustment, x > 0
1 is the drift rate,
a is the long run log price,
o1 s the volatility of the commodity spot price S,
0y is the volatility of the instantaneous convenience yield ¢,
p is the correlation of two standard Wiener processes.
dZy,dZs are the increments of two standard Wiener processes.

Note that, if we let the instantaneous convenience yield ¢ be a deterministic function:

0 =rlogs, (2.11)

then this two-factor model will be reduced to the one-factor model. Moreover, by no-
arbitrage arguments, we can write the dynamics of the process under the equivalent mar-
tingale measure as:

d
?S = (r —0)dt + o1dZ7,

ds = [k(a — 8) — Ndt + 02dZ,
dZ; - dZ; = pdt,

(2.12)

where:



r is the risk-free rate,
A is the market price of convenience yield risk,
dZ7,dZ; are the increments of two standard Wiener processes
under the equivalent martingale measure.

Let V(S,6,7) be the value of a commodity option price where 7 is the time to maturity.
Then by Ito’s Lemma, we can derive a partial differential equation to solve the option
price:

1 1
Ve = 5015Vss + 0102pSVss + 503 Vas + (r = 0)SVs + kl(a = 0) = A]Vs,  (2.13)

with initial condition given in equation (2.4) or (2.5).



Chapter 3

Fourier Space Time-stepping Method

3.1 Introduction

3.1.1 Continuous Fourier Transform

A function in the space domain f(z) can be transformed to a function in the frequency
domain F'(k) by using the continuous Fourier transform (CFT). The one-dimensional con-
tinuous Fourier transform of a function f(z) is defined as:

P(k) = Ff(@)] (k) = / " f@)e e, (3.1)

The one-dimensional inverse Fourier transform of a function F(k) is defined as:

0
@) = FHF(R)] (2) = / F(k)e™e dp; (3.2)

—00
There are some important properties of the Fourier transform that are useful for our
computations. The Fourier transform of the partial derivative of a function v(z,7) with
respect to 7 can be represented as:

F {8%@(:5, T)} (k) = o F [o(z,7)] (k). (3.3)



In addition, the Fourier transform of the the partial derivative of a function v(x,7) with
respect to x can be represented as:

F [%U(I,T)] (k) = (2mik)"F [v(x, )] (k). (3.4)

3.1.2 Discrete Fourier Transform

In general, we cannot usually compute the exact value of the continuous Fourier transform.
For numerical computations, we need to approximate this by the discrete Fourier transform
(DFT). We discretize the domain in real space as:

Typ = Tmin + M - A, (3.5)
where m =0,1,--- N — 1, Az = % and T = Tyux — Tmin- Note here N is the number of

nodes in real space. Then the CFT can be approximated by:

F(k) ~ / =2k £ () . (3.6)
We discretize the domain in Fourier space as:
n
kn=—, 3.7
! (37)
where n = —% +1,--- ,%. Then the maximum frequency is j:%, which is the Nyquist

condition. Hence the allowable frequencies are:

(X)) a3)

Consequently, we have:

F(k) ~ /wmx e~ R £ () dx

Lmin

~ e~ 2mkrm £ () Az + O(Az?).

10



That is, we are approximating the integral via trapezoidal rule sums. The error of this
approximation will be O(Az?). For ]@%H, e ,/{:%, we then have:

N—-1

F, = F(k,) ~ Z e~ 2mhnem (g YAz

m=0
N-1

= Apy ] e iR f(g,,)
m=0

(3.10)

g RZmin
= Age "3

> e )

N-1
m

If we define:

= (3.11)

we then have:

E, = F(ky) ~ anFy, (3.12)

where Ep, Fy, -+, Fy_1 are the discrete Fourier transforms of fo, fi,++, fn_1. Figure
(3.1) shows the approximation for the DFT. For the inverse continuous Fourier transform
(ICFT), we can approximate this by:

N (3.13)

11



fix;)

fixy)

f(xy.1)

Emax

Figure 3.1: Approximation for the discrete Fourier transform.

where k,, = n - Ak and Ak = % In this case:

Here f()vflv"'

| =

>
IS B

n=—=41

|z

12

(3.14)



Note that the function «, has cancelled in equation (3.14) and we need only deal with E,.
Figure (3.2) shows the approximation for IDFT.

F-l\.' 251

F.\' 2

L ]

Figure 3.2: Approximation for the inverse discrete Fourier transform.

3.2 FST Algorithm for Options under the BSM Model

Given a partial differential equation in the form of equation (2.3), we can price the option
via solving the partial differential equation by the Fourier space time-stepping method.
First, we need to apply a logarithm transform to the asset price S, so we define:

= log S,

v(x, ) :=V(S, 7). (3.15)

Then we can rewrite equation (2.3) of the BSM model as a partial differential equation
that describes v(z, 7):

1 1
vy = 502vm + (r — 502> Vg — T. (3.16)

We apply the continuous Fourier transform F, a linear operator, to the partial differential
equation (3.16):

13



Flo (k) = F [%ngm} (k) + F [(7‘ - §a2> vx} (k)= Flrol(k),  (3.17)

where the transform variable k represents the frequency. By applying properties of the

Fourier transform (3.3) and (3.4), we can simplify equation (3.17) as following:

L F o] (k) = ~0*(2mik)2F [v] (k) + (r - %ﬁ) (2mik)F [v] (k) — rF 0] (k). (3.18)

V (k) .= F[v] (k). (3.19)
Then equation (3.18) can be written as:

Vo (k) = W (k) - V(k), (3.20)
where the function W(k) is defined by:

(k) = %02(27%)2 + (r _ 302) (2mik) — 1. (3.21)

Note that the function W(k) is called the characteristic exponent. If we use a linear operator
L to represent the right hand side of equation (3.16) as:

Lv = %O'szx + (r — %02> Uy — TV, (3.22)
then W (k) can be defined by:
FLo)(k) =U(k) -V (k). (3.23)

Hence, by applying the Fourier transform and some of its properties, we can convert the
partial differential equation (3.16) in real space into an ordinary differential equation (3.20)
in Fourier space. For the BSM model (2.3), the ordinary differential equation (3.20) can
be solved analytically:

14



(3.24)

V(k, T+ A7) =AWV (k7).

Here we use the notation V (k, 7+ A7) for the value in Fourier space at time 7+ A7. Then

the CFT of v(z,7) can be approximated by DFT as:

Flo(z, 7)|(k) ~ o - V(kn, 7) (3.25)
=y, - DFT[v(xy,, )],
where:
Im:xmin+ m ,(’n’L:O,]_’,]\/'_l)7
Tmax — LTmin
. n N o N (3.26)
n e ; n—=——— , e , R
Lmax — Lmin 2 2
Hence the discrete form of equation (3.24) is:
V(Zp, T+ AT) = IDFT [t - V(ky, T+ AT)]
= IDFT[a;' -2 5 L, - DFT[v(2, 7)]] (327
= IDFT[eA™YE) . DET[v(2p, 7)|] '
= IDFT[e2" "5 ) . DET[v(2, 7)])-
Note by convention, when we carry out the DFT[v(xy,,T)],(m = 0,1,--- ;N — 1), the
(3.28)

algorithm generates:
V(kn,7) 5 (n=0,1,--- ,N — 1),

where:
1 L —I4+1 ~1
kn:0777 7%7 2A 9 [ PN (329)
T T T T

Hence, to form:
15



eAT-\II(kn)V(kn7T) (n=0,1,--- ,N—1), (3.30)

one is actually doing:

GAT.qz(k;l)f/(k;?T) :(n=0,1,---,N —1), (3.31)

where V (kj, 7),V (K|, 7), -, V(kly_,.7) are the output of the DFT and where:

n
= n
Wo=4 3
n nAN; n

Hence, for a single asset European option under the BSM model, since the ODE can be
solved analytically, the option value can be obtained within one timestep. We first apply
the Fourier transform, then solve the ODE in Fourier space, and then apply the inverse
Fourier transform to convert the solution into real space. As for American options, we
need to divide the total time into several time intervals, apply the FST method for one
timestep, add optimal exercise conditions and move to the next timestep.

X (3.32)

0 N
) 2
Z4+1,--- ,N—1

3.2.1 Fully Implicit and Crank-Nicolson

In order to extend the FST method to commodity models, we will approximate the time
derivative by the values in two timesteps. Recall the partial differential equation that
describes v(x, 7) under the BSM model:

1 1
v, = 5azvm + (r — 502> Uy — T. (3.33)

To simplify, we use a linear operator £ to represent the right side:

1 1
Lv = Ea%m + (r — §O2> Uy — T0. (3.34)

Then we use the fully implicit scheme to approximate the derivative v, as:

n+1 __ oy
(0,7 = % = [Co]r L. (3.35)
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We then apply the Fourier transform to equation (3.35) and get:

Vil (k) — vr(k)
AT

= W(k) - V" (k). (3.36)

Here we use the notation V"(k) for the value in Fourier space at timestep 7 = 7. Note
here W(k) is the characteristic exponent defined the term £ i.e. F[Lv|(k) = U(k) -V (k).

Hence, the value at the next timestep v""*(x) can be expressed as:

n+1 _ —1 ,/T[Un(l')]
V" (x) = F {Tm} . (3.37)

Since the fully implicit is a scheme of first order convergence in time, we can also use
the Crank-Nicolson scheme to obtain second order convergence. Here we approximate the
derivative v, as:

n+1 n 1

ol = S = 5 (ol ). (3.38)

Following the same process as the fully implicit scheme, we apply the Fourier transform to

cquation (3.38):

Vn—l—l (k.) _ Vn(k)
AT

1
=3 (W (k) - V™ (k) + W (k) - V™(k)] . (3.39)
Hence, the value at the next timestep v"**(z) can be expressed as:

Flo™(x)] - (2+ AT - ¥(k))

n+1 o —1
) =F 2 — Ar-U(k)

(3.40)

Note that to obtain second order convergence for Crank-Nicolson, we need to apply fully
implicit for the first two timesteps. This is known as Rannacher smoothing [10]. Algorithms
(1) and (2) show the processes of using the FST method with the the fully implicit and
Crank-Nicolson methods to price a single asset option under the BSM model.
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Algorithm 1: FST with fully implicit for single asset option under BSM model.

Data: S, K,r,T,0,N,m

Result: V
x (xmin; Tomin + Imaxj:rzmin’ . Tmin + (N o 1)$max];iﬂmin )’
k%ﬁ(()al?a 7_%_‘_177_1)7

p < max(S - exp(x) — K,0) (call); max(K — S - exp(x),0) (put);
for ) < 1to N do

| W, < 102(27ik;)? + (r — $0?) (2mik;) — 7
end

AT+ T/m; v < p;

for t +— 1 to m do
V< DFT|v]

for j < 1to N do
end
v« IDFT¥];

if American option then

| v < max(v,p);
end

N
2
0

end
V' <« interpolation result of v at x = 0;
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Algorithm 2: FST with Crank-Nicolson for single asset option under BSM model.
Data: S, K,r,T,0, N, m
Result: V
X 4= (Tain, Tanin + L2 g (N — 1) e,
k%ﬁ-((),l,--- ’ ’_%4_1,... ,—1);
p « max(S - exp(x) — K,0) (call); max(K — S - exp(x),0) (put);
for j < 1to N do
| W, « 10%(27ik;)? + (r — 10?) (2mik;) — 7
end
AT < T/m; v < p;
for 1 < 1to 2do
V< DFT|v];
for j < 1to N do
|V < V/(1 = AT W),
end
v < IDFT¥];
if American option then
| v« max(v,p);
end
nd
ort<+ 3 tomdo
vV < DFT|v];
for j < 1to N do
| Vi Vi 2+AT)/(2 - AT W),
end
v < IDFT|v];
if American option then
| v« max(v,p);
end

N
2
,0

= 0

end
V' <+ interpolation result of v at x = 0;

3.2.2 FST for European Option under the BSM Model

For a European option with parameters in Table (3.1), the FST method with fully implicit
gives first order convergence, given by the results in Table (3.2). As for Crank-Nicolson

19



with Rannacher smoothing, Table (3.3) shows second order convergence. Both are expected
since fully implicit is a first order method while Crank-Nicolson is a second order method.

Parameter Value

S 100.0
K 100.0
r 0.1
T 1.0
o 0.2

Table 3.1: Single asset option parameters under BSM model.

Nodes Timesteps Value Change  Ratio’ Time(s)
1024 16 3.71934495 0.0005
2048 32 3.73481358 -0.01546863 0.0038
4096 64 3.74373391 -0.00892033  1.73 0.0149
8192 128 3.74848185 -0.00474794  1.88 0.0717

16384 256 3.75092669 -0.00244485 1.94 0.2269

Table 3.2: Single asset European put under BSM model, FST with fully implicit, closed
form solution = 3.75341839, first order convergence, including both space and time errors.

Nodes Timesteps Value Change  Ratio Time(s)
1024 16 3.75548948 0.0005
2048 32 3.75390429 0.00158519 0.0038
4096 64 3.75353537 0.00036892  4.30  0.0151
8192 128 3.75344703 0.00008833 4.18  0.0742

16384 256 3.75342547 0.00002156  4.10  0.2227

Table 3.3: Single asset European put under BSM model, FST with Crank-Nicolson, closed
form solution = 3.75341839, second order convergence, including both space and time
erTors.

'If we denote values as Vi, Va, -+ - , Vi, then changes are defined as V; — Va, -+, V4 — Vs, and ratios are
defined as “2:%2 EREIN “fi:“f‘; The binary logarithm of a ratio shows the order of convergence. That is, a

ratio of 2 corresponds to first order convergence and a ratio of 4 shows second order convergence.
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3.2.3 FST for American Option under the BSM Model

For an American option under the BSM model, we can apply the FST method for each
timestep, add optimal exercise conditions and move to the next timestep. Algorithms (1)
and (2) also show the processes to price an American option under the BSM model by the
FST method. The FST method with fully implicit or Crank-Nicolson obtains first order
convergence, given by the results in Tables (3.4) and (3.5). The reason that Crank-Nicolson
obtains only first order convergence is that the optimal exercise conditions for an American
option are added explicitly.

Then we use a finite difference method with the same grid and number of timesteps as
the FST method to check and compare the results of the FST method. Table (3.6) shows
the finite difference method with fully implicit and Table (3.7) shows the finite difference
method with Crank-Nicolson and Rannacher smoothing. Note here the FST method is
carried out by using an equally spaced grid of log prices, while the finite difference method
is carried out by using an unequally spaced grid of prices, which is obtained by the equally
spaced grid of log prices. We add the optimal exercise conditions explicitly for the finite
difference method, consistent with the FST method. We can see that with the same number
of nodes and timesteps, the solution of the FST method is very close to the solution of the
finite difference method.

Nodes Timesteps Value Change  Ratio Time(s)
512 16 4.68092256 0.0006
1024 32 4.73755974 -0.05663718 0.0022
2048 64 4.77319767 -0.03563793 1.59  0.0078
4096 128 4.79359198 -0.02039431 1.75  0.0310
8192 256 4.80455089 -0.01095891 1.86  0.1529

Table 3.4: Single asset American put under BSM model, FST with fully implicit, first
order convergence, including both space and time errors.
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Nodes Timesteps Value Change  Ratio Time(s)
512 16 4.77748571 0.0006
1024 32 4.78867421 -0.01118850 0.0021
2048 64 4.80081512 -0.01214091 0.92  0.0077
4096 128 4.80806759 -0.00725247 1.67  0.0322
8192 256 4.81204960 -0.00398201 1.82  0.1533

Table 3.5: Single asset American put under BSM model, FST with Crank-Nicolson, first
order convergence, including both space and time errors.

Nodes Timesteps Value Change Ratio Time(s)?
512 16 4.66630596 0.12
1024 32 4.73376737 -0.06746140 0.81
2048 64 4.77221789  -0.03845052  1.75 8.57
4096 128 4.79334001 -0.02112212  1.82 84.02
8192 256 4.80448634 -0.01114634 1.89  865.62

Table 3.6: Single asset American put under BSM model, finite difference with fully implicit
(not vectorized), first order convergence, including both space and time errors.

Nodes Timesteps Value Change  Ratio Time(s)
012 16 4.76208530 0.08
1024 32 4.78478130 -0.02269601 0.88
2048 64 4.79981199 -0.01503069  1.51 11.38
4096 128 4.80781121 -0.00799922 1.88  100.13
8192 256 4.81198397 -0.00417276 1.92  962.55

Table 3.7: Single asset American put under

BSM model, finite difference with Crank-
Nicolson (not vectorized), first order convergence, including both space and time errors.

2Note that the code for the finite difference method has not been vectorized. Since a vectorized code
has better performance in CPU time, it is not reliable to use CPU time to compare the finite difference
method with the FST method.
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Chapter 4

Semi-Lagrangian Method

When we try to use the FST method to solve a partial differential equation derived from
the commodity one-factor or two-factor model, we cannot obtain an ordinary differential
equation in Fourier space by directly applying the Fourier transform. This is due to the
non-constant velocity term in the partial differential equation. Hence, we consider to use
the semi-Lagrangian method to deal with this problem. The semi-Lagrangian method is
a numerical technique for solving partial differential equations describing the advection-
diffusion processes.

4.1 Advection-diffusion Equation with Constant Ve-
locity

To introduce the semi-Lagrangian method in a simple context, let us consider a one-
dimensional linear advection-diffusion equation of v(x, ) with a constant coefficient p:

Ov ov

— 4y — =0, 4.1

or 1" ox (4.1
with a known initial condition at timestep 7 = 7°:

v(x, 7°) = 0%(x). (4.2)

By solving equation (4.1) using the method of characteristics, we will have the following
solution:
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v(x,7) =0z — pr). (4.3)

Now we consider to solve equation (4.1) on a finite mesh. If we discretize this equation on
a grid with space Ax and timestep A7, we can denote the nodes of the grid as:

v = v(w;, "), (4.4)
where x; = - Az, 7" = n- At. If we know the value v"(z) at timestep 7 = 7", we can find

the solution v (z) at the next timestep 7 = 7""!. From equation (4.3), we have:

v?—i—l _ ?}(ZL“,-,Tn—H) _ 2}O(xi _ /“_n—i-l)

=0z — pAT — pr") (4.5)
= v(z; — pAT, T").

Hence we can use equation (4.5) to find the value v"*!(z) at timestep 7 = 7" as long as
we know the solution v™(x) at the previous timestep 7 = 7. If v(z; — pA7, 7") happens
to be at a mesh node at timestep 7 = 7", we then can let v(x;, 7""!) be equal to the value
at the node v(z; — pA7,7"). But in most cases, this situation will not be satisfied. Hence,
in order to get the value v(z;, 7"™), we need to use interpolation methods to approximate
the value of v(x; — pA7, 7") by some nodes at timestep 7 = 7". Conversely, we can also
get the the value v"(z) at timestep 7 = 7" if we know the solution v"*!(z) at timestep

T =7

vt = v(xg, ") = 00 (x; — pr™)

= v0(x; + pAT — pr™th) (4.6)

= v(z; + pAT, 7).

4.2 Advection-diffusion Equation with Non-constant

Velocity

Now consider a more general case of advection-diffusion equations with a non-constant
velocity p(x, 7):
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ov ov

5, T ) 5 =0, (4.7)

with a known initial condition at timestep 7 = 7°:

v(x,7°) = 0%(x). (4.8)

To solve equation (4.7) using the method of characteristics, we first need to define a function
X(x,s;7),s €10,T] to be the solution to the following ordinary differential equation:

(4.9)

Then we consider the Lagrangian derivative £=v(X (z,s;7),7), which describes the rate
of change in time of v subjected to a space-and-time-dependent velocity field X (z, s;7).
With the chain rule, we have:

DETU(X(ZE,S,T),T) [82 + DETX(I $;T) - aax} v(X(x,8,7),7)
- {5—7 (X (e 5:7).7) - (%] o(X(@ s7),r) 10
=0,
and we have:
v(X(z,s;7),T) = constant. (4.11)

In order to use this for numerical computations, we need to solve equation (4.7) on a finite
grid. Thus for the value at timestep 7 = 7", we first define a function X (z, 7" 7) to
be the solution to the following ODE:

(4.12)



L Ve )
T L
,[n—l
Xi2 Xi1 X Xi+1

Figure 4.1: Semi-Lagrangian scheme.

By the above discussion, we know v(X (z, 7""!; 7), 7) = constant, we have:

'I.}(xi77-n+1) — U(X(ZEZ-7Tn+1; 7.n+1)7 7.n+1)
(%

(X (w4, L ), ).

Following the same process, for the value at timestep 7 = 7", we also have:

v(xg, ™) = (X (2, 7" "), T"

-
= v(X (z;, 7 "), 7).

(4.13)

(4.14)

Figure (4.1) shows the characteristic curve of the semi-Lagrangian scheme. We can use

equation (4.13) to find the value v"™!(x) at timestep 7 = 777!
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solution v"(x) at timestep 7 = 7". Hence, for each timestep 7 = 7", we first solve the
ordinary differential equation (4.9) to determine the value of X (x;, 7";7"). Then we use
interpolation methods to approximate this value by some nodes at timestep 7 = 7". The
result will be the solution v(z;, 7""!) at timestep 7 = 771

4.3 Application to the Commodity Price Models

Since some commodity price models, including one-factor and two-factor models, have
stochastic drift terms, the partial differential equations for pricing commodity-based op-
tions will typically be advection-diffusion equations. We can apply the semi-Lagrangian
method to deal with the stochastic drift term, which will be the non-constant velocity
term in the advection-diffusion equation. After that, it is convenient to use the Fourier
space time-stepping method to obtain the value of the option. Suppose we need to price
an option v(z, 7) with the pricing partial differential equation:

Dv  0Ov v

_:__|_ Q;,T.—:ﬁy? 4].5

T (115)
where the notation Dv/Dr is for the Lagrangian derivative, and L is a linear operator for
the rest terms of the partial differential equation. To apply the semi-Lagrangian method,
we first define a function X (z, s;7) to be the solution to the ordinary differential equation
(4.9). Then we use the fully implicit method to deal with the Lagrangian derivative Dv/Dt

by:

Du]™ ottt n
5, = TE et (110

i
From the semi-Lagrangian discussion above, we can use equation (4.14)

vp = v(we, ) = (X (@, T T, T,

to rewrite equation (4.16) as:

U?+1 o U(X(Sl?i*, Tn; ,7.71—"-1)7 Tn-‘rl)
AT

= [Lo]i Tt (4.17)

To apply the Fourier space time-stepping method, we first define the Fourier transform of
(X (g, 7 7)) 77T as:
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Vik) = F [o(X (@, 7% 7, 77 (k). (4.18)
We apply the Fourier transform to equation (4.17) and obtain the following equation:

VL (k) — Vo (k)
AT

where U(k) is the characteristic exponent defined the term £, i.e. F[Lv](k) = U(k)-V (k).
Finally, by simplifying equation (4.19), we have:

= U(k)- V" (k), (4.19)

V() = %. (4.20)

Since the value v(X (zg, 7% 771, 771) at timestep 7 = 777! can be approximated by the
value v"(z) at timestep 7 = 7" via interpolation methods, we can use the following process
to solve the value at the next timestep:

V() M}v(‘x’(mi*,,rn;,rn—H)?Tn-i-l) DFT, ﬁ(m (4.20) (k) IDFT o (z)

(4.21)

Moreover, we can also use the Crank-Nicolson method to deal with the Lagrangian deriva-
tive Dv/ D, then instead of equation (4.16), we have:

1 n+1 n
A 5 ([Co]i*h + [Lo]) . (4.22)

n+1 n+1 n
[Dv vt — vk
Dt |.
A

From the semi-Lagrangian discussion above, we can use equation (4.14)

Vi = v(z, ") = 0(X (4, 7 T, T,

to rewrite equation (4.22) as:

v — (X (wge, T 7Y, 7 1 . .
X T ) 2 e+ [l (4.23)

For the term [Lv], we need to first apply £ to get the value of [Lv]}, and then do an
interpolation step to get the value of [Lo]%. Also, we define:
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T (4.24)
Note here [Lv]lL is obtained by:

[Lv]?. = interpolation result of F’l[\ll(k) - Flol] (k)] at X (24, 7" T"H). (4.25)

?

By the above definition, we apply the Fourier transform to equation (4.23) and get the
following equation:

Hence, following the similar derivation as before, we have:

2. Vn(k) + A - LV(K)
- 2— At - U(k)

VI HL(k) (4.27)

Instead of equation (4.20) for the fully implicit method, we can use equation (4.27) of the
Crank-Nicolson method to do the Fourier space time-stepping process. In the implemen-
tation of Crank-Nicolson, we need to do the first two timesteps as fully implicit, known as
Rannacher smoothing [10]. This gives us second order convergence for Crank-Nicolson.

4.4 Interpolation Methods

Interpolation is a numerical method of constructing new data points within the range of a
discrete set of known data points. One of the simplest methods is linear interpolation. The
interpolated value of the point that does not lie on any existing grid points is determined
by the two neighbouring grid points in each respective dimension. Given two grid points
(zo,v0) and (1, y;), where we assume o # x1, we can perform a straight line (first order
polynomial) between the two points. Then the value of an interpolated point (z,y) between
(z0,%0) and (z1,y1) is given by:
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Y1 — Yo
= — . . 4.28
y=1yo+ (z — zo) e (4.28)

The method of linear interpolation is very straightforward and easy to implement. But
its disadvantages are obvious. Given N data points (z;,vy;) where i = 0,1,--- /N — 1, if
h = max ' (z; — x;_1), the error of linear interpolation is O(h?). For the interpolation in
a two-dimensional space, we perform linear interpolation first in one direction, and then
again in the other direction. This interpolation can be used in the FST method for a

two-factor model.

sin{x)

Y=

04

08 | —— linear
—— piecewise guadratic
1 i i i i i i i
] 1 2 3 4 5 [ 7 B E]

Figure 4.2: Linear interpolation and piecewise quadratic interpolation.

To get a more accurate interpolation result, we can extend linear interpolation to more
than two data points. A typical second order interpolation method is piecewise quadratic
interpolation. We first divide all the intervals into several pairs with each pair having two
closed intervals. Then for the three points in each pair of intervals, we construct a quadratic
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Lagrange polynomial. So the global interpolant will be a piecewise quadratic polynomial.
Given N data points (z;,;) where i =0,1,--- , N — 1, if h = max " (2; — x;_;), the error
of piecewise quadratic interpolation is O(h?). Figure (4.2) shows the linear and piecewise
quadratic interpolations for a typical function. Another possibility, which forces more
smoothness of the interpolant, is to use a piecewise cubic spline, with local error O(h*).
However, a cubic spline forces continuity of the second derivatives. This property does not

hold for an American option.

4.5 Error of the Semi-Lagrangian Method

We assume Az = O(A7) = O(h) and the local interpolation error is O(h?). We also
assume the global time-stepping error is O(h?), where p = 1 for fully implicit, and p = 2
for Crank-Nicolson. The space discretization error is O(h?) due to the trapezoidal rule
equation (3.10). Hence, the final result of the global error for the FST time-stepping with
the semi-Lagrangian method is given by:

q
global error = O (2—) + O(h?) + O(h?)

T

= O(h"™") + O(h?) + O(h?).

(4.29)

From equation (4.29), we can see that we need to use an interpolation method with ¢ > 3
in order to get second order convergence with Crank-Nicolson, i.e. the piecewise quadratic
or higher order interpolation method.
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Chapter 5

Numerical Results

5.1 Commodity Options under a One-factor Model

5.1.1 FST Algorithm for Options under a One-factor Model

Under the commodity price one-factor model, we have the options pricing partial differen-
tial equation (2.8) that describes V(S, 7):

1
VY, = 20252V55 + k(p— A —1log 5)SVs. (5.1)

In order to solve the partial differential equation (5.1) by the Fourier space time-stepping
method, we first need to apply a logarithm transform to the asset price S. Thus we define:

= log S,

x: (5.2)
v(x,7) = V(S,7), '
and rewrite equation (5.1) as a partial differential equation describing v(z, 7):
L L,
Vr = 50 Var + K(p—A—x)— 30| Ve (5.3)

To simplify, we define:
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a—br:=r(p—A—2x)— %0’2, (5.4)

with the values of @ and b being:

1
a=r(p—N\ — =0

2 (5.5)

b= k.

To solve equation (5.3) using the method of characteristics, we first need to define a function
X(x,s;7) to be the solution to the following ordinary differential equation:

D
X (i) = (X (2, 557).7), .
X(x,s;8) =,
where:
w(x, ) = bxr — a. (5.7)
It is easy to get this solution as:
X(z,8,7) =277 — % (eb(s_T) —1). (5.8)
If we rewrite equation (5.3) as:
Dv
— =L 5.9
Dt v (5.9)
where Lv is given by:
L,
Lv = 59 Vs, (5.10)

then we can apply the semi-Lagrangian method. Here the characteristic exponent W (k) is
defined by the term Lv and given by:
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1
(k) := 5a2(2m'l<:)2. (5.11)
Algorithms (3) and (4) show the processes of using the FST method with fully implicit

and Crank-Nicolson to price a single asset option under a one-factor model.

Algorithm 3: FST with fully implicit for single asset commodity option under one-
factor model.
Data: S, K, u,T,0,k, A\, N,m
Result: V
X — (xmin; Tenin + W’ Cee Tin + (N — 1)%);
k(—m-((),l,-w ’ 7_g+1,... ,—1);
p < max(S - exp(x) — K,0) (call); max(K — S - exp(x),0) (put);
for j < 1to N do
| W, + 1o%(2mik;)%;
end
AT T/m; a + k(p—A) — 20% b+ K;
X ¢ x-exp{—bDAT} — § - (exp{—bAT} —1); V < p;
for t < 1 to m do
v < interpolation result of v at r = X;
V< DFT|v]
for j < 1to N do
| Vi 9/(1= AT );
end
v« IDFT|v];
if American option then
| v < max(v,p);
end
end
V' < interpolation result of v at x = 0;

N
2
0
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Algorithm 4: FST with Crank-Nicolson for single asset commodity option under
one-factor model.

Data: S, K, u,T,0,k,\, N,m

Result: V
X = (i, T+ PG @y o (V- 1) B ),
k(_m.())l)"' _%—i—l,-..,_l);

N
p + max(S - exp(x) — K,%)) (call); max(K — S - exp(x),0) (put);
for )+ 1to N do
| W, « 10?(27ik;)?;
end
AT T/m; a + k(p— ) — 20% b+ k;
X ¢ x-exp{—bAT} — ¢ - (exp{—bAT} —1); Vv < p;
for t < 1 to 2 do
v < interpolation result of v at r = X;
vV < DFT|v];
for j < 1to N do
| V5 /(1= AT @);
end
v« IDFTI[v];
if American option then
| v« max(v,p);
end
nd
ort <+ 3 tomdo
vV < DFT|v];
for j < 1to N do
| :Ej — \_’j : ‘I’j,
end
L < IDFTIL];
L < interpolation result of L at = X; v < interpolation result of v at z = X;
L < DFTI[L]; v < DFT[v];
for j < 1to N do
end
v < IDFT[v];
if American option then
| v < max(v,p);
end

= 0

end
V' < interpolation result of v at x = 0; 35




5.1.2 Monte Carlo for European Option under a One-factor Model

To check the results of our algorithms, we first use Monte Carlo simulations to price a
European call under a one-factor model. Table (5.1) shows parameters of the option under
a onc-factor model. The option values with standard errors of Monte Carlo simulations
are listed in Table (5.2).

Parameter Value

100.0

100.0
0.1
1.0
0.1
0.1
0.2

>3 QA NT = Wn

Table 5.1: Single asset commodity option parameters under one-factor model.

Simulations Timesteps Value StdError  Ratio Time(s)
100000 1000 0.87632401 0.01730161 2.41
200000 2000 0.87986616 0.01225448 1.41 10.78
400000 4000 0.88295630 0.00874660  1.40 42.97
800000 8000 0.87461189 0.00612923 1.43  171.57
1600000 16000 0.87940762 0.00435362 1.41  700.92

Table 5.2: Single asset commodity European call under one-factor model, Monte Carlo.

5.1.3 FST for European Option under a One-factor Model

As shown in Tables (5.3), (5.4) and (5.5), for a European option, the fully implicit time-
stepping results in first order convergence for linear, piecewise quadratic, and cubic spline
interpolations. Since fully implicit is a first order scheme, higher order interpolation method
does not result in higher order convergence, as expected from equation (4.29).
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Nodes Timesteps Value Change  Ratio Time(s)

1024 8 0.92407328 0.00
2048 16 0.89925743 0.02481585 0.01
4096 32 0.88865197 0.01060546  2.34 0.02
8192 64 0.88382188 0.00483009  2.20 0.05

16384 128 0.88152773 0.00229415 2.11 0.18

Table 5.3: Single assct commodity European call under one-factor model, fully implicit with
linear interpolation, Monte Carlo solution = 0.87940762 (standard error = 0.00435362),
first order convergence, including both space and time errors.

Nodes Timesteps Value Change  Ratio Time(s)
1024 8 0.89335220 0.11
2048 16 0.88479323 0.00855897 0.36
4096 32 0.88155834 0.00323488  2.65 1.54
8192 64 0.88029902 0.00125932  2.57 6.04

16384 128 0.87977097 0.00052805  2.38 25.11

Table 5.4: Single asset commodity European call under one-factor model, fully implicit
with piecewise quadratic interpolation (not vectorized), Monte Carlo solution = 0.87940762
(standard error = 0.00435362), first order convergence, including both space and time
errors.

Nodes Timesteps Value Change  Ratio Time(s)
1024 8 0.89567513 0.00
2048 16 0.88514614 0.01052899 0.01
4096 32 0.88161778 0.00352836  2.98 0.03
8192 64 0.88031029 0.00130749  2.70 0.10

16384 128 0.87977333 0.00053695  2.44 0.38

Table 5.5: Single asset commodity European call under one-factor model, fully implicit
with cubic spline interpolation, Monte Carlo solution = 0.87940762 (standard error =
0.00435362), first order convergence, including both space and time errors.
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As for Crank-Nicolson, Table (5.6) shows that first order convergence is obtained by linear
interpolation. Tables (5.7) and (5.8) show that second order convergence is obtained by
piecewise quadratic and cubic spline interpolations, consistent with equation (4.29). More-
over, the error of Crank-Nicolson with higher order interpolation is much less than the
error of fully implicit with linear interpolation.

Nodes Timesteps Value Change  Ratio Time(s)
1024 8 0.91761155 0.00
2048 16 0.89594393 0.02166762 0.01
4096 32 0.88698588 0.00895805  2.42 0.03
8192 64 0.88298696 0.00399892  2.24 0.11

16384 128 0.88110977 0.00187719  2.13 0.35

Table 5.6: Single asset commodity European call under one-factor model, Crank-
Nicolson with linear interpolation, Monte Carlo solution = 0.87940762 (standard error
= 0.00435362), first order convergence, including both space and time errors.

Nodes Timesteps Value Change  Ratio Time(s)
1024 8 0.88551418 0.22
2048 16 0.88133872 0.00417546 0.72
4096 32 0.87989938 0.00143934  2.90 2.89
8192 64 0.87947228 0.00042710  3.37 11.43

16384 128 0.87935589 0.00011639  3.67 46.12

Table 5.7: Single asset commodity European call under one-factor model, Crank-Nicolson
with piecewise quadratic interpolation (not vectorized), Monte Carlo solution = 0.87940762
(standard error = 0.00435362), second order convergence, including both space and time
errors.
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Nodes Timesteps Value Change  Ratio Time(s)

1024 8 0.88850829 0.00
2048 16 0.88164771 0.00686058 0.02
4096 32 0.87990461 0.00174309  3.94 0.05
8192 64 0.87946350 0.00044112  3.95 0.21

16384 128 0.87935239 0.00011110  3.97 0.78

Table 5.8: Single asset commodity European call under one-factor model, Crank-Nicolson
with cubic spline interpolation, Monte Carlo solution = 0.87940762 (standard error =
0.00435362), second order convergence, including both space and time errors.
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5.1.4 FST for American Option under a One-factor Model

As shown in Tables (5.9), (5.10) and (5.11), for an American option, fully implicit obtains
first order convergence for linear, piecewise quadratic, and cubic spline interpolations.

Nodes Timesteps Value Change  Ratio Time(s)
1024 16 1.79031816 0.00
2048 32 1.74177375  0.04854441 0.01
4096 64 1.71742855 0.02434519  1.99 0.03
8192 128 1.70551935 0.01190920 2.04 0.11

16384 256 1.69950137 0.00601798  1.98 0.35

Table 5.9: Single asset commodity American call under one-factor model, fully implicit
with linear interpolation, first order convergence, including both space and time errors.

Nodes Timesteps Value Change  Ratio Time(s)
1024 16 1.65717452 0.52
2048 32 1.68093682 -0.02376229 0.74
4096 64 1.68673988 -0.00580306  4.09 2.97
8192 128 1.69003659 -0.00329672 1.76 11.89

16384 256 1.69169903 -0.00166244 1.98 46.82

Table 5.10: Single asset commodity American call under one-factor model, fully implicit
with piecewise quadratic interpolation (not vectorized), first order convergence, including
both space and time errors.
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Nodes Timesteps Value Change  Ratio Time(s)

1024 16 1.67680538 0.00
2048 32 1.68087525 -0.00406987 0.02
4096 64 1.68647075 -0.00559550  0.73 0.05
8192 128 1.68997803 -0.00350729  1.60 0.21

16384 256 1.69170835 -0.00173031  2.03 0.74

Table 5.11: Single asset commodity American call under one-factor model, fully implicit
with cubic spline interpolation, first order convergence, including both space and time
errors.
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As for Crank-Nicolson, since the optimal exercise conditions are added explicitly, first order
convergence is obtained for linear, piecewise quadratic, and cubic spline interpolations. The
results are shown in Tables (5.12), (5.13) and (5.14).

Nodes Timesteps Value Change  Ratio Time(s)
1024 16 1.77776410 0.00
2048 32 1.73149500 0.04626910 0.02
4096 64 1.71125587 0.02023912  2.29 0.06
8192 128 1.70203543 0.00922044  2.20 0.21

16384 256 1.69762862 0.00440680  2.09 0.71

Table 5.12: Single asset commodity American call under one-factor model, Crank-Nicolson
with linear interpolation, first order convergence, including both space and time errors.

Nodes Timesteps Value Change  Ratio Time(s)
1024 16 1.65677298 1.11
2048 32 1.67105627 -0.01428329 1.47
4096 64 1.68049809 -0.00944182  1.51 5.88
8192 128 1.68651207 -0.00601398 1.57  23.69

16384 256 1.69012193 -0.00360986  1.67 94.25

Table 5.13: Single asset commodity American call under one-factor model, Crank-Nicolson
with piecewise quadratic interpolation (not vectorized), first order convergence, including
both space and time errors.

Nodes Timesteps Value Change  Ratio Time(s)
1024 16 1.65820241 0.01
2048 32 1.67097055 -0.01276813 0.03
4096 64 1.68039481 -0.00942426  1.35 0.11
8192 128 1.68643979 -0.00604499  1.56 0.41

16384 256 1.68988183 -0.00344204 1.76 1.51

Table 5.14: Single asset commodity American call under one-factor model, Crank-Nicolson
with cubic spline interpolation, first order convergence, including both space and time
erTors.
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5.2 Commodity Options under a Two-factor Model

5.2.1 FST Algorithm for Options under a Two-factor Model

Under the commodity price two-factor model, we have the options pricing partial differen-
tial equation (2.13) that describes V(S, 0, 7):

1 1
V, = 50%52)/53 + 0102pSVss + §0§V55 + (r = 0)SVs + k[(a — 6) — A]Vs. (5.12)

In order to solve the partial differential equation (5.12) by the Fourier space time-stepping
method, we first need to apply a logarithm transform to the asset price S. Thus we define:

x :=log 9,
(5.13)
v(z,0,7) :=V(S,6,71),
and rewrite equation (5.12) as a partial differential equation describing v(x,d, 7):
L, L, L,
Ur = 5071V + 010905 + 50285 + |(r—9) — 301 Vs + k[ — ) — Nws. (5.14)
To simplify, we define:
b6 = (1 — 0) — 202
a; — =(r—90)— =0
P 27 (5.15)
as — byd = k[(a—0) — Al
with the values of aq, by, as, by being:
a, =1 — 50%,
as = k(a — A),
bQ = K.
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To solve equation (5.14) using the method of characteristics, we first need to set the vector:

X 1= m . (5.17)

Then we define a function X (x, s;7) to be the solution to the following ordinary differential
equation:

D
D_SX(X“S’T) :M(X(XaS;T)vT)a (518)
X(x,s;8) =x,
where:
- b15 — a
u(x,7) = {525 B GJ : (5.19)
The solution is seen to be:
x4 5(er ) — 1) — G (ehlsmm) — 1)
X(x,87)= [ Seb2(s—m) _ Z_j(ebg(ls—T) —1) . (5.20)
If we rewrite equation (5.14) as:
Dv
“——_r 5.21
o0t (5.21)
where Lv is given by:
1, 1,
Lv = 501Vaa + 0102PVss + 505055, (5.22)

then we can apply the semi-Lagrangian method. Here the characteristic exponent W (ky, k3)
is defined by the term Lv and given by:

1 1
U (ky, ko) := 50%(27?2’1{:1)2 + o109p(2miky ) (2miks) + 505(2m’l€2)2. (5.23)

Algorithms (5) and (6) show the processes of using the FST method with the fully implicit
and Crank-Nicolson methods to price a single asset option under a two-factor model.
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Algorithm 5: FST with fully implicit for single asset commodity option under two-
factor model.

Data: 5,0, K,r,T,01,09,p,k,a,\, N;m

Result: V
Xl,X2 $— (fL’min’ Lmin + W, e 7$min + (N _ 1)xrrlax§$min);
k1,k2 ¢ ———-(0,1,--- T TRARIE O

for [+~ 1 to N do
| pi. < max(S - exp(x1;) — K,0) (call); max(K — S - exp(x1,;),0) (put);
end
for [+ 1 to N do
for j < 1to N do
| Wy < Lot (2mik1))? + S03(2mik2;)? 4 0100p(2mik];) (270K 2;);
end
end
AT+ T/m; a4 <—T—%U%; by  1; as + K(a— N\); by + K;
X2  x2 - exp{—b AT} — 2 - (exp{—bAT} — 1); Vv < p;
for t < 1 to m do
for j + 1 to N do
x1 < x1+ x2; - (exp{—biAT} — 1) — ¢ - (exp{—bi1AT} — 1);
v.; < interpolation result of v at x; = ﬁ, Ty = ﬁj;
end
V < DFT[v];
for [ <+ 1 to N do
for j < 1to N do
| ‘_flj — ‘_/lj/(l — AT - II’lj);
end
end
v« IDFT¥];
if American option then
| v <« max(v,p);
end

end
V' + interpolation result of v at x1 = 0,29 = 0;
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Algorithm 6: FST with Crank-Nicolson for single asset commodity option under
two-factor model.

Data: 5,0, K,r,T,01,09,p,k,a,\, N;m

Result: V
Xl,X2 $— (fL’min’ Lmin + W, e 7$min + (N _ 1)xrrlax§$min);
k1,k2 ¢ ———-(0,1,--- T TRARIE O

for [+ 1 to N do
| pi. < max(S-exp(x1;) — K,0) (call); max(K — S - exp(x1,;),0) (put);
end
for [ < 1 to N do
for j < 1to N do
| Wy < 107 (2mik1))? + 503 (2mik2;)? 4 0100p(2mik];) (270K 2;);
end
end
AT+ T/m; a4 <—7’—%0%; by  1; as + k(a— N\); by + K;
x2 + x2 - exp{—by AT} — 12 - (exp{—beAT} — 1); Vv < p;
fort <+ 1 to 2 do
| FST with fully implicit algorithm
end
for t + 3 to m do
vV« DFT[v];
for [ < 1 to N do
for j + 1 to N do
| Ly« V- Wy
end
end
L < IDFTI[L];
for j + 1 to N do
x1 < x1+x2; - (exp{—bi AT} — 1) — & - (exp{—b A} — 1);
L.; < interpolation result of L at xy = )/ci, To = ﬁj;
v.; < interpolation result of v at x; = ﬁ, Ty = ﬁj;
end
L < DFT[L]; ¥ < DFT[v];
for [ + 1 to N do
for j < 1 to N do
| ‘_"lj — (2 . ‘_/lj + AT - Ll])/(Q — AT - \Illj);
end
end
V [DFT[\_/]; 46
if American option then
| v < max(v,p);
end
end
V' <« interpolation result of v at 1 = 0,25 = 0;




5.2.2 Monte Carlo for European Option under a Two-factor Model

To check the results of our algorithms, we first use Monte Carlo simulations to price a
European put under a two-factor model. Table (5.15) shows parameters of the option under
a two-factor model. The option values with standard errors of Monte Carlo simulations

are listed in Table (5.16).

Parameter Value
S 100.0
1) 100.0
K 100.0
T 0.1
T 1.0
o1 0.1
09 0.2
p 0.5
K 0.1
a 0.1
A 0.2

Table 5.15: Single asset commodity option parameters under two-factor model.

Simulations Timesteps Value StdError  Ratio Time(s)
100000 1000 1.10924986 0.01914251 6.19
200000 2000 1.09865181 0.01349634  1.42 21.31
400000 4000 1.10506938 0.00956445 1.41 89.26
800000 8000 1.10213963 0.00673322 1.42  353.96
1600000 16000 1.10497142 0.00477254 1.41 1509.14

Table 5.16: Single asset commodity European put under two-factor model, Monte Carlo.

5.2.3 FST for European Option under a Two-factor Model

As shown in Tables (5.17), (5.18) and (5.19), for a European option, fully implicit obtains
first order convergence for linear, piecewise quadratic, and cubic spline interpolations. Since
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fully implicit is a first order scheme, only first order convergence is obtained, regardless of
the interpolation methods.

Nodes Timesteps Value Change  Ratio Time(s)
2562 8 1.82624602 0.85
5122 16 1.42184384 0.40440219 3.62
10242 32 1.25043458 0.17140926  2.36 17.15
20482 64 1.17387687 0.07655771  2.24 94.05

Table 5.17: Single asset commodity European put under two-factor model, fully im-
plicit with linear interpolation, Monte Carlo solution = 1.10497142 (standard error =
0.00477254), first order convergence, including both space and time errors.

Nodes Timesteps Value Change  Ratio Time(s)
2562 8 1.40466843 13.27
5122 16 1.20054602 0.20412241 103.85
10242 32 1.13850206 0.06204396 3.29  761.74

20482 64 1.11743602 0.02106603 2.95  6052.46

Table 5.18: Single asset commodity European put under two-factor model, fully implicit
with piecewise quadratic interpolation (not vectorized), Monte Carlo solution = 1.10497142
(standard error = 0.00477254), first order convergence, including both space and time
errors.

Nodes Timesteps Value Change  Ratio Time(s)
2562 8 1.39186878 0.90
5122 16 1.19800053 0.19386825 4.31
10242 32 1.13780988 0.06019065  3.22 24.22

20482 64 1.11725556 0.02055432  2.93  145.07

Table 5.19: Single asset commodity European put under two-factor model, fully implicit
with cubic spline interpolation, Monte Carlo solution = 1.10497142 (standard error =
0.00477254), first order convergence, including both space and time errors.
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As for Crank-Nicolson, Table (5.20) shows that first order convergence is obtained by linear
interpolation. Tables (5.21) and (5.22) show that second order convergence is obtained
by piecewise quadratic and cubic spline interpolations, consistent with equation (4.29).
Moreover, the error of Crank-Nicolson with higher order interpolation is much less than
the error of fully implicit with linear interpolation.

Nodes Timesteps Value Change  Ratio Time(s)
2562 8 1.74336591 2.82
5122 16 1.37444169 0.36892423 7.49

10242 32 1.22567920 0.14876248  2.48 30.53

20482 64 1.16130732 0.06437188  2.31 174.09

Table 5.20: Single asset commodity European put under two-factor model, Crank-
Nicolson with linear interpolation, Monte Carlo solution = 1.10497142 (standard error
= 0.00477254), first order convergence, including both space and time errors.

Nodes Timesteps Value Change  Ratio Time(s)
2562 8 1.31770472 33.98
5122 16 1.15313917  0.16456556 243.63
10242 32 1.11396369 0.03917548 4.20  1980.87

20482 64 1.10497226  0.00899142 4.36  15528.32

Table 5.21: Single asset commodity European put under two-factor model, Crank-Nicolson
with piecewise quadratic interpolation (not vectorized), Monte Carlo solution = 1.10497142
(standard error = 0.00477254), second order convergence, including both space and time
errors.
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Nodes Timesteps Value Change  Ratio Time(s)

2562 8 1.29593924 1.95

5122 16 1.14593922  0.15000003 11.33
10242 32 1.11172469 0.03421453  4.38 60.00
20482 64 1.10433488 0.00738981 4.63  375.47

Table 5.22: Single asset commodity European put under two-factor model, Crank-Nicolson
with cubic spline interpolation, Monte Carlo solution = 1.10497142 (standard error =
0.00477254), second order convergence, including both space and time errors.
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5.2.4 FST for American Option under a Two-factor Model

As shown in Tables (5.23), (5.24) and (5.25), for an American option, fully implicit obtains
first order convergence for linear, piecewise quadratic, and cubic spline interpolations.

Nodes Timesteps Value Change  Ratio Time(s)
10242 8 2.03947509 4.18
20482 16 2.12046638 -0.08099130 22.95
40962 32 2.16632205 -0.04585567 1.77  140.31
81922 64 2.18831556 -0.02199351 2.08  890.93

Table 5.23: Single asset commodity American put under two-factor model, fully implicit
with linear interpolation, first order convergence, including both space and time errors.

Nodes Timesteps Value Change  Ratio  Time(s)
10242 8 1.98621815 239.00
20482 16 2.09618281 -0.10996466 1902.34
40962 32 2.15425551 -0.05807270 1.89  15141.15
81922 64 2.18258366 -0.02832815 2.05 119615.09

Table 5.24: Single asset commodity American put under two-factor model, fully implicit
with piecewise quadratic interpolation (not vectorized), first order convergence, including
both space and time errors.

Nodes Timesteps Value Change  Ratio Time(s)
10242 8 1.99015104 7.71
20482 16 2.09620372 -0.10605269 48.63
40962 32 2.15427876 -0.05807503 1.83  343.02
81922 64 2.18231558 -0.02803683  2.07  2512.16

Table 5.25: Single asset commodity American put under two-factor model, fully implicit
with cubic spline interpolation, first order convergence, including both space and time

errors.
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As for Crank-Nicolson, since the optimal exercise conditions are added explicitly, first order
convergence is obtained for linear, piecewise quadratic, and cubic spline interpolations. The
results are shown in Tables (5.26), (5.27) and (5.28).

Nodes Timesteps Value Change  Ratio Time(s)
10242 8 2.04711775 8.36
20482 16 2.11712352 -0.07000577 45.90
40962 32 2.16032182 -0.04319831 1.62  280.63
81922 64 2.18333167 -0.02300985 1.88 1781.85

Table 5.26: Single asset commodity American put under two-factor model, Crank-Nicolson
with linear interpolation, first order convergence, including both space and time errors.

Nodes Timesteps Value Change  Ratio  Time(s)
10242 8 2.02473703 478.00
20482 16 2.09477973 -0.07004270 3804.67
40962 32 2.14887298 -0.05409325 1.29  30282.30
81922 64 2.17776339 -0.02889041 1.87  239230.17

Table 5.27: Single asset commodity American put under two-factor model, Crank-Nicolson
with piecewise quadratic interpolation (not vectorized), first order convergence, including
both space and time errors.

Nodes Timesteps Value Change  Ratio Time(s)
10242 8 1.99411970 15.18
20482 16 2.09192908 -0.09780938 96.37
40962 32 2.14800900 -0.05607992 1.74  692.98
81922 64 217727027 -0.02926127 1.92  5093.83

Table 5.28: Single asset commodity American put under two-factor model, Crank-Nicolson
with cubic spline interpolation, first order convergence, including both space and time

errors.

22



Chapter 6

Conclusions

In this paper, we present the framework for pricing contingent claims by the Fourier space
time-stepping method. The pricing partial differential equation can be converted to an
ordinary differential equation in Fourier space. Then the time-stepping can be completed
in one timestep between discrete monitoring dates where constraints and conditions are
applied. Since the ordinary differential equation can be solved accurately and efficiently in
Fourier space, this method can be seen as an useful method for pricing contingent claims,
especially for path-dependent options like American and some types of Asian options.

Furthermore, we also extend the Fourier space time-stepping method to some mean-
reverting models, which are widely used in commodity prices. The semi-Lagrangian method
can be used to deal with the stochastic drift terms in the pricing partial differential equa-
tions of the commodity one-factor and two-factor models. We simply need to add an
interpolation step in the Fourier space time-stepping method, which gives us quite rea-
sonable results for commodity European and American options. For European options,
first order convergence is obtained by fully implicit with linear, piecewise quadratic, and
cubic spline interpolations. As for Crank-Nicolson with Rannacher smoothing, linear in-
terpolation gives us first order convergence while piecewise quadratic and cubic spline
interpolations give us second order convergence. For American options, as the optimal
exercise conditions are added explicitly, for both fully implicit and Crank-Nicolson, first
order convergence is obtained.

As discussed in this paper, further research can include

e Use a second order backward differentiation formula (BDF) to approximate the time
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derivative.

e Extend the Fourier space time-stepping method to other types of contingent claims
in commodity markets.

e Use graphics processing units (GPUs) to speed up the computational processes of
the fast Fourier transform (FFT) and the inverse fast Fourier transform (IFFT).

e Use graphics processing units (GPUs) to speed up the interpolation operations.
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Appendix A

Wrap-around Error

In the computation of the Fourier space time-stepping method, the Fourier transform as-
sumes a periodic domain implicitly, while the real domain of the log asset price is aperiodic.
Consequently, when the Fourier transform is applied, it causes values at the end of the grid
to be "wrapped around” to the other side of the grid. The values near the far right end
of the domain, the log asset prices x close to Ty, Will wrap around and produce wrong
solutions at the left end of the grid, similarly with the asset prices close to Z .

A simple method to reduce the wrap-around error is to use zero padding. For the domain
in real space, we add zeros and the DFT operation is done on a grid with the size twice
as the original length. And for the domain in Fourier space, the number of nodes is also
doubled. Then during the FST process, after applying the inverse Fourier transform, the
added zero value nodes are deleted. If one just tries to solve an option price with an initial
asset price S, one can use this S as the centre of the grid. Then the wrap-around error will
not occur. However, if one tries to solve problems with several initial asset prices at one
time, the warp-around error will occur when an initial asset price S is near the end of the
grid. In this case, one can set the centre of the grid as the mean value of the maximum
initial asset price and the minimum initial asset price. Then with zero padding, all the
problems should have reasonable results. Algorithm (7) shows the process to apply zero
padding for the FST method. Note that the grid in Algorithm (7) is centred at S..

With the option parameters shown in Table (A.1), Table (A.2) shows the solutions of the
FST method with and without zero padding. Note that the grid here is centred (in the
log asset price domain) at S, = 100. The FST solution without zero padding when S = S,
is very close to the closed form solution. But for the values near the end of the grid, the
FST solutions without zero padding are quite unreasonable while the FST solutions with
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zero padding still give us results that are close to the closed form solutions.

Algorithm 7: FST with fully implicit for single asset option under BSM model (with
zero padding).

Data: S,K,r,T,0,N,m,S.

Result: V
X 4 (Tnin, Trpin + L22Emin e g 4 (N — 1) Smaxsoi ),
k —2_(mma:_m - .(9,1’... N, —-N+1,--- 7_11);
2N
p’ < max(S, - exp(x) — K,0) (call); max(K — S, - exp(x),0) (put);
p<—(07 70? p, a07”' 7O>7
—— T ——
N N N

for j + 1 to 2N do
| W« 10%(2mik;)? + (r — 30%) (2mik;) — 7
end

AT« T/m; v < p;

for t <1 tom do
vV < DFT|v];

for j +1to N do

| Vi /(1= AT y);
end
v« IDFT|v];

if American option then

| v <+ max(v,p);
end

end
for )+ 1 to N do
| v Vipn;
end
V <« interpolation result of v/ at p/ = S,
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Parameter Value

S

K
r
T
o

100.0
100.0
0.1
1.0
0.2

Table A.1: Single asset option parameters under BSM model.

S FST (without padding) FST (with padding) Closed form solution
0.0001 138163.00084861 0.00000000 0.00000000
0.0010 146640.82401928 0.00000000 0.00000000
0.0100 202198.48160904 0.00000000 0.00000000
0.1000 60.06458846 -0.00000000 0.00000000
1.0000 0.00000000 -0.00000000 0.00000000
10.0000 0.00000000 -0.00000000 0.00000000

100.0000 13.26967804 13.26967804 13.26967658
1000.0000 909.51625820 909.51625820 909.51625820
10000.0000 9909.51625820 9909.51625820

100000.0000

99002.05763603

99002.05763603

9909.51625820
99909.51625820

Table A.2: Single asset European call under BSM model, wrap-around error.
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