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Abstract

Obstacle problems can be posed as elliptic variational inequalities, complementarity
inequalities and Hamilton-Jacobi-Bellman (HJB) partial differential equations (PDEs). In
this paper, we propose a multigrid algorithm based on the full approximate scheme (FAS)
for solving the membrane constrained obstacle problems and the minimal surface obstacle
problems in the formulations of HJB equations. A special coarse grid operator is proposed
based on the Galerkin operator for the membrane constrained obstacle problem in this
paper. Comparing with standard FAS with the direct discretization coarse grid operator,
the FAS with the proposed operator converges faster. Due to the nonlinear property of the
minimal surface operator, the Galerkin operator for the minimal surface obstacle problem
is not accurate. We introduce the direct discretization operator for the minimal surface
obstacle problem. A special prolongation operator based on the bilinear interpolation is
proposed to interpolate functions from the coarse grid to the fine grid. At the boundary
between the active set and inactive set, the proposed prolongation operator can capture
the active grid points and put accurate values at these points. We will demonstrate the fast
convergence of the proposed multigrid method for solving obstacle problems by comparing
with other multigrid methods.
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Chapter 1

Introduction

The obstacle problem is a problem that finds the equilibrium position of an elastic mem-
brane with fixed boundary and is constrained to lie below and /or above the given obstacles.
The problem can be posed as a partial differential equation (PDE). It is regarded as an
example in the study of elliptic variational inequalities and free boundary problems. Many
problems in real life such as porous flow through a dam, minimal surface over an obstacle,
American options, elastic-plastic cylinder, etc. can be reformulated as elliptic variational
inequalities [5][20]. A free boundary problem is a partial differential equation that has to
be solved for both an unknown function and an unknown domain [7]. An instance of the
free boundary problem is the melting of ice. Given a block of ice, one can solve the heat
equation with an appropriate initial guess and given boundary conditions. However, if the
temperature of a specific region is greater than the melting point of ice, this domain of
ice will be melting and occupied by liquid water. The solution to the PDE will give the
dynamic location of the interface between the ice and liquid. We call these obstacle type
problems.

Obstacle problems can also be formulated as linear complementarity problems and
Hamilton-Jacobi-Bellman (HJB) equations [ 1]. However, it is generally difficult to com-
pute the exact solutions of these problems, so we will focus on the numerical solutions here
in this paper. The way to project the continuous obstacle problem into a discrete problem
is through discretization. There are several techniques that may be used to discretize a
PDE. For instance, finite difference, finite element and finite volume methods [14]. Finite
difference methods are widely used, since they are intuitive and easy to implement. Fi-
nite element methods are commonly used with the domain decomposition and subspace
correction methods.



1.1 Overview Methods to Solve Obstacle Problems

Many methods are introduced to solve elliptic variational inequality PDEs. Existing ap-
proaches include projected relaxation methods, classical stationary iterative methods, con-
jugate gradient methods, multigrid methods and so on [11][16][17].

The classical stationary iterative methods are easy to implement but the convergence
rate is slow when the problem is large. Projected relaxation methods are regarded as
standard techniques to solve elliptic variational inequalities [8][9]. They are known to be
easy to implement and convergent. However, the drawback of this method is that it highly
depends on the choice of the relaxation parameter and has a slow asymptotic convergence
rate.

Various forms of preconditioned conjugate gradient (PCG) algorithms for solving the
nonlinear variational inequalities are presented in [16]. The conjugate gradient (CG)
method is an iterative method designed to solve certain systems of linear or nonlinear
equations. PCG is introduced to accelerate convergence by adding special parameters. It
is more cfficient than the projected relaxation method. However, the convergence rate still
depends on the size of the problem. When the grid size is refined, a PCG method may not
be very efficient.

A multigrid method is introduced in [11] to solve the finite difference discretized PDE
in the form of the minimal surface obstacle problem. Two phases are introduced in the
paper. The aim of the first phase, in which the computations are not expensive, is to get a
good initial guess for the iterative phase two. In the second phase, the problem is solved by
a W-cycle multigrid method. A cutting function is applied after the coarse grid correction.
The convergence is proven to be better than PCG. However, the application of the cutting
function and the phase one leads to expensive computations overall.

The elliptic variational inequalities can be reformulated as linear complementarity prob-
lems. It is easy to write the linear complementarity problems into PDEs. A multigrid
method, namely, projected full approximate scheme (PFAS), is proposed in [3] to solve lin-
ear complementarity problems arising from free boundary problems. The proposed multi-
grid method is based on the full approximate scheme (FAS), which is often used for solving
nonlinear PDEs. The multigrid method is built on a generalization of the projected SOR.
Two further algorithms established on PFAS are introduced: PFASMD and PFMG, both
of which are faster than PFAS. These methods are better than the method in [11] in the
sense of the convergence rate.

The multigrid PFAS to solve the American style option problem in the linear comple-
mentarity form is introduced in [17], where a Fourier analysis of the smoother is provided.
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The American style option problem is an obstacle type problem which can be formulated
into PDEs. The F-cycle multigrid method is applied and the comparison between the F-
cycle and the V-cycle for solving linear complementarity problems is shown. The F-cycle
is faster than the V-cycle as mentioned in [17]. However, the F-cycle requires more com-
putations in each iteration. The additional steps are recombination operations on the fine
grid, so it is relatively expensive.

The elliptic variational inequalities can also be reformulated as Hamilton-Jacobi-Bellman
(HJB) equations. A multigrid algorithm which involves an outer and an inner loop is de-
veloped in [12]. The active and inactive sets of all grid levels are computed and stored in
the outer loop. The W-cycle FAS multigrid method is applied to solve a linear PDE in
the inner loop which is nested in the outer loop. An iterative step is adopted to give a
good initial guess starting from the biggest grid size up to the fine grid. Both [11] and [12]
are trying to use the active and inactive sets strategy to separate the obstacles from the
solving of the direct PDEs. The computational complexity largely depends on the stopping
criterion for the inner loop. If the stopping criterion is not chosen wisely, the computations
can be very expensive.

A mutilevel domain decomposition and subspace correction algorithm is applied in
[21] to solve the HJB equations for obstacle problems over a minimal surface. A special
interpolator is chosen to solve the obstacle problem over a convex space. The proof of the
linear rate of convergence for proposed algorithms is provided.

A so-called monotone multigrid method and a truncated version is introduced in [13]
to solve the obstacle problem. The convergence rate of the proposed method for solving
the minimal surface obstacle problem is proved as the same efficiency as for the classical
multigrid for the unconstrained case. The finite element method is used for discretization.

1.2 Objective

We will consider two kinds of obstacle problems. They share the same boundary conditions
and obstacle constraints, but with different partial differential operators. One is with the
Laplacian operator, and the other operator we call it the minimal surface operator. The
obstacle problems can be reformulated as HJB equations. The equations are discretized by
a finite difference method. This research paper is to develop an efficient multigrid method
for solving the discrete HJB equations. The main results of this research paper are:

e The FAS multigrid method with the Galerkin coarse grid operator is introduced and
applied on the membrane constrained obstacle problem.



e The FAS multigrid method with the direct discretization operator is presented and
used to solve the minimal surface obstacle problem.

e The performances of the FAS method for solving both obstacle problems are analyzed.

This research paper is arranged as follows: the obstacle problems, their mathematical
derivations and their discretization are given in Chapter 2. Chapter 3 presents the multigrid
methods, in which the V-cycle is shown and the corresponding algorithm is given. A linear
problem is considered as an example to introduce multigrid methods. The FAS V-cycle to
solve obstacle problems are presented in Chapter 4, where the algorithms for the two kinds
of obstacle problems are introduced. Numerical experiments are discussed in Chapter 5
and we summarize the work of this research paper in Chpater 6.



Chapter 2

Obstacle Problem

The obstacle problem discussed in this research paper is originally introduced for finding
the equilibrium position of a membrane above a constraint of an obstacle, with fixed
boundary. In classical linear elasticity theory, the obstacle problem is regarded as one
of the simplest unilateral problems, and also as geometrical problems [20]. The obstacle
problems can be modeled as elliptic variational inequalities and free boundary problems
[0]. Many variational inequalities problem, for example, the elastic-plastic torsion problem
and the cylindric bar, are regarded as obstacle type problems by means of the membrane
analogy. Another example is a cavitation problem in the theory of lubrication.

The solution to the obstacle problem can be separated into two different regions. One
region is where the solution equals the obstacle value, also known as the active set, and the
other region is with the solution above the obstacle. The interface between the two regions
is called the free boundary, so the obstacle problem is also studied as the free boundary
problem [5]. Figure 2.1 shows an example of the obstacle (left) and the solution to the
obstacle problem (right). In this chapter, we will derive the formulations of two kinds of
obstacle problems: membrane constrained and minimal surface obstacle problems.

2.1 Deformation of a Membrane Constrained by an
Obstacle

A membrane considered in classical elasticity theory is a thin plate, which has no resistance
to bend, but would act in tension [20]. We assume a membrane in a domain 2 C R? on
the plane Oxy is equally stretched by a uniform tension, and also loaded with the external
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Figure 2.1: An obstacle problem example, (left) the obstacle, (right) the solution

force f, which is also uniformly distributed. We assume each point (z,y) of the membrane
is replaced by a numerical amount w(z,y) perpendicular to the domain Q. The boundary
of the domain € is represented as 9€). For simplicity, from now on, we use X stands for
the two dimensional point (x,y). The membrane problem considered here is defined on a
convex domain, with the function u(X) and boundary conditions u|sq = g(X) with some
obstacle ¢(X) in €. To be more precise, we are given

(a) A convex domain ),

(b) u(X) = ¢g(X) on the boundary 952, to be specific, g(X) = 0 is adopted in this paper,
(¢) An obstacle function ¢ (X).

According to the position of the obstacle, we can classify the obstacle problem into three
classes: (a) the lower obstacle problem, in which the solution u(X) lies above the obstacle,
(b) the upper obstacle problem, in which the solution u(X) lies below the obstacle, and (c)
the two sided obstacle problem, in which the solution u(X) lies in between the two sides
obstacles. In this chapter, we will take the lower obstacle problem as an example to derive
the mathematical formulations.

Here we define a close convex set K to be
K ={u e V,ulpg = g(X),u >}, (2.1)
where V stands for the lower obstacle problem space which is the H'! space considered

here.

In the following, we will give three different formulations of the membrane constrained
obstacle problem: an elliptic variation inequality, a linear complementarity problem and
an HJB equation.



2.2 Elliptic Variational Inequality Formulation of Mem-
brane Constrained Obstacle Problem

The potential energy of the membrane can be expressed as:

D(u) = /Q %|Vu|2dX, (2.2)

where u € K, and Vu stands for the gradient of u. There may be external forces f, the
energy of which is given by

Flu) = /Q Fu dX. (2.3)

So (2.2) together with (2.3) give us the total potential energy £ = D — F'| which is
1
E(u) = / ~|Vul|?dX — / fu dX. (2.4)
Q2 Q

The membrane constrained problem is to find u such that it minimizes the potential
energy,
min  E(u), wu€ K, (2.5)

U

subject to the obstacle constraint given by the convex set K. In order to find the solution,
we need to make sure u satisfies the Euler’s equation and (2.5), which turns out to be the
Poisson’s equation,

— Au = —(Ugy + Uyy) = f. (2.6)

Let @ be the solution to (2.5), that is,
E(u) < E(v), WYveK. (2.7)

Since K is a convex set, © + A(v —u) € K for A € [0,1]. Define h(\) = E(u + A\v — a)).
When A = 0, h(A) is minimized and hence A/(0) > 0. It follows that

H(0) = lim, ; (E(i+ Mo — 1)) — B@@)} > 0. (2.8)

Substituting (2.4) into (2.8), we obtain,
1 (0) = / Vav (v — a)dX — / o —@)dX > 0. (2.9)
Q Q

7



Thus, if @ is a solution to (2.5) (or (2.7)), then u also satisfies
ue K: / VuaV (v —a)dX > / flv—u)dX, Vv e K, (2.10)
Q Q

which is called an elliptic variational inequality.

Another way to see the solution to (2.10) is also the solution to (2.5) (or (2.7)) is that
if u satisfies (2.10) then for Vv € K,

Ew)=Eu+v—u)=Eu+ (v—u))

=FE(u) + /Q VuV(v —u)dX — /Q flv—uw)dX + % /Q V(v — ). (2.11)
Since u satisfies (2.10), [, VaV (v —a)dX — [, f(v —u) > 0. Hence we have
1 2
E(v) > E(u) + 5 /Q V(v —u)| (2.12)
> E(u).

It implies that u is also a solution to (2.5) (or (2.7)).

2.3 Linear Complementarity Formulation of Membrane
Constrained Obstacle Problem

In order to derive the linear complementarity formula, we define two sets

K={ue K uX)=uX)), (2.13)

and
Ky={ue K :ulX)>yX)}. (2.14)

Take an arbitrary ¢ € K, such that ¢(X) = 0 on 092. There exists ¢y > 0, such that
v=utep € K for 0 < e <¢. Substituting v = u + €¢ into (2.10), we can get

/ Vi - V(ted)dX — / F(ed)dX > 0. (2.15)
Q Q

Rearranging (2.15), we obtain
Le / (VaVe — f6)dX > 0. (2.16)
0

8



Integrating by parts, (2.16) becomes

ieﬁvw%9+/k—Aa—fw¢X}zo, (2.17)
Q
Since ¢(X) = 0 on 09, we have
4 e/(—Aﬂ _ 620, Vée K. (2.18)
Q

Since the inequality holds for both +¢ and —e, we can conclude that

—Ad=f,  a(X) > v(X). (2.19)

In the other case, @(X) is not strictly greater than ¥(X). We let ¢ € K, and ¢ > 0.
Let v =u+ ¢ € K. Then (2.10) becomes:

/Vﬂ -VodX — / fodX > 0. (2.20)
Q Q
Following the same algebra from (2.15) to (2.18), we have
[-aa-no=z0 (2.21)
Q
for any ¢ > 0. This implies that
SAn-f20, a(X)>p(X). (2.22)

From (2.19) and (2.22), we can conclude that —Au — f > 0 is true almost everywhere
except for 02 in 2, where the values are given by the Dirichlet boundary conditions. The
two cases (2.19) and (2.22) can be written as a complementarity problem:

a_w207
Al - f>0, (2.23)
(i — 0)(~Aa— f) =0,



2.4 HJB Equation Formulation of Membrane Con-
strained Obstacle Problem

Equation (2.23) implies that if « > v, or w — ¢ > 0, then —Au — f = 0. Otherwise, if
uw—1 =0, then —Aa — f > 0. Hence, the linear complementarity formulation (2.23) is
equivalent to

min(—Auz — f,a—1) =0, on, (2.24)

which is called an Hamilton-Jacobi-Bellman (HJB) equation. Here, u € K, where K is
defined in (2.1).

This formulation is only for the lower obstacle problem. For the upper obstacle problem,
the corresponding HJB equation is given by,

max(—Au — f,u—1)=0, onQ. (2.25)

Here, u € K“, where K = {u € V|u > ¢?}, and V is the H' space. For the two sided
obstacle problem, we assume @ € K"™° = {u € V|¢' < u < ¢?}. The HJB equation is
given by

max [—L*u — f*] =0, (2.26)

1<p<4

where

— L'u = [sgn(u —¢")](=Au), [ =[sgn(u—¢")If,  n=12

— L'y = (=1)"u, P = (=1)"p" 2, =34 (2.27)

2.5 Minimal Surfaces with Obstacles

In this section, we introduce another form of the obstacle problem, i.e, the minimal surface
with obstacles. It is to describe the equilibrium shape for a mass bounded by a surface.
We assume that the superficial tension exerts a pressure that is proportional to the mean
curvature at each point. The pressure applied is the same in all directions, such that every
point on the surface shares the constant mean curvature. The minimal surface problem is
of great interest in the mathematical study [20]. Here, we only consider the special case,
that is: in the membrane problem, the minimal surfaces can be represented as a function
u = u(X) over a smooth subset € in R2. The boundary condition is also given by g(X) = 0
on Of).
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We assume that the potential energy of the membrane is proportional to its area, which

is given by
/ V14 |Vul2dX, ueK. (2.28)
Q

The minimal surface obstacle problem is to find the minimal potential energy of the mem-
brane and can be stated in the form

weK: /\/1+ ValdX < / JIFVPdY,  Woe K. (2.29)
Q Q

The minimal surface obstacle problem is related to the membrane constrained obstacle
problem. If we take the Talyor’s expansion, the integrand of (2.28) can be written as

1
V1+|Vu2=1+ ;wy? +O(Vu?). (2.30)

For small [Vu|, O(Vu?*) can be discarded. The minimization of 1+ 3|Vu|? is the same as
minimizing |Vul?, since the constant term dose not affect the minimization. By drop-
ping the high order term O(Vu?), the minimal surface problem becomes the membrane
constrained obstacle problem in (2.5).

We can also apply the external forces f here, the energy of which is given in (2.3).
Similar to the derivation in Section 2.2, (2.29) can be formulated as a variational inequality:

Vu-V(v—u

o 14 |Vul|?

With the same reasoning as in (2.19) and (2.22), we conclude that v must satisfy the
following equations:

ue K: )dX—/f(v—u)dX >0, Vv € K. (2.31)
Q

VU )b for u(X) > (X)),

V14| Vul? (2.32)

VU S b foru(X) > (X).

V1+|Vul2”

The HJB equations for the minimal surface problem can be obtained by replacing the
Awu and L* in (2.24), (2.25) and (2.26). More precisely, the equations for the lower and
upper minimal surface obstacle problems are

min(Au — f,u —) =0, on €,
max(Au — f,u—1) =0, on,

Au= -V - (

Au= -V - (

(2.33)
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respectively. For the two sided minimal surface obstacle problem, the corresponding HJB
equation is given by
max [G*u — f*] =0 (2.34)

1<p<4

where
Gru = [sgn(u—"))(Au),  f* = [sgn(u—v")]f, p=12,
Gru = (=1)u, fr=(=1)"p"2 =34

The term Aw is defined in (2.32) for all these three HJB equations.

(2.35)

The minimal surface obstacle problem is related to the membrane constrained obstacle
problem as mentioned above. However, the minimal surface operator A here in (2.32) and
the Laplacian operator A are quite different. The Laplacian operator A does not depend
on the function u. It is a linear operator. But the minimal surface operator A in (2.32) is
nonlinear and highly depends on u.

2.6 Finite Difference Discretization of Membrane Con-
strained Obstacle Problems

It is difficult to solve the obstacle problem in the HJB form analytically, so we will consider
the numerical solution based on a finite difference discretization. Finite difference is a
numerical method to approximate derivatives of a function by algebraic formulas derived
from Taylor’s polynomials. We will first introduce some notations. Consider the Poisson’s
equation

—Upe — Uy, = f in Q= (0,1) (2.36)

Denote the grid points by (x;,v;), where x; = iAz, y; = jAy, 0 < ¢,j < N + 1.
Ar = Ay = h = NLH is the grid size. Let u;; be an approximation to u(x;,y;). Then a

finite difference discretization of (2.36) can be written as

Uiprj — 2Uij+Wic1y  Uigpn — 2Uij + Uiy

h? h?

= fi;, 1<ij<N. (2.37)

Thus, we have a set of N? linear equations. We can rewrite the linear system by an N2 x N2
matrix AY as

12



AM = — Lo ] (2.38)

4 -1 0 0
-1 4 -1 :

p=| 0 -1 4 -1 - | (2.39)
0 —1 4
-1 0 0 0
O —-1 0 .- ...

B=| 0 0 -1 0 - |, (2.40)
0 0 -1

The superscript “M” for AM here stands for the membrane constrained obstacle problem.

2.7 Finite Difference Discretization of Minimal Sur-
face Obstacle Problem

Similarly, we apply a finite difference method to discretize the operator in (2.32):
A%sum = ACUZ'J + AWU@'_LJ + AEui-l-l,j + ASUZ'J_l + ANU/L‘7J'+1. (241)

The superscript “MS” in AM® here stands for the minimal surface obstacle problem. AC),
AW, AE, AS, AN can be understood as the weights of the stencil in the center, west,

13



east, south, north, respectively. They are given by

1 1
2\/(1“,,]'—;;1‘71,]‘)2 + (ui,j—:zz,jq )2 + 1
1
+ )
2\/(%‘,;‘—:#1,]‘)2 + (uifl,j+;1_ui—l,j)2 + 1
1 1
2\/<,uz'+1,2—ui,j )2 + (ui+1,j—;;z'+1,j—1)2 4 1
1
2\/(“7/-0—1,2_“1,3 )2 + (“m+;l_“w )2 +1
1 1
2\/(1“',]'—}1:1—1,7')2 + (ui,j—;bli,j—l )2 + 1
1
2\/( z+173*2 1,1*1)24_( ,J hw*I)Z_{_l
1 1
AN =

B ﬁ Ui41,5—Usg,5 Wi 41— Wi 5
2\/( i ;L 2’1)2_1_( 0,5 - z,])2+1

1
+ ;

2\/(ui,j+r,§u71,j+1)2+(Ui,j+z*uz',j)2+1

and AC = —(AW + AE + AS + AN) + 1. AM3 can also be written as a matrix form,

which is not given here.

It would be nice that the discretization of the minimal surface problem is monotone
so that the numerical solution will converge to the viscosity solution. However, it is not
obvious one can prove that the given finite difference discretization is actually a monotone
scheme. Perhaps it is possible to apply forward or backward differencing to the discretiza-
tion of the Vu term in such a way that the resulting discretization method is monotone.
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However, it is not clear how it can be done and we will just focus on the given discretization
when we apply our multigrid method

2.8 HJB Equation of Discretized Obstacle Problems

Now we consider the discretization of the HJB equations for both obstacle problems, the
membrane constrained obstacle problem and the minimal surface obstacle problem.

We give several notations here we will use in the following. We order the grid points
(X1, X5, X3, ..., Xy2) lexicographically and denote uy, fr,, as a vector in the same lexico-
graphical order. Thus Ay(uy,) is a vector, and Ay, (uy,); represents the i** item of the vector.

An " grid point is called an inactive point if

Ah(“h)z‘ - fh,i < Upy; — wh,z'-

Otherwise it is called an active point. All the active points build up an active set and the
inactive points form an inactive set.

Depending on the type of constraints, we divide the obstacle problem into three types:
(1) the lower obstacle, the set Kj = {v;, € RV |v;, > 4} }, (2) the upper obstacle, the set
KV = {v, € RN v, <2}, (3) the two sided obstacle, K*° = {v, € RN|¢h} < vy, < 92}
The HJB equations are given as

min[Ax(us) — fa, un — ] =0, (2.42)
for the lower obstacle K, = K},

max[Ay(uy) — fu, un — 3] =0, (2.43)
for the upper obstacle K, = K, and

max [A} (u) — f1] =0, (2.44)

1<p<4

for the two sided obstacle problem Kj = K}*°, where

Af(un) = [sgn(un — D] An(un), — fl = [sgn(un — )] fr,  p=1,2,
Al(uy) = (=) up,  f = (1M %  p=34.
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Here A, = AM defined in (2.38), for the membrane constrained obstacle problem and
Ap, = AMS | given by (2.41), for the minimal surface obstacle problem. Note that the HJB
equations should be understood componentwise.

In this research paper, we are going to solve the discrete HJB equation with lower
obstacles, i.e (2.42). The discrete HJB equation is difficult to solve numerically because of
its nonlinearity. Any grid point, say the " grid point, is active or inactive depending on
both Ap(up); — fri and up; — ¥p,;. However, we do not know that in advance. It depends
on the approximate solution u;, and the obstacle function ¢/,. We need to update the active
and inactive set when we update the approximate solution uj,. The active and inactive sets
make this problem nonlinear and difficult to solve numerically. For the minimal surface
obstacle problem, the operator A9 itself is highly nonlinear. So the HJB equation for the

minimal surface obstacle problem is even more difficult so solve.

One way to solve the HJB equation is the policy iteration [I]. The policy iteration
consists of two loops, i.e. the outer loop and the inner loop. In the outer loop, one can fix
the active set and inactive set. In the inner loop, some iterative methods can be applied
to solve the linear problem. A W-cycle multigrid method can be taken as an inner loop
solution [12]. In practice, the policy iteration converges fast. However, the computation in
the inner loop can be costly. So the total computational work may still be expensive.
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Chapter 3

Multigrid Methods

This chapter provides several important and basic concepts in multigrid methods. Multi-
grid methods, which arc originally applied as a way to solve elliptic boundary value prob-
lems, are regarded as a class of efficient iterative methods to solve various PDEs. Typically
their iteration numbers are a constant number and do not depend on the grid sizes. Prob-
lems that can be efficiently solved by multigrid methods involve almost all fields of physics
and engineering sciences, for instance, elliptic PDEs such as the Poisson’s problem, convec-
tion diffusion equations, hyperbolic problems as well as clustering and eigenvalue problems
[1][9][22]. These problems are difficult to derive the analytic solutions. A practical way
to overcome the difficulties is to give numerical solutions by suitable discretization and to
solve the corresponding linear or nonlinear large sparse matrix.

In this chapter, we will focus on the discrete Poisson’s equation with Dirichlet boundary
condition as our model problem:

—Apup = fn, (3.1)
in the square €2, with h = ﬁ, N € N. We define the finite difference domain €2, as:
Q= QN Gy, (3.2)
where 2 = (0,1)> C R and
Gn={(z,y) : x =ih,y = jh;i,j € Z}. (3.3)

Let L; be the standard five-point approximation of the partial differential operator,
and the stencil is given by:

— | -1 4 -1/ . (3.4)



If we order the unknowns from the lower left corner to the upper right corner, i.e, natural
ordering, then the resulting matrix will be a block tridiagonal sparse matrix as in (2.38).

There exist various methods to solve the matrix problem, for example, the Richardson
method, the Gauss-Seidel method, the Jacobi method and the successive over-relaxation
method. For the model problem (3.1), the convergence rate for the Richardson method
is given by p = %, where K(Ap,) = - is the condition number of the matrix A
in (2.38) with the grid size h. The Richardson method converges faster as the condition
number is getting closer to 1. When the grid size is refined, the condition number becomes
a large number. Thus, the Richardson method results in an inefficient method. The Jacobi
and Gauss-Seidel methods have an asymptotic convergence rate of 1 - O(h?). The optimal
successive over-relaxation is one order of magnitude faster than the Jacobi method, which
is 1 - O(h). In any case, the convergence of the stationary iterative methods will deteriorate
with the grid size refined [10].

The slow convergence of the stationary iterative methods is mainly due to the difficulty
in reducing the low frequency components of the errors (we will explain more about high
and low frequencies later in this chapter). However, the high frequency errors are damped
rapidly in these methods [1]. Figure 3.1 demonstrates the error given by the Gauss-Seidel
method applied to the model problem in (3.1). The initial error with a random initial
guess shown in Figure 3.1(a) is highly oscillating. Two Gauss-Seidel iterations efficiently
damp the high frequency components of the errors, as shown in Figure 3.1(b), in which
the errors are relatively smooth.

(a) Initial Errors (b) Error after Pre-smoothing

Figure 3.1: Hlustration of high frequency errors reduced by stationary iterative methods.
(a) Initial errors with some random initial value, (b) errors after pre-smoother.
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In contrast with the standard or stationary iterative methods, the convergence rate
of multigrid methods is often independent of the size of the finest grid. The main idea
behind multigrid methods is to reduce the low frequency errors by applying a hierarchy
of coarse grids. Multigrid methods consist of three important procedures: (1) the pre-
smoothing, which is typically an iterative method applied on the current grid aiming to
obtain smoothed errors, (2) the coarse grid correction, which computes the error from the
coarse grid in order to update the solution on the current grid, (3) the post-smoothing,
which is usually the same as the pre-smoothing [1].

In this chapter, we will give an overview and examples of each element of multigrid
methods, including pre-smoothing, coarse grid correction procedure, coarsening, coarse grid
operator, restriction operator, prolongation operator, post-smoothing, and demonstrate
how these parts are organized together.

3.1 Pre-smoothing

The pre-smoothing operator plays a critical role in multigrid methods since it will reduce
the high frequency errors significantly, and the smoothed errors are solved on the coarse
grids recursively. The stationary iterative methods are commonly used as smoother in the
multigrid methods, for instance, the Gauss-Seidel method and the damped-Jacobi method.

3.1.1 Jacobi Iteration

Consider the model problem (3.1). Let ﬂf” ; be the approximate solution after kth iteration
of the Jacobi method at grid point (ih, jh). The (k + 1) iteration is defined as:

1
N T s g g & -
Up i —Z[h Jhig ¥ g+ Uiy T Ui 0], 1<4,j<N. (3.5)

Let @f be a vector of ﬂ’ﬁ7i7j, 1 <14,7 < N, with the lexicographic order. The Jacobi iteration
can be expressed as

k h2
ﬂthl - Sh?lh + th,

with the operator
h2
Sp = I, — ZLh;

where [}, is the identity operator.
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If we introduce a damping factor w, then the damped Jacobi iteration is given by:

uptt = ay + w(aptt —ay), (3.6)
where 7! is defined in (3.5). The operator of the damped Jacobi iteration becomes
wh?
Sh(w) == Ih - TLh (37)
The stencil of Sy (w) is given by
w 0 1 0
1 1 41jw—1) 1| . (3.8)
0 1 0

h

Note that when the damping factor w = 1, the damped-Jacobi iteration becomes the Jacobi
iteration.

In order to measure the convergence properties of the damped-Jacobi method, we first
look at the eigenfunctions of S,(w). They are the same as those of Ly, namely,

"(x,y) = sinkrrsinlry  ((x,y) € Q; (k1 =1,2,...,N)), (3.9)

and the corresponding eigenvalues
X = xbw) =1- g(? — cos kmh — coslmh). (3.10)

Let @y, be the exact solution to (3.1). Errors after k™ and (k + 1)™ iteration are e} and
it respectively
62 = Up — ﬁl}ia
EZ—H = Q_Lh — QALIZ—H.
Using the eigenfunctions and eigenvalues of Sy, €} can be written as:

n—1

k Z kol
€p = ak7l¢h . (311)
ki=1
With some easy algebra, we can obtain e} ' = Syef. Thus, we can write e} ™' as:
n—1
k1l _ kil kol
€ = Z X' 1Py, - (3.12)
ki=1
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We denote ¢*! to be an eigenfunction of

low frequency, if max(k,l) < N/2,
high frequency, if N/2 < max(k,l) < N.

In order to see the smoothing properties of the damped-Jacobi method, we introduce the
smoothing factor u(h; w) and its supremum p* over h of Si(w) in (3.8) as

u(h;w) = max{|x}'(w)| : N/2 < max(k,l) < N},

p* = sup p(h;w), (3.13)
hCH
where H = {h = 5| N € N, N > 4}. Substituting (3.10) into (3.13), we can get
p(h; w) = max{|1 — g(2 — coskrh — coslrh)| : N/2 < max(k,l) < N}, (3.14)

p(w) = max{|l —w/2|, |1 — 2w|}.

This shows that there is no smoothing properties for w > 1 or w < 0. When w = 1, u*(w) =
1, while the choice of w = 4/5 gives p*(4/5) = 3/5. It means all the high frequency error
components are reduced by at least a factor of 3/5 [22]. This explains that the damped
Jacobi iteration is efficient to reduce the high frequency error components.

3.1.2 Gauss-Seidel Iteration

The Gauss-Seidel (GS) method is widely used as the smoothing operator in multigrid meth-
ods. Consider the same problem in (3.1), and still assume @F is the numerical approximate

solution after k" iteration. The next iteration becomes:
1
AR+l 2p0 | skt > Akl K
Up ;i = 1 [h fhijg + Up i1t Upipry Ui T uh,i,j—&-l} . (3.15)

By applying the same idea of the damped-Jacobi, we can introduce the damping factor w
here for the GS iteration. Then the step becomes:
uﬁi = ﬁﬁ” +w (ﬁﬁﬂ - ﬁ£7i7j) , (3.16)
where the ﬁ’fi? is defined in (3.15). We call this algorithm w-GS in the following.
For the model problem, the smoothing factor of the GS method is
w(GS) =05, forw=1.

This implies that the GS method is better at smoothing than the Jacobi method. However,
the introduction of a relaxation parameter does not improve the smoothing properties of

as [22].
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3.2 Coarse Grid Correction

3.2.1 Multigrid Operators

In this section, we will introduce and give examples to some components of the multigrid.

Coarse Grids

Here we will give a picture of the coarse grids with standard coarsening in Figure 3.2 with

finest grid size h = & and coarse grid size h = =+ h = 1 h = 1 respectively. We assume
32 167 8> 1

that h = 2%, p € N. Then we can form the grid sequence
th Q?fu Q4h> Q8h7 ce Qhoa

where hg is the grid size of the coarsest grid. Specifically, in this paper, the coarse grid
domain Qg is with coarse grid size H = 2h. There are also other coarsening, for instance,
semicoarsening [4].

Restriction Operator R and Prolongation Operator P

In order to inject a grid point on the fine grid to the coarse grid and interpolate the point on
the coarse grid back to the fine grid, we need a restriction operator R and an interpolation
operator P, respectively. These two operators are defined as:

RZQh%QH, P:Qu — Q. (317)

Here we will give two examples of choices of the restriction operator R: injection and
averaging.
The injection restriction operator R is defined as an operator projecting from the fine
grid to the coarse grid by taking the corresponding value at the fine grid, i.e.
UH i* j* = Rinjectionuh,i,j = Uhi,j, (3-18)
where (i*H, 7*H) = (ih, jh) € Qu C Q. The stencil of Riyjection 1s:
H

(3.19)

o O O
O = O
o O O



Averaging operator computes the value at a coarse grid point by taking the weighted

average of the corresponding point and its eight neighbours on the fine grid. For the grid
point (i*H, j*H) = (ih, jh) € Qu C Qp, the formula is:

UH i j* :R(weraging Up,i,j

~ 16

+ 2up 1+ Aun g+ 22U 41

[Uhi1j-1 + 2Upi—15 + Whi-1j+1 (3.20)

+Upit15-1 + 2Unit1j + Unit1 41

(a) Fine grid with grid size % (b) Coarser grid with grid size %

(c) Coarser grid with grid size % (d) Coarsest grid with grid size
. . . . . L . _ 1
Figure 3.2: Tllustration of an hierarchy of grids starting with i = 5.
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The stencil of Ryperaging 18
H

1
2| . (3.21)
1

h

1

1
16 2
1

NSRS N}

Here we introduce one bilinear interpolation or prolongation operator Pyjineqr Which
maps grid points from the coarse grid Qg to the fine grid €2,. The formula reads

(

UH,i j, for e
% [Uriji + umij—], for O
Up i+ j* = PhilinearUH,ij = S % [UH,i—i-l,j + UH,i—l,j] ) for o (3.22)
i (Wpriv1j + Upio1j
+Upj1 + Umg 1), for o,

where (i*h, j*h) € Q. Figure 3.3 presents a fine grid with the symbols for both the fine
and the coarse grid points referred by (3.22).

oD
A\
Fany
A4
FanY
A\~
FanY
A\

Fan)
U
FanY
U

oD
A
Fant
A
£
U
FanY
AV

Fany
AV

e 0 e 0 e 0 e e
> o
e e e e Oe

o t—eo e e e

e e e 06 Oe

o e & e H e H e

Figure 3.3: A fine grid with symbols presented the bilinear interpolation in (3.22) used for
the interpolation from the coarse grid (e)

The stencil of Pyijinear is given by:

(3.23)

>~ =
— N =
[NOREE )
L
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3.2.2 Coarse Grid Correction

In this section, we will introduce the idea of the coarse grid correction. Given the approx-
imate solution @ after k smoothing steps, we have:

Uy, = Uy + e, (3.24)
where € is the error. The residual is defined as:
7‘}]: = fn— AhﬂZ = Apuy — Ahﬂﬁj = Ah(ﬂh - ﬂ;i) = AhEZ. (325)

It is clear that by solving
Apef =¥ (3.26)
exactly, we will get the error €, with which we can obtain the exact solution by adding @

to it.

However, solving (3.26) exactly leads to the same computation complexity as solving
the linear system itself. One way to resolve the problem is to reduce the computational
cost by solving the problem on the coarse grid:

AH~};{ = Tl;{, (327)
where Ap is an approximation of A, on the coarse grid Qp and r§, = Rr is the restricted
residual. This makes sense since €} is already smooth after pre-smoothing. With the

coarse error &%, we may interpolate it back to the fine grid and update @}. The coarse grid

correction algorithm is given in Algorithm 1.

Input: @} , Ay, fn

Output: )

Compute the residual: rf = f, — Apaf

Restrict the residual to the coarse grid Qp: r% = Rrk

Obtain &% by approximately solving the coarse grid problem:Ayéey, = ¥
Interpolate the error to the fine grid Qy: & = Pe¥,

Obtain advanced solution @} = @ + &

Algorithm 1: Coarse grid correction
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Coarse Grid Operator

When solving (3.27) on the coarse grid Qy, we have different choices for the coarse grid
operator Ay. One is the direct discretization on €2y the same way as on fine grid for Ay.
Another choice of the coarse grid operator is the Galerkin operator which is defined as:

where R and P are the restriction and interpolation operators mentioned before.

3.3 Post-smoothing

The post-smoothing is usually the same as the pre-smoothing operator but computed after
the coarse grid correction in order to obtain a symmetric algorithm.

3.4 Two-grid V-cycle

Given an approximate solution after k% iteration u?, the two-grid V-cycle is to compute
ul,ff“l by combining the pre-smoothing, coarse grid correction and the post-smoothing. The
algorithm is given in Algorithm 2. We call it a V-cycle because the structure of one two-grid
cycle looks like the English letter “V”, as shown in Figure 3.4(a).

The multigrid method can reduce both high and low frequency errors. Figure 3.5
illustrates the error after the coarse grid correction and the error after the post-smoothing.
Together with Figure 3.1, Figure 3.5 shows the performance of one iteration of the two-grid
V-cycle.

3.5 Multigrid V-cycle

We have described the two-grid V-cycle in the previous section. In practice, the two-grid
methods are seldom used, since the problem on the coarse grid is still large. However, they
are the basis for the multigrid methods. By applying two-grid V-cycle recursively, we can
get a multigrid V-cycle with a hierarchy level of coarse grids. The algorithm is given in
Algorithm 3. The level with the biggest grid size is called the coarsest level, in which we
solve the problem “exactly”. “Exactly” means we still give the numerical solution instead

26



Input: uf | Ay, fr
Output: vt =TwoGridVCycle(uf, Ay, fr)
if coarsest grid then
Solve the problem with stationary iterative methods uf™ = S(uk, A, fu);

k+1,
h

return u, ' ;

end
else
(1) Pre-smoothing
Compute @} by applying v; times smoothing iterations to u}:
ik = 5" (uk, An, fu)
(2) Coarse Grid Correction
Compute the residual: 7f = f, — Apaf
Restrict the residual to the coarse grid: 7% = R, 7
Compute the error on the coarse grid Qg by solving: Agéh, = 7%
Interpolate the correction error: éf = Pek,
Correct the approximation after pre-smoothing: @ = @f + ¥
(3) Post-smoothing
C}Smputc u',i“ by applying v, times smoothing iterations to 7:
thrl =S (,&fn Ah> fh)
return uf ™
end

Algorithm 2: Two grid V-cycle
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of really solving the problem, but we solve it with either stationary point iterative methods
or other iterative methods to give a relatively accurate numerical solution with the same
stopping criterion on the fine grid.

Note that the parameter v appears twice in (3.29) in Algorithm 3, i.e, v, and vy. vy
indicates the cycles to be carried out on the coarser grid. 7, specifies the number of cycles
to be employed on the current grid [22]. If v = 1 for all the grid levels, the algorithm is a
V-cycle multigrid. The structure of a five-grid V-cycle is shown in Figure 3.4(b).

(a) Two-grid V-cycle (b) Five-grid V-cycle
. 4
. .
K\ \ /&\ /
% N ® A o o
\ s o * e ¢ o @ \ p/
N //.\\ \ /K N/ AN Q\ 7 f \ /
¢ o o ¢ d © o o
(c) Four-grid W-cycle (d) Five-grid F-cycle

Figure 3.4: Structure of various multigrid cycles for different numbers of grids (e, smooth-
ing, o, exact solution, \, fine grid to coarse grid, /, coarse grid to fine grid).
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Inpl'It Y1, V2, Vh, uﬁ ; Aha fh,
Output: u) " = MultigridVCycle(vy, va, Y, uf, An, fn)
if coarsest grid then
Solve the problem with stationary iterative methods uf™ = S(uk, A, fu);

k+1,
h

return u, ' ;

end
else
(1) Pre-smoothing
Compute @} by applying v, times smoothing iterations to u}:
/&;CL =8 (ulfcm Ah7 fh)
(2) Coarse Grid Correction
Compute the residual: 7f = f, — Apaf
Restrict the residual on coarse grid: 7 = R,y
Give an initial value for the error on the coarse grid: €,
Compute the error on coarse grid 25 v, times by recursively solve:

6’}{ = MultigridVCycle™ (vy, vo, Vg, GIE, Ap, f%) (3.29)

Interpolate the correction error: éf = Pek,

Correct the approximate solution: @f = af + é¥

(3) Post-smoothing

C’?ﬁlputc ufl:: by applying v, times smoothing iterations to @/:
uy =S (ay, Ap, fr)

return uffl

end

Algorithm 3: Multigrid V-Cycle
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3.6 Other Multigrid Cycles

3.6.1 W-cycle

If we let v = 2 for all the grid levels, in Algorithm 3, the algorithm becomes a W-cycle
multigrid algorithm. This implies that we carry out two cycles of computation on each grid
level. The W-cycle is named after the shape of its structure, as shown in Figure 3.4(c).
Since the W-cycle visits the coarse grids more than twice, the W-cycle converges generally
faster than the V-cycle. However, the computation in one W-cycle is also more expensive
than that in one V-cycle.

3.6.2 F-cycle

It is convenient and easy to implement if we fix the 7 in Algorithm 3.The V-cycle (y = 1)
and the W-cycle (v = 2) are widely used in practice. However, it is not necessary to take
v as a fixed number. Certain combinations of v = 1 and v = 2 can be chosen in practice.
Here, we introduce a so-called F-cycle, the structure of which is illustrated in Figure 3.4(d).
The structure of the F-cycle implies that when the algorithm goes down from the fine grid
to the coarse grid, v = 2. When it goes back from the coarse grid to the fine grid, v = 1.
Hence, we can regard the F-cycle as a cycle with 1 < v < 2.

We mentioned that the convergence rate of the multigrid method is independent of the
size of its finest grid. However, this fact says nothing about its efficiency unless we take the
computational work into account. Table 3.1 shows the computational work for different
cycles. In the table, C' is a small constant number, and N is the total unknowns on the
fine grid. From the table, we can conclude that the computational work in one W-cycle is
about 1.5 times of that in one V-cycle. The computational work of one F-cycle is between
sCN (V-cycle) and 2CN;, (W-cycle) [22].
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vy Computational Work W7,
~vy=3 4C Ny,
y=4 O(Nplog Np)

Table 3.1: The computational work of one complete multigrid cycle

(a) Error after CGC (b) Error after post-smoothing

Figure 3.5: Illustration of both high and low frequency errors reduced by the coarse grid
correction and the post-smoothing, (a) errors after the coarse grid correction, (b) errors
after the post-smoothing
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Chapter 4

Multigrid Method for Obstacle
Problem

In this chapter, we will introduce a multigrid method, full approximate scheme (FAS),
which can be used to solve nonlinear PDEs.

4.1 Model Problem

Consider the lower obstacle problem, where the HJB equation is given in (2.42), as our
model problem. Here we let Ay, (up) = AM (us) be the Laplacian operator in (3.4), the ma-
trix derived from the membrane constrained obstacle problem and let Ay, (uy) = AMS(uy,)
be the minimal surface operator in (2.41). We assume there is no external force and hence
fy, is a zero vector for both obstacle problems. In this chapter, we will multiply A% on both
side of the equation. For example, the Laplacian operator A} becomes

o W™UT
- oW
- Owe

AV = B - (4.1)

O .-« ... B D
where D and B are defined as in (2.39) and (2.40), respectively.
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For simplicity, we can express our model problem in (2.42) as
Nhuh = bh. (42)

The matrix N, can be considered as the merging of the rows of two matrices. One matrix
is Ay, and the other is the identity matrix I, with the same size as A,. If a grid point
in ordering i is active, which means Ap(up); — frni > uni — ¥, we take the ith row from
I;,. We let the right hand side by, ; = 5. So the HIJB equation becomes Ny (up); = upn,; =
bri = Yn,, that is up; = ¥p,;. Otherwise, we take the it row from A, and let by = 0.
Thus, the problem becomes Ap(up); = 0. To be more specific, the matrix Nj, and right
hand side b;, are defined as

Ap(i, ), if the i*" grid point is inactive,
Nili,) = A ende ' (4.3
In(i,:), otherwise,
0 if the i grid point is inacti
b= 4V if the z' grid point is inactive, (4.4)
Uh i, otherwise,

where (i, :) means the i’ row of a matrix.

We also define an operator Ny, (uy) = Npuy. Note that the matrix Ny, or the operator
Ni() depends on the approximate solution u,. In general Ny (vy,) # Ni(wy,), if vy # wy,.
Also note that by, ; = 0 if the i grid point on the fine grid is inactive. However, it is in
general nonzero on the coarse grids.

4.2 Nonlinear Problem

The model problem in (2.42) can not be solved by the multigrid method in Algorithm 2
and Algorithm 3 mainly because in the multigrid V-cycle, we assume (3.25). But in the
nonlinear case,

Npty, — Nyl # Ny, — af), (4.5)

in general. We cannot compute the error directly on the coarse grid as in the V-cycle
algorithm. So there is no obvious way to compute €, which makes the V-cycle algorithm
not applicable here.

To solve the nonlinear problems, we will introduce another algorithm: FAS. Firstly, we
consider
7= by — Ny(ay), (4.6)
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where 7} is the residual at k' iteration. Substitute Ny (i) = by into (4.6), we obtain

P = Ny () — Np(a5). (4.7)
Rearrange (4.7), the equation reads,

Ni(ap) = 7y, + Np(ay). (4.8)

If we introduce a restriction operator R here, we can consider a similar problem on the
coarse grid as
Ny(ig) = Rif 4+ Ny (Raf). (4.9)

Writing the right hand side R7f + Ny (Ruf) as by, we have
Ny (tg) = by, (4.10)

on the coarse grid 5. With the updated @y, we can compute the error €5 on the current
coarse grid by

€y = g — RAUL.
The remaining steps are similar to the coarse grid correction in the V-Cycle. The algorithm
is described in Algorithm 4.

Similar to Algorithm 3, the FAS algorithm also consists of three main components: the
pre-smoothing, the coarse grid correction and the post-smoothing. However, the smoothing
operators are different from the one in the V-cycle, since the GS method is not applicable
to the nonlinear problems. For the coarse grid correction, instead of computing the error
on the coarse grid, the FAS solves the solution on the coarse grid. Note that v in the FAS
determines different cycles such as the V-cycle FAS (for v = 1) and the W-cycle FAS (for

v =2).

4.3 Operators for FAS

Similar to linear multigrid methods, we have different choices for the operators in the FAS.
In this section, we give our choice of operators.
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4.3.1 Pre-Smoothing and Post-Smoothing

For the smoothing operator of the FAS; we choose the Newton-Gauss-Seidel (NGS) method
instead of the Gauss-Seidel (GS) method. Since the HJB equation we are solving is in
general not a linear problem, GS is not applicable directly to the nonlinear system.

Before we introduce the NGS method, we first look at the Newton’s method. The well
known method to solve F(z) = 0 is the Newton’s method [15]. Here F : R" — R" is a
continuously differentiable operator, i.c., a smooth operator and z is a vector in R”. The
operator F may depend on the vector z.

Input: @ , Ny, by
Output: @/t = FAS(af, Ny, by)
(1) Pre-smoothing
Compute @} by applying v; times smoothing iterations to }:
af = S"(4F, Ny, by)
(2) Coarse Grid Correction
Compute the residual: 7% = b, — Nyl
Restrict the residual on coarse grid: 7§, = Rq7F
Restrict approximate solution on coarse grid: @¥ = Ry}
Compute the right hand side: by = 7% + Ng(u%)
if Qpy is the coarsest grid then
Solve Ny (%) = by exactly

return ﬁzﬂ
end
else

Solve Ny (%) = by approximately by applying v times (y = 1 for V-cycle and
v = 2 for W-cycle) @¥, = FAS(a%;, Ny, by) recursively

end

Compute correction error: e, = u%, — @

Interpolate the correction error: & = Pée¥,

Correct the approximation after pre-smoothing: ﬁZ’CGC = Uy + &

(3) Post-smoothing

Compute @™ by applying v, times smoothing iterations to ﬁwad

=8 (@ oce Nas br)

return ﬁi“

Algorithm 4: FAS Algorithm
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One step of the Newton’s method is given by
"t =g — FaM T F (), (k=0,1,2,3...). (4.11)

However, if F is not a smooth operator but a locally Lipschitzian operator, then (4.11)
cannot be used anymore.

Let OF(z") be the generalized Jacobian of F at z*, defined in [6]. One can write (4.11)

as
" =2 — VI F (), (4.12)
where V, € 0F(2%). The Newton’s method extends to a non-smooth case by using the
generalized Jacobian Vy instead of the derivative F'(x*) [19]. We can rewrite (4.12) as
Vkl’k—’—l = Vk!L’k — f(:bk) (413)

It is shown that the local and global convergence results hold for (4.13) in [19] when F is
semismooth.

Solving the linear system (4.13) can be expensive. The NGS method is to solve (4.13)
approximately by GS instead. In general, the NGS method we used here can be viewed as
a non-smooth version of the standard NGS.

One iteration of NGS for the model problem consists three steps. Assume we get
the af after the k' iteration of the NGS. The first step of the (k + 1) iteration is to
decide the active and inactive sets based on 4. We update the matrix N;, and decide
the operator N, (4}) based on the active and inactive sets. The second step is to compute
the Jacobian matrix N (aF), which is actually N,. The last step is to get @' by solving

N (@8 af ™ = N (@F) — Ny(af) with the GS method.

4.3.2 Restriction Operator R and Prolongation Operator P

In standard FAS, the restriction operator is the averaging operator. In Algorithm 4, we
choose the averaging restriction operator for both R, and R,.

The bilinear interpolation operator is chosen as the prolongation operator in standard
FAS. However, this operator is not working well for our model problem. Figure 4.1 shows
a 1D obstacle problem example to explain the drawback of the linear interpolation. In
the figure, the grid points x; and x;15 are coarse grid points, and all x;, x;11 and z;,5 are
points on the fine grid. The rectangular in red is the obstacle we are considering. Let @y
and uy, to be the approximate solution on the coarse grid and the fine grid, respectively.
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Figure 4.1: 1D obstacle problem example to show the drawback of the linear interpolation

We assume that z;1; and x5 are active points on the fine grid. So ;41 and @y, ;42 should
be equal to the obstacle value, which is 1 in our example. We also assume uy; = 0. With
the linear interpolation, we will get 4y, ;41 equals to the value at point c instead of 1, which
is not accurate.

To solve this problem, we introduce another step after the bilinear interpolation. When
we update the approximate solution by adding the error, i.e, the step ﬁ]fL’CGC =@k + & in
Algorithm 4, we enforce €f7 = 0 if the i*" grid point is active. In other words, in the coarse
grid correction, the bilinear interpolation is applied only for unknowns on the inactive
points. The application of this step results in a better convergence comparing with the
pure bilinear interpolation (for details, see M6 in section 5 of [3]).

4.3.3 Nonlinear Operator Ny on Coarse Grid

Ny for Membrane Constrained Obstacle Problem

The standard coarse grid operator of the FAS is the direct discretization. However, this
operator results in slow convergence. From Chapter 3, we note that the Galerkin oper-

ator works well for the linear problem. Since the Laplacian operator in the membrane
constrained problem, i.e. AY in (2.42), is also linear, we can make use of the Galerkin
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operator in the nonlinear problem here. This choice results in a faster convergence rate
than the direct discretization.

We write the coarse grid HJB equation as

The right hand side of the HJB equation comes from (4.9). For simplicity, the problem
can be expressed as

where Ny is the matrix on the coarse grid. Ny is from the merging of Ay and Iy (the
identity matrix) in the same way as (4.3).

In order to get the matrix Ny, we need to compute Ay. The Galerkin in (3.28) gives
Ay =R - Ay, - P, where A, is the fine grid matrix. Similarly, we define the matrix Ay in
(4.14) as

Ag =R -Ny-P, (4.16)

where N}, is the matrix on the fine grid in (4.3).

The definition of the active and inactive points is the same as that on the fine grid. If
an " point is active, the left hand side of (4.15) becomes Ny (ug); = Ig(ug); = ug;. To
make sure the consistency between (4.14) and (4.15), we let by; = g + Ry + NgRaUY.
The equation becomes uy; = ¥y + Ry + NyRak.

If the point is inactive, the left hand side of (4.15) is Ay(uy);, and we let by,; =
RFY + NyRiaY. The equation reads Ay (ug); = Ry + NyRik.

We can get a hierarchy of coarse grid operators by calling (4.16) recursively. This
forms a multigrid method. The operator we introduced is quite different from the direct
discretization operator, since the matrix Ag in the direct discretization is independent of
Ny, the fine grid matrix. But Ay in (4.16) depends on Np,.

Ny for Minimal Surface Obstacle Problem

Since the Galerkin operator results in fast convergence for the membrane constrained obsta-
cle problem, it is natural to apply that to the minimal surface obstacle problem. However,
this operator is not working well for the minimal surface obstacle problem.

The Laplacian operator A in (2.38) for the membrane constrained obstacle problem
is independent of the approximate solution u;. AY should also be independent of uy on
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the coarse grid. We choose the Galerkin operator and define A} = R - Nj, - P. This choice
satisfies the independence of the AY on uy.

On the other hand, the minimal surface operator A} in (2.41) depends on the ap-
proximate solution u;,. The operator A% on the coarse grid should also be determined by
ugr. However, the Galerkin operator gives AM® = R - N}, - P, which is independent of u.
So AMS given by the Galerkin operator is not accurate for the minimal surface obstacle
problem.

Instead, we utilize the direct discretization operator as the coarse grid operator. This
operator on the coarse grid depends on ugy and turns out to converge fast.

4.4 FAS Applied on Linear Problem

Here, we explain that the FAS in Algorithm 4 is equivalent to the V-cycle in Algorithm 3
when solving linear problems.

Assume we solve the linear problem (3.1) with the FAS. Ny, Ny is Ay, Ag, respectively,
where Ay, is a linear operator as defined in (2.38). For the step in the FAS

b = i + Nu (i), (4.17)
is now equivalent to

by = 7y + Ag (). (4.18)
Following the FAS, we obtain Ay (%) = 7% + Ay (@,). By rearranging the equation, we

can get Ay (uk — ak) = 7%. Since we update the coarse grid error by €% =k, — ¥, so it

is the same as solving A (&%) = 7%. This is the step in the V-cycle in Algorithm 3. With
the coarse grid error, the remaining steps in the FAS and the V-cycle are the same. This
proves that applying the FAS to solve linear problem is the same as the V-cycle.
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Chapter 5

Numerical Results

In this chapter, we will demonstrate numerical solutions to one-dimensional (1D) and two-
dimensional (2D) obstacle problems solved by the V-cycle FAS scheme as proposed in
Chapter 4. Two pre-smoothing and post-smoothing iterations are applied. The stopping
criterion for all the obstacle problems in this chapter is that the norm of the residual of the
problem at the inactive grid point is less than 107%. More precisely, consider the nonlinear
problem Nj,(uy,) = by, and the residual r, = Nj, (1) — by,. Let

(5.1)

Thi = .
0, otherwise.

in {rhﬂ-, the i grid point is inactive
The stopping criterion is ||ri"|| < 107%. All the 1D examples given in this chapter share
the same domain Q = (0,1) C R. All the 2D examples given are on 2 = (0,1)? C R%
Dirichlet boundary conditions are used for all examples.

Here we will give a picture of the obstacles discussed in this chapter. The obstacles
considered are the square obstacle (or block obstacle) and the circle obstacle (or dome
obstacle). Figure 5.1 shows examples of 1D and 2D obstacles.
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5.1 1D Block Obstacle Problem with Laplacian Op-
erator

We consider a 1D lower obstacle problem subject to a lower block obstacle

1 <<
u(z) > () =4 32 =T =5 (5.2)
0, otherwise.

As shown in Chapter 2, the HJB equation corresponding to the 1D discrete obstacle
problem can be written as

min[Ahuh - fh; Up — wh} = O, (53)
(a) 1D block obstacle (b) 1D dome obstacle

(¢) 2D block obstacle (d) 2D dome obstacle

Figure 5.1: Pictures of different obstacles.
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Grid Size(h) | Levels | FAS Iterations
! 2 3

EEE=E
Y| Y | W
O | Ot

—
N
o

Table 5.1: Iterations of the FAS for 1D block problem

where Ay, is a tridiagonal symmetric positive definite matrix as

2 -1 0
-1 2 -1

Ay, = o -1 2 -1 - (5.4)
0 -1 2

uy, is the discretized approximate solution and f, is a zero vector.

We will apply the V-cycle FAS (which is given in Algorithm 4) to solve the HJB
equation. Table 5.1 shows the FAS iterations for different grid sizes and levels. The levels

here mean the number of levels of fine plus coarse grids in the whole computation. For

example, if we say the grid size é, level 5, it means we have a total of 5 levels, the grid

size of each is: é, 3—12, %, %, }l. Figure 5.2 shows the shape of the obstacle and numerical

solution of this 1D obstacle problem.

as 09 08
[iE:) 08 08
a7 o7 o7
06 06 06
os 05 05
04 04 04
03 03 03
(13 02 02

a1 a1 01

a 02 04 a6 08 1 a 02 0.4 a6 08 1 1) 02 04 06 0& 1

Figure 5.2: 1D block obstacle result. (left) Obstacle, (middle) numerical solution, (right)

difference between the obstacle and the numerical solution, with grid size 6%1 and 5 levels

42



Grid Size(h) | Levels | FAS Iterations
% 2 1
T
ny ) 5
1 6 6
128

Table 5.2: Iterations of the FAS for 1D dome problem

5.2 1D Dome Obstacle Problem with Laplacian Op-
erator

The HJB equation of the 1D dome obstacle problem is similar to the 1D block obstacle
except for the obstacle function. However, for the block obstacle the membrane will contact
with the obstacle exactly on the surface of the obstacle. For the dome obstacle, it is not
the case. Figure 5.3 (right) shows the difference between the numerical solution and the
obstacle, from which we can see that the membrane is not stick to the obstacle exactly, but
leaving several grid points on the boarder of the obstacle inactive. Since the active set and
inactive set depend on not only the shape of the dome obstacle, but also the approximate
solution, the obstacle problem with the dome obstacle is more difficult than the one with
the block obstacle.

The problem we consider here is with the constraints

1— —0.5)? 3L < p< 2T
ule) = i) = LT s S (5.5)
0, otherwise.

The dome obstacle problem share the same HJB equation with (5.3), except the obstacle
function 1) is given by (5.5). Using the V-cycle FAS, the iterations are presented in Table
5.2. The obstacle, numerical solution and the difference between the numerical solution and
the obstacle are illustrated in Figure 5.3. The difference between the numerical solution
and the obstacle demonstrates the contact parts between the obstacle and the approximate
solution.

Table 5.1 and Table 5.2 show that the iterations of the FAS to solve the 1D block
or dome obstacle problem are independent of the finest grid size, and close to a constant
number. For instance, for the 1D block obstacle problem, the iteration numbers of different
grid sizes are about 4 to 5.
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Figure 5.3: 1D Dome obstacle result, with grid size z; and 5 levels. (left) Obstacle, (middle)
numerical solution, (right) difference between the numerical solution and the obstacle

Grid Size(h) | Levels | FAS Iterations
% 2 4
i —
T —

m 6 9
128

Table 5.3: Iterations of the FAS for 2D square problem

5.3 2D Square Obstacle Problem with Laplacian Op-
erator

The example of 2D obstacle problem we considered here is the model problem in (3.1).
The obstacle discussed here is

1, B << Byl
u(z,y) > ¥(z,y) = {0 R (5:6)

Using the same discretization, the matrix form as (4.1) and the HIB equation in (2.42),
we apply the FAS to solve this problem iteratively, the iterations are given in Table 5.3.
Figure 5.4 shows the 2D square obstacle, the numerical solution and the contact information
between the numerical solution and the obstacle.
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Figure 5.4: 2D Square obstacle result, with grid size é and 5 levels. (left) Obstacle,
(middle) numerical solution, (right) difference between the numerical solution and the

obstacle

5.4 2D Dome Obstacle Problem with Laplacian Op-
erator

In this section, we will give numerical examples of the 2D dome obstacle problem. Similar
to the 2D square obstacle problem, we use the same HJB equation with the square obstacle
problem but the constraints for the dome obstacle are

u(z,y) > ¥(z,y) = max{0,0.6 — 8|(x — 0.5)* + (y — 0.5)*|}. (5.7)

The iterations of the FAS are similar to those of the square obstacle problem as shown in
Table 5.4. Figure 5.5 shows the obstacle, the solution and the difference for the 2D dome
obstacle problem.

We will compare our method with the methods proposed in [13] and [17]. They both
solve the elasto-plasto torsion problem which is similar to our numerical example here.
The problem considered in both paper is on the domain = (0,1)? with the same right
hand side value. The only difference of the elasto-plasto torsion problem compared with
our example is the shape of the obstacle. The obstacle considered in both paper leaves the
inactive set a small region with a cross shape aligned with two diagonals.

In [13], finite element methods are used as the discretization method and monotone
multigrid methods are applied. To compare our method with that in [13], we define the
iterative error as ef = @, —af, where @f is the approximate solution after the k' iteration.

45



Grid Size(h) | Levels | FAS Iterations
% 2 5
S —
z 5 7
= 6 9
128

Table 5.4: Iterations of the FAS for 2D dome problem

Figure 5.5: 2D Dome obstacle result, with grid size g; and 5 levels. (left) Obstacle, (middle)
numerical solution, (right) difference between numerical solution and obstacle

Uy is the “exact” numerical solution computed first by some methods with stopping crite-
rion ||ri"|] < 107?. The comparison of the iteration numbers to achieve different iterative
errors of the FAS and the TRCKH in [13] is shown in Table 5.5. From the table, the
iterations for the FAS are less than that for the TRCKH. The FAS needs roughly half
iterations of the TRCKH to achieve the same iterative error. Since the V-cycle multigrid
method are used in both the TRCKH and our FAS, the computations in each iteration of
both methods are in the same order. We can conclude that the V-cycle FAS is better than
the TRCKH at reducing the iterative errors.

In [17], a multigrid F-cycle is presented. Three iterations of recombinations are applied
after each F-cycle. In each recombination, a linear combination of six latest approximate
solutions ﬂﬁ_i, 1 = 0,1,2,3,4,5, is computed with some special parameters. The spe-
cial parameters are determined in such a way that the residual of the current problem is

minimized. The recombination procedure is not expensive if the parameters are chosen
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Iterative Error 102[10*10%]107]10°8
Number of Iterations for TRCKH in [13] | 10 19 23 25 28
Number of Iterations for FAS 8 10 11 12 13

Table 5.5: Comparison of iterative errors

F-cycle in [17] | FAS
=L 0.20 0.098
=L 0.37 0.186

Table 5.6: Comparison of the convergence rate between the F-cycle and the FAS

properly. However, the computation in each F-cycle is more expensive than that in one
V-cycle, as explained in Chapter 3. Table 5.6 shows the convergence rate for the F-cycle
and our V-cycle FAS, where h is the grid size. We can see from the table that for the two
grid sizes, the FAS converge faster than the F-cycle in [17].

5.5 2D Dome Obstacle Problem with Minimal Sur-
face Operator

Now, we consider an obstacle problem with the minimal surface operator. The obstacle we
considered here is the same as for the 2D obstacle problem with the Laplacian operator,
that is (5.7). The convergence results for solving the corresponding HJB equations with the
V-cycle FAS algorithm are given in Table 5.7. Figure 5.6 shows the obstacle, the numerical
solution and the difference between them. From the figure, we can see that the solution of
the minimal surface obstacle problem contacts more tightly with the obstacle.

Table 5.8 shows the residuals for grid size h = 1—16 and h = 3—12 in each iteration computed
by the FAS. For comparison, we have listed the residuals reported in [I1] and [12]. It is
noticed that the residuals in both [11] and [12] are reduced faster than the FAS method.
However, the W-cycle multigrid is applied in both papers. Consider the computation in
each W-cycle is about 1.5 times of that in one V-cycle (cf. Table 3.1), the total compu-
tational work of 9 iterations of our FAS is about the same as 6 iterations of the W-cycle.
From the table, we see that at the 9" iteration of our method, the residual is reduced to
8.0E - 9 (for grid size 3;). However, for the methods in [11] and [12], the residual after
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Figure 5.6: 2D circle obstacle with minimal surface operator, with grid size 6%1 and 5
levels. (left) Obstacle, (middle) numerical solution, (right) difference between the numerical
solution and the obstacle

Grid Size(h) | Levels | FAS Iterations
% 2 4
S —1
_y ) 10
1 6 15
128

Table 5.7: Iterations of the FAS for 2D dome problem with the minimal surface operator

the 6 iteration is reduced to 5.9E - 7 and 2.2E - 7, respectively. From the table, we can
conclude that the V-cycle FAS converges faster than the W-cycle in [11] and [12].

It is claimed in [21] that any choice of decompositions of obstacle function 3 ends
up with the same convergence rate. However, the number of the domain decompositions
may affect the rate of convergence. Table 5.9 presents the convergence rates for FAS we
used to solve the minimal surface problem and the space decomposition and subspace
correction algorithms used in [21]. In the table, J is the number of decompositions of
some domain decomposition methods. We note that the numerical experiment given in
[21] is not exactly the same. A slightly different obstacle on the domain Q = (—2,2)? is
applied in [21]. However, it is quite similar to our example because of the same shape of
the obstacle and the size of the fine grid, that is h = L/128, L = 4 here. From the table,
we can conclude that the FAS converges faster than the domain decomposition method in
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Iteration FAS FAS vimll in [12] | vimIT in [12] | mgm in [I1] | mgm in [11]

h=1/16 |h=1/32 | h=1/16 | h=1/32 | h=1/16 | h=1/32

1 16E-2 | 3.7TE - 2

2 1.7E-3 | 41E-3 1.9E - 2

3 24E-4 | 82E-4 24E - 4 1.3E -3 1.1E -3

4 3TE-5 | 3.1E-4 2.3E -5 1.1E -3 94E - 5 3.6E - 4

5 59E-6 | 1.2E-4 22E -6 4.2E -4 72E -6 14E - 4

6 9.7E-7 | 49E -5 22E -7 1.5E -4 5.9E - 7 5.6E -5

7 1L.7E-7 | 20E-5 20E -8 5.3E -5 5.3E - 8 23E-5

8 3.6E-8 | 8.1E-6 5.0E -9 19E -5

9 80E-9 | 3.3E-6 1.3E-9 6.7E - 6

10 19E-9 | 14E-6 3.2E - 10 24E -6

Table 5.8: Residuals after each iteration of different methods

J=25

J=26

=7

J=28

FAS

Convergence Rate

0.78 0.8

0.81

0.85

0.40

Table 5.9: Convergence rates for the domain decomposition method in [21] (Column 2 to
Column 5) and the FAS (last Column)

21].
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Chapter 6

Conclusion

In this paper, we proposed a multigrid method based on the full approximate scheme
(FAS). We used this method to solve two types of obstacle problems in the HJB equation
formulations. The Galerkin operator was often used as a coarse grid operator for linear
problems. Here we proposed a special coarse grid operator based on the Galerkin approach
for solving a nonlinear problem, i.e. the membrane constrained obstacle problem. This
choice improved the convergence of the FAS. For the minimal surface obstacle problem, we
applied the direct discretization operator as the coarse grid operator. In addition, we pro-
posed a special prolongation operator based on the bilinear operator. This special operator
solved the inaccurate value problem at the boundary between the active and inactive sct.
Numerical results showed that our FAS converges in small numbers of iterations for those
obstacle problem examples. The FAS is better at reducing the iterative errors, residuals
and converges faster than some other multigrid methods mentioned in the paper. Possible
future work includes the proof of the convergence of the FAS.
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