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Abstract

The Baker’s map is a dynamical system defined on the unit square. For any open
set F , the survivor sets J (F ) are given by the points in X whose orbits do not intersect
F . Dimension traps are sets F such that dimH J (F ) = 0, where dimH is the Hausdorff
Dimension of a set. In this project, we will compute lower bounds of the measures of
dimension traps. We obtain a bound of approximately 0.12 for the measure of convex
dimension traps with mirror symmetry. Currently, there is no conjectured value for the
exact bound.
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Chapter 1

Introduction

Dynamics is the study of iterating functions that map sets to themselves. Usually there is
a space X and a function f : X → X. The goal is to notice patterns that occur as f is
iterated. There are some notation that is useful when is discussing problems in dynamical
systems.

Definition 1.0.1. For n ≥ 1, we define fn(x) = f ◦ f ◦ f · · · f︸ ︷︷ ︸
n times

(x), with f 0(x) = x.

Definition 1.0.2. A dynamical f : X → X is invertible if there exists f−1 : X → X
such that f ◦ f−1 = idX . For n < 0, we define fn(x) = (f−1)−n(x). In this report we
will be restricting our attention to invertible maps.

Definition 1.0.3. The orbit for a point x ∈ X is given by

O(x) = {fn(x) | n ∈ Z}

Definition 1.0.4. If we have an open set H, the survivor set for H is defined as

J (H) = {x : fn(x) /∈ H for all n ∈ Z}
= {x : O(x) ∩H = ∅}.
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Definition 1.0.5. A periodic point of period T > 0 is a point w ∈ X such that fT (w) =
w, where T is the smallest such number that satisfies fT (w) = w.

Definition 1.0.6. An eventually periodic point is a point w ∈ X such that there exists
s > 0 such that f s(w) is periodic. Note that in an invertible dynamical system a point is
eventually periodic if and only if it is periodic.

Definition 1.0.7. A fixed point is a point w ∈ X such that f(w) = w. A fixed point
is attracting if there is an open set U ⊂ X with w ∈ U such that for all x ∈ U ,
limn→∞ fn(x) = w. A fixed point is repelling if U ⊂ X with w ∈ U such that for all
x ∈ U , ∃k ∈ N, fk(x) /∈ U . Note that for a repelling point, it is not necessarily true that
fk(x) /∈ U for sufficiently large k. It is only necessary that it is true for some k ∈ N.

1.0.1 One Dimensional Billiards on a Circle

An example of a Dynamical system is set X = [0, 1) with the function f(x) = x + θ
mod 1. One way to represent this system is to think of points on a circle in the Cartesian
plane. Applying one iteration of f can be seen as moving θ distance along a circle with
circumference equal to 1.
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Figure 1.1: Adding by θ mod 1 can be seen as moving along a circle. By Siefkenj
- Own work, CC BY 4.0, https://commons.wikimedia.org/wiki/File:Sturmian-sequence-
from-irrational-rotation.gif

Some interesting properties of this system are can be found based on whether θ is
rational or irrational.

Theorem 1.0.1. If θ is rational, then the orbit O(x) is finite for any x ∈ X.

Definition 1.0.8. The closure of a set S is given by

S̄ = S ∪ {lim
n→

xn : xn ∈ S for all n ∈ N}.

We say that S is dense in X if S̄ = X.

Theorem 1.0.2. If θ is irrational, then the orbit O(x) is dense in [0, 1].

Theorem 1.0.3. (Three-gap Theorem)
Let θ ∈ R be any real number. Let S = {iθ mod 1 : 0 ≤ i ≤ n}. Let D be the set of
distances between adjacent points in S. Then |D| ≤ 3.
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1.1 Hausdorff dimension

There are several notions that need to be defined before we can define Hausdorff dimension.

Definition 1.1.1. The diameter of a set U ∈ Rn is given by Diam(U) = supx,y∈U |x− y|.

Definition 1.1.2. A δ-cover of F is a countable collection of open sets {Ui}∞i=1 such that

F ⊂
∞⋃
i=1

Ui

with 0 ≤ Diam(Ui) ≤ δ. In principle such a cover need not be countable. For our purposes
it suffices to restrict to countable covers.

Definition 1.1.3. For s ≥ 0, we define

Hs
δ(F ) = inf

{
∞∑
i=1

Diam(U)s : {Ui} is a δ-cover of F

}
. (1.1)

Definition 1.1.4. We define the s-dimensional Hausdorff measure of F as

Hs(F ) = lim
δ→0

Hs
δ(F ).

Lemma 1.1.1. For any δ-cover {Ui} and any t, s ∈ R with t > s with δ < 1 we have that
∞∑
i=1

Diam(Ui)
t ≤

∞∑
i=1

Diam(Ui)
t−sDiam(Ui)

s ≤ δt−sDiam(Ui)
s.

It then follows that if Ht(F ) > 0, then Hs(F ) = ∞ for all s < t. It also follows that
Hs(F ) < ∞, then Ht(F ) = 0 for all s < t.

Definition 1.1.5. There is a critical value where Hs(F ) jumps from ∞ to 0, which is
called the Hausdorff dimension of F , denoted dimH F .

dimH F := inf {s ≥ 0 : Hs(F ) = 0} = sup {s : Hs(F ) = ∞}
Note that HdimH F (F ) can be 0, finite, or infinite.

Definition 1.1.6. We define F as a dimension trap if F ⊂ Rn is open and dimH J (F ) =
0, where J (F ) is the survivor set of F from the dynamical system of the Baker’s map.
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1.2 Baker’s map

The system we will study is defined as follows. Let X = [0, 1]2 be the unit square and
define the Baker’s map B : X → X be given by

B(x, y) =

{
(2x, y

2
) 0 ≤ x < 1

2

(2x− 1, y+1
2
) 1

2
< x ≤ 1

(The map is not defined when x = 1
2
). The name of the Baker’s map comes how dough

is made. A common method of making dough is to cut the dough in half and stack the
dough on top of each other, much like the above operation.

For (x, y) ∈ X, let x = 0.x1x2x3 . . . , y = 0.y1y2y3 . . . be the binary expansions of the coor-
dinates. We will associate with each point (x, y) a bi-infinite sequence . . . y3y2y1 ·x1x2x3 . . ..
We notice then that

B(. . . y3y2y1 · x1x2x3 . . .) = B(x, y)

= B(0.x1x2x3 . . . , 0.y1y2y3 . . .)

= (0.x2x3 . . . , 0.x1y1y2y3 . . .)

= . . . y3y2y1x1 · x2x3 . . . .

B−1(. . . y3y2y1 · x1x2x3 . . .) = B−1(x, y)

= B(0.x1x2x3 . . . , 0.y1y2y3 . . .)

= (0.y1x1x2x3 . . . , 0.y2y3 . . .)

= . . . y3y2y1 · x1x2x3 . . . .

We can then interpret the Baker’s map as shifting the decimal point of bi-infinite represen-
tation of points in the unit square. Note that a number such as x = 1

2
can be represented

both as 0.1000... or 0.01111.... We see that, if x = 1
2
, 2x − 1 = 0. Hence, we may assume

1
2
= 0.1000... instead of 0.01111...). Points with different binary expansions can be ignored

as either their forward or backwards orbit goes to (0, 0) or (1, 1). We also ignore points
with orbits containing ...00001111... and ...11110000.... as those lie the boundary of the
unit square.
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Chapter 2

Observations

2.1 Finding a Lower Bound for the area of dimension

traps for the Baker’s map

The goal of this project will be to estimate a lower bound on the measure of specific subset
of dimension traps for the Baker’s map. We will need several definitions first.

Definition 2.1.1. Let V be a set of strings. We first define the powers of V i by

V 0 = {ϵ}
V 1 = V

V i+1 = {wv : w ∈ V i and v ∈ V } for each i > 0.

The Kleene star V ∗ is given by

V ∗ =
⋃
i≥0

V i

Definition 2.1.2. For any c be a binary word. That is c ∈ {0, 1}∗. Let cn = cc . . . c︸ ︷︷ ︸
n copies

be

the concatenation of c with itself n times.

Definition 2.1.3. For S ⊂ X and x ∈ X, let d(x, S) = infs∈S |x− s|.
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Definition 2.1.4. For A,B ⊂ X, let D(A,B) = maxa∈A(d(a,B)).

Definition 2.1.5. For A,B ⊂ X, let D(A,B) = max(D(A,B), D(B,A)).

Definition 2.1.6. Let a, b be binary strings. Assume ∄j, k ∈ N such that aj = bk.
For n ∈ N, the n-th Cantor sets associated a, b are given by

C(a, b, n) = {abn, bn+1}∗.

Note that the orbit of C(a, b, n) under the Baker’s map, is C(a, b, n) . That is, O(C(a, b, n)) =
C(a, b, n).

Definition 2.1.7. Let a, b be given as above. Let C(a, b) be the closed set (i.e compact)
set that is limit of the sequence of sets C(a, b, n), which is defined as the set that satisfies

lim
n→∞

D(C(a, b, n), C(a, b)) = 0.

It can be shown that C(a, b) = O(....bbb · abbb...), where O(....bbb · abbb...) is the closure of
O(....bbb ·abbb...). Note that C(a, b) itself is not a Cantor set, as it contains only countably
many points.

Definition 2.1.8. A set U ⊂ R2 is convex if for all x, y ∈ U and λ ∈ [0, 1], λx+(1−λ)y ∈
U .

Definition 2.1.9. The convex hull of points {(x1, y1), . . . {xk, yk)} is the convex set C
satisfying such that for any other convex set C ′ containing {(x1, y1), . . . {xk, yk)}, we have
C ⊂ C ′.

It can be shown that if a set S is convex, it contains the convex hull of any finite collection
of points in S.

Our goal is to estimate the lower bound on the measure of dimension traps. In partic-
ular, we will follow the work by Clark, Hare and Sidorov [1] Let T be the set of all convex,
open dimension traps which include the points (1/2, 0), (1/2, 1). We will also require traps
in T have mirror symmetry, meaning that if T ∈ T , then (x, y) ∈ T ⇐⇒ (1−x, 1−y) ∈ T .
Our goal is estimate δ = infT∈T L(T ), where L is the Lebesgue measure.
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Definition 2.1.10. For ϵ > 0, let Bϵ ⊂ R2 = {(x, y) ∈ R2 : x2 + y2 < ϵ}.

Definition 2.1.11. For A,B ⊂ R2, let A+B = {(x1+x2, y1+y2) : (x1, y1) ∈ A, (x2, y2) ∈
B}.

Let F ⊂ R2. It can be shown that if F ∩ C(a, b) = ∅, then dimH(J (F )) > 0. In
particular, there exists n ∈ N such that C(a, b, n) ⊂ J (F ), and dimH C(a, b, n)) > 0.
To see this, we note that D(C(a, b), C(a, b, n)) → 0, and hence ∀ϵ > 0,∃n such that
D((C(a, b), C(a, b, n)) < ϵ. We can choose ϵ sufficiently small so that (C(a, b)+Bϵ)∩F = ∅.
Then C(a, b, n) ∩ F = ∅, and C(a, b, n) ⊂ J (F ). This gives us that dimH(J (F )) > 0.
The following Lemma can also be shown using the above fact.

Lemma 2.1.1. Let a, b be defined as in Definition 2.1.5. For T ∈ T and ϵ > 0,

C(a, b) ∩ (T +Bϵ) ̸= ∅.

We can show how this Lemma is used in a few examples.

Example 2.1.1. We first note that C(0, 1), C(1, 0) are given by

C(0, 1) =
⋃
k≥1

{(1, 1− 2−k), (1− 2−k, 1)}

C(1, 0) =
⋃
k≥1

{(0, 2−k), (2−k, 0)}

When T was defined, we enforced that for all T ∈ T , (1/2, 1) and (1/2, 0) ∈ T . We
can see that Lemma 2.1.1 is satisfied for the choices of a = 0, b = 1 and a = 1, b = 0, since
(1/2, 1) ∈ C(0, 1) and (1/2, 0) ∈ C(1, 0).

Example 2.1.2. Using Lemma 2.1.1, we will bound the size of dimension traps T ∈ T .
Consider the pair of strings (10, 01). Strings in C(10, 01) must be of one of the following
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forms.

. . . 1010 · 1010 . . . 0101︸ ︷︷ ︸
first k digits, where k is odd

100101 . . . =

(
2

3
+

1

2k+1
− 1

2k+2
,
1

3

)

. . . 0101 · 0101 . . . 0101︸ ︷︷ ︸
k digits, where k is even

100101 . . . =

(
1

3
+

1

2k+1
− 1

2k+2
,
2

3

)

. . . 010110 0101 . . . 0101︸ ︷︷ ︸
k digits, where k is odd

·1010 . . . =

(
2

3
,
1

3
+

1

2k+1
− 1

2k+2

)

. . . 010110 0101 . . . 0101︸ ︷︷ ︸
k digits, where k is even

·0101 . . . =

(
1

3
,
2

3
+

1

2k+1
− 1

2k+2

)

. . . 01011 · 00101 . . . =
(
2

6
+

1

2
,
1

6

)
=

(
5

6
,
1

6

)
Let δ′ = 0.13 be a fixed hyperparameter. Consider T ∈ T such that L(T ) < δ′. As we also
enforced that (1/2, 0), (1/2, 1) ∈ T , and that T is convex and satisfies relational symme-
try (x, y) ∈ T ⇐⇒ (1 − x, 1 − y) ∈ T , then we know that for any point (x, y) ∈ T , the
convex hull with vertices [(1/2, 0), (1/2, 1), (x, y), (1−x, 1−y)] must also be contained in T .

By Lemma 2.1.1, given ϵ > 0, there must be at least one point in C(a, b) ∩ (T + Bϵ).
We can check each of the points in (x, y) ∈ C(01, 10) to see if the convex hull generated
[(1/2, 0), (1/2, 1), (x, y), (1− x, 1− y)] has area less than 0.13.
We can see that the only such points that satisfy the above condition are

. . . 010101.0110010101 . . . =

(
1

3
+

1

23
− 1

24
,
2

3

)
=

(
19

48
,
2

3

)
. . . 010101.1001010101 . . . =

(
1

3
+

1

21
− 1

22
,
2

3

)
=

(
7

12
,
2

3

)
.
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Figure 2.1: Polygons generated from C(01, 10)

By Lemma 2.1.1, for any ϵ > 0, C(01, 10)∩(T+Bϵ) ̸= ∅. We then get that T must include ei-
ther the convex hull of [(1/2, 0), (1/2, 1), (19

48
, 2
3
), (1− 19

48
, 2
3
)] or [(1/2, 0), (1/2, 1), ( 7

12
, 2
3
), (1−

7
12
, 2
3
)].

The above convex hulls have areas 0.109375 and 0.0781250 respectively. From this we
can that if T is a dimension trap, (1/2, 0), (1/2, 1) ∈ T , and T is closed under symmetry
(x, y) ∈ T ⇐⇒ (1 − x, 1 − y), then L(T ) ≥ 0.0781250. Note that we picked δ′ = 0.13
based on previous work by Clark, Hare and Sidorov [1]

We repeat this process on other Cantor sets to improve the bound.
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2.2 Algorithm

Our goal is to find a lower bound on size of dimension traps. In particular, following work
by Clark, Hare and Sidorov, we will bound the size of convex, open dimension traps T that
have rotational symmetry (x, y) ∈ T ⇐⇒ (1− x, 1− y) ∈ T .

We store our polygons as lists of points, representing the vertices of the polygon. Our
initial list of polygons is the array A1 containing the polygon [(1/2, 0), (1/2, 1)], and we set
our hyperparameter δ′ = 0.13.

Figure 2.2: Initial Points

Our algorithm is composed of 4 nested loops.

1. On the first loop, we iterate from i = 2 and increase i by 1 at every iteration. Given
i ≥ 2, let {(aj, bj) : 1 ≤ j ≤ l denote the set pairs of binary strings of length i, where
l is the number of binary strings of length i.

(a) On the second loop, we iterate through j = 1 of all pairs (aj, bj) and generate
points in C(aj, bj). Note that as C(aj, bj) is an infinite set, we only generate
points in that set up to a certain length, which is determined by our choice of
ϵ > 0. In this project we generated points up to length 14. Next, we create a new
array Bj of polygons T that intersect C(aj, bj) and that also have L(T ) < δ′.
We set B0 = Ai−1.

11



i. Given k, let {Tk : 1 ≤ k ≤ m} denote the set polygons that intersected the
previous Cantor set, where m is the number of polygons that intersected
the previous Cantor set. We create an array Ck for the polygons created
from adding points from C(aj, bj) to Tk

A. On the fourth loop, we iterate through the points in C(aj, bj). For each
point ck = (ckx, cky), we create a new polygon T ′

kc = hull(Tk ∪ {c} ∪
{(1− ckx, 1− cky}). We store all such T ′

kc that satisfy L(T ′
kc) < 0.13 in

an array Ck.

ii. At the end of the third loop we append all polygons in Ck to Bj

(b) At the end of the second loop, we append all polygons in Bj to Ai

2. At the end of the first loop, we calculate the minimum of the area of all polygons in
Ai. This represents a lower bound on the set of dimension traps T discussed above.

It may be that our δ′ value is set too small, and so at the i-th iteration, we cannot a find a
single point from Cantor sets associated with any of the j pairs to generate a new polygon
that has measure smaller than δ′. In this we case we terminating early, and we know that
δ′ has become a lower bound of smallest possible dimension trap.

We can look at the first iteration of the algorithm as an example. At iteration 2, we gen-
erate pairs (00, 01), (00, 10), (00, 11), (01, 00), (01, 10), (01, 11), (10, 00), (10, 01), (10, 11),
(11, 00), (11, 01), (11, 10).

We consider iterate through the initial set of A1 = B0 = {[(1/2, 0), (1/2, 1)]}.
For the first pair (00, 01), we generate points in the Cantor Set C(00, 01).

12



Figure 2.3: Points in Set C(00, 01)

There is only one polygon we can create from these points to the {[(1/2, 0), (1/2, 1)]}
that has area less than 0.13. This polygon comes from taking the string . . . 0101010.1000101 . . .,
which corresponds to the point (1/3, 2/3−1/23) = (1/3, 13/24). The polygon created from
this point has vertices (1/2, 0), (1/2, 1), (1/3, 13/24), (2/3, 11/24), coming from the con-
straint that we are looking for dimension traps that are closed under symmetry (x, y) ⇐⇒
(1− x, 1− y). This polygon has area equal to 0.0390625.

Figure 2.4: Surviving Polygon created from Set C(00, 01)
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We append this polygon B1. The algorithm would continue and repeat the process for
C(00, 10) and C(00, 11), until it has gone through all the sets associated with each pair.

2.3 Dimension of C(a, b, n)

As noted in [1], the Hausdorff Dimension and Box counting Dimension of C(a, b, n) are
equal. We can give some insight on how to show dimH C(a, b, n) > 0 by showing dimboxC(a, b, n) >
0.

Definition 2.3.1. The box counting dimension of a set S is given by

dimbox(S) := lim
ϵ→0

log(N(ϵ))

log(1
ϵ
)

where N(ϵ) counts the minimal number of boxes with side length ϵ needed to cover the
set. We will give an example of calculating the box dimension below.

Example 2.3.1. To calculate dimbox(C(0, 1, 0)), we can first calculate the number of words
(x, y) = ykyk−1 . . . y1 · x1 . . . x1 . . . xk that are belong in C(0, 1, 0) as a function of k. Recall
that C(0, 1, 0) = {010, 11}∗ = {0, 1}∗. We can see that there are 22k options for each char-
acter xk, yk.

For each word ykyk−1 . . . y1 · x1 . . . x1 . . . xk, we can form a square with coordinates

. . . 000ykyk−1 . . . y1 · x1 . . . x1 . . . xk000 . . . = (x, y)

. . . 111ykyk−1 . . . y1 · x1 . . . x1 . . . xk000 . . . = (x, y + 1/2k)

. . . 000ykyk−1 . . . y1 · x1 . . . x1 . . . xk111 . . . = (x+ 1/2k, y)

. . . 111ykyk−1 . . . y1 · x1 . . . x1 . . . xk111 . . . = (x+ 1/2k, y + 1/2k).

This square has area 1
2k

· 1
2k
. We can calculate that for k ∈ N, and ϵ = 1/2k,

log(N(ϵ))

log(1/ϵ)
=

log(22k)

log(2k)
=

2k log(2)

k log(2)
= 2

As we take k → ∞, we get that dimbox(C(0, 1, 0)) = 2
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Example 2.3.2. To calculate dimbox(C(0, 1, 1)), we can first see that words in C(0, 1, 1) =
{01, 11}∗ must be in one of two forms. Either they are of the form

[ykyk−1][yk−2yk−3] . . . [y2y1] · [x1x2][x3x4] . . . [xk−1xk]

or

[yk][yk−1yk−2][yk−3yk−4] . . . [y1 · x1][x2x3][x4x5] . . . [xk−2xk−1][xk]

where the pairs of characters inside each of the [] are either 01 or 11. The characters on
the ends for the second form can be either 0 or 1.
From these two cases, we get that there are 2 · 2k choices, as in each of the two cases, there
are k brackets that each have the choice of being 01 or 11.
We can use a similar cover as in the previous example, to get that

log(N(ϵ))

log(1/ϵ)
=

log(2 · 2k)
log(2k)

=
(k + 1) log(2)

k log(2)
=

k + 1

k

As we take k → ∞, we get that dimbox(C(0, 1, 0)) = 1.

In general, we will see a trend that dimboxC(0, 1, n) = 2
n+1

. We then know that
dimH C(0, 1, n) > 0 for n ∈ N.

2.4 Optimizations

As we go on to further iterations, the number of pairs of binary words increases exponen-
tially. At the ith iteration, we consider binary words of length i, of which there are m = 2i

possible words. As we want to consider pairs of these words, there arem(m−1) = 2i·(2i−1)
such pairs!

There were a few ways we could discard polygons at the current iteration.

2.4.1 Polygons that already intersect a given set

During the algorithm, we used Lemma 2.1.1 to increase the bound on the smallest dimen-
sion trap T . For a given pair of strings a, b ∈ {0, 1}∗, we found points c ∈ C(a, b) such
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that L(hull(T ∪ {c})) > L(T ). However, it may be the case that when considering a new
pair of strings (a, b), there already exists a point in C(a, b) which lies in the interior of T .
If we find such a point, we know that we do not need to consider polygons generated from
adding points from set to T .

As an example, suppose we have the polygon given by

T = hull({(1/2, 0), (1/2, 1), (5/14, 13/24), (9/14, 11/24)}).

Suppose we are looking to extend the polygon by points in C(00, 01). We see that the
point (13/24, 1/3) is already contained with the polygon.

Figure 2.5: Finding a point in a new Cantor set already contained with a polygon

We know that any other polygons generated from extending T will have larger measure.
As such, we can break out of the inner loop for adding points from this Cantor set to T ,
and instead append T itself to the ongoing list of polygons.

2.4.2 Polygons with the same exterior points

It is possible that two polygons from a previous iteration may result in the same polygon in
the current iteration after appending a new point from a Cantor set. Consider the polygons
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given by

T1 = hull{(1/2, 0), (1/2, 1), (1/3, 13/24), (2/3, 11/24)}
T2 = hull{(1/2, 0), (1/2, 1), (1/3, 10/24), (2/3, 14/24)}.

Figure 2.6: Two polygons that are not the same in a given iteration

Suppose a new point p = (1/4, 1/2) belongs to a Cantor Set in the next iteration. For
each of the polygons above, adding p along with its mirror under the symmetry (3/4, 1/2)
to the polygons and taking the convex hull, we see that we get a new polygon P ′ with
vertices (1/2, 0), (1/2, 1), (1/4, 1/2), (3/4, 1/2).

17



Figure 2.7: An Polygon that is generated twice from two different polygons

As we identify polygons only by their exterior vertices in the script, we would then get
that P ′ would be generated added to are ongoing list of polygons twice. This decreases the
efficiency of our program, so at the end of every iteration, we remove duplicate polygons
from our list.

2.4.3 Polygons that contain each other

It is possible that after an iteration is completed, one polygon in the generated list may
completely contain another polygon. Consider the polygon given by

T3 = hull{(1/2, 0), (1/2, 1), (1/3, 13/24), (2/3, 11/24)}.
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Figure 2.8: T3, a polygon that will generate polygons T4, T5

Suppose the points (19/28, 1/2), (25/28, 1/2) belong to a given Cantor Set.

Figure 2.9: Two points in a given Cantor set

Next, consider the polygons given by

T4 = hull{(1/2, 0), (1/2, 1), (1/3, 13/24), (2/3, 11/24)} ∪ (19/28, 1/2), (9/28, 1/2)}
T5 = hull{(1/2, 0), (1/2, 1), (1/3, 13/24), (2/3, 11/24)} ∪ (25/28, 1/2), (3/28, 1/2)}.
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We see that T5 completely contains T4. Furthermore, we know that any polygons generated
from appending points from T5 will contain polygons generated from appending T4.

Figure 2.10: Polygon that completely contains another Polygon

Such polygons will always have greater or equal measure as L(B) ≥ L(A) if B ⊂ A.
As we are trying to bound δ = infT∈T L(T ), we see that considering polygons generated
from T5 will not increase the bound. Therefore at the end of every iteration, we discard
any polygons that completely contain any other polygons.

2.5 Results

Below is table of several statistics of algorithm. We can see that the time taken increases
exponentially as the length of words increases.

Iteration Best Bound Found Time Taken (s) Number of polygons found
with area less than 0.13

2 0.090820 0.128545 3
3 0.116455 3.185380 16
4 0.117371 47.517198 42
5 0.117371 170.526676 21
6 0.119385 1434.867396 66
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Figure 2.11: Graph of Time Taken at each iteration

The exponential time growth can be seen visually in the graph above. For pairs of words
of length 7, we can estimate that it would take approximately 28 hours to compute. We
were unable to verify this due to computation power. When considering pairs of length 7
and above, our computer ran out of memory due to the large number of polygons generated.

Figure 2.12: Number of polygons found at each iteration with measure less than 0.13
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Figure 2.13: Graph of Best Bound Found at each iteration

We also note that the rate of growth of the lower bound decreases sharply as the
iteration number increases, and from the graph it seems to follow a logarithmic growth.
We can estimate that it would take at least 10 iterations for the bound to grow above 0.12.
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Chapter 3

Conclusion

In this project, we have implemented the algorithm in [1] for computing lower bounds
and we have estimated a lower bound on the measure of a specific subset of dimension
traps for the Baker’s map. We generated points in Cantor sets C(a, b) for pairs of a, b ∈
{0, 1}∗ of lengths between 2 and 6. We then used the algorithm to generate polygons from
those points that the dimension traps would need to contain. We found that time taken
per iteration approached an exponential growth, while the growth of the lower bound
per iteration approached a logarithmic one. A few questions are left open for further
consideration.

1. Is there a method of choosing which pairs of strings at each iteration to consider?
We found in this project that many of them do not improve the bound.

2. Would choosing pairs of strings of different lengths increase the bound the differently?
In this project we only considered pairs of words of the same length.

3. Is there a way to lower the hyperparameter δ′ dynamically at each iteration if the
number of polygons we generate becomes to large?

As well, we only considered symmetric dimension traps for the Baker’s map. Work has
been done considering non symmetric dimension traps in [1], as well as dimension traps
with different kinds of symmetry.
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