Vector Rational Number Reconstruction

Curtis Bright and Arne Storjohann
University of Waterloo, Ontario, Canada N2L 3G1

January 15, 2010

Abstract

The final step of some algebraic algorithms is to reconstruct the
common denominator d of a collection of rational numbers (n;/d)i<i<n
from their images (a;)1<i<n mod M, subject to a condition such as
0 <d< N and |n;| < N for a given magnitude bound N. Applying
elementwise rational number reconstruction requires that M € 2(N?).
We present an algorithm, based on lattice basis reduction, which can
perform the reconstruction efficiently even when the modulus satisfies
a considerably smaller magnitude bound M € 2(N'1/¢) for ¢ a small
constant, for example 2 < ¢ < 5. Assuming ¢ € O(1) the cost of the
approach is O(n(log M)3) bit operations using the original LLL lattice
reduction algorithm, but is reduced to O(n(log M)?) bit operations
by incorporating the L? variant [15]. As an application, we give a
robust method for reconstructing the rational solution vector of a linear
system from its image, such as obtained by a solver using p-adic lifting.

1 Introduction

A rational number reconstruction of an integer a € Z with respect to a
positive modulus M € Z is a signed fraction n/d € Q with ged(n,d) =1,
ged(d, M) = 1 and such that a = n/d (mod M). In general, there may
be multiple possibilities, for example a = ny/dy = ng/dy (mod M) with
(n1,dy) # (na,dz). The problem has been very well studied, and the set of all
possible reconstructions is linked to the intermediate results of the extended
Euclidean algorithm and the continued fraction expansion of a/M, see for
example [9, Theorem 5.1] or the books [7, 17].

Uniqueness of the reconstruction, if it exists, can be ensured by stipulating
bounds for the magnitudes of the output integers n and d. In addition to a
and M, the simplest version of the problem takes as input a bound N < M,
and asks for output a pair of integers (d,n) such that

da=n (mod M), In| <N, 0<d<N. (1)

Note that if (d,n) is a solution to (1) that satisfies ged(d, M) = 1 then
a = n/d (mod M). If the bound M > 2N? is satisfied, then the solution
to (1) with ged(n,d) = 1 and ged(d, M) = 1 is unique, if it exists, and can be
computed effectively using the well known approach based on the extended
Euclidean algorithm.

Rational number reconstruction is an essential tool in many algorithms
that employ a homomorphic imaging scheme to avoid intermediate expression
swell, to allow for a simple coarse grain parallelization, or to facilitate an
output sensitive approach. Often, the final step of these algorithms is to
reconstruct the common denominator d € Z-(of a collection of rational
numbers (n;/d)1<i<, from their images (a;)1<i<, modulo M. The images
modulo M are typically computed by combining multiple smaller images,
either using Chinese remaindering (M = pips - - - p) Or a variation of Newton-
Hensel lifting (M = p™). The cost of an algorithm that uses a homomorphic
imaging scheme is highly correlated to m, the number of smaller images
computed, which is directly related to the bitlength of the modulus M.
Ideally, just enough smaller images are computed to allow reconstruction of
the common denominator d. If N is an upper bound for both d and max; |n;/,
elementwise rational reconstruction can be applied but requires that M > 2N?
to ensure success.

This paper gives a deterministic algorithm for efficiently computing the
common denominator d that for some applications requires about half as
many image computations as the standard approach. Our specification of
the vector version of the problem differs slightly from the scalar case shown
in (1). The vector rational reconstruction problem takes as input a vector
a € Z" of images modulo M, and asks for a pair (d,n) € (Z,Z") such that

da=n (mod M), H[d|n]H2§N. (2)

Here, we use a common bound for d and n based on the 2-norm because this
is a more natural condition for the algorithm we will present, which is based

on integer lattice basis reduction. In particular, the problem of computing
solutions to (2) is equivalent to finding short row vectors in the lattice

MI, ., (n+1)Xx(n+1)
L o } €Z . (3)

The algorithm we give actually computes a complete “generating set”
for (2), that is, a set (d;,m;)1<i<. corresponding to linearly independent
vectors [d |n],_._ such that every solution of (2) can be expressed as a
Z-linear combination of the members of the generating set. On the one
hand, from the scalar case, we know that a sufficient condition to ensure the
existence of a generating set of dimension zero (no nonzero solution) or one
(a unique minimal denominator solution) is that the modulus M be large
cnough to satisfy M > 2N2. On the other hand, if ¢ is an integer such that
M > 20+D/2 NH/e g gatisfied, we prove that the generating set returned by
our algorithm will contain at most ¢ vectors. The generating set produced
will be LLL reduced, so the 2-norm of the first vector will be at most 2(¢~1/2
times that of the shortest nonzero vector which solves (2).

To apply lattice reduction directly to a lattice with row dimension n + 1
would be prohibitively expensive in terms of n when n is large (below we
give an example application with n = 10,000). Instead, to obtain a cost
estimate that is linear in n, we use an iterative approach which adds columns
to the work lattice one by one, while keeping the row dimension bounded by
¢+ 1 by removing vectors which provably can’t contribute to a solution of (2).
Using a variation of the standard LLL algorithm and assuming ¢ = O(1), the
cost is O(n(log M)?) bit operations, which is linear in n but still cubic in
log M. By incorporating the L? algorithm [15] the cost is reduced further to
O(n(log M)?) bit operations.

The approach is particularly well suited to applications where it is known a
priori that that there can exist at most one linearly independent solution to (2).
In Section 5 we consider the problem of solving a nonsingular integer linear
system Ax = b, which has exactly one rational solution vector with common
denominator a factor of det A. As a concrete example, coming from [2],
suppose A and b have dimension 10,000 and are filled randomly with single
decimal digit integers. The common denominator and the numerators of a
typical solution vector for such a system have about 24,044 decimal digits, or
magnitude about 3 = 10%4%4*. To apply elementwise rational reconstruction
requires M > 2N? with N > (3 to be satisfied, so M needs to have length
about 48088 decimal digits. But by choosing the parameter ¢ = 5, the vector

3

algorithm requires only that M > 2(¢tD/2N1+1/¢ with N > /n + 13 in order
to succeed, so M need have only about 28,856 decimal digits. The method
we propose is robust in the sense that 5 need not be known beforehand; if
a reconstruction is attempted with /N too small, FAIL will be reported, but
if N is sufficiently large the algorithm will guarantee to return the correct
reconstruction.

Related work For the scalar version of the problem, much work has focused
on decreasing the running time from O((log M)?) to nearly linear in log M
by incorporating fast integer multiplication. For a a survey of work in this
direction we refer to [13]. An algorithm that doesn’t need a priori bounds for
the numerator and denominator is described in [14].

Now consider the vector version of the problem. Two approaches are
proposed in [10]. The first is a heuristic randomized algorithm to recover
a solution d and n that satisfies d||n|. € O(M). The second, based on
the good simultaneous Diophantine approximation algorithm in [11], can be
applied to find a solution even when ||[d | n ||| , € o(N?) but the algorithm
performs lattice reduction directly on n + 1 dimensional lattices similar to (3)
and seems to be expensive when n is large.

The recent preprint [18] gives a very general algorithm that supports
improved asymptotic complexity bounds for finding vectors shorter than a
given target length in generalized knapsack-type lattices. The algorithm
there also adds information to the lattice gradually, while removing rows
that are provably too large to contribute to a solution vector. Applied to the
lattice shown in (3), a special boundary case of the general lattice shape they
consider, it follows from their analysis that the dimension of the work lattice
and final generating set will be bounded by O(1) provided that M € 2(N?).
As we noted above, if M > 2N? then the dimension of the solution space for
this special case of the knapsack lattice is known to be at most one from the
studies of the scalar rational reconstruction problem, and the unique solution,
if it exists, can found using the elementwise rational number reconstruction
approach.

An efficient algorithm for the rational function version of the vector
reconstruction problem is given in [16].

Organization In Section 2 we illustrate the main ideas of the algorithm
with a worked example. In Section 3 we establish our notation and recall the

required facts about lattices and the LLL lattice basis reduction algorithm.
Section 4 presents algorithm for vector rational reconstruction, proves its
correctness, and develops a variant with significantly improved running time.
In Section 5 we show how the vector rational reconstruction algorithm can
be incorporated into an algorithm for solving nonsingular linear systems to
save on the number of required image computations.

2 OQOutline of the algorithm

First note that the problem of finding solutions to (2) is identical to the
problem of finding short vectors, with respect to the 2-norm, in the lattice
generated by the rows of the following matrix:

M

Y, ' c 7 mtDx(mn+1) (4)
M

1 a as -+ a,

The first n rows of the matrix can be used to reduce modulo M the last

n entries of any vector in the lattice; in particular, a vector obtained by

multiplying the last row by d. The first entry of such a vector will still be d

and the ith entry for 2 <i < n+ 1 will be congruent to da;_; (mod M).
For example, consider the input lattice

195967 |
195967
195967
195967
195967
1 —23677 —49539 74089 —21989 63531 |

where our target length is N = 10000.

In general, finding short lattice vectors is a difficult problem, but is
facilitated by lattice basis reduction. The LLL Algorithm is guaranteed to
return a basis with first vector at most 2("~1/2 times longer than the shortest
nonzero vector in an n-dimensional lattice. For example, running LLL on L

yields the LLL-reduced basis matrix

=3137 3256 2012 331 —891 1692
—3600 —8445 10430 —-9313 —10268 —18111
—4047 —7044 10092 —8673 20465 —1253
241 —23114 15088 22452 —8240 25545 |’
28082 18317 15535 —14341 —-3081 —6026
| —11836 8162 10340 34921 17628 —27537 |

L =

from which the first vector immediately gives a solution. In fact, we can
easily show that the other vectors are too large to contribute to a vector
shorter than N by using the fact that any lattice vector which includes the
final vector must be at least as large as the final vector in the Gram—Schmidt
orthogonalization (GSO) of L’. The GSO of L' is computed as a side effect of
the lattice reduction, and for this example we can check that the last vector
in the GSO of L’ has norm > N, therefore we know the last vector of L’
cannot contribute to a vector shorter than N. Removing the last vector, we
repeat the magnitude check on the new last vector of the GSO, and continue
in this way until the first vector is the only one remaining. This process is
formalized in Section 3.1.

However, when n is large it is infeasible to reduce the entire lattice at
once. Fortunately, the structure of the lattice permits an iterative approach.
For example, consider reducing only the lower-left 2 x 2 submatrix of L:

0 195967 | rin_ | —389 —96
1 —23677 —149 467

Knowing the reduction of the lower-left 2 x 2 submatrix can help us reduce
the lower-left 3 x 3 submatrix of L. We could have kept track of the third
column of L while doing the above reduction, but this isn’t required because
it is clear that during the reduction the 3rd column will always be a, times
the first column. Then the lattice generated by the lower-left 3 x 3 submatrix
of L has the following basis, which we again reduce:

0 0 | 195967 —538 371 470
380 —96 19270671 | ==X | 91 1030 —808
—149 467 | 7381311 27089 13738 20045

Now, the final GSO vector of the reduced matrix has norm larger than N, so
we can safely discard the last row, and repeat the same augmentation process

6

to find a sublattice which contains all short vectors in the lattice generated
by the lower-left 4 x 4 submatrix of L.

The main effort in Section 4 is to show that if M > 2(ctD/2yi+1/e for
¢ € Z~o then the process described above of adding columns and removing
final rows of the lattice will keep the row dimension of the lattice bounded by
¢+ 1. For ¢ = O(1) this leads to a cost estimate that is linear in n.

3 Preliminaries

For a k x n matrix L we let Lg be the rows of L which have indices in S C
{1,...,k}, let L% be the columns of L which have indices in R C {1,...,n},
and let Lgr denote (Lg)%. We simply write 4 for {i} and 1..i for {1,...,i}.
When not used with a subscript, L' denotes the transpose of L.

A subscript on a row vector will always refer to entrywise selection, and
the norm of a row vector will refer to the 2-norm, ||z|| .= vaxT.

Vectors are denoted by lower-case bold variables and matrices by upper-
case or greek bold variables, with the boldface dropped when referring to
individual entries. The zero vector is denoted 0 (with the dimension clear
from context).

The remy;(x) function returns the reduction of z (mod M) in the sym-
metric range, and applies elementwise to vectors and matrices.

3.1 Lattices

A point lattice is a discrete additive subgroup of R™. The elements of the
lattice generated by the rank k matrix L € ZF*" are given by

k
L(L)—{ TiLiIT’iEZ},

=1

and L is a basis of L(L). If L(S) C L(L) then L£(S) is known as a sublattice
of L(L); this occurs if and only if there exists an integer matrix B such that
S = BL. The volume of a lattice is independent of the choice of basis and

given by vol L := y/det(LLT).

The set of vectors in £(L) shorter than some bound N is denoted

Ly(L)={be L(L): bl <N}.

A generating lattice of Ln(L) is a sublattice of £(L) which contains all
elements of Ly (L); the basis of a generating lattice is known as a generating
matriz. S is a generating matrix of Ly(L) when it consists of linearly
independent rows from £(L) such that any b € Ly (L) can be written as a
Z-linear combination of row vectors in S; equivalently,

Ln(L) C L(S) C L(L).

For example, any basis of £L(L) is always a generating matrix of Ly (L) for
any N. However, when N is small we might hope to find a generating matrix
with fewer than k rows.

3.2 Gram—Schmidt orthogonalization

For a lattice basis L € Z**", let L* be the associated Gram-Schmidt orthog-
onal R-basis with change-of-basis matrix pu, i.e.,

L 1 L
L, H2.1 1 L;
Ly e Mk e 1 Ly

with p1; ; = (L;, L3)/||L}||*. Then we define the GSO (p,d) € (Q**, ZF1)
of a basis L to satisfy

L=pL* and 4 =]]IE)7
j=1

with dy = 1, so d;/d;_1 = || L}||>. Note that dj, = (vol L)? and in general
dl‘ = (VOI Ll‘.i)Q.

3.3 LLL reduction

Let (u, d) be the GSO of a lattice basis L € Z**". The GSO is size-reduced
if ||t — Tk |lmax < 3 and 2-reduced if d;d;—o > (3 — 7 y)di oy for 1 <i < k.
A GSO is LLL-reduced if it is both size-reduced and 2-reduced, and a basis is
LLL-reduced if its corresponding GSO is LLL-reduced.

Given a lattice basis L € ZF*", the lattice basis reduction problem is
to compute an LLL-reduced basis L’ such that £(L) = £(L'). Assuming

8

k = 0(1), the algorithm from [12] accomplishes this in O(n(log B)?) bit
operations, where max;||L;|| < B. A well known and important feature of the
LLL algorithm, that we will exploit, is that the sequence of unimodular row
operations required to reduce a given lattice can be determined strictly from
the GSO (p,d). Consider Algorithm 1, which only includes the specification
of the input and output. If (u, d) is a GSO such that L = pL* for a lattice L
with row dimension k£ and arbitrary column dimension, we could LLL reduce
L inplace by calling InPlaceLLL(k, o, d, L). But we could also initialize a
matrix U = I, call InPlaceLLL(k, u, d, U) to capture all required unimodular
transformations in U, and then compute the reduced lattice as L < UL.
We will make use of the following theorems about LLL reduction [12].

Theorem 1. An LLL-reduced basis L € Z**™ satisfies the following proper-
ties:

1L < 2692 L3)| for i <
2. max;|| Li|| < 207972 L |
3. (vol L)V/k/2=0/% < || L]
Theorem 2. During the execution of Algorithm 1:
1. maxy||L}|| is never increased
2. dy is never increased (for all {)

3. d; < 3d; during step 5

Algorithm 1 The InPlacelLLL(k, i, d, U) lattice basis reduction algorithm.
Input: The GSO (u,d) € (Q¥** ZFF1) of some lattice basis L € ZF<*. A
matrix U € ZF**.

Output: Use LLL [12] to update (u,d) to be 2-reduced and size-reduced
and apply all unimodular row operations to U.

Given a lattice L € ZF" and assuming k = O(1), the L? algorithm
from [15] can be used to compute an LLL reduced basis in only O(n(log B)?)
bit operations, where max;||L;|| < B. We will make use of the inplace variant
of L? shown in Algorithm 2.

Algorithm 2 The InPlacel*(k, G, U) lattice basis reduction algorithm.
Input: The Gramian G = LL" € Z"** of some lattice basis L € Z¥*. A
matrix U € Z"**.

Output: Use L? [15] to update G to be 2-reduced and size-reduced and
apply all unimodular row operations to U.

4 The vector rational reconstruction algorithm

We will be concerned with the lattice generated by

M

AM =]\4 B € Z(n-}—l)X(n—I—l)’
M
1 a9 ay --- a,

where a € Z*" and M € Z~y. When a and M are clear from context, A
will simply be denoted A. In this section we present an algorithm which
computes an LLL-reduced generating matrix for Ly(AY) with at most ¢
vectors, where ¢ > 1 is a small constant such that M > 2(ctD/2N1+1/e ig
satisfied.

We will present three versions of the algorithm. In Section 4.1 we present a
basic version, prove its correctness and prove the running time is O(n?(log B)?)
bit operations provided ¢ = O(1). In Section 4.2 we adapt the algorithm so
that one needs to only keep track of first column of the work lattice, thus
reducing the cost to O(n(log B)?) bit operations. Finally, in Section 4.3 we
show how to use L? instead of LLL in order to reduce the cost to O(n(log M)?)
bit operations.

4.1 The basic algorithm

The basic algorithm pseudocode is given as Algorithm 3. We will prove the
assertions after step 5 hold, from which the correctness of the algorithm
follows.

Lemma 1. If L € Z¥" has GSO (u,d) then L, ; has GSO (py 1., do. ;)
for 1 <1 <k, and if L is LLL-reduced then so is L1 _;.

10

Algorithm 3 The basic VecRecon(n, a, M, N, ¢) generating matrix algorithm.
Input: a € Z;;" and N, ¢ € Zo with M > 2(ctD/2Ni+1/e,

Output: An LLL-reduced generating matrix S € Z¥*("*+1 of £ (AM) with
k<ec.

/| Note L € Z"*"+V d € ZF+! and pu € Q¥** throughout (with ¢ starting
at 0).

1. [Initialization]
k=1L =1dy:=1,dy :=1; 11 = 1;

2. [Iterative lattice augmentation]
for /:=1ton do

3. [Add new vector to generating matrix]

1 |o 1 0| M
4. [LLL reduction]
InPlaceLLL(k, i1, d, L);

5. [Remove superfluous vectors from generating matrix]
Set k to be the maximal value such that dy/dy_; < N2.
If no such k exists, return the unique element of Z°%+1),

L:=1L, ;; p:=p ik d=dyy;
assert A. (u,d) is LLL-reduced
B. L is a generating matrix of Ly (A}) with GSO (u,d)

a

C. k<c
6. [Return generating matrix]|
return S = L;
Proof. Follows immediately from definitions and (Lq ;)* = L7 . O

Corollary 1. Assertion A after step 5 of Algorithm 3 holds.

Proof. The GSO (u,d) is LLL-reduced during step 4 and truncated during
step 5, so it remains LLL-reduced after step 5. O

Lemma 2. If S € Z**" is a generating matrix for Ly(L) and ||S;|| > N

11

then Sy 1 is also a generating matrix for Ly(L).

Proof. Clearly L£(S; x-1) C L(S), and L(S) C L(L) since S is a generating
matrix of Ly (L), so L(S1.,-1) is a sublattice of L(L). It remains to show
that Ln(L) C L£(S1.x-1), i.e., if b € Ly(L) then b can be written as a
Z-linear combination of the rows of Sy ,_1.

Since Ly(L) C L(S), we can write any b € Ly(L) in the form b =
Zle r;S; for some r € Z'**. Rewriting using the Gram-Schmidt decompo-
sition, we have b = r, S}, + Zf:_ll 5;8F for s = rpu € QY*. Since the S} are

orthogonal,
k—1

11> = rZISEI> + Y s7IS7IP = rillSEl,
1=1

so if 2 # 0 then ||b|| > ||S;|| > N. Thus b € Ly(L) must be in £(S] x_1).
]

In the following proofs about a specific step of the computation, let L’ be
the new value of L at the conclusion of the step (and similarly for the other
quantities k, ¢, p, d).

Proposition 1. At the completion of steps 3, 4 and 5 in Algorithm 3,
L is a generating matrix of Ly (Agi/) with GSO (u, d). ()

Proof. After step 1 we have L = A%..o =[1], so L is a generating matrix of
L(AM). Also, (u,d) = ([1],[}]) so L has GSO (u,d) and (*) is satisfied

ai. .y
as the loop is entered for the first time.

Now we show that if (x) holds at the beginning step 2, it also holds at the
conclusion of step 3, and if it holds at the beginning of steps 4 or 5 it also
holds at their conclusion. Denote A}! by A and A}! , by A

e Steps 2-3: For these steps ¢/ = ¢+ 1 and L is updated such that

I 0 M /*_ 0 M
L—{L TTa and L = “Tol

Letting (f1,d) denote the GSO of L', these imply:
di = M T[S L |2 for i > 1
,ai,l = Liylag//M for i Z 2
fiij = (Lioy, L) /IIL|)* ford, j>2

12

Assuming that (p, d) was the GSO of L these yield the same formulae

used to update (u,d). Thus (f1,d) = (', d’) is the GSO of L'.

Assuming that £(L) was a sublattice of L£(A), there is some B €
7<) such that L = BA. Then L£(L') is a sublattice of £(A’), since

o~ el -t

BA | BA;FCLKI 0| B

Now let b = rA’ for some r € Z(“+1) be an arbitrary element of
L(A). But if b € Ly(A') then by, € Ln(A), which is in L(L) by

assumption, so there exists some s € Z'** such that b; , = sL. Then

b=rA

showing Ly (A") C L(L').

Step 4: If (x) holds at the start of step 4, then it necessarily holds at its

conclusion since InPlaceLLL ensures £(L') = £(L) and updates (p', d’)
to be the GSO of L.

Step 5: By Lemma 1, if (u,d) was the GSO of L then (u',d’) is the
GSO of L'.

Also, by repeated application of Lemma 2, if L was a generating set of
Ly(A) then L' is also a generating set of Ly (A).

By induction, (x) always holds after any step during the loop. O

Corollary 2. Assertion B after step 5 of Algorithm 3 holds.

We now take Proposition 1 as a given, so in particular d; =]_[3:1||L3‘||2

after each step.

Proposition 2. After every step during Algorithm 3, M?U~1 < d; < M%
for 0 <j <k.

13

Proof. First, we show inductively that ||Lf|| < M for 1 < i < k at the
completion of every step. This clearly this holds after step 1, and if it holds
at the beginning of step 2:

e It holds after step 3 since |L{"|| = M and ||L}"|| = || L},]| for i > 1.
e It holds after step 4 since max;||L}"|| < max;||L}|| by Theorem 2.1.
e It holds after step 5 since LY",, = L7 ...

Next, we show inductively that M*~! < vol L at the completion of every step.
This clearly this holds after step 1, and if it holds at the beginning of step 2:

e It holds after step 3 since M* 1 = M* < Mvol L = vol L.
e It holds after step 4 since vol L’ = vol L and k' = k.

e It holds after step 5 since M*~! < vol L, < M* ¥ vol I (using | L] <
M for k' < i < k). Dividing by M*~* yields the desired inequality
MK~ < vol I,

The upper bound d; < M% follows by multiplying || L¥||* < M? for 1 <i < j.
The lower bound M?2U~Y < d; follows by multiplying M2* =Y < (vol L)? by
M2 < ||Lt||72 for j <i < k. O

Proposition 3. If £k = c+ 1 at the start of step 5 of Algorithm 3 then at
least one vector is discarded during that step.

Proof. By Assertion A, Proposition 2, and the algorithm’s required bounds
on M:

|L;|| > (vol L)Y/ /2k=1/4 (Theorem 1.3)
> ME=D/kjolk=1)/4 (vol L > M*1)
> N (M > 2((:+1)/4N1+1/C)
Thus dy/dr_1 > N?, so k is decreased during step 5. O
Corollary 3. Assertion C after step 5 of Algorithm 3 holds.

Proof. k < c holds after step 1, and if it holds before step 2 then £k < c+1
at the beginning of step 5 and k < ¢ at the end of step 5 by Proposition 3.
Assertion C follows by induction. O

14

This concludes the proof of correctness. We now examine the runtime
of each step of Algorithm 3. Steps 1 and 6 are clearly O(1) and step 2 is
executed at most n times. Steps 3 and 5 require O(c) arithmetic operations
and step 4 runs InPlaceLLL on lattice with at most ¢ 4+ 1 vectors, though we
need bounds on the bitlength of the numbers used to compute the actual
number of bit operations required in these steps.

Proposition 4. At the conclusion of the following steps during Algorithm 3
we have:

e Step 3: max;||L;|| < \/aj + 1M
e Step 4: max;||L;|| < VEM
e Step 5: max;||L;|| < M/2

Proof. After step 4, ||L;||* = Z;Zl (7| L3||> < iM? since an LLL-reduced
basis satisfies 1 ; < 1, and || L}|| < M from Proposition 2.

After step 5, by Theorem 1.2, ||L;|| < 2:=Y/2||L;|| < 2C-V/2N < M/2
by the algorithm’s bounds on M and since || Lj|| < N by choice of k during
step 5.

Let L’ be the value of L after step 3. The first time step 3 is executed
we have |L}|| = M and ||L}]| = \/a?+ 1, so the bound clearly holds in
this case. On subsequent executions, we have ||L}| = M, and for i > 1,
| L||? = ||Li-1 || 4 L?2_ a7 < M?(14aj) by the bound following step 5. [

Now we consider the running time of Algorithm 3. Since we are only
concerned with a (mod M), it is reasonable to require that a; be in the
symmetric range, in which case we have max;||L;|| < M? at the end of step 3,
and can take B = M? as a bound for the length of vectors in the input lattice.
Assume that ¢ = O(1). Then every execution of step 4 runs in O({(log M)3)
bit operations, which dominates the loop cost. (Steps 3 and 5 work with
integers of bitlength O(clog M) by Propositions 2 and 4.) Since the loop runs
O(n) times, and using ¢ < n, the total cost is O(n*(log M)?) bit operations.
We obtain the following result.

Theorem 3. Algorithm 3 returns an LLL-reduced generating matrix S €
7Y of Ln(AM) with k < c. When a € Z};" is given in the symmetric
range and ¢ = O(1), the running time is O(n?*(log M)?) bit operations.

15

4.2 A refined algorithm

Due to the special form of the lattices under consideration, the running time
of InPlacelLLL in Algorithm 3 may be improved on. It is unnecessary to keep
track of the entire lattice basis L; we show now that L is uniquely determined
by its first column.

Lemma 3. Any L € 7"V with £L(L) C L(AY) is of the form
[LlT | remy; (Lia, o) + MR}
for some R € ZF**.

Proof. Since L(L) is a sublattice of £L(A) there exists a B € Z***+1 such
that

L=BA
= BE+1A£+1 + B;P,‘e/ll..e
= [B}H | B}Halnf + Bir..éAl..é,z.eH})

SO BZTJrl = LlT. The result follows since M divides every entry of A; s9 r+1
and remy(LYa,) = LTa, , + MQ for some Q € Z***. O

Corollary 4. At the conclusion of step 5 of Algorithm 3, when L is expressed
in the form from Lemma 3, R is the zero matrix.

Proof. If R was not the zero matrix then some entry of L is not in the
symmetric range (mod M). In which case there would be an entry |L; ;| >
M/2, so ||L;|]| > M/2, in contradiction to Proposition 4. O

This shows that we can reconstruct all the entries of L from just LT at
the conclusion of the algorithm. Furthermore, the entries of Lj , , are not
needed during the computation since the lattice reduction only depends on
the GSO (u,d), not on L itself. Algorithm 4 modifies Algorithm 3 to only
keep track of L .= LT. The other optimization in Algorithm 4 is use the L2
algorithm to perform the lattice reduction. Instead of taking as input and
updating the exact GSO (u,d), the inplace L? algorithm takes as input and
updates the exact Gramian G := LLT. Step 2 of Algorithm 4 now updates
the exact Gramian G instead of the GSO (u, d).

Assume ¢ = O(1). Then step 4 of Algorithm 4 now executes in O((log M)?)
bit operations, which again dominates the loop. Since the loop runs O(n)

16

times, the total cost is O(n(log M)?) bit operations. Step 6 requires O(nc)
arithmetic operations, all on integers of bitlength O(log M). This give the
following result.

Algorithm 4 The VecRecon(n, a, M, N, ¢) generating matrix algorithm using
L2

Input: a € Z3i" and N, ¢ € Z+o with M > 2(cHD/2Ni+1/e,

Output: An LLL-reduced generating matrix § € ZF*("+1 of £y (AM) with
k<e.

/| Note L € Z¥*', G € Z+*** throughout.

1. [Initialization]
k=1L, =1,G1 = 1;

2. [Iterative lattice augmentation]
for /:=1ton do

3. [Add new vector to generating matrix]

0]o0 M? | MaL"] . 0
k=k+1 G = L= |=|;
LG {0 G} [MWL\a;LLT] {L]

4. [L? reduction]
InPlacel*(k, G, L);

5. [Remove superfluous vectors from generating matrix]
Compute d by fraction-free Gaussian elimination on G.
Set k to be the maximal value such that dy./d,_; < N2

If no such k exists, return the unique element of Z°*("+1),
L:=1Ls; G:=Gyp1

assert A. L | remM(La,lug)} is a generating matrix of EN(AQ{) with
Gramian G

B. kE<c¢

6. [Complete generating matrix]
return S = L | remM(La)]

Theorem 4. Algorithm 4 returns an LLL-reduced generating matrix S €
ZF*HY) of Ln(AM) with k < c. When a € Z};" is given in the symmetric

17

range and ¢ = O(1), the running time is O(n(log M)?) bit operations.

5 Application to linear system solving

In this section let A € Z"*" be a nonsingular matrix and b € Z" be a
vector such that || [A | b} HmaX < B. Consider the problem of computing
x € Q" such that Az = b, using for example Dixon’s algorithm [5]. This
requires reconstructing the solution & from its modular image rem; (x), where
M = p™ for some prime p { det(A) and m € Z~q is large enough that the
reconstruction is unique.

We can use p-adic lifting to recover the image vector @ = remy;(x) for
m = 2,3,.... The cost of the lifting phase of the solver is directly related
to the number of lifting steps m, which dictates the precision of the image.
Highly optimized implementations of p-adic lifting [3, 4, 6, 8] employ an output
sensitive approach to the rational reconstruction of the vector @ from a in order
to avoid computing more images than required. As m increases, the algorithm
periodically attempt to perform a rational reconstruction of the current image
vector. The attempted rational reconstruction should either return the unique
minimal denominator solution or FAIL. When FAIL is returned more lifting
steps are performed before another rational reconstruction is attempted.

In the following let v € Z" and d € Z. Suppose (d,v) is such that
a = remy(v/d), that is, Av = db (mod M). To check if Av = db, that
is, if v/d is the actual solution of the system Az = b, we could directly
check if Av = db by performing a matrix vector product and scalar vector
product. However, this direct check is too expensive. The following idea of
Cabay [1] can be used to avoid the direct check, requiring us to only check
some magnitude bounds.

Lemma 4. If ||v|« < M/(2nB), |d| < M/(2B) and Av = db (mod M)
then x = v/d.

Proof. Note that [|Av|. < nBJv|e and [|db| < Bld|, so by the given
bounds ||Av||» < M/2 and ||db||.c < M/2. Every integer absolutely bounded
by M/2 falls into a distinct congruence class modulo M, so since the com-
ponents of Av and db are in this range and componentwise they share the
same congruence classes, Av = db, and the result follows. O

Algorithm 5 shows how Lemma 4 can be combined with the elementwise
rational reconstruction approach to get an output sensitive algorithm for the

18

reconstruction of @ from its image a. This algorithm does not take the size
bound N as a parameter, but calculates an N such that there will be at
most one lowest-terms reconstruction that is guaranteed by Lemma 4 to be
the unique solution vector if it exists. Note that the elementwise approach
with N = D requires us to choose N to satisfy M > 2N?. Thus, for the
algorithm to succeed, we need M € 2(3?), where 3 is the maximum of the
magnitudes of the denominator and numerators of the actual solution vector
of the system.

Algorithm 5 An output sensitive LinSolRecon(n,a, M, B) using scalar re-

construction.
Input: The image a € Z}, of the solution of the linear system Ax = b, and

B € Z~¢, an upper bound on the magnitude of the entries of A and b.
Output: Either the solution € Q™ or FAIL.

// Need M > 2N? and M > 2nBN.

1. [Set an acceptable size bound]

N = |min(\/M/2, M/(2nB)) |;

2. [Simultaneous rational reconstruction]
d=1;
for i :=1tondo

3. [Entrywise rational reconstruction]
d = d - RatRecon(remy,(da;), M, N, | N/d]);
If the call to RatRecon returns FAIL then return FAIL.

4. [Check reconstruction)]
If ||remps(da)|| > N then return FAIL.

5. [Return solution]
return remy, (da)/d;

Algorithm 6 shows how Lemma 4 can be combined with VecRecon instead
to get an output sensitive algorithm for the reconstruction. For this algorithm
we need only M > 2(¢+D/2N1+1/e t4 gatisty the precondition of VecRecon. On
the one hand, Lemma 5 shows that Algorithm 6 will never return an incorrect
answer. On the other hand, Lemma 6 shows that the algorithm will succeed

19

for M € Q(y/n3'*+1/e).

Algorithm 6 An output sensitive LinSolRecon(n,a, M, B, c) using vector
reconstruction.
Input: The image a € Zj}; of the solution of the linear system Ax = b, and

B € Z~, an upper bound on the magnitude of the entries of A and b. Also,
a parameter ¢ € Z~(controlling the maximum lattice dimension to use in
VecRecon.

Output: Either the solution x € Q™ or FAIL.
// Need M > 2+/2N1+1/e and M > 2e+D/2p BN,

1. [Set an acceptable size bound|
N = [min (M0 /2¢/2 M /(202 B)) |

2. [Vector rational reconstruction]
S = VecRecon(n, a, M, N, c) € 7>+l
If £ =0 then return FAIL.

assert k=1

3. [Return solution]
return S ,,41/51;

Lemma 5. If Algorithm 6 does not return FAIL then the output is the
correct solution x.

Proof. First, note that every entry of S is absolutely bounded by M/(2nB):

1] max < max;[|.Sy]
< 20707 57

Norm comparison)

Theorem 1.2)

(
(
(
(

< 2e=D/2 Ny Choice of k in VecRecon)
< M/(2nB) M > 2(c+D/2n BN)
Then we can apply Lemma 4 on any row i of .S, since A(SZ»’Q..nH) = Si1b

(mod M) by construction of S. Therefore every row of S yields a solution
x = S;2 nt+1/Si1, but since there is only one solution and the rows of S are

20

linearly independent, S can have at most one row. Assuming the algorithm
did not return FAIL, we have @ = S5 ,,+1/51, as required. O

Lemma 6. Let 8 be the maximum of the magnitudes of the denominator

and numerators of the unique rational solution vector of the system. If
M > 2D/2(\/n - 13)*1/¢ then Algorithm 6 will not return FAIL.

Proof. Let denom(x) denote a function which returns the minimal d € Z~
such that dz € Z", and let numer(x) := denom(x) - . Then

|| [denom(x) | numer(z) | H (n+1) 32

Therefore, if v/n 4+ 18 < N, then VecRecon is guaranteed to find a generating
lattice which includes [denom(z) | numer(z) |. O

The running time of Algorithm 6 is simply that of VecRecon, which by
Proposition 4 is O(n(log M)?) bit operations. Table 1 shows the reduction in
required bitlength of log M by comparing some minimal bounds on log M for
Algorithms 5 and 6 to succeed.

Table 1: The value of log M required to guarantee Algorithms 5 and 6 return
a solution.

o o[5| FEF] Mg TET] N
200 | 1 | 1060 799 711 667 641
400 | 1 | 2397 | 1802 1603 1503 1443 s
800 | 1 | 5348 | 4016 | 3570 | 3348 | 3214
1600 | 1 | 11805 | 8859 | 7875 | 7384 | 7089

Alg. 6/Alg. 5 ~T75% ~67% =~ 63% =~ 60%

References

[1] S. Cabay. Exact solution of linear systems. In Proc. Second Symp. on
Symbolic and Algebraic Manipulation, pages 248—253, 1971.

[2] Z. Chen. A BLAS based C library for exact linear algebra on integer
matrices. Master’s thesis, David R. Cheriton School of Computer Science,
University of Waterloo, 2005.

21

3]

[10]

[11]

Z. Chen and A. Storjohann. A BLAS based C library for exact linear
algebra on integer matrices. In M. Kauers, editor, Proc. Int’l. Symp. on
Symbolic and Algebraic Computation: ISSAC 05, pages 92-99. ACM
Press, New York, 2005.

W. Cook and D. Steffy. Solving very sparse rational systems of equations.
Technical report, School of Industrial and Systems Engineering, Georgia
Institute of Technology, 2009. Available at http://www2.isye.gatech.
edu/%7Edsteffy/papers/0SLifting.pdf.

J. D. Dixon. Exact solution of linear equations using p-adic expansions.
Numer. Math., 40:137-141, 1982.

J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen,
E. Kaltofen, B. D. Saunders, W. J. Turner, and G. Villard. LinBox:
A generic library for exact linear algebra. In A. J. Cohen and N. Gao,
X.-S. andl Takayama, editors, Proc. First Internat. Congress Math. Soft-
ware ICMS 2002, Beijing, China, pages 40-50, Singapore, 2002. World
Scientific.

J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, 2 edition, 2003.

P. Giorgi. Arithmetic and algorithmic in exact linear algebra for the
LinBoz library. PhD thesis, Ecole normale supérieure de Lyon, LIP,
Lyon, France, December 2004.

E. Kaltofen and H. Rolletschek. Computing greatest common divisors
and factorizations in quadratic number fields. Math. Comput., 53(188),
1989.

E. Kaltofen and Z. Yang. On exact and approximate interpolation of
sparse rational functions. In J. P. May, editor, Proc. Int’l. Symp. on
Symbolic and Algebraic Computation: ISSAC "07, pages 203-210. ACM
Press, New York, 2007.

J. C. Lagarias. The computational complexity of simultaneous diophan-
tine approximation problems. SIAM Journal of Computing, 14(1):196—
209, 1985.

22

[12]

[13]

[14]

[15]

[16]

A. K. Lenstra, H. W. Lenstra, and L. Lovasz. Factoring polynomials
with rational coefficients. Math. Ann., 261:515-534, 1982.

D. Lichtblau. Half-GCD and fast rational recovery. In M. Kauers,
editor, Proc. Int’l. Symp. on Symbolic and Algebraic Compu-
tation: ISSAC 05, pages 231-236. ACM Press, New York,
2005. Extended version available at http://library.wolfram.com/
infocenter/Conferences/7534/HGCD_and planar lattices.pdf.

M. Monagan. Maximal quotient rational reconstruction: an almost
optimal algorithm for rational reconstruction. In J. Gutierrez, editor,
Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC 04,
pages 243-249. ACM Press, New York, 2004.

P. Q. Nguyen and D. Stehlé. An LLL algorithm with quadratic complexity.
SIAM Journal of Computing, 39(3), 2009.

Z. Olesh and A. Storjohann. The vector rational function reconstruction
problem. In I. Kotsireas and E. Zima, editors, Proc. of the Waterloo
Workshop on Computer Algebra: devoted to the 60th birthday of Sergei
Abramov (WWCA-2006), pages 137-149. World Scientific, 2006.

V. Shoup. A Computational Introduction to Number Theory and Algebra.
Cambridge University Press, 2 edition, 2005.

M. van Hoeij and A. Novocin. Gradual sub-lattice reduction and a new
complexity for factoring polynomials. To appear in Proc. of the 9th Latin
American Theoretical Informatics Symposium: LATIN 2010.

23

