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Abstract

Clustering is one of the most important topics in unsupervised learning. Generative
models solve the problem of clustering by fitting to the distribution of the data. More
flexible models allow better fitting to distributions, thus estimating better clusters. At the
same time, overly unconstrained models often are prone to overfitting and require to be
restricted with certain assumptions. In this work we propose a highly flexible Gaussian
Mixture Network model and discuss fitting strategies to avoid overfitting of the model.
We show improved performance compared to other mixture models on several real-world
datasets. We provide the implementation in Python1,2.

1GitHub repository: https://github.com/KangaroosInAntarcitica/mixes
2Python package: https://pypi.org/project/mixes/
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Chapter 1

Introduction

The problem of clustering is one of the most important topics in unsupervised learn-
ing. While it is impossible to meaningfully cluster any given dataset, certain reasonable
assumptions are introduced such as compactness of data points in a cluster. Gaussian
mixture models (GMM) described by Reynolds, 2009 use the assumption that each cluster
is generated by samples of a normally-distributed variable centered around its mean. In
many applications this however might not be a reasonable model, as real-world data often
can have very complex distributions and require more flexible models. For example, skew
Gaussian mixture models (Zhang and El-Shaarawi, 2010, Lin, 2009) extend GMMs and fit
asymmetric distributions better. Franczak et al., 2013 propose using asymmetric Laplace
distribution mixtures instead of GMMs and show improved performance with real-world
data. A better fit to the data is able to produce more informative clusters and density
estimates of the distribution (Tang et al., 2012), a highly important task for generative
models (Harshvardhan et al., 2020).

While increasing the number of parameters of the model generally produces a better fit
on a given dataset, such models become prone to overfitting (Tang et al., 2012). Therefore
more flexible models with fewer parameters are preferred. Mixtures of factor analyzers
(MFA) (Ghahramani, Hinton, et al., 1996) model concurrently performs clustering and
dimensionality reduction, and as a result, fits Gaussian distribution with fewer parameters
which reduces both computational time and overfitting for high-dimensional data.

An approach that was inspired by the success of deep neural networks in discriminative
learning is to create networks of simpler distributions conditioned on each other in a layer-
wise manner.

Deep mixtures of factor analyzers (DMFA) (Tang et al., 2012) propose to improve
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the factorization performance by stacking layers MFAs. The next layer MFAs are fitted
conditionally on the previous layer. The proposed training is layer-wise where the next
layer mixtures would be fitted on transformed data from the previous layer. Although
this improves the resemblance of distributions with real data, the number of parameters is
increased exponentially for deeper layers, and the proposed method does not fully benefit
from the layered structure, as the first layer is fitted independently of the other.

Deep Gaussian mixture models (DGMM) create a network of Gaussian distributions
where each layer is a Gaussian mixture (Van den Oord and Schrauwen, 2014; Viroli and
McLachlan, 2017). This provides a more flexible model which was shown to be advan-
tageous to other clustering techniques on many datasets. Van den Oord and Schrauwen,
2014 and Viroli and McLachlan, 2017 propose repeatedly utilizing the EM algorithm to
fit the model. While the model is similar to DMFA and allows to perform dimensionality
reduction, the authors propose to share the parameters of the higher layers among clusters
of lower layers, which results in a smaller number of parameters.

Making more flexible models allows to better fit to a variety of distributions, but achiev-
ing a good fit is a challenging task itself. Therefore developing optimization techniques is an
important task in unsupervised learning. Common methods for optimization of mixture
models are Expectation Maximization (EM) (Dempster et al., 1977) and Minorization-
Maximization (MM) (Sun et al., 2016). Stochastic Expectation-Maximization (SEM) and
Monte-Carlo EM algorithms estimate the expectation by simulation and require much less
computational time than EM to reach similar model performance (Nielsen, 2000). Gradi-
ent descent methods can be used inside the EM algorithm for optimization, or standalone
as proposed by Gepperth and Pfülb, 2021, who efficiently fit GMM by stochastic gradient
descent on streaming data.

Optimization is a complicated task since log-likelihood is often a non-concave function
with multiple modes. It is a well-known practice to fit a model on multiple initial parame-
ters to avoid termination in inferior modes. Zhou and Lange, 2010 propose a few methods
of deterministic annealing that are shown to terminate the EM algorithm in dominant
modes more frequently.
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Chapter 2

Preliminaries

2.1 Clustering formulation

Let y be an observed variable with D = {y1, . . . , yn} being a dataset of points from the
distribution of y. We will assume that the points can be grouped into k clusters represented
by a discrete hidden variable z ∈ {1, . . . , k}. The task of hard clustering is to assign a
value to zi for each of the points yi ∈ D. The problem can be further extended by defining
soft clustering, which assigns probabilities p(z | yi), ∀z ∈ {1, . . . , k}. A good clustering
model is also able to generalize to the whole distribution of y and get good predictions for
unseen points y /∈ D.

2.2 Gaussian distribution

Let variable y belong to a Gaussian distribution (also called normal distribution) with
mean µ and covariance matrix Σ. Then it has the following probability density function:

p(y) = N (y | µ,Σ) = det(2πΣ)−
1
2 exp

(
−1

2
(y − µ)TΣ−1(y − µ)

)
.

We will also denote the fact that y has Gaussian distribution as y ∼ N (µ,Σ).

When ΛΛT + Ψ = Σ, the formulation can be alternatively rewritten in a stochastic
form:

y = µ+ Λz + u, where z ∼ N (0, I), u ∼ N (0,Ψ)
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where Λ is a square matrix, Ψ is a positive definite diagonal matrix, 0 is a zero vector
and I is the identity matrix. Stochastic formulation shows how given samples of z we can
generate samples of y. Conditional probability can easily be deduced from the formulation
above: p(y | z) = N (µ + Λz,Ψ). Using this we can deduce the whole probability density
function as

p(y) = N (y | µ,ΛΛT +Ψ).

2.3 Mixture Models

A mixture model with k components is a model with the following probability density
function:

f(y | τ,Θ) =
k∑

j=1

τjp(y | Θj), where
k∑

j=1

τj = 1.

It assumes that the observed variable y is generated by component j ∈ {1, . . . , k} with
probability τj and that the component is distributed according to p(y | Θj) depending on
its set of parameters Θj. If we create a hidden discrete variable s that corresponds to the
component that generated a particular value of y, we can perform clustering by calculating
the probability p(s | y) using Bayes’ rule.

A Gaussian Mixture Model (GMM) described by Reynolds, 2009 is a mixture model
where each component j is assumed to be normally distributed: p(y | Θj) = N (y | µj,Σj).

A Mixture of Factor Analyzers (MFA) model proposed by Ghahramani, Hinton, et al.,
1996 is a mixture model where each component is assumed to have the following stochastic
form:

y = µj + Λz + u, where z ∼ N (0, I), u ∼ N (0,Ψ).

Similarly to GMM, each component is normally distributed. Additionally, Λ is allowed
to be rectangular, therefore the model has fewer parameters. This gives it the capability
of performing dimensionality reduction by calculating E(z | y) for the hidden variable z,
since dim(z) < dim(y).

Various other probability density functions can be used in mixture models, like the
skew normal distribution described by Lin, 2009.
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2.4 Expectation Maximization Algorithm

A measure of how well a model fits is its log-likelihood:

logL(Θ | y) = log p(y | Θ).

For a model with hidden variable z, the log-likelihood is:

logL(Θ | y) = log

∫
z

p(y, z | Θ)dz log

∫
z

p(y | z,Θ)p(z | Θ)dz

If we fix the current value of model parameters Θ′, the marginal log-likelihood function
w.r.t. Θ is:

Ez|y,Θ′ log p(y, z | Θ).

The idea of the Expectation Maximization algorithm (EM) proposed by Dempster et al.,
1977 is based on the fact that an increase in the value of the marginal likelihood is guar-
anteed to increase the value of the whole log-likelihood. Therefore EM repeatedly fixes Θ′

and performs maximization on the marginal likelihood function w.r.t. Θ.

The algorithm can be summarised in these 2 steps:

E step: Calculate the probabilities p(z | y,Θ′). One can extend this step by also
calculating values directly dependent on these probabilities, like Ez|y,Θ′(zzT ).

M step: Perform a step of maximization of the marginal log-likelihood using values
from the E step. Update parameters with the maximizer Θ.

The optimization is commonly performed by finding an extreme point of
the function. Alternatives include the Minorize-maximization algorithm
proposed by Sun et al., 2016 and gradient descent optimization methods.

EM is commonly used for maximizing mixture models with the observed variable y and
hidden variable s representing the cluster association.
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Chapter 3

Approach

3.1 Gaussian Mixture Networks

Gaussian Mixture Networks (GMN) proposed in this paper are based on the ideas presented
by Tang et al., 2012, Van den Oord and Schrauwen, 2014 and Viroli and McLachlan, 2017.
We will first explain the structure of a GMN, and then discuss the relation to current
models.

GMN extends a GMM by creating a network of Gaussian distributions. Each layer of
the network represents a mixture and each node is a component. This structure can be
seen in Figure 3.1. Let L be the number of layers of the network. Let kl,∀l ∈ {1, . . . , L}
represent the size of each layer. Also, let zl represent the variable generated by layer l.
Then zl+1 is the input variable of layer l. We will take z1 = y to be the output of the
model.

Since each layer is considered a mixture, the output zl that is generated from the layer
is generated by each component of the layer with a certain probability. Let sl ∈ {1, . . . , kl}
denote a discrete variable corresponding to the component on a particular layer l that
generated zl. We will denote the set of possible values of the variable sl as Sl. The
output y is then generated by a path of components s = (s1, . . . , sL), sl ∈ Sl,∀1 ≤ l ≤ L.
An example of a path can be seen in figure 3.3. We will denote the set of all paths as
S =

ŚL
l=1 Sl where

Ś

is the Cartesian product.

We will now describe the exact distributions of each variable zl. Let zL+1 ∼ N (0, I)
be generated by a multivariate standard normal. Each component sl on layer l can be
described in stochastic form as zl = η

(l)
sl + Λ

(l)
sl zl+1 + u

(l)
sl where u(l) ∼ N (0,Ψ

(l)
sl ) with
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diagonal matrix Ψ
(l)
sl . The component performs transformation of its input while adding

Gaussian noise. Each component has Gaussian distribution w.r.t. its input:

p(zl|zl+1, sl) = N
(
y
∣∣ η(l)sl

+ Λ(l)
sl
zl+1,Ψ

(l)
sl

)
(3.1)

The probability of each component sl being used for generation on a given layer will
be denoted τ

(l)
(sl,sl+1)

= p(sl | sl+1) and is conditional on the selection of component of
the previous layer. For the last layer, we can consider sL+1 = 1 to be constant but may
omit it from paths and notations for simplicity. The set of all parameters of a node is

Θ
(l)
sl =

{
η
(l)
sl ,Λ

(l)
sl ,Ψ

(l)
sl , τ

(l)
(sl,sl+1)

, ∀sl+1 ∈ Sl+1

}
.

The whole model can be described in stochastic form by the set of equations:



y = z1 = η(1)s1
+ Λ(1)

s1
z2 + u(1)

s1
with probability τ

(1)
(s1,s2)

,

z2 = η(2)s2
+ Λ(2)

s2
z3 + u(2)

s2
with probability τ

(2)
(s2,s3)

,

· · ·
zL = η(L)sL

+ Λ(L)
sL

zL+1 + u(L)
sL

with probability τ
(L)
(sL)

,

zL+1 ∼ N (0, I) ,

usl ∼ N
(
0,Ψ(l)

sl

)
,∀sl,∀l where Ψ(l)

sl
is diagonal .

(3.2)

See figures 3.1 and 3.2 for visualization of the model and a particular node from the
model. The variables zl, ∀l ∈ {2, . . . , L + 1} are considered hidden variables, as are
sl,∀l ∈ {1, . . . , L} while y is the observed output.
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N (0, I) Θ
(3)
1

Θ
(3)
2

Θ
(2)
1

Θ
(2)
2

Θ
(2)
3

Θ
(1)
1

Θ
(1)
2

Θ
(1)
3

z4 z3 z2 z1 = y

Figure 3.1: A schematic of a Gaussian Mixture Network. The network has k = (3, 3, 2) =
(k1, k2, k3) and therefore the total number of paths is k1 ·k2 ·k3 = 18. Each node represents
a distribution dependent on nodes from the next layer with parameters written on top of
it. Nodes are described in more detail in figure 3.2.

slsl+1
zl = η

(l)
sl + Λ

(l)
sl zl+1 + u

(l)
sl , u

(l)
sl ∼ N (0,Ψ

(l)
sl )

With probability τ
(l)
(sl,sl+1)

Figure 3.2: A particular node of the network. If the value on the next layer is zl+1 and was

generated by node sl+1, this node has probability τ
(l)
(sl,sl+1)

of being used and will generate
zl by the formula above.

N (0, I) s3 = 1

s3 = 2

s2 = 1

s2 = 2

s2 = 3

s1 = 1

s1 = 2

s1 = 3

Figure 3.3: An example of a single path through GMN. Path is s = (3, 2, 2) = (s1, s2, s3).

The path has probability πs = τ
(3)
2 τ

(2)
2,2 τ

(1)
3,2 = τ

(3)
(s3)

τ
(2)
(s2,s3)

τ
(1)
(s1,s2)

.
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3.1.1 Dimensionality Reduction

The number of parameters can be greatly reduced by lowering the dimensions of variables
on deeper layers. For the first layer dim(z1) = dim(y) is fixed and is equal to that of our
observed data. We can reduce the dimensions of zl, ∀l ≥ 2 by reducing the dimensionality
of parameters Ψ

(l)
sl , η

(l)
sl and making Λ

(l−1)
sl−1 ∈ Rdim(zl−1) × dim(zl). Note, that equations 3.2

and the model description above remain valid.

With dimensionality reduction, the layers become more similar to MFA models than
GMMs, but we will retain the naming of Gaussian Mixture Networks due to the conditional
normal distribution of each node in the network.

3.1.2 Path distributions in GMN

We can calculate the probability of a given path with

πs = p(s) =
L∏
i=1

p(sl|sl+1) =
L∏
i=1

τ(sl,sl+1).

Given the probability of a path, the joint probability of variables y, z = {z2, . . . , zL+1}

p(y, z | s) =

(
L∏
i=1

p(zl | zl+1, sl)

)
p(zL+1).

Let s(l:) = (sl, . . . , sL) denote a path through the network starting at layer l. It can be
easily seen that the probability p(y|s) has Gaussian distribution as does p(zl|s(l:)):

p(zl|s(l:)) = N (zl|µs(l:) ,Σs(l:)). (3.3)

Let µs(l:) and Σs(l:) denote the mean and covariance matrix of the probability distribution
for path s(l:). These parameters can be easily calculated in a recursive manner:

µs(l:) = η
(l)
sl + Λ

(l)
sl µs(l+1:)

,

Σs(l:) = Ψ
(l)
sl + Λ

(l)
sl Σs(l+1:)

(Λ
(l)
sl )

T ,

πs(l:) = τ
(l)
(sl,sl+1

πs(l+1:)
,

with µs(L+1:)
= 0,Σs(L+1:) = I, πs(L+1:)

= 1.

(3.4)
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As an example, observe the model in figure 3.3. The path s = (3, 2, 2), and s(2:) = (2, 2).

We can calculate µs(2:) = η
(2)
2 +Λ

(2)
2 η

(3)
3 , Σs(2:) = Ψ

(2)
2 +Λ

(2)
2 (Ψ

(3)
2 +Λ

(3)
2 Λ

(3)T
2 )Λ

(2)T
2 . Similarly

µs = η
(1)
3 + Λ

(1)
3 µs(2:) and Σs = Ψ

(1)
3 + Λ

(1)
3 (Σs(2:))Λ

(1)T
3 . The probability of a given output

for this path is then p(y | s) = N (y | µs,Σs) and depends on the parameters {Θ1
3,Θ

2
2,Θ

3
2}.

3.1.3 Inverse distribution at a node in GMN

From equations 3.1 and 3.4 we have:

p(zl|zl+1, sl) = N
(
y
∣∣ η(l)sl

+ Λ(l)
sl
zl+1,Ψ

(l)
sl

)
,

p(zl+1|sl+1) = N
(
zl+1|µs(l+1:)

,Σs(l+1:)

)
As was proposed by Viroli and McLachlan, 2017 given a path s(l:) the inverse probability

of 3.1 can be calculated using the Bayes’ rule:

p(zl+1

∣∣ zl, sl) = p(zl
∣∣ zl+1, sl)p(zl+1

∣∣ s(l+1:))

p(zl
∣∣ s(l:))

Making algebraic simplifications, we get the probability function:

p(zl+1|zl, sl) = N
(
zl+1

∣∣ ρsl(zl), ξsl) , where:

ξsl =
(
(Σs(l+1:)

)−1 + Λ(l)T
sl

(Ψ(l)
sl
)−1Λ(l)

sl

)
,

ρsl(zl) = ξsl

(
Λ(l)T

sl
(Ψ(l)

sl
)−1(zl − η(l)sl

) + (Σs(l+1:)
)−1µs(l+1:)

)
.

(3.5)

A detailed derivation of this is outlined in Appendix A. This result will be further used
inside the Expectation-Maximization approach.
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N (0, I) Θ
(3)
1

Θ
(3)
2

Θ
(2)
1

Θ
(2)
2

Θ
(2)
3

Θ
(1)
1

Θ
(1)
2

Θ
(1)
3

z4 z3 z2 z1 = y

Figure 3.4: A Visualization of the structure of a Deep Gaussian Mixture Model (DGMM)
with k = (k1, k2, k3) = (3, 3, 2).

N (0, I)

z4 z3 z2 z1 = y

Figure 3.5: A Visualization of the structure of a Deep Mixture of Factor Analysers (DMFA)
with k1 = 2, k2 = 3, k3 = 2. Each next layer creates mixtures for each of the components
of the previous layer. Therefore layer 3 has 12 components.
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3.2 Comparison to existing models

3.2.1 Deep Mixtures of Factor Analyzers

Deep Mixtures of Factor Analyzers (DMFA) were described by Tang et al., 2012. The
proposed model replaces the prior of a component sl of layer l with a mixture:

p(zl | sl) = MFA(l+1)
sl

(zl).

A separate mixture is trained for each of the components, therefore the number of com-
ponents in layers grows exponentially, as can be seen in figure 3.5. It was shown by Tang
et al., 2012 that such structure has significant advantages to simply increasing the number
of components of an MFA model. Since deeper layers further reduce dimensions, the total
number of parameters is reduced and the model is less prone to overfitting.

As can be seen, the model still has a lot of parameters, especially when the number
of layers is large. Additionally, there is no parameter sharing between the components of
deeper layers, which was shown to be extremely beneficial for discriminative networks. As
described by Szegedy et al., 2015 deeper neural networks with more parameter tying on
each layer, as in convolutional neural networks generally get better scores while avoiding
overfitting better.

The structure of each node in DMFA is identical to the one of GMN, therefore it is
not hard to verify that DMFA models are a subset of GMN models. By setting certain
τ
(l)
(sl,sl+1)

= 0 and increasing the number of components on subsequent layers, a GMN can
be converted into a tree structure of a DMFA. GMN extends DMFA by allowing parameter
sharing between different components, which allows to reduce the number of components
on further layers. Additionally, we will update all the layer parameters on each EM step
during the training of GMN instead of fitting each layer separately as proposed by Tang
et al., 2012.

3.2.2 Deep Gaussian Mixture Models

Deep Gaussian Mixture Models (DGMM) described by Van den Oord and Schrauwen,
2014 and Viroli and McLachlan, 2017 are also a subset of GMN models with component
probabilities not conditioned on the previous layer, or equivalently

τ
(l)
(sl,sl+1)

= τ
(l)
(sl,tl+1)

, ∀sl ∈ Sl, ∀sl+1, tl+1 ∈ Sl+1.
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However, unlike in GMN, this means that the prior of all the components at a given
layer is identical:

p(zl+1

∣∣ sl) = ∑
sl+1∈Sl+1

p(zl+1

∣∣ sl+1)p(sl+1

∣∣ sl)
=
( ∑

sl+1∈Sl+1

p(zl+1

∣∣ sl+1)
)
p(sl+1),

which provides less flexibility for the model by restricting the similarity between compo-
nents of the same layer. Therefore DGMM graph can be visualized as in figure 3.4, where
nodes of a layer l depend only on the input variable zl−1 and not all the nodes of ther
previous layer.

We propose leveraging the advantages of both DMFA and DGMM models. Therefore
GMN models are a generalized class of models containing both DMFA and DGMM. Note
that Fuchs et al., 2022 and Viroli and Anderlucci, 2021 extend the DGMM model by using
non-Gaussian distributions in nodes, which can also be applied to GMN.

We would like to note that Viroli and McLachlan, 2017 discuss the identifiability of
the model, which is an important topic in model-based clustering. We will assume that
by preventing overfitting, we will get more accurate clustering and less variation between
trained models with different initialization. We will not restrict the number of components
in layers, but similarly to Van den Oord and Schrauwen, 2014 assume that deeper models
provide a better fit, while parameter-tying prevents overfitting.

3.3 Expectation-Maximization Approach

Let Θ(l) = {Θ(l)
sl ∀sl ∈ Sl} = {η(l),Λ(l),Ψ(l), τ (l)} be the set of all parameters of layer l and

Θ the set of all the parameters of GMN.

Let z = (z2, . . . , zL+1) denote all the continuous hidden variables of the model, and
s = (s1, . . . , sL) denote the path variable with S being the set of all its possible values.

The Expectation Maximization algorithm when applied to a GMN will fix the current
Θ′ and will maximize the following objective function w.r.t. Θ:

Ez,s|y,Θ′ logL(Θ; y, z, s)

=Ez,s|y,Θ′ (log p(y, z, s | Θ))

=Ez,s|y,Θ′
(
log p(y, s(1) | (z, s)(2),Θ(1)) + · · ·+ log p((z, s)(L) | (z, s)L+1,Θ(L))

) (3.6)
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As can be seen, the log-likelihood function can be decoupled and minimized w.r.t.
parameters Θ(l) of each layer separately. For layer (l) it will be:

Ez,s|y,Θ′
(
log p((z, s)(l) | (z, s)(l+1),Θ(l))

)
(3.7)

Furthermore, the log-likelihood can be decoupled for each distribution in the layer
separately. For a given distribution ŝl, we need to take the expectation only over the paths
s passing through this distribution:

f
(l)
ŝl

= Ez,s|sl=ŝl,y,Θ′

(
log p(zl | ŝl, zl+1,Θ

(l)
ŝl
)︸ ︷︷ ︸

N (zl|η
(l)
ŝl

+Λ
(l)
ŝl

zl+1,Ψ
(l)
ŝl

)

+ log p(sl = ŝl)︸ ︷︷ ︸
τ
(l)
(ŝl,sl+1)

)
(3.8)

3.3.1 Minorization-Maximization variant

Using Jensen’s inequality, we can get a lower bound at all points for the objective function
by taking the log function out of the expected value in previous equation:

g
(l)
ŝl

= log
(
Ez,s|sl=ŝl,y,Θ′

(
p(zl | ŝl, zl+1,Θ

(l)
ŝl
) + p(sl = ŝl)

))
≤ f

(l)
ŝl
.

The minorization-maximization (MM) algorithm proposes to maximize the lower bound

function instead of f (l). At point Θ′, we have g
(l)
ŝl
(Θ′) = f

(l)
ŝl
(Θ′), and at all other points Θ

we have g
(l)
ŝl
(Θ) ≤ f

(l)
ŝl
(Θ). Therefore, maximizing the lower bound guarantees to increase

the original objective function. Since optimization w.r.t. f
(l)
ŝl

is infeasible for our complex
model structure, we will utilize MM.

3.3.2 M Step

We will take the derivatives w.r.t. each parameter. For simplicity of notation, we will
omit the subscript in expectation and assume that all the parameters are for layer (l) and
distribution ŝ. We will also perform a change of variables v = zl, w = zl+1 We get:

∂g
(l)
s̄

∂η
= E (Ψ−1 (v − η − Λw)) = 0,

∂g
(l)
s̄

∂Λ
= E

(
Ψ−1 (v − η − Λw)wT

)
= 0,

∂g
(l)
s̄

∂Ψ
= −1

2
E
(
Ψ−1 −Ψ−1 (v − η − Λw) (v − η − Λw)T Ψ−1

)
= 0,

with v = zl, w = zl+1.
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Unlike Viroli and McLachlan, 2017, we will solve the equations as a system instead of
each separately. We will describe the whole solution in Appendix B. As a result, we get
an elegant solution:


Λ = Cov(v, w) (Var(w))−1 ,

η = E(v − Λw),

Ψ = Var(v − Λw).

(3.9)

Alternatively, we can formulate the solution in a way that is easier to implement as
part of the EM algorithm:


Λ =

(
E(vwT )− E(v)E(w)T

)
·
(
E(w)E(w)T − E

(
wwT

))−1
,

η = E(v)− ΛE(w),

Ψ = E(vvT )− 2E(vwT )ΛT + ΛE(wwT )ΛT − ηηT .

(3.10)

This system 3.10 requires fewer values to be estimated. The only expectations that
need to be taken during the E step are E(v), E(w), (vvT ), E(vwT ), E(wwT ).

Maximizing the lower bound objective w.r.t. the parameters τ (l) we get:

τ
(l)
(ŝl,ŝl+1)

= E([sl = ŝl] · [sl+1 = ŝl+1])

where [·] is the indicator function s.t. [x] =

{
1 if x is true,

0 otherwise
, or equivalently:

τ
(l)
(ŝl,ŝl+1)

= p(ŝl, ŝl+1 | y,Θ′) (3.11)

3.3.3 E Step

In system 3.10 the expectation function E(·) = Ez,s|s(l)=s̄,y,Θ′(·). Although the parameter
estimates require only the values of v and w, we still need to integrate over all the la-
tent variables to calculate the expectation. The exact calculation over all the continuous
variables is infeasible, so we will utilize its stochastic batch variant.
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Therefore we can rewrite each expectation as:

E(·) = Ez,s|sl=ŝl,y,Θ′(·)

= Es|y,Θ′

(
Ez(1:l)|s(1:l),y,Θ′

(
Ezl+1|zl,sl(·)

))
=
∑
zl∈Zl

(
Es(l+1:)|zl,Θ′

(
Ezl+1|zl,sl,Θ′(·)

|Zl|

))
,

(3.12)

where Zl is a set of samples from the probability distribution p(zl | zl−1, sl,Θ
′)p(sl |

zl−1,Θ
′). Here, zl−1 ∈ Zl or is the observed variable from dataset z1 ∈ Z1 = {y1, . . . , yn}.

Therefore, when performing the E step, we will use samples calculated for the previous
layer, and on the end of the step we will sample from the current distribution. We will be
calculating the expected values over all the s(l+1:L) exactly.

While we can take samples of both v and w, we are required to sample only v to make
the equations feasible.

For example, using the equations 3.5, we can calculate the values required by M step
in system 3.10 as:

Ezl+1|zl,sl,Θ′(zl+1) = ρsl(zl)

Ezl+1|zl,sl,Θ′(zl+1 (zl+1)
T ) = ξsl + ρsl(zl) (ρsl(zl))

T

Ezl+1|zl,sl,Θ′(zl (zl+1)
T ) = zl (ρsl(zl))

T

(3.13)

Finally, to calculate the expectation over paths and equation 3.11 in M step we will
calculate the probability p(s(l:) | zl,Θ′) using the Bayes’ rule and results from equations
3.3, 3.4:

p(s(l:) | zl,Θ′) =
p(s(l:))p(zl | s(l:))

p(zl)

=
p(s(l:))p(zl | s(l:))∑

ŝ(l:)∈S(l:)
p(ŝ(l:))p(zl | ŝ(l:))

,
(3.14)

and since S(l+1:) is a subset of S(l:) we can easily get p(s(l+1:) | zl) =
∑

sl∈Sl
p(s(l:) | zl).

3.3.4 Algorithm

A summary of the whole Expectation-Maximization algorithm for GMN is presented in
algorithm 1. Note that in implementation, certain variables do not need to be stored, like
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Ew|ŝl,D(w) could accumulate the values of Ew|s(l:),D(w) over iterations s(l:) ∈ S(l:) instead of
computing the sum afterward, therefore simplifying the implementation.

Van den Oord and Schrauwen, 2014 propose a simplified procedure for the expectation
maximization that makes computation on large image datasets computationally feasible
while possibly resulting in a worse fit and inference. We won’t cover these simplifications,
and focus on data with smaller dimensionality to evaluate the capabilities of the proposed
GMN model.

Implementation is provided in Python in a GitHub repository 1 and could be used as
reference for implementation in other languages.

3.3.5 Convergence criterion

The EM algorithm should be terminated when it has converged. Let {lt}∞t=1 be a sequence
of log-likelihoods calculated at each step of the EM algorithm. A common approach is
to terminate when lt+1 − lt ≤ ϵ for some t > 1 and tolerance parameter ϵ. This ap-
proach assumes that when the steps are small enough, the algorithm should be close to
convergence.

Another approach was proposed by Böhning et al., 1994 (and also used by Franczak
et al., 2013). Let l̂ denote the limit limt→∞ = l̂. The approach assumes that EM steps

have linear convergence: |lt+1−l̂|
|lt−l̂| = c, ∀t > 1 and estimates l̂ with l∞t on each step:

l∞t+1 = lt +
lt+1 − lt
1− at

, where

at =
lt+1 − lt
lt − lt−1

is the Aitken acceleration

The proposed termination criterion is when for some tolerance parameter ϵ the current
log-likelihood is close to the estimated converged log-likelihood:

|l∞t+1 − lt+1| < ϵ.

We will use Böhning’s approach, due to its more profound theoretical justification, but
for small enough ϵ both convergence criteria should perform well.

1github.com/KangaroosInAntarcitica/mixes
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Input : Dataset D, initial values for parameters Θ
Output: Fitted values for parameters Θ

1 while not converged do
2 Z1 ← D
3 Compute ηs(l:) ,Σs(l:) ,Ψs(l:) , ∀s(l:) ∈ S(l:) with equations 3.4

4

5 for l ∈ {1, . . . , L} do
6 E Step
7 for s(l:) ∈ S(l:) do
8 Denoting v = zl, w = zl+1

9 Compute p(s(l:) | v), ∀v ∈ Zl

10 using equation 3.14 and vars from line 3
11 Compute ξsl with equation 3.5
12 Compute ρsl(v), ∀v ∈ Zl with equation 3.5
13 Compute Ew|v,s(l:)(w), Ew|v,s(l:)(ww

T ), ∀v ∈ Zl

14 with equations 3.13
15

16 Estimate p(s(l:) | D) = 1
|Zl|
∑

v∈Zl
p(s(l:) | v)

17 Estimate Ew|s(l:),D(w) =
1

|Zl|
∑

v∈Zl
(Ew|v,s(l:)(w))

18 and similarly for Ew|s(l:),D(ww
T )

19 Estimate Ew,v|s(l:),D(vw
T ) = 1

|Zl|
∑

v∈Zl
v(Ew,v|v,s(l:)(w))

T

20 and similarly for Ev|s(l:),D(vv
T )

21 Sample Zs(l:)
l+1 of size n from pdf in equation 3.5

22 end
23 M Step
24 for ŝl ∈ Sl do
25 Compute p(ŝl+1 | ŝl,D) = 1

|S(l+1:)|
∑

s(l+1:)∈S(l+1:)

(
p(s(l:) | D)[sl+1 = ŝl+1]

)
26 Compute denominator p(ŝl | D) = 1

|S(l:)|
∑

s(l:)∈S(l:)

(
p(s(l:) | D)[sl = ŝl]

)
27 Compute Ew|ŝl,D(w) =

1
|S(l:)|·p(ŝl|D)

∑
s(l+1:)∈S(l+1:)

(p(s(l:) | D)Ew|s(l:)(w))

28 using vars from line 13
29 and similarly for Ew|ŝl,D(ww

T ), Ew,v|ŝl,D(vw
T ), Ev|ŝl,D(v)

30 using vars from lines 18, 19
31

32 Update τ
(l)
(sl,sl+1)

using vars from line 25

33 Update Λ
(l)
sl , η

(l)
sl ,Ψ

(l)
sl using equation 3.10 and vars from lines 27, 29

34 end

35 Sample Zl+1 of size n from Zs(l:)
l+1 using probabilities p(s(l:) | D)

36 end

37 end
Algorithm 1: GMN Expectation Maximization
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3.3.6 Regularization

While the EM algorithm provides theoretical guarantees for improvements of log-likelihood
on each step, certain problems appear in practice when performing computation on floating
points.

One common computational problem can occur when we have singular or close to sin-
gular covariance matrices Σ. For such matrices, the condition number is very large which
results in large relative errors during the computation of the inverse. Since inversion is
required in the probability density function N (· | µ,Σ), we want to avoid such covariance
matrices. For Gaussian mixture models Gepperth and Pfülb, 2021 propose directly opti-
mizing w.r.t. the inverse Σ−1, but this solution cannot be extended to GMN. Pedregosa
et al., 2011 add a regularization on each step of the EM algorithm for GMM: Σ̄ = Σ + Iδ
where δ is a small number. We have observed in practice that small values of δ have a
negligible effect on the total log-likelihood, but bring a large computational advantage.

We are going to implement this strategy in our EM algorithm. We will add regulariza-
tion to both Ψ and Λ on each step of the EM algorithm:

Ψ̄ = Ψ + Iδ,

Λ̄ = U
√
D, where U,D, V = SVD(ΛΛT + Iδ).

Note, that such replacement also forces Λ̄ to have orthogonal columns.

Another practical problem is overfitting. We will use the term overfitting for cases
when a model is too flexible and is able to fit to all the variation and noise present in the
dataset instead of generalizing, which results in bad clustering accuracy compared to real
classes. As described in previous sections, one way of avoiding overfitting is to restrict the
allowed distributions of the model, as it was done with parameter tying. We propose to
further use the regularization parameter δ to avoid overfitting. Setting a larger value to δ
will restrict covariances on each layer to have larger values.

3.3.7 Deterministic annealing

Log likelihood of mixture models is often a non-concave function which results in opti-
mization algorithms terminating in inferior modes. Zhou and Lange, 2010 propose using
deterministic annealing to flatten the surface of the log-likelihood function and increase
the chance of terminating in a dominant mode. Because of the complex structure, multi-
modality should be an even larger problem for GMN. We can incorporate annealing in our
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implementation of the EM algorithm by replacing the probabilities in formula 3.14 with

p(s(l:) | zl,Θ′) =

[
p(s(l:))p(zl | s(l:))

]v∑
ŝ(l:)∈S(l:)

[
p(ŝ(l:))p(zl | ŝ(l:))

]v (3.15)

in the E step. The additional parameter v ∈ (0, 1] determines the amount of annealing,
where small values correspond to a more flattened surface and 1 makes no change.

As proposed by Zhou and Lange, 2010 we will start optimization with a small value
vinit and gradually increase it to 1. In practical experiments, vinit = 0.5 showed the most
predictable improvement for most datasets, while smaller value vinit = 0.2 highly improved
performance on certain datasets.

3.3.8 Initialization

One way of initializing the GMN is using completely random values. We have to be careful
with setting the means and covariances on different layers, as these are accumulated in the
distribution of paths. Therefore we randomly sample the elements of Λ from a uniform
distribution (−1, 1), diagonal elements of Ψ from a uniform positive distribution (0, 1

L2 ),
η(1) from D, and elements of η(2), . . . , ηL from a uniform distribution (− 1

L
, 1
L
).

Another option for initialization is based on a simpler clustering algorithm. We will
use the popular K-Means algorithm with components equal to nodes kl on each layer,
and then use factor analysis to estimate the parameters Ψ

(l)
sl ,Λ

(l)
sl , η

(l)
sl for each node. We

will use the same factor analyzer model to reduce the dimensionality of data clustered
to this component and then we will use the lower-dimensional data for the next layer’s
initialization. This will be the preferred initialization approach in our experiments.
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Chapter 4

Experiments

4.1 Distribution fitting

We will first evaluate the capability of GMN to fit different distributions. This is an
essential problem in generative learning, that is useful for sampling from the distribution
and inferring the probability of association with each cluster.

All the presented experiments can be found in our implementation mentioned in section
3.3.4.

Dataset
Algorithm Skew Normal Old Faithful

GMM −1.292 · 104 −3.855 · 102

Skew GMM −1.248 · 104 −3.843 · 102

GMN −1.250 · 104 −3.676 · 102

DGMM - −3.726 · 102

Table 4.1: Log-likelihood of fitted algorithms on two datasets
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(a) Skew normal dis-
tribution that we will
train models on

(b) Fitted GMM dis-
tribution

(c) Fitted Skew GMM
distribution

(d) Fitted GMN dis-
tribution

Figure 4.1: Kernel density estimate plot for data sampled from a distribution and models
fitted with the data

(a) Paths of GMN from 4.1d (b) Alternative distribution
of paths after training

(c) Alternative distribution
of paths with a better fit

Figure 4.2: Multiple fits of a GMN model on the data from Figure 4.1a. GMN has 1 cluster
and 5 paths (k1 = 1, k2 = 5). The regions correspond to different paths and the region
edges are at 1 variance (approx 40% for 2D Gaussians).
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4.1.1 Skew Gaussian distribution fitting

We will first try fitting to a skew Gaussian distribution, which extends the Gaussian dis-
tribution by allowing asymmetry.

We will use the formulation by Lin, 2009. If y is following a skew Gaussian distribution,
the variable has the following stochastic representation:

y = η + Λ|x|+ u,

where u ∼ N (0,Ψ), x ∼ N (0, I). Here | · | denotes the piece-wise absolute value and then
|x| ∼ HN (0, I) has standard half-normal distribution.

We generated samples from a 2D skew Gaussian distribution with parameters η =
0,Ψ = I,Λ = diag{10, 10} which can be seen in figure 4.1a. We fitted GMM, GMN and
a Skew Gaussian mixture model (SGMM) to the data points. We used the Expectation
Maximization algorithm to fit all the models with a single cluster. For SGMM we imple-
mented EM as proposed by Lin, 2009. We will fit a GMN with k1 = 1, k2 = 5. We will not
fit DGMM, as it has the same structure in the case of a single cluster and 2 layers.

The resulting log-likelihoods directly measure how well different models fit the distri-
bution and are shown in table 4.1. As can also be seen in figure 4.1 the GMM is unable to
capture certain variations present in the distribution. The SGMM has the best fit, which
is an expected outcome, as its initial assumption of the distribution is correct. However,
the GMN fitted to the distribution almost as good (log-likelihood has a small difference),
which shows the flexibility of the model.

We can study how the model achieved this result by inspecting figure 4.2a. The plot
visualizes the distributions of each path of the model, which as mentioned in section 3.1.2
are Gaussian distributions. As can be seen, different paths attribute to parts of the dis-
tribution and their composition forms a similar distribution to the initial skew Gaussian.
As can be seen in figure 4.2 there can be a lot of variation between paths in a GMN for
different initializations and fits. However, this has little effect on the whole distribution of
the model.

4.1.2 Old Faithful geyser data

We will test the performance of models on the data from eruptions of the Old Faithful
geyser in the Yellowstone national park. The data was first published by Härdle et al.,
1991 and contains 2 observed variables: the duration of geyser eruption and time to next
eruption. Data has 2 clusters, which correspond to short and long eruptions.
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(a) Old faithful geyser data
distribution

(b) Fitted GMN distribution (c) Path distributions plot
similar to figure 4.2, but
scaled according to the path
probabilities πs

(d) Fitted GMM distribution (e) Fitted Skew GMM
distribution

(f) Fitted DGMM
distribution

Figure 4.3: The distributions of the Old Faithful geyser data and models fitted on the
dataset. The distributions are calculated with sampling therefore may not be exact.
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All the models are trained to fit 2 clusters. GMN and DGMM are fit with layer sizes
k1 = 2, k2 = 5 and dim(z2) = 1. The results are shown in table 4.1 and figure 4.3. As can
be seen, GMN achieved the best log-likelihood of all the presented mixture models. The
original data doesn’t have the distributions centered around their modes, which cannot be
achieved by a GMM. In this case GMN reaches a significant improvement compared to
both GMM and SGMM.

Figure 4.3c visualizes the distributions of each path of the GMN while scaling them by
the path probability τs. As can be seen, components s2 of the second layer have varying
probabilities in each cluster, while the yellow cluster treats some of them as completely
redundant. This allows the model to have more flexible distributions between clusters.

4.2 Clustering

4.2.1 Practical performance

We will compare the performance of different algorithms on real-world data. We will use
the Wine dataset1 by Forina et al., 1986, Ecoli dataset2 by Nakai and Kanehisa, 1991,
Vehicle dataset3 by Siebert, 1987, Satellite dataset4 and the Digits dataset5 by Xu et al.,
1992. All of the datasets are available from the UCI machine learning repository (Dua and
Graff, 2017).

We give a short description of each of the datasets in table 4.3. The datasets have a
varying number of features, complexity and size.

The results of fitting different algorithms are presented in table 4.4. We will fit the
K-Means model implemented by Pedregosa et al., 2011, GMM, DGMM and GMN. The
experiment will focus on the practical capabilities of the model. Therefore, for each model
we will perform 10 runs and show the average of all metrics among these runs instead
of the best score. We will use models of increasing depth depending on the complexity
of dataset. We used the parameters k = (3, 1), dim(z) = (13, 3, 2) for the Wine dataset,
k = (8, 4, 1), dim(z) = (7, 6, 5, 4) for the Ecoli dataset, dim(z) = (18, 7, 3, 3) for the Vehicle
dataset, k = (6, 5, 1), dim(z) = (36, 13, 5, 1) for the Satellite dataset, k = (4, 3, 2) and
k = (10, 5, 2), dim(z) = (64, 10, 6, 2) for the Digits dataset.

1https://archive.ics.uci.edu/ml/datasets/wine
2https://archive.ics.uci.edu/ml/datasets/ecoli
3https://archive.ics.uci.edu/ml/datasets/Statlog+(Vehicle+Silhouettes)
4https://archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite)
5https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
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Dataset Classes Features Size

Wine 3 Types of wines from
the Piedmont region
of Italy

13 Physical and chemical prop-
erties of the wine

178

Ecoli 8 Protein celluar local-
ization sites

7 Protein features based on
sequence recognition meth-
ods

336

Vehicle 4 Types of vehicles 18 Features extracted from the
silhouette of a vehicle

846

Satellite 6 Types of soil 36 Attributes from a 3×3 RGB
satellite image of the soil

6435

Digits 10 Digits from 0 to 9 64 Attributes from a 8 × 8
greyscale image of a written
digit

1797

Table 4.3: Descriptions of datasets used. For each dataset, we show the true classes present
in data, features we will perform clustering on and the total number of data points in the
dataset

Datasets Wine Ecoli Vehicle Satellite Digits
ARI m.r. ARI m.r. ARI m.r. ARI m.r. ARI m.r.

KMeans 0.873 0.041 0.529 0.355 0.069 0.638 0.530 0.321 0.632 0.257

GMM 0.945 0.016 0.653 0.239 0.095 0.619 0.468 0.413 0.640 0.245

DGMM 0.975 0.008 0.750 0.181 − − 0.571 0.282 0.698 0.175

DGMM ann. 0.975 0.008 0.734 0.190 0.109 0.599 0.578 0.280 0.670 0.175

GMN 0.962 0.011 0.764 0.173 − − 0.535 0.301 0.702 0.172

GMN ann. 0.983 0.006 0.737 0.187 0.130 0.585 0.524 0.305 0.704 0.172

Table 4.4: Average adjusted rand index (ARI) and miss-classification rate (m.r.) over
10 fits of different algorithms on given datasets (ann. corresponds to algorithms using
deterministic annealing)
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(a) Fitting of GMN with regulariza-
tion δ = 10−4. Final silhouette score
is 0.169
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(b) Fitting of GMN with regulariza-
tion δ = 10−3. Final silhouette score
is 0.171

Figure 4.4: Comparison of metrics during the fitting of a DGMM with k = {10, 3, 2, 2},
dim(z) = {64, 10, 6, 4, 2} and different values of regularization hyperparameter δ

A version of the GMN model got the best performance on all the datasets except for
the Satellite dataset, where DGMM performed better. This could be because for some
distributions it is more useful to have the same prior for all components. In other cases,
we suppose that GMN performed better thanks to its increased flexibility.

Furthermore, the results show that deterministic annealing is a very useful technique
for GMN optimization. For the Wine, Satellite and Digits datasets the highest scores were
achieved by models with annealing, although annealing degraded the performance on the
Ecoli dataset. We were unable to fit DGMM and GMN models without annealing on the
Vehicle dataset at all. We would like to note that we only used annealing with the starting
value of 0.5, and it is likely that better performance could be achieved by tuning the vinit
hyperparameter.

Overall, the experiments showed that GMN is a useful extension of DGMM models, as
is the deterministic annealing, while the best results could be achieved by choosing among
variations of these models.

4.2.2 Effect of Hyperparameters on the GMN fitting

We will use the Digits dataset to further study the performance of GMN.

We will first inspect the effect of regularization δ mentioned in section 3.3.6. The
comparison of optimization with different values of the hyperparamter can be seen in
figure 4.4. The 4-layer network with regularization δ = 10−4 reached a higher log-likelihood
but degraded its accuracy in the process due to overfitting. On the other hand, the same
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network with increased regularization δ = 10−3 monotonously improved both log-likelihood
and ARI. The silhouette score is also better for the more regularized model in this case.
In practice, we observed similar behavior for other datasets and therefore consider δ to be
a useful hyperparamter for model fine-tuning.

We will generate samples from the better-performing GMN model. As can be seen in
figure 4.5, some samples exactly match the digits. However, digits seven and nine seem to
be confused and certain samples are similar to a combination of digits. Since the model is
trained in a completely unsupervised way, this result can be explained by the high similarity
between certain handwriting of different digits.

Finally, we will study the effect of the annealing hyperparameter vinit on GMN fit-
ting. The results of fitting a GMN on the Digits dataset for different values of the vinit
hyperparameter can be seen in figure 4.6. Note, that we don’t use a convergence crite-
rion in this case, as for values of the annealing parameter v ̸= 1, the model might be
in a sub-optimal state due to the changed surface of log-likelihood. For a fair practical
comparison, we perform the same number of 100 EM steps for all the values of the vinit
hyperparameter. As we can observe, annealing produces a more predictable behavior for
the optimization, but optimization doesn’t terminate in the dominant mode. This could
be because of the complex structure of a GMN model and therefore a complex surface of
its log-likelihood. Nevertheless, we can observe that the best average ARI was reached by
a model with annealing. Notice, that a very small value of vinit = 0.1 results in an inferior
behavior compared to a model without annealing (vinit = 1). This is likely also caused by
the complex surface of the log-likelihood, and possibly could be improved by performing a
larger amount of optimization steps.

4.2.3 Discussion

In practice, we observed that fine-tuning of hyperparameters in GMN performs similarly
to discriminative deep learning, where reducing layer sizes kl or dimensionality dim(zl)
helps to avoid overfitting, and making deeper networks seems to provide a greater learning
capacity. At some point, increasing the depth stops improving accuracy, which could be the
result of the data limitations or incorrect assumptions in the model. Similar to supervised
learning, distributions have an overlap in the probability density functions which results
in a theoretical lower bound of the error, called the Bayes error (Antos et al., 1999).
However, due to the lack of labels during fitting, unsupervised learning must also rely on the
correctness of certain assumptions, like the compactness of clusters, which imposes further
bounds on the theoretically best error. As a result the best accuracy rarely corresponds to
the best silhouette score, as can easily be seen for the geyser data in figure 4.3a.
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(a) Samples from the dataset (b) Samples from the fitted GMN

Figure 4.5: Comparison of data and distribution samples of a fitted GMN on the Digits
dataset. Each row of the figure corresponds to a different class or component
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(b) Average metrics

Figure 4.6: Log-likelihood distribution and average metrics after fitting with different
values of initial annealing vinit. The metrics were collected over 40 fits of GMN with
k = {10, 5, 2}, dim(z) = {36, 10, 6, 2}
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Chapter 5

Conclusion

Based on the ideas of the DGMM and DMFA models, we propose the Gaussian Mixture
Network. GMN provides the ability to tune the required model flexibility to fit more
complex distributions or avoid overfitting. We develop an EM algorithm that directly
solves a system of equations to find extreme points and further discuss improvements to
the optimization scheme. We utilize deterministic annealing to reach the dominant mode
with higher probabilities and use regularization for computational stability. We compare
GMN to other models on five datasets and show that it reaches better results on most of
them.
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Appendix A

Inverse distribution at a node in
GMN derivation

Assume that we are looking for the inverse probability at the node sl of layer l given path
sl:. For simplicity of notation, let η = η

(l)
sl , Λ = Λ

(l)
sl , Ψ = Ψ

(l)
sl , µ = µs(l+1:)

and Σ = Σs(l+1:)
.

Let also v = zl and w = zl+1.

Then from equations 3.1 and 3.4 we have:

p(v
∣∣ w, sl) = N (v ∣∣ η + Λw,Ψ

)
,

p(w
∣∣ s(l+1:)) = N

(
w
∣∣ µ,Σ)

Using the Bayes’ rule we get:

p(w
∣∣ v, s(l:))

=
p(v

∣∣ w, sl)p(w ∣∣ s(l+1:))

p(v
∣∣ s(l:))

=c1 · N
(
v
∣∣ η + Λw,Ψ

)
N
(
w
∣∣ µ,Σ)

=c1 · exp
(
−1

2
(v − η − Λw)TΨ−1(v − η − Λw)

)
exp

(
−1

2
(v − η)TΣ−1(v − η)

)
(Using properties of the exponent)

=c1 · exp
(
(v − η − Λw)T Ψ−1 (v − η − Λw) + (v − η)TΣ−1(v − η)

)− 1
2

(Expanding and taking the constant terms w.r.t w out)
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=c2 · exp
(
wT
(
ΛTΨ−1Λ

)
w − (Λw)TΨ−1(v − η)− (v − η)TΨ−1(Λw)

+ wTΣ−1w − wTΣ−1µ− µTΣ−1w
)− 1

2

(Combining the expressions by color)

=c2 · exp
(
wT
(
ΛTΨ−1Λ + Σ−1

)︸ ︷︷ ︸
ξ−1

w − wT
(
ΛTΨ−1(v − η) + Σ−1µ

)
−
(
(v − η)TΨ−1ΛT + µTΣ−1

)
w
)− 1

2

(Using the definition of ξ−1 from above)

=c2 · exp
(
wT ξ−1w − wT ξ−1 ξ

(
ΛTΨ−1(v − η) + Σ−1µ

)︸ ︷︷ ︸
ρ

−
(
(v − η)TΨ−1ΛT + µTΣ−1

)
ξ︸ ︷︷ ︸

ρT

ξ−1w
)− 1

2

=c2 · exp
(
(w − ρ)T ξ−1(w − ρ)− ρT ξ−1ρ

)− 1
2

(Taking constant out of the exponent)

=c3 · exp
(
(w − ρ)T ξ−1(w − ρ)

)− 1
2

Since we know that p(w
∣∣ v, s(l:)) must be a valid probability distribution, we can ignore

the scaling constant c3 in front. The result is a gaussian distribution:

Therefore, given a path s(l:) the pdf is of the form:

p(w|v, s(l:)) = N
(
w
∣∣ ρ(v), ξ) , where:

ξ =
(
(Σ−1 + ΛTΨ−1Λ

)
,

ρ(v) = ξ
(
ΛTΨ−1(v − η) + Σ−1

)
,

where the parameters and variables are:

η = η(l)sl
,Λ = Λ(l)

sl
,Ψ = Ψ(l)

sl
,

µ = µs(l+1:)
,Σ = Σs(l+1:)

,

v = zl, w = zl+1.
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Appendix B

Expectation Maximization of GMN
derivation

For layer l and component ŝl we want to minimize the following objective function:

g = Ez,s|sl=ŝl,y,Θ′

(
log p(zl | ŝl, zl+1,Θ

(l)
ŝl
)︸ ︷︷ ︸

N (zl|η
(l)
ŝl

+Λ
(l)
ŝl

zl+1,Ψ
(l)
ŝl

)

+ log p(sl = ŝl)︸ ︷︷ ︸
τ
(l)
(ŝl,sl+1)

)

For simplicity, we will omit the subscript in expectation E(·) = Ez,s|sl=ŝl,y,Θ′(·). We will

also assume that all the parameters are for layer (l) and distribution ŝ: Λ = Λ
(l)
ŝl
, η = η

(l)
ŝl
,

Ψ = Ψ
(l)
ŝl
. We will also perform a change of variables v = zl, w = zl+1 We get:

g = E
(
det(2πΣ)−

1
2 exp

(
(v − η − Λw)TΣ−1(v − η − Λw)

))
Note that Ψ is diagonal. Therefore taking the derivatives w.r.t. to parameters η, Λ, Ψ,

we get: 
∂g
∂η

= E (Ψ−1 (v − η − Λw)) = 0,
∂g
∂Λ

= E
(
Ψ−1 (v − η − Λw)wT

)
= 0,

∂g
∂Ψ

= −1
2
E
(
Ψ−1 −Ψ−1 (v − η − Λw) (v − η − Λw)T Ψ−1

)
= 0.
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We will solve these equations as a system. We will first solve the system from the first
2 equations, as they are independent of Ψ. Since Ψ is assumed to be non-singular, we can
multiply by it and get:{

E (v − η − Λw) = 0

E(
(
(v − η − Λw)wT

)
= 0

(Taking out constant term from expectation){
η = E (v − Λw)

E
(
vwT − ηwT − ΛwwT

)
= 0

(Performing substitution){
η = E(v)− ΛE(w)

E
(
vwT − E(v)wT + ΛE(w)wT − ΛwwT

)
= 0

(Taking out constant terms){
η = E(v)− ΛE(w)

E(vwT )− E(v)E(w)T + Λ
(
E(w)E(w)T − E(wwT )

)
= 0

(Moving Λ to the left side){
η = E(v)− ΛE(w)

Λ =
(
E(vwT )− E(v)E(w)T

) (
E(wwT )− E(w)E(w)T

)−1

To solve the last equation we will first multiply it by Ψ:

E
(
I − (v − η − Λw) (v − η − Λw)T Ψ−1

)
= 0,

(Multiplying by Ψ and rearanging)

Ψ = E
(
(v − η − Λw) (v − η − Λw)T

)
= E

(
(v − Λw)(v − Λw)T

)
− ηE (v − Λw)T − E (v − Λw) ηT + ηηT

(Subtracting and adding 2ηηT and using the equation for η)

= E
(
(v − Λw)(v − Λw)T

)
− η E (v − η − Λw)T︸ ︷︷ ︸

=0

−E (v − η − Λw)︸ ︷︷ ︸
=0

ηT − ηηT

= E(vvT )− E(vwT )ΛT − ΛE(wvT ) + ΛE(wwT )ΛT − ηηT

(Using the fact that we are only solving for the entries on the diagonal of Ψ)

= diag{E(vvT )− 2E(vwT )ΛT + ΛE(wwT )ΛT − ηηT}.

37



As a result, we get the following solutions for the system:


Λ =

(
E(vwT )− E(v)E(w)T

)
·
(
E
(
wwT

)
− E(w)E(w)T

)−1
,

η = E(v)− ΛE(w),

Ψ = E(vvT )− 2E(vwT )ΛT + ΛE(wwT )ΛT − ηηT .

Notice that we can reformulate as


Λ = Cov(v, w) (Var(w))−1 ,

η = E(v − Λw),

Ψ = Var(v − Λw).
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