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Abstract

Spectral methods are a class of methods for solving partial differential equations (PDEs)
or partial integrodifferential equations (PIDEs) using the Fourier transform. Numerous op-
tion valuation problems in quantitative finance can be formulated as PDEs or PIDEs. As
a result, spectral methods can be applied to the valuation of options. This paper investi-
gates the application of a Fourier space timestepping (FST) method in option valuation.
Wraparound errors that affect spectral methods are studied intensively.
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Chapter 1

Introduction

Complex structured products and exotic derivatives have become increasingly common in
the financial markets. Practitioners require fast and accurate prices and sensitivities when
valuing and hedging these products. Increasing complexity in financial models and con-
tracts has led to a demand for efficient computational methods in modelling. Furthermore,
since most vanilla options traded in markets are American options and practical pricing
and hedging algorithms must be able to calibrate to vanilla options, fast and accurate
methods of valuing American options can be extremely useful.

An option is a financial instrument that gives the holder the right but not the obligation
to enter into a transaction by a specific date at a specific price. The specified date is known
as the expiry or maturity. The asset on which the transaction is specified is known as the
underlying. The price at which the holder may choose to transact is known as the exercise
or strike price. An option that gives the holder the right to buy an asset is known as a call
option whereas one that gives the holder the right to sell an asset is known as a put option.
American options may be exercised at any point of time until expiry whereas European
options may only be exercised at expiry. Besides American and European options, there
arc more complicated options that are often known as exotic options. For example, the
payoff of an Asian option is stipulated as some average of the underlying prices over a
certain period. The payoff of a lookback option depends on the minimum or maximum
price over a given period. Barrier options can become active or worthless if the price of
the underlying asset reaches a specified value prior to maturity. Asian options, lookbacks,
and barrier options are a few examples of exotic options.

Using replicating portfolios and risk-neutral valuation, it can be shown that the value
of any European option can be written as the expected value of its discounted payoff. Any
one of various numerical methods can then be applied to determine the price of the option.
These include numerical integration, Monte Carlo simulation, and direct numerical solu-
tion of the corresponding partial differential equation (PDE) or partial integro-differential



equation (PIDE).

The pricing of various financial options can be modelled as a PDE or PIDE. Black,
Scholes and Merton (BSM) demonstrated that by assuming that asset prices follow a
geometric Brownian motion (GBM) and using a replicating portfolio strategy the problem
of pricing financial options can be reduced to that of solving a PDE. Specifically, the
Black Scholes Merton model is equivalent to solving a second-order parabolic PDE in two
independent variables, namely asset price and time. The PDE can be used to price path-
dependent options by introducing early exercise constraints or changing terminal conditions
or boundary conditions.

However, assuming that asset prices follow a GBM as per the Black Scholes Merton
model in pricing options leads to inconsistencies with observed market prices, such as the
implied volatility smile. Three main lines of research attempt to remove pricing biases.
One line of research aims to model correlations between prices and volatility [7, 9, 5, 13, 21].
A second line of research models volatility as a continuous time stochastic process [12] or
assumes volatility undergoes regime changes [20]. A third line of research includes jumps
in the price process leading to jump diffusion models such as the Merton model [19, 17].
Each of these three lines of research has its own advantages and disadvantages. All three
approaches aim to resolve different aspects of the implied volatility surface.

Jackson et al. in their paper focus on pricing options where the underlying assets
follow a Levy process. They introduce a numerical method using the Fourier transform
for solving the pricing PIDE. They test their algorithm on various European and path-
dependent options and aim to improve the convergence order for American options via a
penalty method [14]. They also incorporate regime changes into their model.

PDEs and PIDEs can be solved numerically using a variety of methods, including finite
difference schemes and spectral methods. Spectral methods involve applying a Fourier
tranform to the original equation to convert it into a set of ordinary differential equations
(ODEs) in Fourier space, solving the system of ODEs in Fourier space, and applying an
inverse transform to obtain the solution to the PDE or PIDE in the original space.

Under the BSM model the option pricing problem is reduced to solving a PDE in two
underlying variables, namely asset price and time. Under jump diffusion models the option
pricing problem involves solving a PIDE with a non-local integral term. While a diverse
array of finite difference methods for solving PIDEs have been proposed in literature, all
of these methods handle the diffusion and integral terms of the PIDE separately. They
also require several approximations. For instance, small jumps in the infinite activity Levy
process are approximated by a diffusion and incorporated into the diffusion term. The
integral term must be localized so that large jumps are truncated, assumptions must be
made regarding the behaviour of the option outside the solution domain, and the diffusion
and integral terms are often treated separately so that function values must be interpo-
lated between the two grids in order to compute the convolution term. As a result, finite



difference methods for option pricing under jump models, particularly for pricing path-
dependent options, can be significantly complex and hence susceptible to accuracy and
stability issues.

One solution to the accuracy and stability issues is provided by Wang, Wan and Forsyth
[24]. They develop an implicit discretization method for pricing American options when
the underlying asset follows an infinite activity Levy process. They obtain quadratic con-
vergence for processes of finite variation. Wang, Wan, and Forsyth also obtain better than
first-order accuracy for infinite variation processes. They treat the jump component near
a log jump size of zero using a Taylor approximation and apply a semi-Lagrangian scheme
to the drift term of the stochastic process. They solve the PIDE using a preconditioned
BiCGSTAB method combined with a discrete Fourier transform, and prove the stability
and monotonicity of fully implicit timestepping.

Jackson et al. propose a different solution for pricing options under a general Levy
process such as a Merton jump diffusion or CGMY process. They present a Fourier space
timestepping (FST) algorithm for option pricing under a Levy process with and without
regime changes [14]. The algorithm utilizes Fourier transforms to transform the PIDE into
Fourier space.

The FST algorithm has several significant advantages in pricing options. By applying
the Fourier transform to the PDE or PIDE one can obtain a linear system of ordinary
differential equations (ODEs), because the characteristic exponent of an independent in-
crement stochastic process can be factored out of the Fourier transform of the PIDE.
The Levy-Khintchine formula provides a closed form for the characteristic exponents of
all independent increment stochastic processes, so the FST method can be used to price
contingent claims on any exponential-Levy price process without modifying the algorithm,
even in cases where an explicit formulation of the probability density function of the un-
derlying stochastic process does not exist. Moreover, he FST algorithm treats the jump
and diffusion terms in a symmetric manner and avoids any strong assumptions on the
option price outside the restricted domain. It can be extended and applied to the pricing
of multidimensional and exotic path dependent options.

The FST algorithm can generate option prices for a range of spots in a single time
step for European options and other path independent options. It can easily be applied
to non-standard payouts. It can handle American and barrier features in exotic path
dependent options and produce exact results between monitoring times. Unlike finite
difference methods, it can project prices between monitoring times in one step and hence
does not require timestepping between monitoring times.

A method similar to the FST algorithm was developed simultaneously by Lord et al.
and called Convolution [16]. Lord et al. use the convolution representation of the PDE or
PIDE to derive an option pricing method. Jackson et al. show that their FST algorithm



can be used to derive an analogous penalty method for American options and the method
can be extended to a regime-switching setting [14]. They demonstrate through numerical
experiments that when applied to single-asset options, the order of convergence of the FST
algorithm is quadratic in space and linear in time.

Spectral methods are usually applicable on a strictly periodic domain. Since the price
of the underlying security does not constitute a periodic domain, spectral methods should
not be directly applicable to option pricing, particularly at the boundaries. Applying a
Fourier transform to option pricing involves implicitly assuming that the domain can be
converted into a periodic domain by concatenating it to itself repeatedly to the left and
right. The period of the new periodic domain is then the length of the original domain, or
Smaz — Smin- Using a truncated finite discrete grid to represent a price domain that is in
reality infinite and continuous leads to wraparound errors near the boundaries.

The principal aims of this paper are as follows:

e Use a Fourier transform approach to derive the solution to the European and Amer-
ican option pricing problems under the Black Scholes Merton model and the Merton
jump diffusion model.

e Implement the Fourier space timestepping (FST) method described by Jackson et al.
in [14] and verify that the results correspond to those of Jackson et al.

e Investigate any adverse effects of wraparound errors in the FST method and suggest
alternatives.



Chapter 2

Analytical Solution

2.1 Black Scholes Merton Model

When using the Black Scholes Merton model, we assume that the underlying asset price
follows a geometric Brownian motion (GBM). The stochastic process for the underlying
asset price S can be written as

% = pdt + odZ (2.1)

where p is the drift parameter and o is the diffusion parameter. Using replicating portfolios
and risk-neutral valuation and applying Ito’s Lemma to the above stochastic process as
described by Black and Scholes [1] yields the Black Scholes Merton option pricing partial
differential equation (PDE)

Vi + %UQSQVSS +7SVs —rV = 0. (2.2)
The pricing PDE can be expressed concisely using operator notation. Let
L[V] = %0282‘/55 +7SVg — V. (2.3)
Then we have the following PDE:
Vi + L[V]=0. (2.4)

where V' is the option value, S is the underlying asset price, ¢ is time, 7 is the interest rate,
and o is the volatility. We also have the terminal condition specified by the option payoft
at maturity:

V(T,S) = ¢(S). (2.5)



2.2 Merton Jump Diffusion Model

Continuous models of asset price behaviour such as GBM typically lead to a complete
market or a market that can be made complete by adding a few assets. In a complete
market, every terminal payoff can be replicated exactly using portfolios of traded assets.

A more realistic model of asset price behaviour can be obtained by introducing jumps
into the stochastic process of asset prices in addition to diffusion and drift. The earliest
such jump diffusion model was introduced by Merton in 1976 [19].

Merton proposed a log-normal jump diffusion model, where the logarithm of the jump
size is assumed to be normally distributed. There are other kinds of jump diffusion models
such as double-exponential jump diffusions proposed by Kou in [15] and jump diffusions
with a mixture of independent jumps; however, they are outside the scope of this paper.
It is also possible to formulate stochastic volatility models that assume volatility itself is
random and volatile. The most popular of these is the square root model developed by
Heston [12].

Jump diffusion models have recently become popular for modelling asset price dynamics
for several important reasons. The asset price process in a continuous time model such as
the Black Scholes Merton model locally behaves like a Brownian motion, so that the price
moves by a large amount over a short period with a very low probability. Such a model
leads to option prices of short term out of the money options that are significantly lower
than those observed in real markets. If jumps are added to asset prices, however, then even
with a very short time to maturity, there is a non-trivial probability of the option being in
the money after a sudden change in the asset price. Consequently, option prices obtained
using a jump diffusion model arc more consistent with observed market prices of the same
options.

Furthermore, since continuous time models of asset prices lead to complete markets
in which every payoff can be replicated using traded assets, options seem like redundant
assets. In such a case even the existence of traded options becomes a puzzle. In real
markets, however, there are jumps in asset prices, so perfect hedging of market positions
becomes impossible. Options then allow market participants to hedge market positions
that cannot be hedged by solely using the underlying assets. Jumps in asset prices enable
the quantification of the risk of sudden asset price movements over short time intervals for
risk management, a feature notably absent from the standard Black Scholes Merton model.

The Merton jump diffusion model incorporates jumps into the price process of the
underlying asset via a Poisson process. It has drift and diffusion components similar to
a geometric Brownian motion. Additionally, it contains a compound Poisson process to
model jumps. The Poisson process is independent of the Brownian motion. The stochastic



process for the underlying asset price S can be written as

d
?S = udt + odZ + (n — 1)dq (2.6)

where g is the drift parameter and o is the volatility of the diffusion in the Brownian
motion part of the process, n — 1 is an impulse function, dZ is the increment of a standard
Wiener process and dg is the increment of a Poisson process that is independent of the
Brownian motion.

If X\ is the Poisson arrival intensity then dg = 0 with probability 1 — Adt and dq = 1
with probability Adt. The impulse function n — 1 produces a jump in the asset price from
S to Sn. The expected relative jump size is denoted by k = E(n — 1).

If V(S,t) is the value of a contingent claim on the underlying asset price S at time ¢
then using replicating portfolios and risk-neutral valuation and applying Ito’s Lemma, it
can be shown that V follows the partial integrodifferential equation (PIDE)

1 oo
Vi+ 50252\/55 + (r—Ax)SVs — 1V + ()\/ V(Sn)g(n)dn — /\V> =0 (2.7)
0

where t is the time, r is the continuously compounded risk-free interest rate, and g(n) is
the probability density function of the jump amplitude. In the Merton model, the jump
amplitude has a log-normal distribution. The PIDE describing the dynamics of V' can be
rewritten as

1 o0
Vi+ 5025%5 + (r — A&)SVg — (r + ANV + )\/ V(Sn)g(n)dn = 0. (2.8)
0

The terminal condition is specified by the payoff at maturity and is
V(T,S) = 6(S). (2.9

This PIDE is similar to the Black Scholes Merton PDE in equation 2.2 with an additional
correlation integral term. In fact, setting the Poisson arrival intensity A equal to zero
effectively removes jumps from the stochastic process and yields the Black Scholes Merton
PDE of the previous section. Hence the Black Scholes Merton model can be seen as a
special case of the Merton jump diffusion model in the absence of jumps. The PIDE
formulation described in equation 2.8 is as described by d’Halluin et al. [8].

2.3 Fourier transform

The one-dimensional Fourier transform of a function f(x) is defined as

F(@) b = fik) = <= [ flape-tear (2.10)



The one-dimensional inverse Fourier transform of a function f(x) is defined as
A 1 A .
FHf(k)(x) = f(x :—/ k)e™* dk: 2.11
(f(k))(x) = f(x) Nors ) (2.11)

The Fourier transform of the n'* derivative of a function f can be calculated as

F (™) (k) = (ik)"F ((f(2)) (k) (2.12)

In other words, differentiation in real space corresponds to multiplication in frequency
space.

2.4 Convolution theorem

The convolution theorem provides one property of the Fourier transform that is useful
in option pricing. It states that the Fourier transform of the convolution product of two
functions f and ¢ is equal to the product of the Fourier transforms of f and g. Let f *x g
denote the convolution product of f and g, then

1
x¢g)(r) = — T — d 2.13
(= 9)w) = = [ Fle= oty 213
and the Fourier transform of the convolution product is

F(f*g)=F(f)F(9)- (2.14)

2.5 Solving the PIDE analytically

We first attempt to solve the Merton jump diffusion PIDE analytically. A solution to the
Merton jump diffusion PIDE also provides a solution to the Black Scholes Merton PDE
when the latter is viewed as a special case of the former. Within this chapter, F[V] is used
to denote the Fourier transform of V. In order to solve the Merton jump diffusion PIDE
analytically, we will take the following steps:

1. Log-transform the equation to obtain a constant coefficient PIDE.

2. Apply a Fourier transform to the PIDE to obtain a system of ordinary differential
equations (ODE).

3. Apply an inverse Fourier transform to the solution.



2.5.1 Obtaining constant coefficients

The Merton jump diffusion PIDE does not, in general, have constant coefficients. However,
a logarithmic transform can be applied to convert this PIDE into a constant coefficient
PIDE. Since S follows a geometric Brownian motion, then x = log S follows a standard
Brownian motion. Partial derivatives with respect to S need to be determined in terms of
partial derivatives with respect to = in order to implement a change of variable. Applying
the chain rule yields

Vg = eV, (2.15)
and
Vog =€ (Vi — Va). (2.16)

The Merton jump diffusion PIDE is similar to the Black Scholes Merton PDE discussed
previously with the additional correlation integral term

/OOO V(Sn)g(n)dn. (2.17)

Applying a logarithmic transform to the asset price S and jump amplitude 1 by setting
x =log S and y = logn, the integral term becomes

- T Vit ) f)dy (2.18)

—0o0

where, with some abuse of notation, f(y) = g(e¥)e¥ is the probability density of a jump of
amplitude y = logn and V(y) = V,4(e?). The integral in equation 2.18 is the correlation
product of V(y) and f(y) and can be written as

I'=V(y) ® f(y). (2.19)

The partial derivatives in equations 2.15 and 2.16 can substituted into the PIDE along
with S = e”, and the integral term can be replaced using equation 2.18 to yield a constant
coefficient PIDE. A change of variable from S to x and 7 to y with abuse of notation yields
the constant coefficient PIDE in x

o0

Vit 50%(Vea = Vo) 4 1(Va = V) + )\/ V(e +9)f(y)dy = 0 (2.20)

—0o0

with terminal condition

V(T,x) = ¢(x).



Since S follows the Merton jump diffusion model, 7 is log-normally distributed with mean
of jumps i and standard deviation of jumps . Consequently, y = logn follows the Normal
distribution with mean [ and standard deviation . Therefore f(y) is the probability
density function of the Normal distribution with mean j and standard deviation 6. The
probability density is then

~—p?

2 (2.21)

2.5.2 Applying the Fourier transform

A Fourier transform can be applied to equation 2.20 in order to resolve the spatial deriva-
tives on the right hand side. Taking spatial derivatives in real space is equivalent to
multiplication in Fourier space. For this section and subsequent sections, we will define

i=+/—1.

Taking the Fourier transform of the constant coefficient PIDE yields

FV) + 202 (F(Va) — F(V)) + 1(F (V) — FOV)) + F(V(y) © f(y)) = 0

2
F(V;) - %a%w?f(V) +iwF(V)) +r(iwF(V) = F(V)) + MF(V) - F(f)) =0
FV) + {m (7" - %&) R 7"] F(V)+ AFV) - F(f) = 0.

By the convolution theorem, the Fourier transform of the convolution of V(y) and f(y) is
equal to the product of the Fourier transforms of V' and f. The Fourier transform of the
probability density function f(x) can be computed as follows:

—(:1:—;1)2
2

Flfix) =Flpzme ] (2.22)

ore

o0 .
f(x)e—%m:):wdx
0o
o0
1

= / e 67(2;2}1)2 eI o
_ginototi _
The Fourier-transformed PIDE is then
F(V)+ L’w ( - %") - %WQUQ + A2 1) — | F(V) =0. (2.23)

10



2.5.3 Ordinary Differential Equations

Applying a Fourier transform to the constant coefficient PIDE in x produces the following
system of ordinary differential equations (ODE) parameterized by w:

FVi](t, w) + ¥(w)F[V](t,w) =0 (2.24)
FIVI(T,w) = Flg](w)
where
U(w) = iw (7" — %(72) — %wng + A (ei“w_%"z‘“2 — 1) — T (2.25)

Note that when the Poisson arrival rate of jumps A is zero we obtain the Black Scholes
Merton model and

U(w) = iw (r - 1&) _Ler oy, (2.26)

We can solve this system of ODEs by multiplying both sides of the equation by an integrat-
ing factor. We then write an expression for the solution of this system of ODEs in Fourier
space given the value of F[V](t,w) at time ty < T to yield the value at time #; < to:

FV](ty,w) = F[V](tg,w) - Y@t (g) (2.27)
FIVI(T,w) = Fp](w).

Note that we solve equation 2.2 backwards in real time. Taking the inverse Fourier trans-
form of the above equation produces

V(t, @) = FHFV](tz,w) - @20} (2) (2.28)
FIVI(T,w) = Flg](w).
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Chapter 3

Numerical Solution

The system of ODEs obtained analytically cannot, in general, be solved in closed form,
because an explicit analytic expression for the Fourier transform of the option payout may
not exist. Furthermore, path dependent features such as early exercise for American options
cannot be directly resolved using the analytical method in Fourier space. Specifically,
the American option pricing PIDE includes a non-linear term that cannot be handled
using an analytical Fourier method. Due to the difficulties encountered in attempting an
analytical solution to the Merton jump diffusion PIDE, we now attempt to solve the PIDE
numerically. Within this chapter, F[V] is used to denote the discrete Fourier transform
(DFT) of V.

In order to solve the Merton jump diffusion PIDE numerically, we will take the following
steps:

1. Log-transform the equation to obtain a constant coefficient PIDE in x = log S.
2. Discretize the PIDE in x to obtain an equation in z; fori =1,..., N.

3. Apply a DFT to the PIDE to obtain a system of discrete ordinary differential equa-
tions (ODEs).

4. Apply an Inverse Discrete Fourier Transform (IDFT) to the solution.

We begin with the log-transformed constant coefficient PIDE in x = log S that was
derived in equation 2.20 in the previous chapter:

1 o0
Vit 502 (Ve = Va) (Ve = V) 4 )\/ V(e +y) f(y)dy = 0 (3.1)
with terminal condition
V(T,z) = ¢(x).
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3.1 Grid selection and discretization

Pricing path dependent options requires a timestepping algorithm to enforce constraints,
impose boundary conditions, or optimize over a policy domain. The spatial and tem-
poral domain must be discretized and partitioned into a finite mesh for computation.
While Fourier techniques can be extended to multiple spatial dimensions, only the one-
dimensional case is examined in this paper.

The time and asset price domain can be truncated and written as the real asset price
space domain Q = [0, T] X [Zmin, Tmaz). 1t can be partitioned into the finite mesh {¢,,|m =
0,...M} x {x;]i =0,..N — 1} so that t,, = mAt, ; = Ty, + 1Az and At =T /M, Az =
(Tmaz — Tmin) /(N — 1), where x = log (5/Sp), and Sy is a user-specified scaling factor. We
use Sp = 100 in our experiments.

The time and frequency domain can similarly be truncated and written as 0= 0,77 x
[Winin, Wmaz)- It can then be partitioned into the finite mesh {¢,,|m = 0,..., M} x {w,|n =
0,...,N/2} where w, = nAw and Aw = 2w, /N. The maximum frequency is selected
to be equal to the Nyquist critical frequency, so wpee = ﬁ. Since V(t,z) is a real-
valued function, its Fourier transform is equal to the Fourier transform of its own complex
conjugate at all points in the domain F[V|(t, —w) = F[V](t,w). As a result, the frequency
grid needs only half as many points as the spatial grid, because the Fourier transform for

negative frequencies need not be computed.

Jackson et al. provide only heuristic guidelines for optimal grid selection [14]. These
are based on the Nyquist critical frequency. The Nyquist critical frequency implies a
relationship between the spatial and frequency grids that can be written as wiaz * (Tmaz —
Tmin) = N/2. The transformation to logarithmic variables is chosen so that the log-
transformed asset price domain is centered on x = 0. In order to meet this objective, it is
convenient to choose i, = —Tmar and therefore wyey © Tmar = N/4. The size of the real
spatial domain [Z,,,, Tmaz] Needs to be selected so that it is large enough to capture the
behaviour of the option value function, but small enough that the computed option price is
accurate around the centre of the grid. The frequency space, [0, W] likewise needs to be
selected large enough to capture high frequencies, but not so large as to cause inaccuracies
in computed option values. Jackson et al. estimate through numerical experiments that
Tmaz € [2, 5] works well for diffusion models with low volatility and short maturity, whereas
Tmaz € [4,8] works better for models with high volatility or a dominant jump component
[14].

Discretization on a finite grid involves truncation of the true spatial domain and intro-
duces discretization error into the numerical algorithm. While the real spatial domain of
(0, 00) is infinite, the domain used for pricing is the finite [Synin, Smaz], Where Sy, > 0 and
Smaz < 00. Asset price values less than S,,;, and greater than S,,,, on the true spatial
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domain are not represented on the truncated discrete spatial domain. The discrete spatial
domain is further transformed using the change of variable x = log (S/S5(0)) in order to
work with a constant coefficient PDE.

3.2 Discrete Fourier transform

The discrete Fourier transform (DFT) can be defined in a manner analogous to the Fourier
transform. The one-dimensional Fourier transform of a discrete function z,, is defined as

N—-1
Xp=Y zpe ¥ k=0,...,N-1. (3.2)
n=0

The one-dimensional inverse discrete Fourier transform (IDFT) of a function X, is defined
as

Xpe v n=0,...,N—1. (3.3)

Let f = [fo,..., fn_1] be a discrete function defined on a finite discrete grid. With some
abuse of notation, the DFT of the m!* discrete derivative of the discrete function f can be
calculated as

FIFNk) = (k)" FLF1(k) (3.4)

In other words, differentiation in real space corresponds to multiplication in frequency
space for the discrete Fourier transform [23].

3.3 Discretizing the x variable

In order to apply a DFT to the PIDE we must first discretize it in terms of the x variable.
If we let
1

£V) = 502 WVer = V) 1V = V)42 [ Vi 4 0) 1)y (35)

then we can discretize the PIDE in the spatial variable = by applying the transformation
L— Eh’(l’o, .. 7.TN_1).

Let D" represent the discrete differentiation operator for the first partial derivative with
respect to the spatial variable x and let D" represent the discrete differentiation operator
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for the second partial derivative with respect to the spatial variable x. The option value
V' at grid node z; and time ¢ is denoted by V; = V(¢,2;). The discretized form of the
operator £(V) is denoted by £"(V}).

We set,
1
£4(V;) = 50X (D, V; = DIV;) + r(DIV; = Vi) + A, (36)
where
k=N/2
Li=1(jAz) = Y Vifidy+O0((Ay)?) (3.7)
k=—N/2+1

is the discretization of the correlation integral following the method used by d’Halluin et
al. [8]. It is assumed that z; = jAz and Ay = Ax.

The discretized PIDE can then be written as the following set of equations:

1
DV, + 50*(DL,V; = DIV;) +r(DAV; = ;) + AL, = 0. (3.8)

3.4 Discrete Fourier transform of PIDE

A DFT can be applied to equation 2.20 in order to facilitate the discretization of the spatial
derivatives on the right hand side. Taking spatial derivatives in real space is equivalent to
multiplication in Fourier space. Moreover, the DFT can be implemented efficiently using
the Fast Fourier Transform (FFT) algorithm.

Taking the DF'T of the constant coefficient PIDE yields

F(V;) + 2?(F(DL,V;) - F(DpVi) +r(F(DyV;) = F(V)) + F(V(y) ® f(y)) =0

D) zx "]

F(V) — 50" @ F(V) + ienF(V)) 4 r{iwnF(V) = F(V) + AF(V) - F(1) = 0
F(Vy) + {mn (7" - %#) — %wiaQ - r} FV)+NF(WV)-F(f) =0
forj=0,...,N—1landn=20,...,N/2—1.

As in the analytic continuous case, by the convolution theorem, the DFT of the convo-
lution of V(y) and f(y) is equal to the product of the DFTs of V' and f. The DFT of the
probability density function f(z;) is given by

2,,2

Flflawy) =emenaoei -1
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for j =0,...,N —1and n = 0,...,N/2 — 1 analogous to the continuous case in the
analytical solution. The PIDE after applying the DFT is

1 1 . 1 2 o
FVp) + {iwn (r — 502> — 5%2102 + A2 — 1) —r| F(V)=0 (3.9)

for j=0,...,N—1and n=0,...,N/2 — 1. Note that if V= F (V) then we can write
Vi = F(V,) and solve a system of ODEs in frequency space.

3.5 Ordinary Differential Equations

Applying a DFT to the constant coefficient PIDE in z; produces the following system of
discrete ordinary differential equations (ODE) parameterized by w;,:
[(FV))e(t,wn) + VU (w,) F[V](t,w,) =0 (3.10)
FIVIT,wn) = Flo](wn)
where
: L, Lo ipwn — 202w
V(wy,) =iw, | 7 — 30 )~ 5Wno + A (e“ nT27 Wn 1) -7 (3.11)
form=0,...,N/2 —1.
Note that as in the continuous case, when the Poisson arrival rate of jumps A = 0 we
obtain the Black Scholes Merton model and
1 1
U(w,) =iw, (17— 0% | — Zwo? — 7. (3.12)
2 2
We can write an expression for the solution of this system of ODEs given the value of
FV](t,wy) at time to < T to yield the value at time t; < to:
FVI(ty,w,) = FV](ta, w,) - em(w")(tr“)(xj). (3.13)
forj=0,...,N—landn=0,...,N/2—1.
Taking the inverse Fourier transform of the above equation produces
V(tl, .%’j) = fﬁl{./_'.[V} (tz,wn) : B\P(wn)(tzitl)}(l’j) (314)
forj=0,...,N—landn=0,...,N/2—-1.

Hence, for an option without path dependent features written on an asset that follows
the Merton jump diffusion process, it is possible to find the value of the option at a specified
time ¢; given the value at a later time t,. In particular, this method can be used to find
the option value at ¢ = 0 given the payoff at ¢ = T. The method can be formalized as the
Fourier Space Timestepping (FST) algorithm developed by Jackson et al. [14].
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3.6 Fourier Space Timestepping Algorithm

Let V;™ = V(t,,, z;) represent the option value V(t,x) at the nodes on the partition of 2
in the real spatial domain and V™ = V (t,,,w,) represent F[V](t,w) at the nodes on the

partition of €2 in the frequency domain. V™ can be expressed as the vector [V, ..., V"]
and V'™ can be expressed as the vector [Vj", ..., ](,’}271]. The frequency domain prices can

be obtained from the spatial domain prices by applying the DFT to the spatial domain
prices. This suggests the following procedure as described by Jackson et al. in [14]:

N-1
Vit = FIV](tm,wn) = Y V(tm, ax)e ™ Az (3.15)

n
k=0
N-1
— o~ WnTmin A p § Vkme—mk/N
k=0

N-1

=, E ‘/Zne—znk:/N

k=0
=an [FIV™],

where a,, = e7“n*min Ag and [F[V™]], represents the nth component of the DFT of the

vector V™.

Spatial domain prices can be computed from frequency domain prices in an analogous
manner using the inverse discrete Fourier transform (IDFT). We denote the IDFT by F !
and use it to compute spatial domain prices from frequency domain prices as follows:

ym = f—l[a—l-f/m]] . (3.16)

n
n

Note that if V' = F(V) then V;, = F(V;) in this notation. By combining the conversions
between the spatial and frequency domains in equations 3.15 and 3.16 with the transformed
PDE or PIDE from equation 3.9 in the previous section, we obtain a timestepping scheme
in the frequency domain. Specifically, one step backward in time can be computed as
follows:

o T (3.17)
—F oL v VA
=F o™t a- FIV™] - V2]
=FHF[V™] - e¥2.
Since « cancels in the above equation, it can be omitted from the numerical computation.

This algorithm can easily be extended to a multidimensional setting.
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3.7 FST method for European options

The FST algorithm provides a method that is valid for any timestep size At. Truncation
of the spatial and frequency domain contribute to discretization error. Path independent
options such as European options can hence be priced in a single time step using the FST
method as follows:

1. Set M =1 and V! = ¢(S5(0)e”).
2. Step back in time with VO = FHF[V1] - V@A),

In the above method, ¥(w) depends on the stochastic process followed by the under-
lying asset. In previous sections it was determined for the Black Scholes Merton model
and the Merton jump diffusion model. This method does not require timestepping and
is hence computationally efficient compared to spatial PIDE methods. Numerical exper-
iments indicate that the method achieves quadratic convergence, due to the error in the
spatial discretization only.

3.8 FST penalty method for American options

The Fourier space timestepping method can be applied to price various options under a
variety of different stochastic processes for the underlying asset. In particular, it can be
extended for pricing American options. The American option pricing problem is a simple
example of a Hamilton-Jacobi-Bellman PDE and as such can be treated as a problem in
stochastic optimal control. Forsyth and Vetzal (2002) developed a penalty method for
pricing American options [11]. The FST penalty method combines the penalty method of
Forsyth and Vetzal with Fourier space timestepping. The penalty algorithm applies the
American constraint implicitly through penalty iterations. It has several advantages over
traditional numerical PDE methods of pricing American options that apply the American
constraint explicitly. It achieves quadratic convergence in space and time. It can also be
easily extended to multi-asset options. The American pricing problem is written as a PIDE
by appending a penalty term. In order to apply the Fourier space timestepping method to
the American option pricing problem, one must carry out the following steps:

1. Rewrite the pricing PIDE as a penalty equation.
2. Log-transform the penalty PIDE.

3. Apply Fourier Space Timestepping.
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At each timestep:

e Apply a DFT and IDFT to the PIDE to obtain a nonlinear system of equations.
e Approximate the integration of equations in time using a first order method.

e Run penalty iterations to solve the discrete equations using DFT/IDFT at each
iteration.

3.8.1 Penalty equation

The American option pricing problem is commonly expressed as a linear complementarity
problem (LCP) as follows:

Vi +L[V] <0
V-V <0
(V*=V)(Vi+ L[V]) =0

where

LV] = %0‘252‘/55 + (r—Ae)SVg — (r + )V + A /OOO V(Sn)g(n)dn. (3.18)

This pricing problem can be expressed more concisely using the penalty equation
Vi+ LIV]+60P(V)=0 (3.19)

where P(V') = max{V* — V,0} is the penalty function, 6 is a penalty coefficient, all other
variables are as before, and the terminal condition is given by the payoff function

V(T, ) = 6(S). (3.20)

3.8.2 Obtaining constant coefficients

A logarithmic transform can be applied to convert the penalty PIDE. Since S follows a
geometric Brownian motion, then x = log S follows a standard Brownian motion. As
before, partial derivatives with respect to S need to be determined in terms of partial
derivatives with respect to x in order to implement a change of variable. The first and
second partial derivatives Vg and Vgg can be determined as in equations 2.15 and 2.16, so
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that a change of variable from S to z and 7 to y with some abuse of notation yields the
constant coefficient PIDE

1 oo
Vi 502 (Vie = Vo) 40V = V) # 0 [ Viesp)f)dy+0P1) =0 (321
with terminal condition
V(T,z) = ¢(x).

3.8.3 Discretizing the x variable

In order to apply a discrete Fourier transform to the penalty PIDE we must discretize it
in terms of the x variable.

If we let

oo

LV(1,2)) = 50% (Vs — Vi) (Vi = V) + ) / Ve + ) fwdy  (3.22)

—0o0

then we can discretize the PIDE in the spatial variable x by applying the transformation
L — L"(zg,...zx_1) as in the simpler European option case.

In the American option case we can write the penalty PIDE as

Vi+ L(V(t,z))+0P(V(t,z)) =0. (3.23)

We set

1

£4(V;) = 503 (DEV; = DAV) + 1(DEV; = V;) 4+ Al (3.24)

where

k=N/2
L=1(Az)= > Vifidy +O0((Ay)?) (3.25)
k=—N/2+1

as before. The discretization of the correlation integral follows the method used by
d’Halluin et al. [8]. It is assumed that z; = jAz and Ay = Ax.

The discretized penalty PIDE is then

Vit,w;) + LMV (t,25)) + 0PV (t,2;)) = 0 (3.26)
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3.8.4 Discrete Fourier Transform of penalty PIDE

A DFT can be applied to equation 3.26 in order to facilitate the discretization of the spatial
derivatives with respect to x.

Taking the DFT of the constant coefficient PIDE yields

FO) + [zw <7~ - %&)

1 . 1.2 2
_ §wi02 + A2 — 1) — | F(V) + 0F(P(V)) =

(3.27)
forj=0,...,N—landn=0,...,N/2—-1.

Note that there is no simple expression for F(P(V')) due to the nonlinearity introduced
through the max operator.

3.8.5 Penalty ODE

Applying a DFT to the constant coefficient PIDE in z; produces the following system of
discrete ordinary differential equations (ODE) parameterized by wy,:

[FW)]e(t,wn) + ¥ (wn) FIV](t, wy) + 0F(P(V(t,z;))) =0 (3.28)
with terminal condition
FIVIT, wn) = Flo)(wn)

where

1 1 .
U(wp) = iwy, (r - 5&) — Swio? 4 (erenirtei 1) =y (3.29)

forn=0,...,N/2—1.

3.8.6 Penalty ODE Solution

We can re-arrange the penalty ODE and write it as

Vi(t,wn) + U(w,)V(t,wy) = —0F[P(V(t, x;))] (3.30)

where V = F [V] as before. Multiplying both sides of the equation by the integrating factor
e‘I’(wn)t ylelds

[V (t,wn)e? @Y, = —ge¥ @ F[P(V (L, ;). (3.31)
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Let V™ = V(t+At) and V™! = V(). Let t = 0 for the sake of simplicity. Integrating
equation 3.31 backwards in time from ¢t = At to t = 0 yields:

0
ymol _pmeblen)at — 0/ e@(w")tf[P(V(t, z;))]dt (3.32)
At
0
~—OF[P(V™ ) [ e¥entar
At
U(wn)At _ 1
—0F PV [ ) .
P (S )
We obtain the equation:
‘A/mfl _ Vm U (wy, ) At + ef[P(vmfl)] G\I/(wn)At -1 (3 33)
=V"e o) : :
Applying the IDFT yields the following:
ymet = Frafimerenat) g o[ A (S 330
B U (wy) ' '

Since the ODE in equation 3.33 is non-linear in V', it is difficult to solve through direct
analytical methods. Instead it can be solved using an iteration scheme in which the fixed
point of the scheme is the solution to the ODE. In the following iteration scheme, (V)*)
is the kth iterate of V™. The iterative equation can be expressed as:

e\Il(wn)At -1
m—1\(k) _ yym—1\(0) —1 m—1\(k—1)
(V=W =)W + 0F [f[P((V )] <—\Il(w,,,,) ﬂ . (3.35)

The ODE in discrete Fourier space can be solved for V) by taking V*~Y computed
in the prior iteration. The Fourier transform of the penalty term from the prior iteration
is the source for computation at each iteration. The initial value V© to seed the iteration
scheme is found using a timestep of the standard FST method:

(VO = FrYmet et = FRF[Vmjet e, (3:36)

3.9 Pricing at S=0

One important case in which it is useful to be able to compute the option price is when
the price of the underlying asset reaches zero. This can happen, for example, when the
underlying asset is the stock of a company filing for bankruptcy. While the Black Scholes
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Merton model does not allow for this possibility, the Merton jump diffusion model may
under certain circumstances produce a jump to zero. A jump to default process can also
result in a discontinuous jump of the asset price to zero [10]. We will assume that the
stock pays no dividends. The payoff of a call option with strike price K > 0 written on
the stock can be calculated as max{S — K,0} When the price of a stock reaches zero, such
a call option, whether European or American, becomes worthless and its price should also
be zero. On the other hand, the payoff of a put option with strike price K > 0 written on
the stock can be calculated as max{S — K, 0}.

Since the FST method uses the log-transform = = log (S/.5(0)) to create the real spatial
grid and log 0 is undefined, then we must have S,,;,, > 0 and the asset price S = 0 is not
represented on the pricing grid. As a result, one drawback of the FST algorithm is that
it cannot directly price an option at S = 0. Approximations to the price at S = 0 can be
obtained by expanding the grid and pricing at arbitrarily small values of S,,;,.
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Chapter 4

Numerical Experiments

A series of numerical experiments were conducted to test the efficacy of spectral methods in
pricing financial options. The first set of experiments was designed to test the convergence
of the FST algorithms for American and European options and compare the results with
those published by Jackson et al. in [14]. The second set of experiments was designed to
test the effects of aliasing on option prices when using the FST algorithm.

4.1 Convergence of the FST Algorithm

The FST algorithm was implemented and run for European and American put options.
Convergence studies were conducted and the results are presented in tables below. The
FST algorithm achieved quadratic convergence for European put options under the Black
Scholes Merton model. Results are summarized in Table 4.1. For American put options,
the FST algorithm achieved nearly quadratic convergence as seen from the log(ratio) of
close to 2. Results are summarized in Table 4.2. Quadratic convergence was also obtained
when applying the FST algorithm to European put option pricing under the Merton jump
diffusion model, and the results of these experiments are summarized in Table 4.3.
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Table 4.1: Convergence results for pricing of a European put (S = 100.0, K = 100.0, T =
0.25) under Black Scholes Merton model (r = 0.10, ¢ = 0.2, ¢ = 0)

N Value  Change log,(ratio)

2,048 2.827214

4,096 2.826573 0.006414

8,192 2.826413 0.001600  2.003136
16,384 2.826373 0.000399  2.000989
32,768  2.826363 0.000099  2.000350

Table 4.2: Convergence results for pricing of an American put (S = 100.0, K = 100.0,
T = 0.25) under Black Scholes Merton model (r = 0.10, 0 = 0.2, ¢ = 0)

N Value  Change log,(ratio)

2,048 3.070062

4,096 3.069671 0.003909

8,192 3.069576 0.000951 2.040124
16,384 3.069552 0.000240 1.988379
32,768 3.069546 0.000065 1.892049
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Table 4.3: Convergence results for pricing of a European put (S = 100.0, K = 100.0,
T = 10) under Merton jump diffusion model (o = 0.15, A = 0.1, g = -1.08, 6 = 0.4,
r = 0.05, ¢ = 0.02).

N Value Change log,(ratio)

2,048 18.00339796

4,096 18.00357084 0.0001729

8,192 18.00357084 0.0000432 2.0008
16,384 18.00357084 0.0000108 2.0004
32,768 18.00357084 0.0000027 2.0002
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4.2 Wraparound error

Representing an infinite and continuous asset price domain using a finite and discrete grid
leads to truncation error. Moreover, the Fourier transform assumes a periodic domain,
whereas the real domain of asset prices is aperiodic. Applying a Fourier transform method
such as FST to asset prices therefore causes values at the far right end of the domain,
in other words, the asset prices S such that S >> 5,4, to wrap around and produce
spurious option prices at the extreme left hand side of the grid. Likewise, the Fourier
transform-based method causes asset prices at the extreme left end of the domain, in other
words, S such that S << S, to wrap around and produce spurious option prices at the
far right hand side of the grid. This phenomenon results in wraparound error and yields
incorrect option prices at the extreme left and right sides of the asset price grid.

4.3 Studying wraparound error

To study the effects of wraparound error on option pricing, the FST algorithm was run
for European and American options under the Black Scholes Merton model and European
options under the Merton Jump diffusion model. The results were compared with other
standard methods of option pricing such as closed form solutions and finite difference
methods. The FST algorithm was run with .. = 7.5 and Z,n = —Tmee = —7.5 in all
cases in this section.

For European options under the Black Scholes Merton model, the method used as a
basis for comparison was the closed-form solution obtained using the blsprice() function
in Matlab. For American options under the Black Scholes Merton model, the comparative
solution was generated using an implementation of the penalty method of Forsyth and
Vetzal. For European options under the Merton jump diffusion model, the comparative
algorithm was a closed-form solution implemented in Matlab.

4.3.1 European options under Black Scholes Merton model

Significant wraparound error was observed for European put options under the Black Sc-
holes Merton model. Wraparound error was prominent at the left boundary of the domain
near S = 0. Prices obtained using Fourier space timestepping matched those generated
using the blsprice() function for values of S above 0.5. Results obtained from running
numerical experiments on European put options under the Black Scholes Merton model
are summarized in Table 4.4.

Significant wraparound error was also observed for European call options under the
Black Scholes Merton model. Wraparound error was prominent at the left boundary of
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the domain near S = 0. Prices obtained using Fourier space timestepping matched those
generated using the blsprice() function for values of S above approximately 0.2. Results
obtained from running numerical experiments on European call options under the Black
Scholes Merton model are summarized in table 4.5.

Table 4.4: Wraparound error effects for pricing of a European put (S = 100.0, K = 100.0,
T = 0.25, At = 0.25, number of nodes N = 32, 768) under Black Scholes Merton model (r
=0.10,0 =0.2, g = 0)

S (asset price) Option price using FST  Option price using blsprice

0.01 -47.5052 99.9161
0.10 97.4310 99.1806
1 96.5310 96.5310

10 87.5310 87.5310
100 2.8264 2.8264
1000 0.0000 0.0000
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Table 4.5: Wraparound error effects for pricing of a European call (S = 100.0, K = 100.0,
T = 0.25, At = 0.25, number of nodes N = 32, 768) under Black Scholes Merton model (r
=0.10,0 =0.2, ¢ =0)

S (asset price) Option price using FST  Option price using blsprice

0.01 474,405.6755 0.0000
0.10 0.0001 0.0000
1 0.0000 0.0000

10 0.0000 0.0000
100 2.2954 5.2954
1000 902.4690 902.4690
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4.3.2 American options under Black Scholes Merton model

No wraparound error was observed for American put options under the Black Scholes
Merton model. Prices generated using Fourier space timestepping closely matched those
produced by a separately implemented penalty algorithm. The absence of wraparound
error was most likely due to the application of the American constraint through penalty
iterations at every timestep, which required transforming between Fourier space and real
space. Application of the American constraint prevented the accumulation of error. Results
obtained from running numerical experiments on American put options under the Black
Scholes Merton model are summarized in Table 4.6.

Table 4.6: Wraparound error effects for pricing of an American put (S = 100.0, K = 100.0,
T = 0.25, At = 1/128, number of nodes N = 32,768) under Black Scholes Merton model
(r=0.10,0 = 0.2, ¢ =0)

S (asset price) Option price using FST Option price using penalty method

0.01 99.9900 99.9900
0.10 99.9000 99.9000
1 99.0000 99.0000

10 90.0000 90.0000
100 3.0699 3.0699
1000 0.0000 0.0000

Significant wraparound error was observed for American call options under the Black
Scholes Merton model. Wraparound error was prominent at the left boundary of the
domain near S = 0. Prices obtained using Fourier space timestepping matched those
generated using a separately implemented penalty method for values of S above 0.2. Results
obtained from running numerical experiments on American call options under the Black
Scholes Merton model are summarized in Table 4.7.
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Table 4.7: Wraparound error effects for pricing of an American call (S = 100.0, K = 100.0,
T = 0.25, At = 1/128, number of nodes N = 32,768) under Black Scholes Merton model
(r=0.10,0 =0.2, ¢ =0)

S (asset price) Option price using FST Option price using penalty method

0.01 -2,180,209,174.8817 0.0000
0.10 0.00014 0.0000
1 0.0000 0.0000

10 0.0000 0.0000
100 5.2954 5.2953
1000 902.4690 902.4690
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4.3.3 European options under Merton jump diffusion model

Wraparound error was observed for European put options under the Merton jump diffusion
model. Wraparound error was prominent at the left boundary of the domain near S = 0.
Prices obtained using Fourier space timestepping approached those generated using the
closed-form solution for values of S above 5. However, for values of S as high as 50 the
prices were still differ from the closed-form solution by about a cent. Results obtained from
running numerical experiments on European put options under the Merton jump diffusion
model are summarized in Table 4.8.

Table 4.8: Wraparound error effects for pricing of a European put (S = 100.0, K = 100.0,
T = 10, At = 10, number of nodes N = 32,768) under the Merton jump diffusion model
(0 =0.15, A =0.1, 1 =-1.08, 6 = 04, r = 0.05, ¢ = 0.02)

S (asset price) Option price using FST  Option price using closed-form

0.01 16.3928 60.6431
0.10 42.8138 60.5531
1 07.9421 59.6531

10 50.5842 20.6661
100 15.4379 15.4403
1000 1.5586 1.5586

Significant wraparound error was also observed for European call options under the
Merton jump diffusion model. Wraparound error was prominent at the left boundary of
the domain near S = 0. Prices obtained using Fourier space timestepping approached
those generated using the closed-form solution for values of S above 200, so inaccurate
results were obtained for prices both above and below the strike price of 100. However, for
values of S as high as 500 the prices were still off by about 0.18. Results obtained from
running numerical experiments on European put options under the Merton jump diffusion
model are summarized in Table 4.9.
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Table 4.9: Wraparound error effects for pricing of a European call (S = 100.0, K = 100.0,
T = 10, At = 10, number of nodes N = 32,768) under the Merton jump diffusion model
(0 =0.15, A =0.1, p =-1.08, 6 = 0.4, r = 0.05, ¢ = 0.02)

S (asset price) Option price using FST  Option price using closed-form

0.01 31,425.6333 2.5841 x 10797
0.10 15,288.1945 9.6830 x 10736
1 1,711.5541 8.6619 x 10714

10 88.1405 1.3024 x 1072
100 57.4817 04.7873
1000 940.9614 940.9055
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4.4 Spatial grid expansion

One potential solution to the inaccuracies in option prices near the boundaries is to expand
the real space boundaries. Expansion of boundaries generally implies a trade off between
size of the pricing domain and accuracy of the option value generated near the strike price
of interest. While such an expansion of boundaries allows us to capture the behaviour of
the option value function over a greater domain, the accuracy of the option price in the
range of interest may be reduced. In the results of the previous section, the real space

boundaries were set at T, = 7.5 and T, = —Tmee = —7.5. If we instead augment
the boundaries to T,,., = 15.5 and X, = —Zmae = —15.5 then we obtain the following
results.

4.4.1 European options under Black Scholes Merton model with
Tmaz = 19.5

Substantially lower wraparound error was observed for European put options priced under
the Black Scholes Merton model using an expanded spatial grid as compared with those
priced on the original grid. Whereas prices diverged widely from the closed-form solution
in pricing with the original spatial grid, on the expanded grid no price differed from the
closed-form solution by more than 2.50. The closed-form solution was implemented using
the function blsprice(). All option prices generated for various asset price values were
positive and relatively close to true prices, but the level of accuracy obtained was not
satisfactory. Wraparound error for European put options likely persists due to the shape
of the put payoff function, which at S = 0 has an intercept equal to the strike price.
Moreover, unlike an American put option, the European put does not allow early exercise
and hence does not benefit from the correcting effect of the max function at each timestep.
Results obtained from running numerical experiments on European put options under the
Black Scholes Merton model on an expanded spatial grid are summarized in Table 4.10.
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Table 4.10: Wraparound error effects for pricing of a European put (S = 100.0, K = 100.0,
T = 0.25, At = 0.25, number of nodes N = 32, 768) under Black Scholes Merton model (r
=0.10, 0 = 0.2, ¢ = 0) with x4, = 15.5

S (asset price) Option price using FST  Option price using blsprice

0.01 97.5210 99.9161
0.10 97.4310 99.1806
1 96.5310 96.5310

10 87.5310 87.5310
100 2.8264 2.8264
1000 0.0000 0.0000
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No wraparound error was observed for European call options when pricing under
the Black Scholes Merton model using an expanded spatial grid. Prices thus obtained
very closely matched those generated using the closed-form solution implemented using
blsprice(). All option prices generated for various asset price values were positive and the
level of accuracy attained was satisfactory. Results obtained from running numerical ex-
periments on European call options under the Black Scholes Merton model on an expanded
spatial grid are summarized in Table 4.11.

Table 4.11: Wraparound error effects for pricing of a European call (S = 100.0, K = 100.0,
T = 0.25, At = 0.25, number of nodes N = 32, 768) under Black Scholes Merton model (r
=0.10, 0 = 0.2, ¢ = 0) with 2, = 15.5

S (asset price) Option price using FST  Option price using blsprice

0.01 0.0000 0.0000
0.10 0.0000 0.0000
1 0.0000 0.0000

10 0.0000 0.0000
100 5.2954 5.2954
1000 902.4690 902.4690
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4.4.2 American options under Black Scholes Merton model with
Tmaz = 15.D

There was no wraparound error observed for American put options on the original grid,
so they were not priced using an expanded grid since further reduction in error was not
required.

No lower wraparound error was observed for American call options under the Black
Scholes Merton model when using an expanded spatial grid. Prices obtained using Fourier
space timestepping approximately matched those generated using a separately implemented
penalty method. Results obtained from running numerical experiments on American call
options under the Black Scholes Merton model on an expanded spatial grid are summarized
in Table 4.12.

Table 4.12: Wraparound error effects for pricing of an American call (S = 100.0, K =
100.0, T = 0.25, At = 1/128, number of nodes N = 32, 768) under Black Scholes Merton
model (r = 0.10, 0 = 0.2, ¢ = 0) with x4, = 15.5

S (asset price) Option price using FST  Option price using penalty method

0.01 0.0000 0.0000
0.10 0.0000 0.0000
1 0.0000 0.0000

10 0.0000 0.0000
100 5.2954 5.2954
1000 902.4690 902.4690
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4.4.3 European options under Merton jump diffusion model with
Tmaz = 15.D

Substantially lower wraparound error was observed for European put options under the
Merton jump diffusion model using an expanded spatial grid. The expanded grid covers a
larger domain of asset prices and hence allows more accurate pricing of options, particu-
larly near the boundaries. Prices obtained using Fourier space timestepping differed from
those generated using the closed-form solution for values of S below 0.10. For S = 0.01
the difference was nearly 0.02. Results obtained from running numerical experiments on
European put options under the Merton jump diffusion model on an expanded spatial grid
arc summarized in Table 4.13.

Table 4.13: Wraparound error effects for pricing of a European put (S = 100.0, K = 100.0,
T = 10, At = 10, number of nodes N = 32,768) under the Merton jump diffusion model
(0 =0.15, A =0.1, 1 =-1.08, 6 = 0.4, r = 0.05, ¢ = 0) with x4, = 15.5

S (asset price) Option price using FST  Option price using closed-form

0.01 60.6269 60.6431
0.10 60.5527 60.5531
1 59.6531 59.6531

10 50.6661 00.6661
100 15.4404 15.4404
1000 1.5586 1.5586

Substantially lower wraparound error was observed for European call options priced
under the Merton jump diffusion model using an expanded spatial grid as compared with
those priced on the original grid. Whereas prices diverged widely from the closed-form
solution in pricing with the original spatial grid, the expanded grid ensured that no price
differed from the closed-form solution by more than 2.50. All option prices generated for
various asset price values were positive and relatively close to true prices, but large errors
remained and the level of accuracy obtained was not entirely satisfactory. Results obtained
from running numerical experiments on European call options under the Merton model on
an expanded spatial grid are summarized in Tables 4.14 and 4.14.
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Table 4.14: Wraparound error effects for pricing of a European call (S = 100.0, K = 100.0,
T = 10, At = 10, number of nodes N = 32,768) under the Merton jump diffusion model
(0 =0.15, A =0.1, 1 =-1.08, 6 = 0.4, r = 0.05, ¢ = 0)with z,,,, = 31.5

S (asset price) Option price using FST  Option price using closed-form

0.01 7.3568 x 1072 2.5841 x 10797
0.10 5.4435 x 1072 9.6830 x 10736
1 3.4758 x 1072 8.6619 x 10714

10 1.7560 x 103 1.3024 x 1072
100 54.8156 04.7873
1000 940.9389 940.9055

39



4.5 Augmenting grid with zeros

Another method of potentially reducing wraparound error is to add zeros to the left and
right sides of the real spatial domain. If N/2 zeros are added to the left of the domain
and N/2 zeros to the right then the size of the real spatial domain is doubled. Unlike the
previous section, where the size of the spatial domain was doubled and all points in the
real spatial domain were used to calculate the option price, in this case the solution points
corresponding to the zeros added to the left and right of the domain are discarded so that
the solution is finally interpolated from a range of width N instead of 2/N. Padding with
zeros can be applied after first attempting to correct wraparound error by expanding the
real spatial domain.

4.5.1 European options under Black Scholes Merton model with
Tmaz = 15.5 and added zeros

European put options were priced under the Black Scholes Merton model using an expanded
spatial grid augmented with zeros. There was no noticeable reduction in wraparound
error from the method using an expanded spatial grid. The closed-form solution was
implemented using the function blsprice(). All option prices generated for various asset
price values were positive and relatively close to true prices, but the level of accuracy
obtained was not completely satisfactory. Wraparound error for European put options is
once again most likely due to the shape of the put payoff function, which at S = 0 has
an intercept equal to the strike price, with no constraint enforcement at each timestep
unlike American put options. Results obtained from running numerical experiments on
European put options under the Black Scholes Merton model on an expanded spatial grid
are summarized in Table 4.15.

Since there was no wraparound error for European call options on the expanded spatial
grid, they were not priced using added zeros since further reduction in error was not
required.

4.5.2 American options under Black Scholes Merton model with
Tmar = 195.5 and added zeros
Significant wraparound error was not observed for American put and call options on the

original grid, so they were not priced using added zeros since further reduction in error
was not required.
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Table 4.15: Wraparound error effects for pricing of a European put (S = 100.0, K" = 100.0,
T = 0.25, At = 0.25, number of nodes N = 32, 768) under Black Scholes Merton model (r
= 0.10, 0 = 0.2, ¢ = 0) with 2,4, = 15.5 and added zeros

S (asset price) Option price using FST  Option price using blsprice

0.01 97.5210 99.9161
0.10 97.4310 99.1806
1 96.5310 96.5310

10 87.5310 87.5310
100 2.8264 2.8264
1000 0.0000 0.0000

4.5.3 European options under Merton jump diffusion model with
Tmar = 15.5 and added zeros

Wraparound error observed for European put options under the Merton jump diffusion
model using an expanded spatial grid was not significantly reduced by augmenting with
zeros. Prices obtained using Fourier space timestepping closely matched those generated
using the closed-form solution for all values of S tested, but the results were no better
than those obtained using only an expanded spatial grid. Results obtained from running
numerical experiments on European put options under the Merton jump diffusion model
on an expanded spatial grid are summarized in Table 4.16.
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Table 4.16: Wraparound error effects for pricing of a European put (S = 100.0, K = 100.0,
T = 10, At = 10, number of nodes N = 32,768) under the Merton jump diffusion model
(0 =0.15, A =0.1, 1 =-1.08, 6 = 0.4, r = 0.05, ¢ = 0) with x4, = 15.5

S (asset price) Option price using FST  Option price using closed-form

0.01 60.6269 60.6431
0.10 60.5527 60.5531
1 59.6531 59.6531

10 50.6661 50.6661
100 15.4404 15.4404
1000 1.5586 1.5586
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Substantially lower wraparound error was observed for European call options priced
under the Merton jump diffusion model using an expanded spatial grid with added zeros
as compared with those priced on the original grid. All option prices generated for various
asset price values were positive and relatively close to true prices, but large errors remained
and the level of accuracy obtained was not entirely satisfactory. Results obtained from
running numerical experiments on European call options under the Merton model on an
expanded spatial grid are summarized in Table 4.17.

Table 4.17: Wraparound error effects for pricing of a European call (S = 100.0, K = 100.0,
T = 10, At = 10, number of nodes N = 32,768) under the Merton jump diffusion model
(0 =015, A=0.1, 1 =-1.08, 6 = 0.4, r = 0.05, ¢ = 0)with z,,,, = 31.5

S (asset price) Option price using FST  Option price using closed-form

0.01 0.0000 2.5841 x 10797
0.10 0.0000 9.6830 x 10736
1 0.0000 8.6619 x 1071

10 1.3024 x 1072 1.3024 x 1072
100 54.7873 54.7873
1000 940.9055 940.9055
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Chapter 5

Conclusions

American and European options priced using the Fourier space timestepping algorithm
often demonstrate a degree of wraparound error. American put options are immune to
such error due to the application of the American constraint at each timestep.

Upon running numerical experiments with American and European put and call options
with an underlying geometric Brownian motion it was found that in several cases the
wraparound error was considerably reduced by increasing the size of the real spatial grid.
Such an expansion of the grid increases the size of the domain over which accurate pricing
is possible. Any inaccuracies are pushed further out to the boundaries of the domain.
Reduction in error through grid expansion was obtained in all cases except for American
put options, which had no wraparound error initially. Wraparound error for European and
American call options under the Black Scholes Merton model was virtually eliminated.
There is still noticeable wraparound error in the case of European put options.

In the case of European call options priced under the Merton jump diffusion model,
the wraparound error was further reduced when the expanded spatial grid was augmented
by adding zeros near the left and right boundaries and solution points corresponding to
zeros were discarded. Reduction in error was not obtained for European put options, most
likely due to the shape and positive option price intercept of the put payoff function. The
zero padding method was not applied to European and American call options, since error
was successfully eliminated using spatial grid expansion alone.

Simple methods such as grid expansion and zero padding did not eliminate wraparound
error for the Merton jump diffusion model. This is likely due to the presence of a non-local
jump term in the Merton jump diffusion PIDE. Careful further research is necessary in
order to determine precisely why the wraparound error for options priced under the Merton
jump diffusion model could not be eliminated and to investigate other methods of reducing
wraparound error in this case.
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