
i

On Preconditioning the Linearized Conjugate Gradient method

for Sparse Nonlinear Optimization

(Without computing the Hessian matrix)

By Ehsan Ganjidoost

Supervisor: Thomas F. Coleman

Research essay for Computational Mathematics

Department of Computational Mathematics

University of Waterloo

 Spring 2015

i

Contents:

1 Introduction 1

2 Conjugate gradient for nonlinear optimization 2
2.1 Preliminary conjugate gradient 2
2.2 Preconditioned conjugate gradient 4

3 Hessian Determination and Graph Coloring 7
3.1 Finite Differencing (FD) method 7
3.2 Automatic Differentiation (AD) method 8
3.3 Graph Coloring and bi-coloring 11

4 Recover Designated Subset of Nonzero Elements 16
4.1 Recovering Nonzero Elements of the Jacobian Matrix 16
4.2 Recovering Designated Subset of Nonzero Elements of the Jacobian Matrix 18
4.3 Recovering Nonzero Elements of the Hessian Matrix 21
4.4 Recovering Designated Subset of Nonzero Elements of the Hessian Matrix 23

5 Experimental results 25

6 Conclusion 29

R References 30

A Appendix 31

ii

Abstract

In many practical nonlinear optimization problems, the objective function has sparsity

structure in the corresponding Hessian matrices. Even with sparsity, many optimization methods

involve computing, or approximating the Newton step at each iteration. This in turn involves the

calculation of the matrix of second derivatives, the Hessian matrix (at each iteration).

Here we propose a method that induces the solution of the Newton step but avoids

calculating the Hessian matrix. Instead we compute a sparser approximation used as a

preconditioner for a conjugate gradient process; the true Hessian matrix is never computed.

The preconditioner we compute is an approximation of the Hessian matrix using a subset

of the nonzero elements of the Hessian matrix. The approximation is obtained based on the

knowledge of the sparsity structure, graph coloring techniques, and automatic differentiation.

1

1. Introduction

One practical methodology in continuous optimization is minimization through the

conjugate gradient method with preconditioning. The conjugate gradient method is an efficient

iterative method to solve symmetric positive definite linear systems; hence we use it at each

iteration of an optimization algorithm to compute an approximation of Newton step.

In large-scale problems, the computation cost becomes crucial. Fortunately, in many

large-scale optimization problems, there is sparse structure that we can take advantage of. For

example, we can exploit sparsity to just think about solving nonzero elements, which by itself

reduce computation cost considerably.

To gain efficiency, instead of the sparse Hessian, we can use a preconditioner for

particular problems. Indeed, no single preconditioner is suitable for all types of problems. Here

we propose to search for a suitable preconditioner by using a subset of the nonzero elements

of the Hessian matrix. The idea is to compute just these elements and avoid computing the

entire Hessian matrix.

In this research, we consider optimization problems with sparse Hessian structure, SH .

Given the location of nonzero elements of the Hessian, and using graph coloring methods, we a

find the thin matrix V (if possible), which consists of columns vectors, to compute HV by either

the finite differencing method or the automatic differentiation method, and then we deduce

the desired subset of nonzero elements of H efficiently.

In this way we compute M , an estimation to the Hessian matrix H , without computing

the Hessian matrix. Finally, we use M in the preconditioned conjugate gradient algorithm to

help find a solution for the nonlinear optimization problem. Here is the proposed scheme of the

process:

 

 
1 , ,

modified

(),

(),
p

method
compute compute factorizeextract

T

d d
method

S
CholeskyV

or

Cholesky

f x x

M

f x x

FD

H V or HV M LL

AD 
 



 
 
 
 
 

     

2

2. Conjugate Gradient for nonlinear optimization

The conjugate gradient method CG , is a suitable tool for solving symmetric positive

definite, SPD , linear systems, often, in an iterative method. This method has advantageous

compared to other direct methods of solving sparse and large-scale systems. The conjugate

gradient method could be applied on a sparse and large nonlinear optimization problem.

Considering the fact that, at each iteration of Newton step we approximated the twice

differentiable objective function ()f x by a quadratic function
1

min
2

T T

x
x Hx g x

 
 

 
 around the

optimization point at nth iteration
nx to get the new optimization point

1nx 
. Thus, min ()

x
f x

results in solving () 0f x  which leads us to solve the linear system 2 () () 0Nf x s f x   .

Then, by finding Newton step, and updating
1n n Nx x s   we will take a step towards the

min/max of the quadratic function.

Next, we should approximate the objective function by a quadratic function with the

Hessian for
1nx 
 and then solve it for Newton step and so on. Therefore, the main part of the

approach in such a nonlinear optimization is to approximate around the earlier optimization

point and get the new one by solving for Newton step.

To approximate the objective function, which is often large and sparse, by a quadratic

function, we already know the conjugate gradient method which has comparative

advantageous over the other methods for solving such problems. The conjugate gradient

method itself is a well-studied and well-known method for solving SPD linear systems.

Besides, we could compute a preconditioner to approximate the Hessian in order to avoid

expensive computing of it. Thus, the focus of this work is on preconditioned CG method

applied to Newton systems in the nonlinear optimization context.

2.1 Preliminary Conjugate Gradient

The CG technique can be used in solving large-scale nonlinear optimization problems

in the following way. Let us assume our optimization problem is min{ ()}
x

f x where ()f x is a

twice differentiable function, and the gradient ()f x can be computed. The gradient of ()f x

can be identified as the residual in linear systems (i.e. ()f x b Ax  ).

First we take a look at the CG algorithm to find a solution for a SPD linear system

which is a finite iterative method. Suppose we have a quadratic function to solve.

3

 
1

min () solve
2

T Tf x x Hx g x Hx g    where 2: ()H f x and : ()g f x

Newton’s method is going to find the roots the derivatives (i.e. () 0
x

f x


) . It uses

curvature information to take a more direct route for minimizing ()f x . By solving a sequence

of quadratic problems in Newton system, we can get linear approximation of nonlinear

problem. Note that if ()f x is a quadratic function, we can get the exact solution in one step.

Table 2.1: Preliminary conjugate gradient

Conjugate gradients for linear Positive Definite systems:
Inputs:

f : Objective function ()f x

0x x : starting value

maxi : Maximum number of CG iterations

1  : CG error tolerance
Output:

*, x d : Optimization point and the direction of positive (or negative) curvature

0i 

()r f x  , d r
T

new r r  , 0 new 

2

0tol  

While maxi i and tol 

Hd 

If 0Td   then

(,)return x d (it gives direction in negative curvature)

else

new

Td







x x d 

()r f x 

old new 

T

new r r 

new

old







d r d 

1i i 

end

4

Notes:

-  is chosen to minimize ()f x along d because:

   2() () ()
T Tf x d f x d d f x d 




      

 and setting it to 0 , gives
T

T

J d

d Hd





- r is residual which is ()r f x 

- Directions  ,i jd d are H conjugate: 0T

i jd Hd  where i j

- thk iteration produces x ; which is minimizer of ()f x on a k dimensional subspace

spanned by k conjugate directions generated.

- The recent note implies finite n steps convergence; but in practice due to finite

precision expanding subspace property is lost. In other words, Separate eigenvalues

results in poor performance.

- Stop criteria is either when the number of iterations exceeds maxi or when

() (0)ir r

- Fast and inexact line search can be done by a small maxi or approximating the Hessian

with its diagonal.

- Why is it important to (,)return x d in some condition?(i.e. 0 (,)Tif d return x d  )

I. It is important to have x since it is an optimization point.

II. It is important to know d because we will have the direction of down-hill and, as a

result, the optimization becomes better and better.

- Computational cost contains:

I. Matrix-vector product.

II. Inner product of vectors.

III. Three vector sums.

- Benefits:

I. The CG method is beneficial for large-scale problems (otherwise Gaussian and the

other methods are better) since it is less sensitive to rounding errors.

II. Unlike factorization, it does not change the coefficient matrix H .

III. The CG method sometime approaches the solution very quickly.

2.2 Preconditioned Conjugate Gradient

The performance of the CG method is correlated with the distribution of eigenvalues

of the iterative matrix. Using an appropriate preconditioner, a desired clustered distribution of

eigenvalues, can be achieved. This results in improvement of convergence.

5

Our idea is to use a sparse preconditioner M , where M consists of a subset of nonzero

elements of the Hessian matrix. Note that ()M M x and it is calculated directly at each outer

iteration before starting to find the Newton step; but our technique avoids computing ()H x .

The other thing worthwhile to note is that the preconditioner M should always be

positive definite. After finding M , if it is not positive definite, we can factorize it by incomplete

Cholesky (also known as modified Cholesky) to make sure positive definiteness of M . Thus,

using incomplete Cholesky will give back lower triangular matrix L , which means that TM LL

is definitely positive definite. Considering Md r in the PCG algorithm, we can solve for d by

following steps:

\ \T T T

T
y

Md r
L L d r y L r L d y d L y

M LL


      



Table 2.2: Preconditioned conjugate gradient

Preconditioned conjugate gradient:
Inputs:

f : Objective function ()f x

0x x : starting value

maxi : Maximum number of CG iterations

1  : CG error tolerance

Output:
*, x d : optimization point and the direction of positive (or negative) curvature

0i 

()r f x 

Calculating preconditioner 2 ()M f x , and TM LL using
 is PD

 is not PD modified

M cholesky

M cholesky





1d M r

(which can be calculated by:
\

\

y

T

T

y L r
L L d r

d L y


 



T

new r d  , 0 new 

2

0tol  

While maxi i and tol 

Hd  (by FD or the AD methods)

If 0Td   then

(,)return x d (it gives direction in negative curvature)

else

6

new

Td







x x d 
r r  

1s M r (can be calculated by: \ \T T

y

L L s r y L r s L y    )

(Which avoids factorization again by using L from previous calculation to calculate s)

old new 

T

new r s 

new

old







d s d 

1i i 

end

Notes:

- In addition to notes in table 2.2 there are some more notes for the preconditioner CG

- To be efficient, TM LL must be fast.

- Choosing M is a hard problem by itself for two reasons:

I. M should approximate H well.

II. TM LL should be inexpensive.

Examples of preconditioners are:

1. Diagonal Matrix M

2. Banded Approximation

3. Incomplete Cholesky

- Preconditioner M must be always positive-definite in order to use in the CG method. For

this purpose if M was not positive definite, by using modified Cholesky factorization we will

get TM LL and then it is positive definite which is fine.

-
M

x increases at each iteration.

- If 2 ()M f x , then 2 ()f x d estimates finite difference ()f x along direction d

- To calculate 1s M r it does not need to use Cholesky factorization again since we already

know the factor L .

7

3: The Hessian Determination and Graph Coloring

Computation partial derivatives often represent the majority of the computing time in

solving optimization problems. The good news is that there are methods that could exploit

large-scale sparsity to reduce computation time, such as sparse Finite Differencing (FD) and

Automatic Differentiation (AD).

Considering the sparse structure of the Hessian, it is enough to calculate only nonzero

elements of matrices in large-scale problems which results in saving on cost. We can further

improve computation cost by approximating the Hessian by a subset of its nonzero elements.

First, let us introduce the Jacobian matrix as a straight-forward concept before we move

on to the Hessian matrix definition next. To define the Jacobian matrix, suppose we have m

functions of x construct ()F x which is an m dimensional vector of functions, : n mF  ,

over n dimensional vector space, nx ; so the Jacobian matrix defined as derivatives of ()F x

with respect to x will result in m nJ  . Making these definitions more clear, we can show

()F x , and the Jacobian matrix, and the formula for each element of the matrix as follows:

1

n

x

x

x

 
 


 
  

,

1()

()m

f x

F

f x

 
 


 
  

,

1 1

1

1

n

m m

n

f f

x x

f f
x x

dF
J

dx

 

 

 
 

 
 
 

   
 
 
 

, i
ij

j

f
J

x





For the Hessian, we can define the Hessian matrix, n nH  , as the second derivatives

of a scalar valued function 1: nf  over the n dimensional vector space nx . Note that

the gradient ()f x is a 1n by  column vector. The formulations are as follows:

1

n

x

x

x

 
 


 
  

, 1(, ,)nf f x x ,
1

n

f

x

f

x

f









 
 
  
 
 
 

,

2 2

2
11

2 2

2
1

n

n n

f f
x xx

f f
x x x

H

 


 
 

 
 
 

  
 
 
 

,
2

ij

i j

f
H

x x





3.1 Finite Differencing (𝑭𝑫) method

To approximate the Jacobian and the Hessian matrices by the FD method along the

direction d (which is normalized), we could use Taylor expansion as follows:

8

() () ()TF x hd F x hJ x d   , which results in:
() ()F x hd F x

Jd
h

 
 . For the scalar

valued function ()f x , the Taylor approximation is: 21
2

() () ()T Tf x d f x f x d d Hd       ;

and if we write the Taylor expansion to the first term approximation for the gradient then we

have: 2() () ()f x d f x f x d      which results in:
() ()f x d f x

Hd
d





  


Clearly, in the finite differencing method, to approximate the Jacobian and gradient, we

need the objective functions ()F x and ()f x respectively; while to estimate the Hessian

matrix, the gradient, ()f x , is required. Although the Hessian could be approximated directly

from the objective function, but the drawback is poor accuracy.

When we estimate the gradient from the objective function we use Taylor

approximation which intrinsically has error, so doing one more approximation on the gradient

using Taylor expansion to estimate the Hessian will magnify the error as a result of

compounding effect. For this reason, we need to have the gradient precisely in order to

estimate the Hessian matrix. Therefore, the gradient is required as an input rather than being

approximated, unless we use the automatic differentiation method to get the Hessian matrix

directly and precisely from the objective function ()f x .

3.2 Automatic Differentiation (𝑨𝑫) method

An alternative method to calculate the Hessian matrix is automatic differentiation which

can directly calculate the Hessian by having vector x and the objective function as input. The

idea of AD method is built on the chain rule.

Let us assume we want to compute the differentiable function ()z F x where

: n mF  , and ,m n are positive integers. We can evaluate ()F x by intermediate variables

1(, ,)py y y which ,p m n and obviously each ky is an output of the atomic function on

one or two previous intermediate or original variables i.e.
k i j

function
y y y

elements

 
  

 
 . In other

words, we can write every nonlinear function as a partially ordered sequence of atomic

functions. Therefore we can decompose any function ()F x into intermediate variables and

functions as:

9

1 1 1

2 2 1 2

1 2

1 1 2

() : (,) 0

() : (, ,) 0

() : (, , , ,) 0

() : (, , , ,) 0

E

E

E

p p p

E

p p

solve y F x y

solve y F x y y

solve y F x y y y

solve z z F x y y y







 

Viewing ()F x as a partially ordered sequence of atomic functions, we can differentiate

it with respect to the original independent variables and the intermediate variables, which

results in the () ()p m by n p    sparse matrix giantJ .

}

}
giant

p

m

n p

A L
J

B M

 
  
 

,
1

1

: [] and () ()

: [] and () ()

fwd fwd

rev rev

AD J B M L A w J n w F

AD J B ML A w J m w F





   

   

To calculate the gradient, we can use the AD method to get it precisely than

approximating it by the FD method. The other fact is that the gradient is a special case of the

Jacobian computation when 1: nf  is differentiable and we need to compute the

gradient
1

() , ,

T

n

f f
f x

x x

  
   

  
. So as it can be seen the gradient is like the Jacobian with

1m  as a special case of the Jacobian. If we assume the work (floating point operations) for

evaluating the objective function is ()w f , [1] showed that calculating the gradient in reverse-

mode revAD is ()w f while it cost ()n w f in forward mode fwdAD , which takes the same

time to calculate the gradient as the FD method.

So far we have considered the gradient computation. Next step is computing second

derivatives and the Hessian matrix which is useful in optimization problems i.e. min ()
x

f x

where 1: nf  and ()f x is twice continuously differentiable. Finally, we need

 2(), (), ()f x f x f x  at each iteration x , in the CG iterative method. The goal here is to

obtain 2 ()f x along directions, for given ()f x , by AD without computing the 2 ()f x .

First, suppose we want to obtain 2 ()f x . In order to calculate 2 ()f x , one way is to

compute the gradient ()f x from ()f x by the AD method which has discussed briefly; and

by the same method we computed the gradient we can find 2 ()f x , since it is the Jacobian of

()f x . However, the forward mode needs less space than the reverse mode while both

computing the Hessian in time ()n w f  .

10

However, practically, it is slower to compute the Hessian when we have ()f x rather

than when we have ()f x . Thus, we assumed the objective function ()f x is given, not ()f x .

As a result, the computing cost for the Hessian matrix by the AD method, in general, is:

2() () ()w f n w f n w f   

The Hessian matrix product can be produced by the AD method directly without

requiring the determination of the Hessian matrix itself. The same claim can be made for the

Jacobian matrix products. For more clarification, let us suppose for the given differentiable

mapping : n mF  , thin matrix
V

n tV  , and thin matrix
W

m tW  , we could have the products

JV and TW J by the forward mode and the reverse mode of AD respectively. Here are the

formulas and the works related to computing each of the products.

1[]JV BV M L AV  , () ()Vw JV t w F

1[]T T TW J W B W ML A  , () ()T

ww W J t w F

When the number of columns of V (or W) is small compared to the column (or row)

dimension, these works substantially cost less than the cost of computing the Jacobian first and

then multiplying to get JV and TW J .

The same argument can be used for the Hessian matrix product, Hx . The constrained

optimization is one application of product determination, which we work with the reduced

gradient and Hessian matrices. We have choices whether to use AD to determine Hx directly

and then multiply the result by Tx to get Tx Hx or not. The decision depends on the sparsity of

the Hessian matrix. In this research we assumed the Hessian matrix has sparse structure.

While we know sparsity of the Jacobian (or Hessian) matrix how we could find nonzero

elements of it. If we could determine a thin matrix V and/or a thin matrix W , and determine

JV and/or TW J by AD forward and reverse mode respectively, then we could extract

nonzero elements of the Jacobian matrix from these products. Similarly, if we could determine

a thin matrix V , which 1[, ,]pV d d , and determine HV by the AD method or the FD

method, then we could determine the Hessian matrix [3].

In order to calculate HV matrix, the AD method has some benefits over the FD

method as follows:

 The AD Method offers more accuracy since it does not have truncation error due to

using Taylor expansion in the FD method.

11

 The FD Method needs knowledge of the structure of the Jacobian or the Hessian

while AD can preprocess sparsity pattern.

 The AD Method is much less sensitive to dense rows than the FD method.

To sum up, we already know how to calculate products JV , TW J , and HV by either

AD or the FD method. The other parts of the puzzle are determining thin matrices V or W

for the Jacobian matrix and V for the Hessian matrix, still remain unsolved. Next, we are going

to explain how to get those matrices such that they are thin and all nonzero elements could be

extracted from those products.

3.3 Graph Coloring

Now we have to find thin matrices in order to recover all nonzero elements of the

Jacobian matrix from JV , and TW J , and of the Hessian matrix from the HV product. To have

a better intuition of thin matrices let us consider the following examples. Suppose : n nF 

is differentiable and the Jacobian of F has the following structures:

Example 1:
1

2 1

3 2

4 3

5 4

J



 

 

 

 

 
 
 
 
 
 
 
 

1 0

0 1

0 1

0 1

0 1

V

 
 
 
 
 
 
 
 

1

2 1

3 2

4 3

5 4

0

JV



 

 

 

 

 
 
 
 
 
 
 
 

In this example, by having such V and then computing JV by the fwdAD mode, we can

recover all nonzero elements of J . As it can be seen, by the first column of JV , the first

column of J can be recovered and by the second column of JV , the rest of diagonal elements

of J can be extracted. Note that similar steps can be done for the Hessian matrix.

Example 2:
1 2 3 4 5

1

2

3

4

J

    









 
 
 
 
 
 
 
 

1 0 0 0 0

0 1 1 1 1

T

W
 

  
 

1 2 3 4 5

1 2 3 40

TW J
    

   

 
  
 

In the second example, similarly, by having W and then computing TW J by the revAD

mode, all nonzero elements of J can be recovered. In this example, because of the dense first

12

row we get poor performance from the
fwdAD mode. Similarly, in the previous example the

fwdAD mode because of the first dense column has the same situation.

Example 3:
1 2 3 4 5

2 1

3 2

4 3

5 4

J

    

 

 

 

 

 
 
 
 
 
 
 
 

1

0

0

0

0

V

 
 
 
 
 
 
 
 

1

2

3

4

5

JV











 
 
 
 
 
 
 
 

1 0

0 1

0 1

0 1

0 1

W

 
 
 
 
 
 
 
 

1 2 3 4 5

1 2 3 40

TW J
    

   

 
  
 

In the third example, because of the first dense row, we cannot use the
fwdAD mode;

because of the first dense column, the revAD mode could not be a good option as well.

However, we can take advantage of both fwdAD and the revAD modes to extract all nonzero

elements of the Jacobian. It is clear that the first column of the Jacobian could be obtained from

the
fwdAD mode and the rest of nonzero elements could be obtained from revAD mode.

Now, we know how to get nonzero elements of the Jacobian by having V , W , and

obtaining JV , and TW J from both modes of the AD method as we discussed so far. Similarly,

we know getting nonzero elements of the Hessian by having V and obtaining HV by the AD

method. However, we still need to determine those thin matrices (i.e. V , W) as missing parts.

Suppose we could partition columns (or rows) of the Jacobian matrix into groups named

ie where 1 i p  . For example, if we have the Jacobian matrix as below, and , , x y z

represent nonzero elements, one possible partition for the Jacobian matrix is 1 2 3(, ,)V e e e .

x y

x y z

y z x

J z x y

x y z

y z x

z x

 
 
 
 
 

  
 
 
 
 
 

,

 

 

 

1

1 1

2

2 2

3

3 3

1 0 0 1 0 0 1 ;

0 1 0 0 1 0 0 ;

0 0 1 0 0 1 0 ;

T

T

T

e e d

e e d

e e d

 

 

 

Note that each element (index) of the vector ie corresponds to a column (or row) of the

Jacobian (or Hessian) matrix, which presents presence of that columns (or row) in that group.

13

Therefore, we can formulate partitioning of the Jacobian (or Hessian) matrix into V such that:

 
1

1,
(, ,) (,) ; () 0k lp k l i

pi
V e e col col e col col




    for nonzero positions; and if we map

1

1e d for example, we could say 1

11 ()id col i e   as well.

So far we know that the Jacobian (or Hessian) matrix can be divided into the groups

1, , pe e which
1, ,

i

i pd 
 can be used to calculate iJd for the Jacobian products (or similarly

1, ,

i

i pd 
 for iHd (s)). Considering the fact that there are different combinations to partition the

Jacobian (or Hessian) matrix, the work for calculating JV by the
fwdAD method, for example, is

()p w F . Therefore, our strategy to minimize ()w JV turns into finding the smallest p as

possible i.e. the thinnest V (or W) matrix.

Let us define a bi-partition of a matrix J gives a row partition of a subset of rows of J

called
RG and a column partition of a subset of columns of J called

CG [2]. If we chose pairs

(,)R CG G such that
R CG G is the smallest possible partitions, where

RG and CG represent

the number of groups in CG and RG respectively; matrices
Cn G

V


 and
Rm G

W


 could be

constructed such that J could be directly determined from , and TW J JV . However, by

substitution, the work required to evaluate the nonzero elements of J can be reduced further.

For calculating the Hessian matrix H of a scalar value function : nf  in addition

to sparsity we could exploit the symmetric property of the Hessian matrix. In the case of the

Hessian matrix has the arrowhead structure, for example, it requires n groups if we ignore

symmetry; while it just needs two groups if we take into account the symmetric property.

Example: the Hessian matrix with the arrowhead structure

n n

x x

H

x x



 
 


 
  

,
1

2

1 0

0 1

0 1
n

V



 
 
 
 
 
 

,
2

1 0

0 1
n n

V



 
 


 
  

, thus
1 2V  , and

2V n

We deal with the direct method determination and the substitution method

determination as combinatorial problems by exploiting Graph theory to approximate the

Jacobian and the Hessian matrices. Let us define the general notation of a graph  G V, E

which has V vertices and E edges; then we color vertices of the graph such that any two

adjacent vertices cannot have the same color. In other words, two neighbors in a graph cannot

be in a same group; since they have different colors, which is the main idea of graph coloring.

14

Let  G (H) V, Eadj  be adjacency graph of H , and V n which iv corresponds to

iiH and if
, 0 (,)j kH j k j k E     . Assigning P colors to vertices such that for every path

in Gadj
 of length of four distinct vertices use at least three colors, which is called the path p-

coloring of Gadj
. Although we can say the general direct method based on the path p-coloring

idea exploits symmetry, it does not exploit symmetry to the fullest. We need a way to handle

direct asymmetric method when, for example, it applied to a symmetric band matrix. In other

words, we are looking for a method which relaxes the restriction that every element of the

Hessian should be determined directly.

Let us assume a symmetric matrix which we can find an ordering to determine nonzero

elements of the matrix such that they can be solved by using symmetry and previously solved

elements. We can see the substitution method as a symmetric tri-diagonal of the Hessian

matrix which can be determined by two of the gradient differences with substitution.

Substitution method for symmetric matrices is based on the cyclic coloring. Mapping vertices

into P colors is a cyclic p-coloring if this mapping uses at least three colors in every cycle of

Gadj
.

Figure 3.1: Path coloring

Figure 3.2: Path p-coloring

Figure 3.3: Regular Coloring

Figure 3.4: Cyclic Coloring

Figure 3.1 and figure 3.2 show path coloring and oath p-coloring which the difference is

observable. Also, figure 3.3 shows normal coloring for a cycle of a graph while figure 3.4 shows

path cyclic coloring for the same loop of the graph. Since cyclic coloring usually uses fewer

colors than path coloring, we need fewer gradient finite differences for the substitution method

compared to the direct method. However, the vulnerability to round off error growth due to

the substitution method leads us to choose between cost and accuracy.

Overall, there are three different approaches in order to determine the Hessian matrix

by finite differencing of the gradient function:

15

I. The direct method based on coloring of the intersection graph G I
 of H , ignoring symmetry.

II. The direct method based on path coloring of the adjacency graph Gadj
 of symmetric H .

III. The Indirect method based on cyclic coloring of the adjacency graph Gadj
 of symmetric H .

Table 3.1 Different coloring approaches determining the Hessian matrix

First Approach Second Approach Third Approach

Color () 1, ,I IG H p Color () 1, ,adjG H p Color () 1, ,I LG H p

Table 3.1 shows how coloring happens in all three approaches. As it can be seen in the

third approach, coloring applied on the lower triangular part of the matrix H , which is named

here LH . The other fact is that coloring of the intersection graph of lower triangular,  I LG H

corresponds to a substitution process for nonzero elements of H [4]. Suffice it to say that to

implement the cyclic coloring, which is an NP Hard problem, it is enough to color  I LG H ,

which has well-known heuristic solutions. Tables 3.2 to 3.4 summarized all three approached

supposed 1: nf  , : n nH  , and
2

ij

i j

f
H

x x





Table 3.2: First approach to Determinate the
Sparse Hessian by FD method

Table 3.3: Second approach to Determine the
Sparse Hessian by FD method

Direct, Sparse estimation of H :

- Color () 1, ,I IG H p

- : () () k

Hk color k group e d  

- (1:)Ifor j p

() ()j
j f x d f x

y




  

1 I

I

p

n p
Y y y


   

Direct, Sparse estimation of H :
- Color () 1, ,adjG H p

- : () () k

Hk color k group e d  

- (1:)for j p

() ()j
j f x d f x

y




  

1 p

n p
Y y y 


   

Table 3.4: Third approach to Determinate the Sparse Hessian by FD method

InDirect, Sparse estimation of H :

- Color () 1, ,I LG H p

- : () () k

Hk color k group e d  

- (1:)for j p

() ()j
j f x d f x

y




  

1 p

n p
Y y y 


   

16

4. Recovering Designated Subset of Nonzero elements

In previous section, in fact, we learned how to do graph coloring and consequently find

thin matrices. In order to use graph coloring idea for the purpose of finding thin matrices, and

finally extracting nonzero elements of the Jacobian and/or the Hessian matrices, we need to

construct related graphs first. In this section, the algorithms are used to construct graphs for

extracting nonzero elements of the Jacobian and the Hessian matrices will be explored [5].

4.1 Recovering Nonzero Elements of the Jacobian Matrix

A) Determining J (non-zero elements), by the direct, and 2-sided method.

Let us assume J , after a permutation, partitioned into CJ , and RJ which is called bi-

coloring [2]. Therefore, determining J turns to determine CJ , and RJ .

 RJ

 CJ

Two sub problems are:

1. Elements in CJ determined by JV ; how to get V ?

2. Elements in RJ determined by TW J ; how to get W ?

Algorithm 4.1: The pseudo code for method A

To get V :

1. Construct ()I CG J as follows

  1, ,V n

 (,) and (,) Cif k i nnz k i J 

(1:)for j n

(,) (,) ()CJ

Iif k j nnz i j E G  

2. Color  CJ

IG V

To get W :

- Similarly, construct
T
RJ

IG , then color it, finally T

RJ W

To get J :

- Extract CJ from JV

- Extract RJ from TW J

17

Example 4.1: We want to determine elements of
CJ (similarly RJ) in order to construct

()I CG J . As it can be followed from the algorithm and the figure 4.1, there should be an edge

between column 1 and 4 i.e. (1,4) ()I CG J because they cannot be in the same group.

Similarly, considering other pair of columns we can see  (1,4), (2,3), (2,5), (3,5) ()CJ

IE G .

By applying coloring algorithm on the graph, we can get matrix V as a set of column vectors

each of which belong to one color. By having JV and V we can get non-zeros of CJ by

diagonal solver. Similarly, by having TW J , and W we can get
CJ .

 13J
14J RJ

21J 24J

 32J 33J 35J

 44J

CJ

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

BR G

V

 
 
 
 
 
 
  

Figure 4.1: The Jacobian matrix structure, corresponding colored graph, and thin matrix

B) Determining J (non-zero elements), by the substitution, and 2-sided method.

Algorithm 4.2: The pseudo code for method B

To get V :

1. Construct ()I CG J as follows

  1, ,V n

 (,) and (,) Cif k i nnz k i J 

(1:)for j n

(,) and (,) (,) ()CJ

C Iif k j nnz k j J i j E G   

2. Color  CJ

IG V

To get W :

- Similarly, construct
T
RJ

IG , then color it, finally T

RJ W

To get J :

- Extract nonzero elements using substitution from , and TW J JV

Example 4.2: There are two possibilities for any pair of non-zeros we should consider:

1. Both nonzero elements belong to CJ , which correspond to an edge in CJ

IG .

2. Some nonzero elements (in one row) belong to RJ , which we have to solve them first and

substitute back to solve for CJ .

18

As it shown in the figure 4.2, by solving
34J and

35J from RJ ; then we can solve
33J in

CJ . In

other words, substitute back from solving RJ to CJ .

11J RJ

21J 24J

 33J 34J 35J

 42J 44J

CJ

CJ

1 0

1 0

1 0

0 1

1 0

V

R B

 
 
 
 
 
 
  

11

21

33 35

42

0

RJV

J

J

J J

J

 
 
 
 
 
 
  

 24

34

44

0

0

BJV

J

J

J

 
 
 
 
 
 
  

RJ

1 0

1 0

0 1

1 0

1 0

W

R B

 
 
 
 
 
 
  

11 21

42

24 44

0

0

R

TW J

J J

J

J J

 
 
 
 
 

 
  

33

34

35

0

0

B

TW J

J

J

J

 
 
 
 
 
 
  

Figure 4.2: The Jacobian matrix structure, RJ and CJ corresponding colored graphs, and thin matrices

4.2 Recovering Designated Subset of Nonzero Elements of the Jacobian Matrix

C) Determining designated subset ()U nnz J , by the direct and 1-sided method.

Algorithm 4.3: The pseudo code for method C

To get V :

1. Construct UG as follows

  1, ,V n

 (,) and (,)if k i nnz k i U 

(1:)for j n

(,) (,) ()Uif k j nnz i j E G  

2. Color  UG V

To get U :

- Extract nonzero elements using diagonal solver.

Example 4.3: Here, we should consider all possibilities for any pair of non-zeros:

1. If both nonzero elements do not belong to U , leave it as is and do nothing.

2. If both nonzero elements are in U , there is an edge between them.

3. When one of them is in U and the other is out of U , there is an edge between them.

19

 12J 14J

 22J 23J

31J
32J 34J

 44J

 35J

1 0

0 1

1 0

1 0

1 0

V

R B

 
 
 
 
 
 
  

 23

14

31 34

44

35

R

J

J J

J

J

JV

J

 
 
 
 
 
 
 
 

 22

32

12

0

0

BJV

J

J

J 
 
 
 
 
 
  

Figure 4.3: The Jacobian matrix structure, corresponding colored graph, and thin matrix

Here we are looking to determine nonzero elements of U which can be solved by

diagonal solver. As in the figure 4.3, since
31J ,

34J are non-zeros out of U , they are in the same

color, otherwise (1,4) ()UE G . Crossed out elements e.g. 12J are not interested to calculate.

D) Determining designated subset ()U nnz J , by the direct and 2-sided method.

Algorithm 4.4: The pseudo code for method D

To get V :

1. Construct CJ

UG as follows

  1, ,V n

  (,) and (,) Cif k i nnz k i J U 

(1:)for j n

(,) (,) ()CJ

Uif k j nnz i j E G  

2. Color  CJ

UG V

To get W :

- Similarly, construct
T
RJ

UG , Color  
T

R
J

UG W

To get U :

- Extract nonzero elements of U using diagonal solver from , and TW J JV .

Example 4.4: As in the figure 4.4, we are solving for non-zero elements of U . For this

purpose, every nonzero element out of U could be disregarded.

 13J 14J RJ

 22J 24J

31J 33J 34J

 42J 44J 45J

CJ

1 0 0

1 0 0

0 1 0

0 0 1

0 1 0

BR G

V

 
 
 
 
 
 
  

 22

42

31

0

0

R

J

JV

J

J

 
 
 
 
 
 
  

13

3

5

3

4

0

0

BJV

J

J

J

 
 
 
 
 
 
  

 24

34

44

14

0

GJV

J

J

J

J 
 
 
 
 
 
  

Figure 4.4: The Jacobian matrix structure, corresponding colored graph, and thin matrix

20

E) Determining designated subset ()U nnz J , by the substitution, and 2-sided method.

Algorithm 4.5: The pseudo code for method E

To get V :

1. Construct CJ

UG as follows

  1, ,V n

  (,) and (,) Cif k i nnz k i J U 

(1:)for j n

(,) and (,)

(,) ()

(,) and (,)

C

C

J

U

R

if k j nnz k j J

or i j E G

if k j nnz k j J U

 


 
   

2. Color  CJ

UG V

To get W :

- Similarly, construct
T
RJ

UG , Color  
T

R
J

UG W

To get U :

- Extract nonzero elements of U by Substitution from TW J back to JV .

Example 4.5: As in the figure 4.5, by solving 44J in RJV we can solve for 34J from T

RW J ,

and then 33J in RJV although in can be solved from T

RW J directly. Note that to solve for 44J we

should use T

RW J . If we want to extract it from RJV we have to determine unnecessary nonzero

elements which is, clearly, not efficient.

 14J RJ

21J 22J

31J 33J 34J 35J

 44J 45J

CJ 54J

RJ

1 0

1 0

1 0

1 0

0 1

W

R B

 
 
 
 
 
 
  

 22

21 31

33

34 4414

35 45

R

TW J

J

J

J J

J J

J

J J

 
 
 
 
 

  
  



54

0

0

0

0

T

BW J

J

 
 
 
 
 
 
  

CJ

1 0

1 0

0 1

0 1

1 0

V

R B

 
 
 
 
 
 
  

 21

31 35

4

2

5

2

0

0

R

J

J J

V

J

J

J

 
 


 
 
 
 
  

14

54

33 34

44

0

RJV

J J

J

J

J

 
 
 
 
 
 
 
 

Figure 4.5: The Jacobian matrix structure, RJ and CJ corresponding colored graphs, and thin matrices

21

4.3 Recovering Nonzero Elements of the Symmetric Hessian Matrix

In order to recover nonzero elements of the Hessian matrix, we could take advantage of

the symmetry property of the matrix. In contrary to the previous algorithms for evaluating the

Jacobian matrix, here we do not need to consider coloring in two different sides, columns and

rows. In fact, even if we do that we get same thin matrices [5].

Let us assume the Hessian matrix, is permuted symmetrically in order to add as few as

possible edges to graph when we construct the graph for it [6], which basically improves the

performance as well.

F) Determining nonzero elements of symmetric H , by the direct, and 1-sided method

Algorithm 4.6: The pseudo code for method F

To get V :

1. Permute H

2. Construct AG as follows

  1, ,V n

 (,) where if k i nnz k i 

(,) (,) ()Ak j nnz i j E G  

3. Color  AG V

To get H :

- Non-zeros can be directly extracted from HV V corresponds to a path-coloring of
H

AG

Example 4.6: In this example the Hessian matrix is symmetric. Thus, if we solve for the

nonzero elements of lower (or upper) triangular of the matrix, we literally have solved for all

nonzero elements of the Hessian matrix. Thus, we look at lower triangular part of the Hessian.

 12H 14H 15H

21H 23H 24H

 32H

41H 42H 44H

51H

1 0 0

0 1 0

0 1 0

0 0 1

1 0 0

BR G

V

 
 
 
 
 
 
  

 21

4

5

15

1

1

RHV

H

H

H

H 
 
 
 
 
 
  

12

2

2

3

3

42

BHV

H

H

H

H

 
 
 
 
 
 
  

 4

44

14

2

G

H

H

HV

H

 
 
 
 
 
 
  

Figure 4.6: The Hessian matrix structure, corresponding colored graph, and thin matrix

22

In the figure 4.6, although column 5 is in red group, it could be in another group as well.

Dash lines of the Hessian in directions mean the value of those elements is zero. Indeed, we can

recover the Hessian just by the elements of our concern.

It is worth it to mention that, when nonzero elements 21H extracted from a Hessian

product
RHV , the nonzero element

12H already solved in
BHV . In this example imagine if we

had 31H in the structure, it would appear on third row of RHV and also in BHV in first row as

12 13H H which already solved. Thus, we could pretend that nonzero elements in strict upper

triangular are zero (i.e. red elements in the HV). Indeed, by solving lower triangular elements

using the symmetry property, we solved for all nonzero elements of the Hessian matrix.

G) Determining nonzero elements of symmetric H , by the substitution, and 1-sided method

Algorithm 4.7: The pseudo code for method G

To get V :

1. Permute H

2. Construct ()A I LG G H as follows

  1, ,V n

 (,) where if k i nnz k i 

(,) where (,) ()k j nnz k j i j E G   

3. Color  AG V

To get H :

- Nonzero elements can be extracted by substitution from HV V corresponds to a
cyclic-coloring

Example 4.7: In this example we used the symmetry property of the Hessian. Similar to

the previous problem, we look at the lower triangular part of the Hessian. In the figure 4.7 by

solving for the lower triangular from bottom to top, we can solve first for 53H (i.e. 35H) from

BHV and then solving 31H when substitute 35H back to RHV . The benefit of this approach is

fewer colors are required equal to fewer Hessian products. Note that column 4 could be in Blue.

 13H

 22H

31H 33H 35H

 44H

 53H 55H

1 0

1 0

0 1

1 0

1 0

V

R B

 
 
 
 
 
 
  

 22

31 35

44

55

RHV

H

H H

H

H

 
 
 
 
 
 
  

33

53

13

BH

H

H

V

H

 
 


 
 
 
 

  

Figure 4.7: The Hessian matrix structure, corresponding colored graph, and thin matrix

23

4.4 Recovering Designated Subset of Nonzero Elements of the Hessian Matrix

H) Determining designated subset ()U nnz H , by the direct and 1-sided method

Algorithm 4.8: The pseudo code for method H

To get V :

1. Construct AG as follows

  1, ,V n

 (,) where if k i U k i 

 (,) (,) ()Aif k j nnz i j E G  

2. Color  AG V

To get U :

- Non-zeros can be extracted from HV V directly

Example 4.8: Considering the symmetry property of H , as in the figure 4.8, by following

the algorithm we can color the graph. In this example, the column 2 could be in either blue or

red direction.

Like before, we want to solve for the lower triangular elements of the Hessian. Besides,

we should consider elements belong to the designated subset on nonzero elements of the

Hessian matrix U .

Considering these two limitations, solving the nonzero elements like 41H , 45H , and

consequently 14H , 54H are not interested any more. Moreover, the upper triangular of the

nonzero elements, no matter if they belong to U , is not our mission.

Therefore, in this example by solving for the three nonzero elements 32H , 43H , and

44H we could claim that we determined all nonzero elements of the designated subset of

nonzero elements of the Hessian matrix.

 14H

 23H

 32H 34H

41H 43H 44H 45H

 54H

1 0 0

1 0 0

0 1 0

0 0 1

1 0 0

BR G

V

 
 
 
 
 
 
  

32

41

45

RHV

H

H

H

 
 


 
 
 
 
  

 23

43

B

H

HV

H

 
 
 
 
 
 
  

14

34

5

44

4

G

H

H

H

H

H

V

 
 


 
 
 
 
 
 

Figure 4.8: The Hessian matrix structure, corresponding colored graph, and thin matrix

24

I) Determining designated subset ()U nnz H , by 1-sided substitution method

Algorithm 4.9: The pseudo code for method I

To get V :

3. Construct
AG as follows

  1, ,V n

 (,) where if k i U k i 

(,) where

(,) ()

(,) ()

k j nnz k j

or i j E G

k j nnz U

 


 
  

4. Color  AG V

To get U :

- Non-zeros can be extracted from HV V substitution.

Example 4.9: Similar to the substitution method to determine all nonzero elements of

the Hessian matrix we approach to find nonzero elements which are belong to U as a

restriction. In the figure 4.9 using symmetry property of H , leads us to finding nonzero

elements of the lower triangular of the Hessian.

Note that column 4 could be in either red or the blue color. The other thing we may

noticed here is that we are not interested on solving for blue direction since they are not in the

subset U . In order to solve for concerned nonzero elements, we move from bottom to the top

i.e. first solve for the 43H , then substitute back in third row and get 32H , and substitute it in

the second row and get 22H . Consider that we used symmetry property several times in this

process of solving for nonzero elements of U by substitution.

 14H

 22H 23H 25H

 32H 34H

41H 43H 45H

 52H 54H

1 0

0 1

0 1

0 1

1 0

V

B R

 
 
 
 
 
 
  

 25

41 45

BH

H

V

H

H

 
 
 
 
 
 
 





 22 23

32 34

43

RHV

H H

H H

H

 
 


 
 
 
 
  

Figure 4.9: The Hessian matrix structure, corresponding colored graph, and thin matrix

25

5. Experimental Results

In this section we are going to use a quadratic problem, which approximate the

nonlinear optimization problems. Then, we are going to compute a preconditioner for solving

linear system in order to find the Newton step with the preconditioned conjugate gradient

method.

To experiment with the idea we made up quadratic problems such that it has the

Hessian matrix, H , and the Jacobian, g , for the problem size n . For the Hessian matrix it

should be positive definite diagonal matrix which is zero free diagonal in order to use in the

CG algorithm. The other things about the Hessian matrix we can take in consideration are the

sparsity structure, the symmetry, the density of nonzero elements of the sparse matrix, and the

condition number for the matrix.

After generating an n by n  hessian matrix H with above properties, next we should

generate g , a column vector of size n , which completes constructing of a quadratic problem.

All these matrices and vectors are generated randomly by MATLAB function. We should note

that although both the Hessian and the Jacobian are generated, we just have the quadratic

problem ()f x , and the gradient ()f x . In other words, we pretend we do not have H , and

g . Therefore we can say that we just have:

The problem is:
1

()
2

T Tf x x Hx g x 

The gradient is: ()f x Hx g
x


 



The next step after constructing the quadratic problem is finding the preconditioner.

There are general purpose preconditioners such as symmetric successive over-relaxation,

incomplete Cholesky, and banded preconditioner. We are using the banded in this experiment.

From previous sections, we understood the process of getting the Hessian matrix

indirectly without actually computing it which reduces computation cost effectively. In brief,

here is what we have discussed:

 

 1 , ,

modified

(),

(),p

method T

methodd d

S
CholeskyV

or

Cholesky

f x x
M

f x x

FD
H V HV M LL

AD
 
 



  
 
  

     

In order to get the preconditioner M , we need to know the second derivatives in the

directions, V , by the FD or AD methods which gives back HV . For the FD method we

26

need the gradient and the input vector of variables. For the AD method we need the

objective function and the input vector of variables.

By having the structure of the Hessian SH , and the structure of the subset of nonzero

elements of the Hessian matrix U we could get coloring information and construct V . After

computing HV by both methods FD and AD , we computed the preconditioner for each of

them. Now everything was ready to use preconditioned CG algorithm by getting an input

random vector 0x . In this experience we tried different size of problem, several density of

sparse structure, and varying on banded preconditioner by choosing diagonal or tri-diagonal

elements as subset of the Hessian matrix.

The other experiment was measuring the cost of computing the Hessian completely and

then finding the Hessian product Hd . We measured the computation cost for calculating the

Hessian product Hd by the AD method (i.e. computed Hd instead of H d) as well. For this

part we used ADmath toolbox.

We observed that, although the computing preconditioner is notable, it is way cheaper

than computing the whole Hessian for each iteration. Also should note that the PCG algorithm

when the problem size becomes bigger performs better than the CG method. The other fact is,

even if the computation cost for computing the preconditioner is not negligible, it just

computed once.

Figure 5.1: Cost of computing the preconditioner for subset of non-zeros 𝑈 and different density of 𝐻

27

The figure 5.1 shows that the cost of computing the preconditioner increases by density

of the Hessian matrix. It means if the given Hessian structure is less sparse, the costs we will pay

increase. This will effect both situations no matter if we want diagonal or tri-diagonal nonzero

elements of the Hessian. However, the cost of computing the preconditioner is higher for the

tri-diagonal subset on non-zeros. The reason is because the cost of coloring, the cost of finding

the Hessian products HV , and the cost of extracting nonzero elements will increase by both

density and type of preconditioners.

Figure 5.2: Performance of CG and PCG with diagonal preconditioner with different H

In the figure 5.2, the performance of solving the Newton step is compared for both CG

and the PCG methods. In this experiment, we used diagonal subset of nonzero elements of

the Hessian as the preconditioner. The performance of the PCG method is way better than

the CG algorithm. Furthermore, when the problem size is small, the difference for

performances is negligible, but when the problem size increase, PCG shows its comparative

advantageous.

In the figure 5.3, same experiment repeated for tri-diagonal subset of nonzero elements

of the Hessian matrix. The PCG method performs well even in denser Hessian structure.

Although the cost of the algorithm increase by an increase in the size of problem for both

methods, we experience more increase in the CG method compared to the PCG method.

28

Figure 5.3: Performance of CG and PCG with tri-diagonal preconditioner with different H

Figure 5.4: Cost of computing HV by direct and the AD method

In the figure 5.4, as we expected the cost of computing the Hessian and the calculating

the Hessian products HV (i.e. H V) is more costly than calculating them by the AD method.

29

6. Conclusion

In many practical optimization problems, as well as nonlinear system problems, the

objective function has the sparse structure in their Jacobian and/or Hessian matrices which can

be used to great advantage when computing the Newton steps. The Newton steps for nonlinear

optimization problems typically involve two major steps;

First step: evaluation of 1 2() : , () , and ()n n n nf x f x H f x     

Second step: solving 2 () ()Nf x s f x   .

For the first step, since evaluation of the Hessian matrix H is often the most expensive

part of evaluation, we avoid computing it. Indeed, we use an estimation of the Hessian matrix

for the early stage of the Newton steps with lower computation cost. This approximation is

deduced based on sparsity structure of the Hessian in addition to graph coloring techniques and

the automatic differentiation method.

The second step infers min () solve () 0f x f x   ; so, we can use the preconditioned

conjugate gradient method for linear semi-positive-definite (SPD) systems to solve

()NHs f x  and update the minimizer. Thus, when the Newton step is not positive-definite,

it is not allowed to go through negative curvature. Therefore, without computing the complete

Hessian matrix, we could find the solution for the Newton st‏eps ‏for nonlinear optimization

problems using the preconditioned conjugate gradient method. The hierarchy of the idea is:

2

* *

1
min

2

min ()

nonlinear solver () 0

() () 0
0

T T

N

CG x Hx g x

f x

f x

f x s f x
Hx g

x x s
 

 
 



 



   
   

  

Here, in this research, we showed that using the automatic differentiation combined

with the graph coloring techniques can improve the computation cost by approximating the

Hessian matrix. This improvement is proportional to the number of columns of the thin matrix.

The preconditioned conjugate gradient method presents better performance when the

problem size grows. It solves linear system for the Newton step in fewer iterations compared to

the conjugate gradient method itself. All works we have discussed for Newton step is an inner

part of the iterations for solving the nonlinear optimization problem.

30

References

[1] T.F. Coleman and G.F. Jonsonn, The Efficient computation of structured gradients using
automatic differentiation, SIAM J. Sci. Comput., vol. 20, 1999, 1430-1437.

[2] T.F. Coleman, A. Verma, Structured and Efficient Jacobian Calculation, in Computational

Diffrentiation: Techniques, application,and tool, M. Berz, C. Bischof, G. Corliss and A. Griewank
(eds), SIAM, Philadelphia, (1996), pp. 149–159.

[3] T.F. Coleman and J.J. Moré, Estimation of sparse Hessian matrices and graph coloring problems,

Math. Programming, Vol. 28 (1984), pp. 243–270.

[4] T.F. Coleman and J.Y. Cai, The cyclic coloring problem and estimation of sparse Hessian
matrices, SIAM J. Algebraic Discrete Methods, Vol. 7 (1986), pp. 221–235.

[5] W. Xu , T.F. Coleman, Efficient (Partial) Determination of Derivative Matrices via Automatic

Differentiation, SIAM J. Sci. Comput., Vol. 35(3) (2013), pp. 1398-1416.

[6] T.F. Coleman, A. Verma, The efficient computation of sparse Jacobian matrices using automatic
differentiation, SIAM J. Sci. Comput., Vol. 19 (1998), pp. 1210–1233.

[7] J. Nocedal, S.J. Wright, Numerical Optimization – 2nd Edition, Springer Series in Operations

Research, T.V. Mikosch, S.M. Robinson, S.I. Resnick, Springer Science + Business Media (2006)

[8] J.R. Shewchuk, An Introduction to Conjugate Gradient Method Without the Agonizing Pain,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA (1994)

[9] MATLAB 2014b, www.mathworks.com, 2015

[10] ADMAT 2.0: Automatic Differentiation Toolbox, www.cayugaresearch.com, 2015

31

Appendix

