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Abstract 

In many practical nonlinear optimization problems, the objective function has sparsity 

structure in the corresponding Hessian matrices. Even with sparsity, many optimization methods 

involve computing, or approximating the Newton step at each iteration. This in turn involves the 

calculation of the matrix of second derivatives, the Hessian matrix (at each iteration). 

Here we propose a method that induces the solution of the Newton step but avoids 

calculating the Hessian matrix. Instead we compute a sparser approximation used as a 

preconditioner for a conjugate gradient process; the true Hessian matrix is never computed. 

The preconditioner we compute is an approximation of the Hessian matrix using a subset 

of the nonzero elements of the Hessian matrix. The approximation is obtained based on the 

knowledge of the sparsity structure, graph coloring techniques, and automatic differentiation. 
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1. Introduction 

One practical methodology in continuous optimization is minimization through the 

conjugate gradient method with preconditioning. The conjugate gradient method is an efficient 

iterative method to solve symmetric positive definite linear systems; hence we use it at each 

iteration of an optimization algorithm to compute an approximation of Newton step. 

In large-scale problems, the computation cost becomes crucial. Fortunately, in many 

large-scale optimization problems, there is sparse structure that we can take advantage of. For 

example, we can exploit sparsity to just think about solving nonzero elements, which by itself 

reduce computation cost considerably. 

To gain efficiency, instead of the sparse Hessian, we can use a preconditioner for 

particular problems. Indeed, no single preconditioner is suitable for all types of problems. Here 

we propose to search for a suitable preconditioner by using a subset of the nonzero elements 

of the Hessian matrix. The idea is to compute just these elements and avoid computing the 

entire Hessian matrix. 

In this research, we consider optimization problems with sparse Hessian structure, SH . 

Given the location of nonzero elements of the Hessian, and using graph coloring methods, we a 

find the thin matrix V (if possible), which consists of columns vectors, to compute HV by either 

the finite differencing method or the automatic differentiation method, and then we deduce 

the desired subset of nonzero elements of H efficiently. 

In this way we compute M , an estimation to the Hessian matrix H , without computing 

the Hessian matrix. Finally, we use M  in the preconditioned conjugate gradient algorithm to 

help find a solution for the nonlinear optimization problem. Here is the proposed scheme of the 

process: 

 

 
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2. Conjugate Gradient for nonlinear optimization 

The conjugate gradient method CG , is a suitable tool for solving symmetric positive 

definite, SPD , linear systems, often, in an iterative method. This method has advantageous 

compared to other direct methods of solving sparse and large-scale systems. The conjugate 

gradient method could be applied on a sparse and large nonlinear optimization problem.  

Considering the fact that, at each iteration of Newton step we approximated the twice 

differentiable objective function ( )f x  by a quadratic function 
1

min
2

T T

x
x Hx g x

 
 

 
 around the 

optimization point at nth iteration 
nx  to get the new optimization point 

1nx 
. Thus, min ( )

x
f x  

results in solving ( ) 0f x   which leads us to solve the linear system 2 ( ) ( ) 0Nf x s f x   . 

Then, by finding Newton step, and updating 
1n n Nx x s    we will take a step towards the 

min/max of the quadratic function. 

Next, we should approximate the objective function by a quadratic function with the 

Hessian for 
1nx 
 and then solve it for Newton step and so on. Therefore, the main part of the 

approach in such a nonlinear optimization is to approximate around the earlier optimization 

point and get the new one by solving for Newton step. 

To approximate the objective function, which is often large and sparse, by a quadratic 

function, we already know the conjugate gradient method which has comparative 

advantageous over the other methods for solving such problems. The conjugate gradient 

method itself is a well-studied and well-known method for solving SPD  linear systems. 

Besides, we could compute a preconditioner to approximate the Hessian in order to avoid 

expensive computing of it. Thus, the focus of this work is on preconditioned CG  method 

applied to Newton systems in the nonlinear optimization context. 

 

2.1 Preliminary Conjugate Gradient 

The CG  technique can be used in solving large-scale nonlinear optimization problems 

in the following way. Let us assume our optimization problem is min{ ( )}
x

f x  where ( )f x  is a 

twice differentiable function, and the gradient ( )f x  can be computed. The gradient of ( )f x  

can be identified as the residual in linear systems (i.e. ( )f x b Ax   ).  

First we take a look at the CG  algorithm to find a solution for a SPD  linear system 

which is a finite iterative method. Suppose we have a quadratic function to solve. 
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 
1

min ( )   solve
2

T Tf x x Hx g x Hx g     where 2: ( )H f x  and : ( )g f x  

Newton’s method is going to find the roots the derivatives (i.e. ( ) 0
x

f x


 ) . It uses 

curvature information to take a more direct route for minimizing ( )f x . By solving a sequence 

of quadratic problems in Newton system, we can get linear approximation of nonlinear 

problem. Note that if ( )f x  is a quadratic function, we can get the exact solution in one step. 

Table 2.1: Preliminary conjugate gradient 

Conjugate gradients for linear Positive Definite systems: 
Inputs: 

f : Objective function ( )f x  

0x x : starting value 

maxi : Maximum number of CG iterations 

1  : CG error tolerance 
Output: 

*,  x d : Optimization point and the direction of positive (or negative) curvature 

0i   

( )r f x  , d r  
T

new r r  , 0 new   

2

0tol    

While maxi i and tol   

Hd   

If 0Td    then 

( , )return x d  (it gives direction in negative curvature) 

else 

new

Td





  

x x d   

( )r f x   

old new   

T

new r r   

new

old





  

d r d   

1i i   

end 
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Notes: 

-   is chosen to minimize ( )f x  along d  because: 

   2( ) ( ) ( )
T Tf x d f x d d f x d 




      

 and setting it to 0 , gives 
T

T

J d

d Hd



   

- r is residual which is ( )r f x   

- Directions  ,i jd d  are H  conjugate: 0T

i jd Hd  where i j  

- thk  iteration produces x ; which is minimizer of ( )f x  on a k  dimensional subspace 

spanned by k  conjugate directions generated. 

- The recent note implies finite n steps  convergence; but in practice due to finite 

precision expanding subspace property is lost. In other words, Separate eigenvalues 

results in poor performance. 

- Stop criteria is either when the number of iterations exceeds maxi  or when 

( ) (0)ir r  

- Fast and inexact line search can be done by a small maxi or approximating the Hessian 

with its diagonal. 

- Why is it important to ( , )return x d in some condition?(i.e.  0 ( , )Tif d return x d   )  

I. It is important to have x  since it is an optimization point. 

II. It is important to know d  because we will have the direction of down-hill and, as a 

result, the optimization becomes better and better. 

- Computational cost contains: 

I. Matrix-vector product. 

II. Inner product of vectors. 

III. Three vector sums. 

- Benefits: 

I. The CG method is beneficial for large-scale problems (otherwise Gaussian and the 

other methods are better) since it is less sensitive to rounding errors. 

II. Unlike factorization, it does not change the coefficient matrix H . 

III. The CG method sometime approaches the solution very quickly. 

 

2.2 Preconditioned Conjugate Gradient 

The performance of the CG  method is correlated with the distribution of eigenvalues 

of the iterative matrix. Using an appropriate preconditioner, a desired clustered distribution of 

eigenvalues, can be achieved. This results in improvement of convergence. 
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Our idea is to use a sparse preconditioner M , where M consists of a subset of nonzero 

elements of the Hessian matrix. Note that ( )M M x  and it is calculated directly at each outer 

iteration before starting to find the Newton step; but our technique avoids computing ( )H x . 

The other thing worthwhile to note is that the preconditioner M  should always be 

positive definite. After finding M , if it is not positive definite, we can factorize it by incomplete 

Cholesky (also known as modified Cholesky) to make sure positive definiteness of M . Thus, 

using incomplete Cholesky will give back lower triangular matrix L , which means that TM LL  

is definitely positive definite. Considering Md r  in the PCG  algorithm, we can solve for d  by 

following steps: 

\ \T T T

T
y

Md r
L L d r y L r L d y d L y

M LL


      


 

Table 2.2: Preconditioned conjugate gradient  

Preconditioned conjugate gradient: 
Inputs: 

f : Objective function ( )f x  

0x x : starting value 

maxi : Maximum number of CG iterations 

1  : CG error tolerance 

Output: 
*,  x d : optimization point and the direction of positive (or negative) curvature 

0i   

( )r f x   

Calculating preconditioner 2 ( )M f x , and TM LL using 
 is PD

 is not PD modified 

M cholesky

M cholesky





 

1d M r  

(which can be calculated by: 
\

\

y

T

T

y L r
L L d r

d L y


 


  

T

new r d  , 0 new   

2

0tol    

While maxi i and tol   

Hd  (by FD or the AD methods) 

If 0Td    then 

( , )return x d  (it gives direction in negative curvature) 

else 
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new

Td





  

x x d   
r r    

1s M r  (can be calculated by: \ \T T

y

L L s r y L r s L y     ) 

(Which avoids factorization again by using L  from previous calculation to calculate s ) 

old new   

T

new r s   

new

old





  

d s d   

1i i   

end 

Notes: 

- In addition to notes in table 2.2 there are some more notes for the preconditioner CG  

- To be efficient, TM LL  must be fast. 

- Choosing M  is a hard problem by itself for two reasons: 

I. M  should approximate H  well. 

II. TM LL  should be inexpensive. 

Examples of preconditioners are: 

1. Diagonal Matrix M  

2. Banded Approximation 

3. Incomplete Cholesky 

- Preconditioner M must be always positive-definite in order to use in the CG  method. For 

this purpose if M was not positive definite, by using modified Cholesky factorization we will 

get TM LL and then it is positive definite which is fine. 

- 
M

x  increases at each iteration. 

- If 2 ( )M f x , then 2 ( )f x d  estimates finite difference ( )f x  along direction d  

- To calculate 1s M r  it does not need to use Cholesky factorization again since we already 

know the factor L .   
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3: The Hessian Determination and Graph Coloring 

Computation partial derivatives often represent the majority of the computing time in 

solving optimization problems. The good news is that there are methods that could exploit 

large-scale sparsity to reduce computation time, such as sparse Finite Differencing ( FD ) and 

Automatic Differentiation ( AD ). 

Considering the sparse structure of the Hessian, it is enough to calculate only nonzero 

elements of matrices in large-scale problems which results in saving on cost. We can further 

improve computation cost by approximating the Hessian by a subset of its nonzero elements. 

First, let us introduce the Jacobian matrix as a straight-forward concept before we move 

on to the Hessian matrix definition next. To define the Jacobian matrix, suppose we have m  

functions of x  construct ( )F x  which is an m  dimensional vector of functions, : n mF  , 

over n  dimensional vector space, nx ; so the Jacobian matrix defined as derivatives of ( )F x  

with respect to x  will result in m nJ  . Making these definitions more clear, we can show 

( )F x , and the Jacobian matrix, and the formula for each element of the matrix as follows: 

1

n

x

x

x

 
 


 
  

, 

1( )

( )m

f x

F

f x

 
 


 
  

, 

1 1

1

1

n

m m

n

f f

x x

f f
x x

dF
J

dx

 

 

 
 

 
 
 

   
 
 
 

, i
ij

j

f
J

x





 

For the Hessian, we can define the Hessian matrix, n nH  , as the second derivatives 

of a scalar valued function 1: nf   over the n  dimensional vector space nx . Note that 

the gradient ( )f x  is a 1n by   column vector. The formulations are as follows: 

1

n

x

x

x

 
 


 
  

, 1( , , )nf f x x , 
1

n

f

x

f

x

f









 
 
  
 
 
 

, 

2 2

2
11

2 2

2
1

n

n n

f f
x xx

f f
x x x

H

 


 
 

 
 
 

  
 
 
 

, 
2

ij

i j

f
H

x x





 

 

3.1 Finite Differencing (𝑭𝑫) method 

To approximate the Jacobian and the Hessian matrices by the FD  method along the 

direction d (which is normalized), we could use Taylor expansion as follows: 
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( ) ( ) ( )TF x hd F x hJ x d   , which results in: 
( ) ( )F x hd F x

Jd
h

 
 . For the scalar 

valued function ( )f x , the Taylor approximation is: 21
2

( ) ( ) ( )T Tf x d f x f x d d Hd       ; 

and if we write the Taylor expansion to the first term approximation for the gradient then we 

have: 2( ) ( ) ( )f x d f x f x d       which results in: 
( ) ( )f x d f x

Hd
d





  
  

Clearly, in the finite differencing method, to approximate the Jacobian and gradient, we 

need the objective functions ( )F x  and ( )f x  respectively; while to estimate the Hessian 

matrix, the gradient, ( )f x , is required. Although the Hessian could be approximated directly 

from the objective function, but the drawback is poor accuracy. 

When we estimate the gradient from the objective function we use Taylor 

approximation which intrinsically has error, so doing one more approximation on the gradient 

using Taylor expansion to estimate the Hessian will magnify the error as a result of 

compounding effect. For this reason, we need to have the gradient precisely in order to 

estimate the Hessian matrix. Therefore, the gradient is required as an input rather than being 

approximated, unless we use the automatic differentiation method to get the Hessian matrix 

directly and precisely from the objective function ( )f x . 

 

3.2 Automatic Differentiation (𝑨𝑫) method 

An alternative method to calculate the Hessian matrix is automatic differentiation which 

can directly calculate the Hessian by having vector x  and the objective function as input. The 

idea of AD  method is built on the chain rule. 

Let us assume we want to compute the differentiable function ( )z F x  where 

: n mF  , and ,m n are positive integers. We can evaluate ( )F x  by intermediate variables 

1( , , )py y y  which ,p m n  and obviously each ky is an output of the atomic function on 

one or two previous intermediate or original variables i.e. 
k i j

function
y y y

elements

 
  

 
 . In other 

words, we can write every nonlinear function as a partially ordered sequence of atomic 

functions. Therefore we can decompose any function ( )F x  into intermediate variables and 

functions as: 
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1 1 1

2 2 1 2

1 2

1 1 2

( ) : ( , ) 0

( ) : ( , , ) 0

( ) : ( , , , , ) 0

( ) : ( , , , , ) 0

E

E

E

p p p

E

p p

solve y F x y

solve y F x y y

solve y F x y y y

solve z z F x y y y







 

 

Viewing ( )F x  as a partially ordered sequence of atomic functions, we can differentiate 

it with respect to the original independent variables and the intermediate variables, which 

results in the ( ) ( )p m by n p     sparse matrix giantJ . 

}

}
giant

p

m

n p

A L
J

B M

 
  
 

, 
1

1

: [ ] and ( ) ( )

: [ ] and ( ) ( )

fwd fwd

rev rev

AD J B M L A w J n w F

AD J B ML A w J m w F





   

   
 

To calculate the gradient, we can use the AD  method to get it precisely than 

approximating it by the FD  method. The other fact is that the gradient is a special case of the 

Jacobian computation when 1: nf   is differentiable and we need to compute the 

gradient
1

( ) , ,

T

n

f f
f x

x x

  
   

  
. So as it can be seen the gradient is like the Jacobian with 

1m  as a special case of the Jacobian. If we assume the work (floating point operations) for 

evaluating the objective function is ( )w f , [1] showed that calculating the gradient in reverse-

mode revAD  is ( )w f  while it cost ( )n w f  in forward mode fwdAD , which takes the same 

time to calculate the gradient as the FD  method. 

So far we have considered the gradient computation. Next step is computing second 

derivatives and the Hessian matrix which is useful in optimization problems i.e. min ( )
x

f x  

where 1: nf   and ( )f x  is twice continuously differentiable. Finally, we need 

 2( ),  ( ),  ( )f x f x f x   at each iteration x , in the CG  iterative method. The goal here is to 

obtain 2 ( )f x  along directions, for given ( )f x , by AD  without computing the 2 ( )f x . 

First, suppose we want to obtain 2 ( )f x . In order to calculate 2 ( )f x , one way is to 

compute the gradient ( )f x  from ( )f x  by the AD  method which has discussed briefly; and 

by the same method we computed the gradient we can find 2 ( )f x , since it is the Jacobian of 

( )f x . However, the forward mode needs less space than the reverse mode while both 

computing the Hessian in time ( )n w f  . 
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However, practically, it is slower to compute the Hessian when we have ( )f x  rather 

than when we have ( )f x . Thus, we assumed the objective function ( )f x  is given, not ( )f x . 

As a result, the computing cost for the Hessian matrix by the AD  method, in general, is: 

2( ) ( ) ( )w f n w f n w f     

The Hessian matrix product can be produced by the AD  method directly without 

requiring the determination of the Hessian matrix itself. The same claim can be made for the 

Jacobian matrix products. For more clarification, let us suppose for the given differentiable 

mapping : n mF  , thin matrix 
V

n tV  , and thin matrix 
W

m tW  , we could have the products  

JV  and TW J  by the forward mode and the reverse mode of AD  respectively. Here are the 

formulas and the works related to computing each of the products. 

1[ ]JV BV M L AV  , ( ) ( )Vw JV t w F  

1[ ]T T TW J W B W ML A  , ( ) ( )T

ww W J t w F  

When the number of columns of V (or W ) is small compared to the column (or row) 

dimension, these works substantially cost less than the cost of computing the Jacobian first and 

then multiplying to get JV and TW J . 

The same argument can be used for the Hessian matrix product, Hx . The constrained 

optimization is one application of product determination, which we work with the reduced 

gradient and Hessian matrices. We have choices whether to use AD to determine Hx  directly 

and then multiply the result by Tx  to get Tx Hx  or not. The decision depends on the sparsity of 

the Hessian matrix. In this research we assumed the Hessian matrix has sparse structure. 

While we know sparsity of the Jacobian (or Hessian) matrix how we could find nonzero 

elements of it. If we could determine a thin matrix V  and/or a thin matrix W , and determine 

JV and/or TW J  by AD  forward and reverse mode respectively, then we could extract 

nonzero elements of the Jacobian matrix from these products. Similarly, if we could determine 

a thin matrix V , which 1[ , , ]pV d d , and determine HV  by the AD  method or the FD

method, then we could determine the Hessian matrix [3]. 

In order to calculate HV  matrix, the AD  method has some benefits over the FD  

method as follows: 

 The AD  Method offers more accuracy since it does not have truncation error due to 

using Taylor expansion in the FD  method. 
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 The FD  Method needs knowledge of the structure of the Jacobian or the Hessian 

while AD  can preprocess sparsity pattern. 

 The AD  Method is much less sensitive to dense rows than the FD  method. 

To sum up, we already know how to calculate products JV , TW J , and HV  by either 

AD  or the FD  method. The other parts of the puzzle are determining thin matrices V  or W  

for the Jacobian matrix and V for the Hessian matrix, still remain unsolved. Next, we are going 

to explain how to get those matrices such that they are thin and all nonzero elements could be 

extracted from those products. 

 

3.3 Graph Coloring 

Now we have to find thin matrices in order to recover all nonzero elements of the 

Jacobian matrix from JV , and TW J , and of the Hessian matrix from the HV  product. To have 

a better intuition of thin matrices let us consider the following examples. Suppose : n nF 

is differentiable and the Jacobian of F  has the following structures: 

Example 1: 
1

2 1

3 2

4 3

5 4

J



 

 

 

 

 
 
 
 
 
 
 
 

 

1 0

0 1

0 1

0 1

0 1

V

 
 
 
 
 
 
 
 

 

1

2 1

3 2

4 3

5 4

0

JV



 

 

 

 

 
 
 
 
 
 
 
 

 

In this example, by having such V and then computing JV  by the fwdAD  mode, we can 

recover all nonzero elements of J . As it can be seen, by the first column of JV , the first 

column of J  can be recovered and by the second column of JV , the rest of diagonal elements 

of J  can be extracted. Note that similar steps can be done for the Hessian matrix. 

Example 2: 
1 2 3 4 5

1

2

3

4

J

    









 
 
 
 
 
 
 
 

 

1 0 0 0 0

0 1 1 1 1

T

W
 

  
 

 

1 2 3 4 5

1 2 3 40

TW J
    

   

 
  
 

 

In the second example, similarly, by having W  and then computing TW J  by the revAD  

mode, all nonzero elements of J  can be recovered. In this example, because of the dense first 
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row we get poor performance from the 
fwdAD  mode. Similarly, in the previous example the 

fwdAD  mode because of the first dense column has the same situation. 

Example 3: 
1 2 3 4 5

2 1

3 2

4 3

5 4

J

    

 

 

 

 

 
 
 
 
 
 
 
 

 

1

0

0

0

0

V

 
 
 
 
 
 
 
 

 

1

2

3

4

5

JV











 
 
 
 
 
 
 
 

 

1 0

0 1

0 1

0 1

0 1

W

 
 
 
 
 
 
 
 

 

1 2 3 4 5

1 2 3 40

TW J
    

   

 
  
 

 

In the third example, because of the first dense row, we cannot use the 
fwdAD  mode; 

because of the first dense column, the revAD  mode could not be a good option as well. 

However, we can take advantage of both fwdAD  and the revAD  modes to extract all nonzero 

elements of the Jacobian. It is clear that the first column of the Jacobian could be obtained from 

the 
fwdAD  mode and the rest of nonzero elements could be obtained from revAD mode. 

Now, we know how to get nonzero elements of the Jacobian by having V , W , and 

obtaining JV , and TW J  from both modes of the AD  method as we discussed so far. Similarly, 

we know getting nonzero elements of the Hessian by having V and obtaining HV by the AD  

method. However, we still need to determine those thin matrices (i.e. V , W ) as missing parts. 

Suppose we could partition columns (or rows) of the Jacobian matrix into groups named  

ie  where 1 i p  . For example, if we have the Jacobian matrix as below, and ,  ,  x y z  

represent nonzero elements, one possible partition for the Jacobian matrix is 1 2 3( , , )V e e e . 

x y

x y z

y z x

J z x y

x y z

y z x

z x

 
 
 
 
 

  
 
 
 
 
 

, 

 

 

 

1

1 1

2

2 2

3

3 3

1 0 0 1 0 0 1 ;  

0 1 0 0 1 0 0 ;  

0 0 1 0 0 1 0 ;  

T

T

T

e e d

e e d

e e d

 

 

 

 

Note that each element (index) of the vector ie  corresponds to a column (or row) of the 

Jacobian (or Hessian) matrix, which presents presence of that columns (or row) in that group. 
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Therefore, we can formulate partitioning of the Jacobian (or Hessian) matrix into V  such that:

 
1

1,
( , , ) ( , ) ;  (  ) 0k lp k l i

pi
V e e col col e col col




     for nonzero positions; and if we map 

1

1e d for example, we could say 1

11 ( )id col i e    as well. 

So far we know that the Jacobian (or Hessian) matrix can be divided into the groups

1, , pe e  which 
1, ,

i

i pd 
  can be used to calculate iJd  for the Jacobian products (or similarly 

1, ,

i

i pd 
 for iHd (s)). Considering the fact that there are different combinations to partition the 

Jacobian (or Hessian) matrix, the work for calculating JV  by the 
fwdAD  method, for example, is 

( )p w F . Therefore, our strategy to minimize ( )w JV  turns into finding the smallest p  as 

possible i.e. the thinnest V (or W ) matrix. 

Let us define a bi-partition of a matrix J gives a row partition of a subset of rows of J  

called 
RG  and a column partition of a subset of columns of J  called 

CG  [2]. If we chose pairs 

( , )R CG G  such that 
R CG G  is the smallest possible partitions, where 

RG  and CG represent 

the number of groups in CG  and RG  respectively; matrices 
Cn G

V


 and 
Rm G

W


 could be 

constructed such that J  could be directly determined from ,  and TW J JV . However, by 

substitution, the work required to evaluate the nonzero elements of J can be reduced further. 

For calculating the Hessian matrix H  of a scalar value function : nf   in addition 

to sparsity we could exploit the symmetric property of the Hessian matrix. In the case of the 

Hessian matrix has the arrowhead structure, for example, it requires n  groups if we ignore 

symmetry; while it just needs two groups if we take into account the symmetric property. 

Example: the Hessian matrix with the arrowhead structure 

n n

x x

H

x x



 
 


 
  

, 
1

2

1 0

0 1

0 1
n

V



 
 
 
 
 
 

, 
2

1 0

0 1
n n

V



 
 


 
  

, thus 
1 2V  , and 

2V n  

We deal with the direct method determination and the substitution method 

determination as combinatorial problems by exploiting Graph theory to approximate the 

Jacobian and the Hessian matrices. Let us define the general notation of a graph  G  V,  E  

which has V  vertices and E edges; then we color vertices of the graph such that any two 

adjacent vertices cannot have the same color. In other words, two neighbors in a graph cannot 

be in a same group; since they have different colors, which is the main idea of graph coloring. 
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Let  G (H)  V,  Eadj   be adjacency graph of H , and V n  which iv  corresponds to

iiH  and if 
, 0 ( , )j kH j k j k E     . Assigning P  colors to vertices such that for every path 

in Gadj
 of length of four distinct vertices use at least three colors, which is called the path p-

coloring of Gadj
. Although we can say the general direct method based on the path p-coloring 

idea exploits symmetry, it does not exploit symmetry to the fullest. We need a way to handle 

direct asymmetric method when, for example, it applied to a symmetric band matrix. In other 

words, we are looking for a method which relaxes the restriction that every element of the 

Hessian should be determined directly.  

Let us assume a symmetric matrix which we can find an ordering to determine nonzero 

elements of the matrix such that they can be solved by using symmetry and previously solved 

elements. We can see the substitution method as a symmetric tri-diagonal of the Hessian 

matrix which can be determined by two of the gradient differences with substitution. 

Substitution method for symmetric matrices is based on the cyclic coloring. Mapping vertices 

into P  colors is a cyclic p-coloring if this mapping uses at least three colors in every cycle of 

Gadj
. 

 
Figure 3.1: Path coloring 

 
Figure 3.2: Path p-coloring 

 
Figure 3.3: Regular Coloring 

 
Figure 3.4: Cyclic Coloring 

Figure 3.1 and figure 3.2 show path coloring and oath p-coloring which the difference is 

observable. Also, figure 3.3 shows normal coloring for a cycle of a graph while figure 3.4 shows 

path cyclic coloring for the same loop of the graph. Since cyclic coloring usually uses fewer 

colors than path coloring, we need fewer gradient finite differences for the substitution method 

compared to the direct method. However, the vulnerability to round off error growth due to 

the substitution method leads us to choose between cost and accuracy. 

Overall, there are three different approaches in order to determine the Hessian matrix 

by finite differencing of the gradient function: 
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I. The direct method based on coloring of the intersection graph G I
 of H , ignoring symmetry. 

II. The direct method based on path coloring of the adjacency graph Gadj
 of symmetric H . 

III. The Indirect method based on cyclic coloring of the adjacency graph Gadj
 of symmetric H . 

Table 3.1 Different coloring approaches determining the Hessian matrix 

First Approach Second Approach Third Approach 

Color ( ) 1, ,I IG H p  Color ( ) 1, ,adjG H p  Color ( ) 1, ,I LG H p  

Table 3.1 shows how coloring happens in all three approaches. As it can be seen in the 

third approach, coloring applied on the lower triangular part of the matrix H , which is named 

here LH . The other fact is that coloring of the intersection graph of lower triangular,  I LG H  

corresponds to a substitution process for nonzero elements of H  [4]. Suffice it to say that to 

implement the cyclic coloring, which is an NP Hard  problem, it is enough to color  I LG H , 

which has well-known heuristic solutions. Tables 3.2 to 3.4 summarized all three approached 

supposed 1: nf  , : n nH  ,  and 
2

ij

i j

f
H

x x





  

Table 3.2: First approach to Determinate the 
Sparse Hessian by FD  method 

Table 3.3: Second approach to Determine the 
Sparse Hessian by FD  method 

Direct, Sparse estimation of H :  

- Color ( ) 1, ,I IG H p  

- : ( ) ( ) k

Hk color k group e d    

- ( 1: )Ifor j p  

( ) ( )j
j f x d f x

y




  
 

1 I

I

p

n p
Y y y


     

Direct, Sparse estimation of H :  
- Color ( ) 1, ,adjG H p  

- : ( ) ( ) k

Hk color k group e d    

- ( 1: )for j p  

( ) ( )j
j f x d f x

y




  
 

1 p

n p
Y y y 


     

Table 3.4: Third approach to Determinate the Sparse Hessian by FD  method 

InDirect, Sparse estimation of H :  

- Color ( ) 1, ,I LG H p  

- : ( ) ( ) k

Hk color k group e d    

- ( 1: )for j p  

( ) ( )j
j f x d f x

y




  
 

1 p

n p
Y y y 


      
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4. Recovering Designated Subset of Nonzero elements 

In previous section, in fact, we learned how to do graph coloring and consequently find 

thin matrices. In order to use graph coloring idea for the purpose of finding thin matrices, and 

finally extracting nonzero elements of the Jacobian and/or the Hessian matrices, we need to 

construct related graphs first. In this section, the algorithms are used to construct graphs for 

extracting nonzero elements of the Jacobian and the Hessian matrices will be explored [5]. 

 

4.1 Recovering Nonzero Elements of the Jacobian Matrix 

A) Determining J (non-zero elements), by the direct, and 2-sided method. 

Let us assume J , after a permutation, partitioned into CJ , and RJ  which is called bi-

coloring [2]. Therefore, determining J  turns to determine CJ , and RJ . 

     

   RJ   

     

 CJ     

     
 

 

Two sub problems are: 

1. Elements in CJ  determined by JV ; how to get V ? 

2. Elements in RJ  determined by TW J ; how to get W ? 

 

Algorithm 4.1: The pseudo code for method A 

To get V : 

1. Construct ( )I CG J  as follows 

  1, ,V n  

 ( , )  and ( , ) Cif k i nnz k i J   

( 1: )for j n  

( , ) ( , ) ( )CJ

Iif k j nnz i j E G    

2. Color  CJ

IG V  

To get W : 

- Similarly, construct 
T
RJ

IG , then color it, finally T

RJ W  

To get J : 

- Extract CJ  from JV  

- Extract RJ  from TW J  
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Example 4.1: We want to determine elements of 
CJ  (similarly RJ ) in order to construct 

( )I CG J . As it can be followed from the algorithm and the figure 4.1, there should be an edge 

between column 1 and 4 i.e. (1,4) ( )I CG J  because they cannot be in the same group. 

Similarly, considering other pair of columns we can see  (1,4),  (2,3),  (2,5),  (3,5) ( )CJ

IE G . 

By applying coloring algorithm on the graph, we can get matrix V as a set of column vectors 

each of which belong to one color. By having JV  and  V  we can get non-zeros of CJ  by 

diagonal solver. Similarly, by having TW J , and W we can get 
CJ . 

  13J  
14J  RJ  

21J    24J   

 32J  33J   35J  

   44J   

CJ      
 

 

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

BR G

V

 
 
 
 
 
 
  

 

Figure 4.1: The Jacobian matrix structure, corresponding colored graph, and thin matrix 

B) Determining J (non-zero elements), by the substitution, and 2-sided method. 

Algorithm 4.2: The pseudo code for method B 

To get V : 

1. Construct ( )I CG J  as follows 

  1, ,V n  

 ( , )  and ( , ) Cif k i nnz k i J   

( 1: )for j n  

( , )  and ( , ) ( , ) ( )CJ

C Iif k j nnz k j J i j E G     

2. Color  CJ

IG V  

To get W : 

- Similarly, construct 
T
RJ

IG , then color it, finally T

RJ W  

To get J : 

- Extract nonzero elements using substitution from ,  and TW J JV   

Example 4.2: There are two possibilities for any pair of non-zeros we should consider: 

1. Both nonzero elements belong to CJ , which correspond to an edge in CJ

IG . 

2. Some nonzero elements (in one row) belong to RJ , which we have to solve them first and 

substitute back to solve for CJ . 
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As it shown in the figure 4.2, by solving 
34J  and 

35J from RJ ; then we can solve 
33J  in

CJ . In 

other words, substitute back from solving RJ  to CJ . 

11J     RJ  

21J    24J   

  33J  34J  35J  

 42J   44J   

CJ      
 

CJ  

 

1 0

1 0

1 0

0 1

1 0

V

R B

 
 
 
 
 
 
  

 

11

21

33 35

42

0

RJV

J

J

J J

J

 
 
 
 
 
 
  

 24

34

44

0

0

BJV

J

J

J

 
 
 
 
 
 
  

 

RJ  

 

1 0

1 0

0 1

1 0

1 0

W

R B

 
 
 
 
 
 
  

 

11 21

42

24 44

0

0

R

TW J

J J

J

J J

 
 
 
 
 

 
  

 
33

34

35

0

0

B

TW J

J

J

J

 
 
 
 
 
 
  

 

Figure 4.2: The Jacobian matrix structure, RJ  and CJ  corresponding colored graphs, and thin matrices 

4.2 Recovering Designated Subset of Nonzero Elements of the Jacobian Matrix 

C) Determining designated subset ( )U nnz J , by the direct and 1-sided method. 

Algorithm 4.3: The pseudo code for method C 

To get V : 

1. Construct UG  as follows 

  1, ,V n  

 ( , )  and ( , )if k i nnz k i U   

( 1: )for j n  

( , ) ( , ) ( )Uif k j nnz i j E G    

2. Color  UG V  

To get U : 

- Extract nonzero elements using diagonal solver. 

Example 4.3: Here, we should consider all possibilities for any pair of non-zeros: 

1. If both nonzero elements do not belong to U , leave it as is and do nothing. 

2. If both nonzero elements are in U , there is an edge between them. 

3. When one of them is in U  and the other is out of U , there is an edge between them. 
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 12J   14J   

 22J  23J    

31J  
32J   34J   

   44J   

    35J  
 

 

1 0

0 1

1 0

1 0

1 0

V

R B

 
 
 
 
 
 
  

 23

14

31 34

44

35

R

J

J J

J

J

JV

J

 
 
 
 
 
 
 
 

 22

32

12

0

0

BJV

J

J

J 
 
 
 
 
 
  

 

Figure 4.3: The Jacobian matrix structure, corresponding colored graph, and thin matrix 

Here we are looking to determine nonzero elements of U which can be solved by 

diagonal solver. As in the figure 4.3, since 
31J , 

34J  are non-zeros out of U , they are in the same 

color, otherwise (1,4) ( )UE G . Crossed out elements e.g. 12J are not interested to calculate. 

D) Determining designated subset ( )U nnz J , by the direct and 2-sided method.  

Algorithm 4.4: The pseudo code for method D 

To get V : 

1. Construct CJ

UG  as follows 

  1, ,V n  

  ( , )  and ( , ) Cif k i nnz k i J U   

( 1: )for j n  

( , ) ( , ) ( )CJ

Uif k j nnz i j E G    

2. Color  CJ

UG V  

To get W : 

- Similarly, construct 
T
RJ

UG , Color  
T

R
J

UG W  

To get U : 

- Extract nonzero elements of U  using diagonal solver from ,  and TW J JV . 

Example 4.4: As in the figure 4.4, we are solving for non-zero elements of U . For this 

purpose, every nonzero element out of U  could be disregarded. 

  13J  14J  RJ  

 22J   24J   

31J   33J  34J   

 42J   44J  45J  

CJ      
 

 

1 0 0

1 0 0

0 1 0

0 0 1

0 1 0

BR G

V

 
 
 
 
 
 
  

 22

42

31

0

0

R

J

JV

J

J

 
 
 
 
 
 
  

 

13

3

5

3

4

0

0

BJV

J

J

J

 
 
 
 
 
 
  

 24

34

44

14

0

GJV

J

J

J

J 
 
 
 
 
 
  

 

Figure 4.4: The Jacobian matrix structure, corresponding colored graph, and thin matrix 
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E) Determining designated subset ( )U nnz J , by the substitution, and 2-sided method. 

Algorithm 4.5: The pseudo code for method E 

To get V : 

1. Construct CJ

UG  as follows 

  1, ,V n  

  ( , )  and ( , ) Cif k i nnz k i J U   

( 1: )for j n  

( , )  and ( , )

( , ) ( )

( , )  and ( , )

C

C

J

U

R

if k j nnz k j J

or i j E G

if k j nnz k j J U

 


 
   

 

2. Color  CJ

UG V  

To get W : 

- Similarly, construct 
T
RJ

UG , Color  
T

R
J

UG W  

To get U : 

- Extract nonzero elements of U by Substitution from TW J  back to JV . 

Example 4.5: As in the figure 4.5, by solving 44J  in RJV  we can solve for 34J  from T

RW J , 

and then 33J  in RJV  although in can be solved from T

RW J  directly. Note that to solve for 44J  we 

should use T

RW J . If we want to extract it from RJV  we have to determine unnecessary nonzero 

elements which is, clearly, not efficient. 

   14J  RJ  

21J  22J     

31J   33J  34J  35J  

   44J  45J  

CJ    54J   
 

RJ  

 

1 0

1 0

1 0

1 0

0 1

W

R B

 
 
 
 
 
 
  

 22

21 31

33

34 4414

35 45

R

TW J

J

J

J J

J J

J

J J

 
 
 
 
 

  
  



 

54

0

0

0

0

T

BW J

J

 
 
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Figure 4.5: The Jacobian matrix structure, RJ  and CJ corresponding colored graphs, and thin matrices 
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4.3 Recovering Nonzero Elements of the Symmetric Hessian Matrix 

In order to recover nonzero elements of the Hessian matrix, we could take advantage of 

the symmetry property of the matrix. In contrary to the previous algorithms for evaluating the 

Jacobian matrix, here we do not need to consider coloring in two different sides, columns and 

rows. In fact, even if we do that we get same thin matrices [5]. 

Let us assume the Hessian matrix, is permuted symmetrically in order to add as few as 

possible edges to graph when we construct the graph for it [6], which basically improves the 

performance as well. 

F) Determining nonzero elements of symmetric H , by the direct,  and 1-sided method 

Algorithm 4.6: The pseudo code for method F 

To get V : 

1. Permute H  

2. Construct AG  as follows 

  1, ,V n  

 ( , )  where if k i nnz k i   

( , ) ( , ) ( )Ak j nnz i j E G    

3. Color  AG V  

To get H : 

- Non-zeros can be directly extracted from HV V corresponds to a path-coloring of 
H

AG  

Example 4.6: In this example the Hessian matrix is symmetric. Thus, if we solve for the 

nonzero elements of lower (or upper) triangular of the matrix, we literally have solved for all 

nonzero elements of the Hessian matrix. Thus, we look at lower triangular part of the Hessian. 
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Figure 4.6: The Hessian matrix structure, corresponding colored graph, and thin matrix 
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In the figure 4.6, although column 5 is in red group, it could be in another group as well. 

Dash lines of the Hessian in directions mean the value of those elements is zero. Indeed, we can 

recover the Hessian just by the elements of our concern. 

It is worth it to mention that, when nonzero elements 21H  extracted from a Hessian 

product 
RHV , the nonzero element 

12H  already solved in 
BHV . In this example imagine if we 

had 31H  in the structure, it would appear on third row of RHV  and also in BHV  in first row as 

12 13H H which already solved. Thus, we could pretend that nonzero elements in strict upper 

triangular are zero (i.e. red elements in the HV ). Indeed, by solving lower triangular elements 

using the symmetry property, we solved for all nonzero elements of the Hessian matrix. 

G) Determining nonzero elements of symmetric H , by the substitution, and 1-sided method 

Algorithm 4.7: The pseudo code for method G 

To get V : 

1. Permute H  

2. Construct ( )A I LG G H  as follows 

  1, ,V n  

 ( , )  where if k i nnz k i   

( , )  where ( , ) ( )k j nnz k j i j E G     

3. Color  AG V  

To get H : 

- Nonzero elements  can be extracted by substitution from HV V corresponds to a 
cyclic-coloring 

Example 4.7: In this example we used the symmetry property of the Hessian. Similar to 

the previous problem, we look at the lower triangular part of the Hessian. In the figure 4.7 by 

solving for the lower triangular from bottom to top, we can solve first for 53H  (i.e. 35H ) from 

BHV  and then solving 31H  when substitute 35H  back to RHV . The benefit of this approach is 

fewer colors are required equal to fewer Hessian products. Note that column 4 could be in Blue. 
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Figure 4.7: The Hessian matrix structure, corresponding colored graph, and thin matrix 
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4.4 Recovering Designated Subset of Nonzero Elements of the Hessian Matrix 

H) Determining designated subset ( )U nnz H , by the direct and 1-sided method 

Algorithm 4.8: The pseudo code for method H 

To get V : 

1. Construct AG  as follows 

  1, ,V n  

 ( , )  where if k i U k i   

 ( , ) ( , ) ( )Aif k j nnz i j E G    

2. Color  AG V  

To get U : 

- Non-zeros can be extracted from HV V directly 

Example 4.8: Considering the symmetry property of H , as in the figure 4.8, by following 

the algorithm we can color the graph. In this example, the column 2 could be in either blue or 

red direction.  

Like before, we want to solve for the lower triangular elements of the Hessian. Besides, 

we should consider elements belong to the designated subset on nonzero elements of the 

Hessian matrix U . 

Considering these two limitations, solving the nonzero elements like 41H , 45H , and 

consequently 14H , 54H  are not interested any more. Moreover, the upper triangular of the 

nonzero elements, no matter if they belong to U , is not our mission. 

Therefore, in this example by solving for the three nonzero elements 32H , 43H , and 

44H  we could claim that we determined all nonzero elements of the designated subset of 

nonzero elements of the Hessian matrix. 
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Figure 4.8: The Hessian matrix structure, corresponding colored graph, and thin matrix 
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I) Determining designated subset ( )U nnz H , by 1-sided substitution method 

Algorithm 4.9: The pseudo code for method I 

To get V : 

3. Construct 
AG  as follows 

  1, ,V n  

 ( , )  where if k i U k i   

( , )  where 

( , ) ( )

( , ) ( )

k j nnz k j

or i j E G

k j nnz U

 


 
  

 

4. Color  AG V  

To get U : 

- Non-zeros can be extracted from HV V  substitution. 

Example 4.9: Similar to the substitution method to determine all nonzero elements of 

the Hessian matrix we approach to find nonzero elements which are belong to U as a 

restriction. In the figure 4.9 using symmetry property of H , leads us to finding nonzero 

elements of the lower triangular of the Hessian. 

Note that column 4 could be in either red or the blue color. The other thing we may 

noticed here is that we are not interested on solving for blue direction since they are not in the 

subset U . In order to solve for concerned nonzero elements, we move from bottom to the top 

i.e. first solve for the 43H  , then substitute back in third row and get 32H , and substitute it in 

the second row and get 22H . Consider that we used symmetry property several times in this 

process of solving for nonzero elements of U  by substitution. 
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Figure 4.9: The Hessian matrix structure, corresponding colored graph, and thin matrix 
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5. Experimental Results 

In this section we are going to use a quadratic problem, which approximate the 

nonlinear optimization problems. Then, we are going to compute a preconditioner for solving 

linear system in order to find the Newton step with the preconditioned conjugate gradient 

method. 

To experiment with the idea we made up quadratic problems such that it has the 

Hessian matrix, H ,  and the Jacobian, g , for the problem size n . For the Hessian matrix it 

should be positive definite diagonal matrix which is zero free diagonal in order to use in the 

CG  algorithm. The other things about the Hessian matrix we can take in consideration are the 

sparsity structure, the symmetry, the density of nonzero elements of the sparse matrix, and the 

condition number for the matrix. 

After generating an n by n   hessian matrix H  with above properties, next we should 

generate g , a column vector of size n , which completes constructing of a quadratic problem. 

All these matrices and vectors are generated randomly by MATLAB function. We should note 

that although both the Hessian and the Jacobian are generated, we just have the quadratic 

problem ( )f x , and the gradient ( )f x . In other words, we pretend we do not have H , and 

g . Therefore we can say that we just have: 

The problem is: 
1

( )
2

T Tf x x Hx g x   

The gradient is: ( )f x Hx g
x


 


 

The next step after constructing the quadratic problem is finding the preconditioner. 

There are general purpose preconditioners such as symmetric successive over-relaxation, 

incomplete Cholesky, and banded preconditioner. We are using the banded in this experiment. 

From previous sections, we understood the process of getting the Hessian matrix 

indirectly without actually computing it which reduces computation cost effectively. In brief, 

here is what we have discussed: 

 

 1 , ,

modified 

( ),

( ),p

method T

methodd d

S
CholeskyV

or

Cholesky

f x x
M

f x x

FD
H V HV M LL

AD
 
 



  
 
  

       

 

In order to get the preconditioner M , we need to know the second derivatives in the 

directions, V , by the FD  or AD  methods which gives back HV . For the FD  method we 
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need the gradient and the input vector of variables. For the AD  method we need the 

objective function and the input vector of variables. 

By having the structure of the Hessian SH , and the structure of the subset of nonzero 

elements of the Hessian matrix U  we could get coloring information and construct V . After 

computing HV  by both methods FD  and AD , we computed the preconditioner for each of 

them. Now everything was ready to use preconditioned CG  algorithm by getting an input 

random vector 0x . In this experience we tried different size of problem, several density of 

sparse structure, and varying on banded preconditioner by choosing diagonal or tri-diagonal 

elements as subset of the Hessian matrix. 

The other experiment was measuring the cost of computing the Hessian completely and 

then finding the Hessian product Hd . We measured the computation cost for calculating the 

Hessian product Hd  by the AD  method (i.e. computed Hd  instead of H d ) as well.  For this 

part we used ADmath  toolbox. 

We observed that, although the computing preconditioner is notable, it is way cheaper 

than computing the whole Hessian for each iteration. Also should note that the PCG  algorithm 

when the problem size becomes bigger performs better than the CG  method. The other fact is, 

even if the computation cost for computing the preconditioner is not negligible, it just 

computed once. 

 
Figure 5.1: Cost of computing the preconditioner for subset of non-zeros 𝑈 and different density of 𝐻 
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The figure 5.1 shows that the cost of computing the preconditioner increases by density 

of the Hessian matrix. It means if the given Hessian structure is less sparse, the costs we will pay 

increase. This will effect both situations no matter if we want diagonal or tri-diagonal nonzero 

elements of the Hessian. However, the cost of computing the preconditioner is higher for the 

tri-diagonal subset on non-zeros. The reason is because the cost of coloring, the cost of finding 

the Hessian products HV , and the cost of extracting nonzero elements will increase by both 

density and type of preconditioners. 

 
Figure 5.2: Performance of CG  and PCG  with diagonal preconditioner with different H  

In the figure 5.2, the performance of solving the Newton step is compared for both CG  

and the PCG  methods. In this experiment, we used diagonal subset of nonzero elements of 

the Hessian as the preconditioner. The performance of the PCG  method is way better than 

the CG  algorithm. Furthermore, when the problem size is small, the difference for 

performances is negligible, but when the problem size increase, PCG  shows its comparative 

advantageous. 

In the figure 5.3, same experiment repeated for tri-diagonal subset of nonzero elements 

of the Hessian matrix. The PCG  method performs well even in denser Hessian structure. 

Although the cost of the algorithm increase by an increase in the size of problem for both 

methods, we experience more increase in the CG  method compared to the PCG  method. 
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Figure 5.3: Performance of CG  and PCG  with tri-diagonal preconditioner with different H  

 
Figure 5.4: Cost of computing HV  by direct and the AD  method 

In the figure 5.4, as we expected the cost of computing the Hessian and the calculating 

the Hessian products HV  (i.e. H V ) is more costly than calculating them by the AD  method.
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6. Conclusion 

In many practical optimization problems, as well as nonlinear system problems, the 

objective function has the sparse structure in their Jacobian and/or Hessian matrices which can 

be used to great advantage when computing the Newton steps. The Newton steps for nonlinear 

optimization problems typically involve two major steps; 

First step: evaluation of 1 2( ) : ,  ( ) ,  and ( )n n n nf x f x H f x        

Second step: solving 2 ( ) ( )Nf x s f x   . 

For the first step, since evaluation of the Hessian matrix H  is often the most expensive 

part of evaluation, we avoid computing it. Indeed, we use an estimation of the Hessian matrix 

for the early stage of the Newton steps with lower computation cost. This approximation is 

deduced based on sparsity structure of the Hessian in addition to graph coloring techniques and 

the automatic differentiation method. 

The second step infers min ( ) solve ( ) 0f x f x   ; so, we can use the preconditioned 

conjugate gradient method for linear semi-positive-definite ( SPD ) systems to solve 

( )NHs f x   and update the minimizer. Thus, when the Newton step is not positive-definite, 

it is not allowed to go through negative curvature. Therefore, without computing the complete 

Hessian matrix, we could find the solution for the Newton st‏eps ‏for nonlinear optimization 

problems using the preconditioned conjugate gradient method. The hierarchy of the idea is: 

2

* *

1
min

2

min ( )

nonlinear solver ( ) 0

( ) ( ) 0
0

T T

N

CG x Hx g x

f x

f x

f x s f x
Hx g

x x s
 

 
 



 



   
   

  

 

Here, in this research, we showed that using the automatic differentiation combined 

with the graph coloring techniques can improve the computation cost by approximating the 

Hessian matrix. This improvement is proportional to the number of columns of the thin matrix. 

The preconditioned conjugate gradient method presents better performance when the 

problem size grows. It solves linear system for the Newton step in fewer iterations compared to 

the conjugate gradient method itself. All works we have discussed for Newton step is an inner 

part of the iterations for solving the nonlinear optimization problem. 
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