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Abstract

Sobol sequence is related to the class of low-discrepancy sequences, deterministic se-
quences constructed to have better uniformity properties than a random sample. The
uniformity level of the point set generated by Sobol method is influenced by the choice
of initial parameters, so-called Direction Numbers (DNs). The space of this parameters
is odd integers and it is exponentially growing with dimension. In this aper, we propose
to use Genetic Algorithms (GA) in order to explorer the space of Direction Numbers and
find the optimal set of parameters in terms of uniformity quality. Experimental results
show that GA based methods can be effective and perform at least on the same level as
for example Kuo and Joe approach if the search of DNs is conducted for each dimension
separately.
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Chapter 1

Introduction

In order to explore complex multidimensional spaces, several fields of research such as
optimization, design of experiments, numerical integration use random samples. Often the
standard random number generator can be replaced. As Niederreiter [16] says:

[...] instead of trying to cope with impalpable concept of randomness, one should select
points according to a deterministic scheme that is well suited for the problem at hand. |[...]
For instance, in the area of numerical integration it turns out to be quite irrelevant whether
the sample points or “nodes” are truly random; of primary importance is really the even
distribution of the points over [integration domain].

The uniformity properties of generated samples are very important because there is a
strong correlation between them and the accuracy of approximation [I6]. In many cases,
pseudo-random number generators produce distributions with unsatisfying uniformity qual-
ity as seen in Figure 1.0.1a. It is almost impossible for them to produce samples distributed
as evenly as the ones generated from quasi-random set 1.0.1b.

These quasi-random techniques have already been applied in many areas of computer
science and finance; see, for example, Niederreiter [18], L’Ecuyer and Lemieux [I1] and
Glasserman [6]. In some cases, construction of a quasi-random point set requires to define
initial parameters. The choice of these parameters influences the uniformity properties of
the constructed point set.
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Figure 1.0.1: Pseudo-randomly generated (a) and quasi-randomly generated (b) samples.

Genetic algorithms (GA) [9] are known as powerful meta-heuristic optimization meth-
ods. Multiple times they proved their ability to solve very difficult optimization problems.
Nevertheless, these algorithms are rarely used to configure quasi-random (or low discrep-
ancy) sequence generators. In our research, we apply GA-based methods to search for pa-
rameters than can produce very uniform Sobol sequences, which are popular quasi-random
techniques.

The structure of this research paper is as follows. The next few sections provide basic
definitions of Quasi-Monte Carlo methods and give the idea of the research goal. In Chapter
2 we talk in detail about the construction algorithm for the Sobol sequence, its parameters
and its quality measures. The general concept of GA is introduced in the first section
of Chapter 3; in the next two sections of the chapter we discuss methods for searching
parameters of Sobol Sequence developed on the basis of GA. The results of our experiments
are presented in Chapter 4. A conclusion is given in Chapter 5.

1.1 Monte Carlo and quasi-Monte Carlo methods

The Monte Carlo method is widely used to approximate integrals that have no closed-form
solution. The Monte Carlo estimator for the integral



where ¢ is a real-valued function defined on the s-dimensional unit hypercube [0,1)° and
u = (uq,...,ug), is given by

i=

SRS

Zg(ui),

where {uy,...,u,} is an independent and identically distributed sample from the uniform
distribution over [0,1)®. The integration error, by Central limit Theorem satisfies

I(g) — i N(0,0/+/n),

with n > 1 and o2 is the variance of ¢ given by

ot = /[ (o)~ 1(g)Pau

It can be concluded that Monte Carlo integration error is in O(1/y/n).

The convergence rate of the error does not depend on the dimensions, but the method
is slow. For example, if we want to improve the accuracy by a factor 10, we need to
generate 100 times more points. In order to speed up the performance of Monte Carlo, the
random sample in the estimator can be replaced with a well-chosen deterministic point set,
known as a low — discrepancy point set. The approach is called quasi-Monte Carlo (QMC)
integration. These low-discrepancy sets are constructed to be more uniformly distributed,
i.e. contain less gaps and clusters than in random sample.

The concept of discrepancy provides a measure of non-uniformity of a point set placed in
a unit hypercube [0, 1)°. The most widely studied distance measure is the star discrepancy
defined by Niederreiter in [18] as:

(1.1)

*
D*(uy,...,u,) = sup
0<w;<1,j=1,...,s

n S S
L E 1
ﬁ H 0<u;j<w; — ij
Jj=1

i=1 j=1

In other words, we calculate the absolute difference between the volume of every subset
[0,1)® of the form [0,w;) X ... X [0,w;,) and the number of points in the subset divided by
n. The maximum difference is the star discrepancy D*.

By definition, if a sequence uy, ..., u,, of points in [0, 1)* for any n > 1 satisfies:



D*(uy, ..., w,) < c(s) (loi")s, (1.2)

it is called a low-discrepancy sequence. Here, the constant c(s) depends only on the
dimension s.

Two of the oldest constructions which are very popular among practitioners are the
Halton [7] and Sobol sequences [?].

Assuming that points uy, ..., u, are chosen from a low-discrepancy set, the Koksma-
Hlawka inequality (1.3) establishes a deterministic bound on the QMC integration error,
given by

n

23 gt [ atwan

=1 0.1)*

<V(g)D*(uy,...,u,), (1.3)

which means when {uy,...,u,} comes from a low-discrepancy sequence, the error is in
O((logn)®/n).
The quantity V(g) is the variation of ¢ and it is defined according to [17] as

Vg =Y D> VMg,

k=1 1<i1<...<ip<s

where V¥(g;i1,...,i;) is an application of

. 1 1 asg
v (9)_/0 /0 Dur...0u,

to the restriction of ¢ to the k-dimensional face {(uy,..,us) € [0,1)° : u; = 1 for j #
il, . Zk}

dul...dus

MC integration gives the error bound of O(1/4/n) so for fixed dimension s Monte-Carlo
method converges slower than quasi-Monte Carlo. However, even with relatively small s,
for 1/4/n to be larger than (logn)®/n requires n to be huge. For instance, if s = 10, the
inequality holds once n ~ 10%°. This limits the usefulness of the QMC error bound in
practice since 10%? is an infeasible sample size.

Another practical limitation of the Koksma-Hlawka inequality is the condition that V' (g)
must be finite. So it means that g should be bounded which for integrands in financial
applications like option pricing is often not the case. Moreover, V(g) as well as D*, are
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difficult to compute. In addition, the Koksma-Hlawka inequality gives only an upper
bound, i.e. it does not provide a reliable error estimate. For these reasons, in practice, the
performance of QMC methods is often tested and compared through numerical experiments
and by using a randomization method, as discussed in the next section.

1.2 Randomized QMC

Referring to [11], let P, = {uy,...,u,} € [0,1)°® be a deterministic low-discrepancy point
set. By applying a randomization function to each point u; € P, we obtain a randomized
point set P, = {{iy, ..., {1y} C [0,1)*. Each point &; € P, is U([0,1)*) (uniformly distributed
over [0,1)*) so that the estimator based on P, is unbiased:

P[> 0w = 5 Elaw] -3 [ o - 107

The low-discrepancy of P, should not be destroyed through randomization otherwise
the advantage of using QMC over MC is lost. If randomization is appropriately chosen,
we can create a random sample of QMC estimators

. 1
Hrgmet = E Z g(ui),t =1.m

aepP,.t

where f)n,1, v f’n’m are m independent randomized copies of P,. Then, the approximation
of is the estimator

m
. 1 .
Mo = E t
qmce m Hrgme
t=1
whose variance can be estimated by

m

. 1 1 R .
Uzqmc = E (m Z (,“'rqmc,t - /l‘rqmc>2) .

t=1

Randomization methods are generally designed for specific types of low-discrepancy
sequence, and there are several common methods.



One of the most simple randomization technique is to use random shift, also called a
rotation sampling. The idea behind is to generate a uniform random vector v € U([0, 1))
and then let

; = (u; + v)mod(1)
for i+ = 1,...,n, where the modulo 1 operation is taken coordinatewise. Because v is

uniform, each point @; is also uniformly distributed.

More information about QMC randomization can be found in [0, 1]

1.3 Motivation and goal of the research

As we already know, low-discrepancy sequences are constructed to have better uniformity
properties than a random sample. But in addition, there exist some methods to improve
“initial” uniformity of these sequences, i.e quality obtained in the basic construction algo-
rithm with randomly chosen parameters.

Let us look at Halton sequence [7]. Referring to [, p.153], the ith term in this sequence
is given by:

w;, = (¢, (1 — 1), ..., (1 — 1)),5 < 1,

where b; is the jth prime number. The radical-inverse function ¢, is defined as

o

&) =Y a(i)p,

=0

where the coefficients a;(i) come from the expansion

i=> @)

1=0

and where we assume infinitely many coefficients a,(i) = 0.
Let us look at small example. Assume that we want to find the second (j = 2) coordi-
nate of the eighth (i = 8) point of Halton sequence, i.c. we want to find ¢y, (8 —1) = ¢3(7),

where base by is equal to the second prime number, which is 3. Now we can define a;(7)
trough expansion of i : 7= 1x3%+2x 3! ie. ag(7) =1,a:(7) = 2. Then, substituting the
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coefficients in the formula, we get the coordinate ¢3(7) = ag(7) x b7 + ay(7) x b=171 =

1 1_5
1><§+2><§—9.

Figure 1.3.1: Projection of dimensions 29 and 30 of the first 100 points of Halton sequence

The Halton sequence suffers from the correlation between the points in high dimensions
which affects its uniformity quality, as illustrated on Figure 1.3.1. One of the possibilities
to improve the quality of the Halton sequence is to apply permutations to the coefficients
a;(7)[2]. In 2012, researchers Rainville, Gagné, Teytaud and Laurendeau came up with the
idea to search for better permutations (in terms of uniformity) by using Evolutionary Algo-
rithms, also know as Genetic Algorithms (GA) [20]. Briefly, they represent a permutation
as a vector 7; of indices of coefficients a;(i) and evolve permutations dimension by dimen-
sion based on a chosen fitness criterion. The results they obtained in their experiments
was an inspiration for this research.

Figure 1.3.2: The 39:40 projections of the first 512 points of two Sobol sequences with
different direction numbers



Let us look at two-dimensional projections of two different point sets. Both sets were
generated by Sobol method. They have the same number of points, their projections were
taken for the same dimensions. They differ from each other only by DNs. As we can see,
the points of the projection on Figure 1.3.2a are much more evenly distributed than the
points of the projection on Figure 1.3.20.

The goal of this paper is to investigate the possibility of applying GA for searching
parameters of Sobol sequence in order to improve its uniformity properties.



Chapter 2

Sobol Sequence

The Sobol sequence is a so-called (t, s)-sequence in base b = 2 where s is the dimension
of the sequence and ¢t — value is a uniformity measure discussed in Section 2.2.2. The
sequence was introduced by Russian mathematician I.M. Sobol in 1967 [21].

2.1 Construction

The detailed explanation for constructing the Sobol sequences is given in Bratley and Fox,
Algorithm 659 [3]. To generate jth coordinate, it needs a primitive polynomial P;(2):

Pi(z) = 2% + aj12% " + aj02% 7 + 4 ajg, 2+ 1, (2.1)

where coefficients a;;, € {0,1} and where d; is the degree of P;(z). According to the
error bounds given by Sobol in [21], the degree d; should be as low as possible.

The next step in the construction of the Sobol sequence is to choose initial values for
d; odd integers m;, in {1,...,2" — 1} for r = 1,...,d;. The rest of these numbers (r > d;)
can be obtained recursively using

1 2 dj—1 d;
My = 205151 S 2°50MG 00 @ o B 297050, 1M r—dy1 B 2910 g; @ Mypgy (2:2)

Now, the so-called direction numbers can be calculated from the formula:



Vjp = o (2.3)

Finally, to generate the sequence {u;;},i =1,..., N we can use:

U5 = ilUj71 ) iQUj,Q D ... (24)

where ....711973 is the binary representation of the index i and & is the exclusive-or
operation on binary vectors.

The last formula can be rewritten as a recursion:

Uig1,j = U5 D Vje, (2.5)

where the index c is such that g. is the leftmost zero-bit in the reverse binary represen-
tation ¢g(i) = ¢g19293... = ...igi27; . The Gray code function ¢(.) satisfies g(0) = 0 and the
binary expansion of g(i + 1) differs from ¢(¢) only by one position, i.c if ¢ is the smallest
index s.t. i, # b — 1, then g.(i) = g.(i) + 1 in the expansion of g(i + 1).This algorithm
was proposed by Antonov and Saleev in 1979 [1] as an efficient implementation of Sobol’s
method.

Let us look at a simple example similar to those presented in [, p.158]. Suppose that,
for j = 5, we take P5 = 23+ 224 1. Since the degree of P is three, we need to choose three
initial numbers ms,,r = 1,2,3. Suppose, we take ms; = 1,m52 = 1,ms3 = 5. Then,
from the definition of P5, we have that as; = 1,a52 = 0,a53 = 1 and so

msq4 = 2'ml5,3 D0D 8m5,1 D ms1 = 1081 =

O = O =
s>

o OO =

_ o O O

— = O O

m5,5:6@8@1:15

m5,6=30@40@5:51

Now, we can calculate the first six direction numbers as:

10



_ 1 1 5 3 15 51

1 _ 1 _ _ 5 _ — —
Us,1 =51 = 5, Us2 =352 = 4, U53 =353 = 3, Usu = 145, Us;5 = 35, Us6 = ¢

Let Cs be the 6 x 6 matrix containing their binary representation, where columns
correspond to direction numbers in the given order. In our case we have:

101001
010011
001111

05_000110 (2.6)
000010
000001

For each s-dimensional sequence there exist s generating matrices C, ..., Cs of unlimited
size. As you can see, C' is an upper triangular matrix. Because of oddness of values m,
it has all ones the main diagonal. Based on these properties of generating matrix, we
can represent DNs for given dimension as a single binary string, the form convenient to
be implemented in GA. In our example, DNs can be represented as 010001011111100.
convinent

Finally, we use the Gray code function to generate the 5th coordinate of the first eight
points u; j—5 (for simplicity index j is omitted):

Step(0) : ug =0,i =0,c=1

Step(1) 1wy =ug® vy = 3,i=1=(01) => g(i) = (10) =>c =2

Step(2) ius =u1 Do =1® 1 =31=2=(10) => g(i) = (01) => c =
Step(3) tuz =us By =3d L =147=3=(011) => g(i) = (110) => c =
Step(4) tug =uz Dy = ®3 =1 i=4=(100) => g(i) = (001) =>c=1
Step(5) :us =ug vy = § D5 = 3,0 =>5=(0101) => g(i) = (1010) => ¢ = 2
Step(6) :ug =us Dvo =3B =5,1=06=(110) => g(i) = (011) => ¢ =1
Step(T) :ur =ug® vy =3 D3 =32,0=7=(0111) => g(i) = (1110) => c = 4.

It should be noted that when using the Gray code, we get the same points as those
constructed by the original Sobol’s method, but in a different order over the first 2* points
for each k > 0. The proof that the resulting sequence is still a (¢, s)-sequence with the same
value of ¢ is given in [, 22]. The direction numbers up to s = 40 were provided by Bratley
and Fox [3] and come from Sobol, but most practical tasks require higher dimensional
sequences. An interested reader can find direction numbers for 360-dimensional sequence

11



in the RandQMC library created by Lemieux [13]. To search for direction numbers in high
dimensions Lemieux used random walk technique. In this research, for the same purpose,
we want to apply Evolutionary Algorithms.

2.2  Quality measures

In this Section we discuss some criteria which help us to distinguish, in terms of uniformity,
“bad” and “good” parameters of Sobol sequence. These criteria define the types of fitness
functions we use in Genetic Algorithms.

2.2.1 Modified Lo~ discrepancy norm

Replacing the sup norm byLs norm in (1.1), we obtain practical discrepancy measures.
The modified version of Ly — discrepancy measure was introduced by Hickernell in [3]:

S S

MLy(Uy)? = (—) ;2 H[z max (1., )] — QEVS STI6 -2, @7)

=1 j= i=1 k=1

where u; ;. denote the kth coordinate of the ¢ point € I° of Uy.

This was the only one criterion used to define fitness of Halton permutations in [20].

2.2.2 Parameter t-value

Before we define quality parameter t-value, the concept of (qi,..,qs) — equidistribution
should be explained. Following the definition given by Lemieux [14, p.76], we call a Sobol
set U, of 2% points (qi, .., qs) — equidistributed, if for non-negative integers qi, .., g, every
cell of the form

i ri r;+1
H[2TJ7 24; )v (28)

J=1

for 0 <r; < 2%, j=1,..,s, contains 2"~ points from W, , where ¢ = ijl qj-

12



Partitioning the unit cube in 29 congruent boxes of size 27% in dimension j, we verify
that each box contains the same number of points. And this is true only if the number of
points is at least the same as the number of boxes, i.e. we must have ¢ < k.

Now, we can define the t-value of W, as the smallest integer t satisfying ¢ < k — ¢t and
such that for all ¢4, ..,¢s > 0, the point set W is (q1, .., ¢s) — equidistributed.

The original idea of this criterion belongs to Sobol, who labeled k —t as 7. The modern
notation ¢, widely used to study QMC methods, was introduced by Niederreiter in [15].
The smaller ¢ is, the more the point set is uniformly distributed.

A general algorithm to evaluate parameter ¢ (Figure 2.2.1) is described in Pirsic [19]. As
mentioned in this paper, the t-value can be determined in terms of properties of generating
matrices Cf, ..., Cs ; see [19] and the references therein for detailed explanation.

Data: matrices (71, ..., C;

Result: ¢t — value of point set W

initialization;

for d =1 to m do

for all partitions d in s parts do

compose subset {v], ..., v} of vectors;

if the rank of the subset is smaller then d then
exit;
return t =m —d+ 1;

end
end

end

Figure 2.2.1: Algorithm of the t-value approach

Let us now look at the algorithm. For each d in the range from 1 to m, where m is
the dimension of square matrices C' (in the previous section matrix 2.6 has m = 6), the
program tests whether or not the given matrices are a so-called (d, m, s)-system. This is
achieved by checking the rank ! of each subset constructed from the first d; row vectors of
(1, the first dy row vectors of Cy and so on, where dy, ..., d, is a partition of d into s. If
the rank of a non-negative integers subset is smaller than d, the matrices do not form a
(d, m, s)-system which means they form (d—1,m, s)-system and, therefore, t-value is equal
m — (d—1). It should be noted that ¢-value measures the uniformity of the first 2™ points.

'Number of linear independent vectors in the set

13



In order to avoid quite expensive computations, in this research the t-value was calcu-
lated using a window approach where we only consider pairs and triple of coordinates of
the form {l,l + k},1 <k <w and {l,l + k1,1 + ko} ,1 < ky < ko < w of matrices C' | re-
spectively. For instance, suppose that window size w is equal to 4 and s = 6, i.e generating
matrices are C1,Cy, C3, Cy, C5, Cs. Then, we compute the t-value for the following pairs
and triples

{1.2} {13} {1.4} (1,2,3) {1,2,4} {1,3,4)

23 21 (23
pars: (34} 3.5} .6} wipless L7 2 2300 (209

E: 2{ {4,6} {4,5,6}

2.2.3 Resolution

The criterion resolution was introduced by L’Ecuyer in [12] . By definition, resolution of
WU, is the largest integer [, such that W is (I, ..., [s)-equidistributed.

Geometrically speaking, a resolution of [, means that the unit hypercube [0,1)® can be
partitioned into 2% congruent cubic boxes, each of which contains I, points from ¥,. The
partitioning is done by dividing each axis into 2! intervals of size 27%.

In order to evaluate the resolution, an approach similar to the one described for the
t-value can be used. To illustrate how the algorithm actually works, let us look at a simple
case. Suppose we want to get the resolution for three-dimensional Sobol sequence with
m = 12, i.e we have matrices C, Cy and Cj all of dimension 12 x 12. If the subset of twelve
rows, containing the first four rows from each matrix C, is linearly independent, then the
resolution is equal to 4, otherwise we need to combine the subset of nine rows, including the
first three rows from each matrix C', and check its independence. The stopping criterion for
this algorithm is when we have linear independence of the constructed subset. The higher
is the resolution, the better are the uniformity properties of the corresponding point sct.

It should be taken into account that resolution is a less reliable quality measure than the
t-value. The resolution algorithm checks equidistribution only for the subsets of the form
(ls, ..., ls), whereas the t-value algorithm verifies the equidistribution property for all subsets
(q1,--,qs). However, the obvious advantage of the resolution method is the computation
speed.

14



Chapter 3

Genetic Algorithms

The ultimate goal of our research to design the method able to search for initial parame-
ters of Sobol sequence, so-called Direction Numbers (DNs), that provide higher uniformity
quality to the point set than randomly chosen. By construction DNs (as m;,r in Section
2.1) are positive odd integers which makes difficult to apply for their search most of opti-
mization techniques, for instance Gradient Descent, oriented on the search in continuous
space. In this situation Genetic Algorithm seems like suitable tool that does not have listed
limitations.

In this Chapter we discuss general concept of Genetic Algorithm and talk about two
GA based methods developed to search for Direction Numbers of Sobol sequence.

3.1 Concept of GA

Genetic Algorithms (GA), often called Evolutionary Algorithms, have been introduced by
Holland in 1975 [9]. The inspiration for these population-based optimization algorithms
was the Darwinian evolution theory.

Each generation is produced through variations (crossover/recombination and muta-
tion) of solutions from the current population as shown on Figure 3.1.1. Then, the algo-
rithm selects the fittest solutions to be reproduced in the next generation; good charac-
teristics (building blocks) are passed over and recombined in the next solutions in order
to produce even fitter solutions. In genetic computation, the solutions are called individ-
uals, and a set of solutions present at the same time in the algorithm is called population.

15



The value which indicates how well the proposed solution addresses the problem is called
fitness.

| [POPULATION ]

MUTATION

[ NOLLYNIENOOHY | [ NOLLOHTAS |

Figure 3.1.1: Scheme of GA [23]

Let us now look at the pseudocode for a very simple genetic algorithm given by Figure
3.1.2.

initialize PM < [(zy, f(2:)),7 = 1, ..., ul;
for g=1 to w do
new __generation<— cmpty;
while [ < A do
if crossover then
parents<— select random(P 2);
0; < recombine(parents);
l+—1+1
if mutation then

| o < mutate(o,);

end
end
add(|oy, f(o;)], new _generation);
end
P+« select(P¥) U new_generation, u);
end

return best(P“) 1)

Figure 3.1.2: Genetic Algorithm

The first step is to generate, at random, an initial population P consisting of x
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feasible solutions x;. The function f(-) defines the fitness of each initial solution. For every
generation from 1 to w, the algorithm produces A\ pairs of offspring. In the inner loop,
with predefined probability of crossover, the algorithm selects two individuals as parents:
the better is the fitness the higher is the probability to be chosen. Via recombination of
parent genes the algorithm generates a pair of new solutions, each of which can mutate with
given probability. The resulting solutions are evaluated and stored in the new generation
array. After the new generation is fully produced, the algorithm selects the next pu sized
parental population PU*Y from the union of parental and offspring population, according
to the fitness of the individuals. Finally, when a predefined number (w) of generations
are completed, the algorithm returns the best solution in terms of fitness from the last
population P,

3.2 Local Evolution

By construction, Direction Numbers for the first two dimensions of Sobol sequence are
constant.

L]
[E]E]

L2 [z ][=]]]
BB BIEE
Ledlz =] fs s ][<]

Figure 3.2.1: Scheme of Local Evolution

The idea for Local Evolution (LE) approach is to ‘grow’ the sequence dimension by
dimension. For each new dimension we run Genetic Algorithm to find the DNs which are
the better fit for the existing DNs in terms of uniformity:.
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le fitness (C,C;, w,opt);
s < length(C);
up_window <— w;
if w > s then

| up window <— s;

end
else
| C+Cls—w+1:s];
end
if opt = 1 then
C3+ Cj;
k <+ 1,
for : =1 to up_window—1 do
C1 « Ci;
fort =i+ 1 to up_window do
C2 «+ Ct];
Qm3[k] « resolution(C1,C2, C3);
k< k+1,;
end
end
C2 «+ Cj;
for i =1 to up_window do
C1 «+ CYi;
Qm2[i] « resolution(C'1, C2);
end

fitness < 0.6 x min(Qm2) + 0.4 x mkin(Qm?));

nd

Ise

C2 + Cj;

for 1 =1 to up_window do
C1 <+ Ci];
Qmli] < t_value(C1,C2);

end

fitness < miax(Qm);

o O

end
return fitness

Figure 3.2.2: LE fitness function
18



In this method DNs up to 160 dimensions are represented as binary strings (explanation
is given in the comments for Equation 2.6), while for dimensions from 161 to 1000, they are
represented as initial values m (Equation 2.3 shows their correlation). The reason for that
is the storage limitation of software we used in our research. The binary representation of
DNs for dimension 160 and 161 requires 45 and 55 bits respectively, whereas a maximum
binary string stored in MatLab is of 52 bits.

The fitness function f(-) in LE estimates the uniformity quality of the union of DNs
of evolved dimensions C' = {C;},i = 1...5 — 1 and an evolving dimension C;. We use two
variations of fitness function in this method: the resolution and the t -value approach. In
the pseudocode (Figure 3.2.2), the approach is determined by the parameter opt, which
is set equal to 1 in the case of resolution, and any other number for the t-value. As you
can see in the code, the algorithm chooses the “worst case” value of a quality measure
among all estimations of pairs/triplets as a fitness criterion . The smallest t-value (¢t = 0)
corresponds to the best uniformity properties so t-value based fitness is equal the maximum
of all 2D estimations, stored in array Qm, in the given window w (see explanation in the
Section 2.2.2). In the second variation, the algorithm minimizes 2D and 3D resolution
(arrays Qm3 and @m2) and returns as a fitness their combination with weights, 0.6 and
0.4 respectively. This approach allows to keep fitness function more objective, i.e not
overestimate uniformity quality of the DNs.

To generate an offspring, GA randomly selects two parents using the Roulette Wheel
method illustrated on Figure 3.2.3; the individual probabilities of being selected as a parent
are correlated to their fitness.

Q‘“eel is rotatew

selection
point

Weakest individual

fherotictiewhecl $ = has smallest share of
the roulette wheel

Figure 3.2.3: Roulette Wheel Selection ||

19



Through the crossover process, the algorithm produces two new solutions. Figure 3.2.4
shows the recombination process for the binary case.

0100010111 0100011001
1101001001 = 1101000111

Figure 3.2.4: LE Crossover

Both of these solutions can mutate (with predefined probability) i.e., a randomly se-
lected gene (bit) of the solution is flipped over.

0100011001= 010001(@101

Figure 3.2.5: LE Mutation

To summarize, let us now look at the simplified version of the LE code presented in
Figure 3.2.6.

initialize chosen DN s < [DNsW, DNs®?)];
for j = 3 to 1000 do
DNsY «+ GA(chosenDNs, 7);
chosenDNs < chosenDNs U DNs\9);
end
return DNs

Figure 3.2.6: LE algorithm

We initialize the array D Ns with Direction Numbers for the first two dimensions which
are constant. Then, for dimensions from 3 to 1000 we run GA to find the best Direction
Numbers in terms of uniformity. The final result is the array of DNs for 1000 dimensions.

The pseudocode of GA can be found in Section 3.1. For the given dimension j the
system randomly generates an initial set of y Direction Numbers and estimates their fitness
PY = [(z;, f(2:))],i = 1,..., . To evaluate the fitness of a candidate DNs for the next
dimension j, GA converts chosen DN s to C' and the candidate to C; and calls le_ fitness().
At cach step GA creates new DNs by recombining and mutating genes of the DNs selected
by Roulette Wheel from the parental population P¥. GA returns the fittest DNs from
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the last population P“). The parameters of GA for the LE method are presented in the
second column of Table 3.1.

Parameter LE GE

1 40 500

w 20 200

A 16 100
crossover Pr 0.8 0.8
mutation Pr 0.05 0.05
window 10 10
dimension of C | 12 12

Table 3.1: Parameters of LE and GE

3.3 Global Evolution

The Global Evolution (GE) method uses a Genetic Algorithm to search parameters for the
Sobol sequence (DNs) for all dimensions simultaneously, i.e. at each generation the whole
1000-dimensional sequence is evolving.

i1 12 3:ii4 1:5:16 11000
----- ool maeed baced boomol Bassm ol
1 2 3 4 5 6 1000

Figure 3.3.1: Scheme of Global Evolution

DNs in the GE method are represented as an array of 1000 generating matrices C as
defined in (2.6). Matrix C[j],j = 1,...,1000 corresponds the jth gene. The fitness of an
individual is evaluated by a weighted quality measure in the given window (see explanation
in the Section 2.2.2). The weights for 2D and 3D projections are given by the formulas:

0.9li—il+li=kl[+|j—k

weight3D(C;, C;, Cy) = S (3.1)

ik
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, 0.9/

0,5,k

Since s is fixed, the projections with the window w and corresponding weights are
predefined in the arrays Proj2D and Proj3D of the form ({l, 4}, weight®)) where p is the
index of projections and p = 1,...,n9, k = 1,2 for pairs and p = 1,..,n3, k = 1,2,3 for
triples. The psecudocode of the function ge  fitness() defining the fitness of the candidate
solution, array C', is presented in Figure 3.3.2.

ge fitness (C, Proj2D, Proj3D, opt);
if opt = 1 then
for p =1 to ny, do
projection <— Proj2DIp, 1];
weight < Proj2DIp, 2];
Qm2[p| < resolution(projection)xweight;
end
for p =1 to nz do
projection < Proj3D]p, 1];
weight < Proj3DIp, 2];
Qm3|[p] < resolution(projection)xweight;

end
fitness < 0.6 x ZQ(QmQ[p]) +0.4 x i(Qm3[p])7
p=1 p=1
end
else

for p =1 to ny do
projection <— Proj2D[p, 1];
weight <— Proj2D|p, 2];
Qmlp| < t-value(projection) xweight;

end
fitness < i (Qm[p));
p=1
end

return fitness

Figure 3.3.2: Fitness function of GE
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The process of producing a new generation in GE is involved Roulette Wheel selection
of parents based on a fitness criterion. Genes of the parents are recombined in the crossover
process,

[c]le]fe][e][e] ][] [e]le]le][e]le] (=] <]
FEREEEE © HEEEEEE

Figure 3.3.3: GE Crossover

and, then, resulting solutions have a small chance to be randomly changed by mutation.

AEEEEER &> EEEEERE -
Figure 3.3.4: GE Mutation

The mutating gene (C7 in the Figure 3.3.4 ), is regenerated randomly, i.e the system
randomly generates new DNs for selected dimension, converts them to a generating matrix
and replaces the mutating matrix with the obtained one.

Let us now briefly go through the algorithm of Global Evolution. First of all, we
generate p initial 1000-dimensional arrays C'. Then, for each generation we run crossover
and mutation processes in order to produce A offsprings. We select the fittest individuals
from the union of parental and offspring population to reproduce in the new generation.
The desired set of DNs is the fittest array C' from the wth population.

Parameters of GE method are presented in the third column of Table 3.1
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Chapter 4

Numerical Results

In total, we conducted four experiments: Local Evolution with fitness based on resolution
(rLE) and ¢-value (tLE) and Global Evolution with the same variations of fitness function
(rGE and tGE). The sets of DNs obtained by these methods are denoted as FINALs.
We call INITIALSs the sets of DNs we use to evaluate the improvement achieved by the
developed methods. For both variations of GE method we pick as the INITIAL the fittest
candidate (array of generating matrices C') from the initial population. For LE methods
the INITTAL is just a randomly generated set of DNs. For objectivity, we also compare
the quality of FINALs with the set of DNs obtained by Kuo and Joe [10] which we denote
KJ.

In this chapter we talk about the performance of the developed methods in four nu-
merical tests.

4.1 Direct estimation of uniformity quality

In this test, we evaluate the ¢-value for each 2D projection and resolution for each 2D and
3D projections of DNs (in the form of 12 x 12 generating matrices) for 1000-dimensional
sequence in the given window w (for explanation see Section 2.2.2) . Then, for tLE and
tGE we calculate the proportion of 2D projections with ¢ = 0...11. The same way we
estimate the percentage of 2D projections with resolution = 0...6 and the percentage of
3D projections with resolution = 0...4, for r[LE and rGE methods. We estimate KJ set
using both approaches. For convenience, the results are presented in the form of diagrams.
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The quality measure t-value is equal to 0 when uniformity properties are good and m
(dimension of a generating matrix) when they are poor.

From the Figures 4.1.1 and 4.1.2, we can see that GE with ¢-value based fitness function
does not demonstrate any improvement in terms of uniformity, whereas the quality of DNs
obtained by tLE is noticeably better than randomly generated DNs.

INITIAL FINAL

=0 “t=0

Hi=1 Et=1
=2 “i=2
w=3 Et=3
“t=4 “t=4
Ht=5 Ht=5

“t=6 “t=6

Figure 4.1.1: tGE

INITIAL FINAL

Wt=0 ut=0

wt=1 Et=1
Lt=2 “t=2
wt=3 Ht=3
Lt=4 “t=4
“t=5 “t=5

Lt=6 L t=6

Figure 4.1.2: tLE

The uniformity quality of KJ estimated by t-value is at the same level as the quality of
both INITIAL:s.

KJ (t-value)

=0
ut=1
=2
wt=3
bt=a
=5

Ht=6

=7

Figure 4.1.3: KJ estimated by t-value
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Recall from Section 2.2.3, the larger resolution value the better uniformity properties
of DNs.

2D Projections
INITIAL FINAL

“res=6 res=6
ures=5 Wres=5
“res=4 “res=4
“res=3 Hres=3
“res=2 Kres=2
“res=1 “res=1
“ res=0 “res=0

3D Projections

INITIAL FINAL
W res=4 Hres=4
Hres=3 Hres=3
res=2 “res=2
Hres=1 Hres=1
& res=0 U res=0

Figure 4.1.4: rGE

2D Projections

INITIAL FINAL

“res=6 res=6
res=5 res=5
res=4 “res=4
lres=3 res=3
res=2 W res=2
res=1 “res=1
res=0 “res=0

3D Projections
INITIAL FINAL

Wres=4 “res=4
=res=3 Hres=3
“res=2 “res=2
Mres=1 Hres=1
“res=0 “res=0

Figure 4.1.5: rLE
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From Figures 4.1.4 and 4.1.5 we can observe that rGE does not perform well, the
proportion of projections with high uniformity quality does not increase from INITIAL to
FINAL. At the same time, we can see improvement in uniformity properties achieved by
rLE. The DNs obtained by rLE also overperform KJ estimated by resolution.

KJ (2D resolution) KJ (3D resolution)

|
| “res=5 Hres=a
res=4 mres=3

“res=3 res=2

res=1 L res=0

Figure 4.1.6: KJ estimated by resolution

To summarize, in this test, Local Evolution definitely overperform Global Evolution
method and DNs evolved by LE have better uniformity quality than KJ parameters.

4.2 Test function ¢,

The test function g; is given by formula:

S

g@) =1] |4xj1_+2(|8+_(‘;1‘7i; L (4.1)

Jj=1

where @ = (z1,...,x5) and I(g1) = 1. In the function, the order of coordinates x is
reversed, and so the influence of z; grows as j grows. The function is useful for testing
sensitivity of low-discrepancy constructions to the effective dimension in the truncation
sense of the integrand [].

In order to estimate the quality of the parameters of Sobol sequence for this function,
for each DNs array we generate a set of 2'® points. Then, we approximate I(g;) by each
of obtained sequences with 64 x 2¥ points for k& = 1..9. Finally, since the exact value for
this function is known and equals 1, we plot the absolute error of approximation.

(Note: Error is on the y-axis and k is on the x-axis, KJ is — , INITIAL is — - — , and
— — — represents FINAL)
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0.016

0.014 \

0.012

0.01

0.008

0.012

0.01}

0.008 -

4 0.006f

0.006 \
0.004 -

0.004

0.002
0.002

Figure 4.2.1: tGE & KJ (a) and tLE & KJ (b) absolute errors of approximation

Figures 4.2.1a and 4.2.1b show how well INITIAL and FINAL t-value point sets ap-
proximate g;. It is easy to see that both point sets of GE performs roughly with the same
level of accuracy. However, for LE method FINAL approximation slightly overperforms
INITTAL one up to & = 7. The performance of KJ is better than GE, but almost the same
as TLE and worse than tLE.

0.012

0.01F

1 0.008f

4 0.006f

4 0.004f

1 0.002

Figure 4.2.2: 1GE & KJ (a) and rLE & KJ (b) absolute errors of approximation
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From Figures 4.2.2a and 4.2.2b we can see that in the given test the behavior of both
FINAL point sets is unstable.

4.3 Asian call variance test

Referring to [11, p.236], let us assume that the value of one share of Google stock at time t,
denoted S(t), is lognormally distributed, i.e. In(S(¢) has a normal distribution with mean
In(S(0) + (r — 0?/2)t and variance ot where r is the risk-free interest rate and o is the
volatility of the stock price.

The payoff of Asian call option on this stock at time T is defined as:

C(T) = max (é ; S(t) - K, o), (4.2)

where K is the strike price and 0 < t; < ... <t, =T are observation dates where the price
of the stock S(t) is recorded. The price of this option at time 0 is given by the expected
value of the option’s discounted payoff (Equation 4.3).

C(0) = E(exp~" C(T)) (4.3)

An analytical formula for Asian call does not exist.

The asset price at time ¢; has a lognormal distribution and is generated under risk-
neutral measure as follows

S(t]) — S(tj—l) eXp(r—02/2)T/s+U T/s®7(uy) _ S(O) exp(r—02/2)T/s+a\/T/s 521 <I>*1(ui), (44)

where u = (u1,...,us) ~ U([0,1)*. In quasi-Monte Carlo setting, the point u is instead
taken from a low-discrepancy point set.

The pseudocode for the Asian call given in [11] is presented in Figure 4.3.1.
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AsianCall (r,0,5(0),s, T, K, uy, us, ..., us);

a < (r—2%) % ()

b< o X \/g;

S[0] + S(0);

sum < 0;

fort=1 to s do
2 < Norm01(u,);
S[t] « S[t — 1] x expa*?=;
sum < sum + S|t];

end

sum <— =5

C < exp(—rT) x (sum — K);

if C' > 0 then

| return C
end

else
| return O

end

Figure 4.3.1: Asian Call algorithm

RunAllSim (U, n,m, s);
for k =1 tom do
v < Random01(1, s);
fori=1 ton do
u < Uli];
w < (u+ v) mod 1;
resultli] <— AsianCall(w);
end
x[k] + ave(result);
end
return var(x)

Figure 4.3.2: Simulation algorithm

In this test, we run simulations (pseudocode in Figure 4.3.2) of the Asian call option
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based on shifted Sobol point sets (i.e., initial Sobol set U is shifted by random vector v)

obtained in the experiments with m randomizations and estimate the total variance

var(x) = Z (x([k:]

m—1)xm

m

— ave(r))?

k=1

Table 4.1 contains the parameters for Asian call simulation.

Parameter Value
T 1
r 0.05
o 0.3
S(0) 50
K 50
S 1000
m 50
n {1024, 4096, 1892}
Table 4.1: Parameters for Asian call simulation
0 tGE rGE KJ
INITIAL | FINAL | INITIAL | FINAL
1024 | 2.09e-4 | 1.36e-4 | 2.62e-4 | 2.66e-4 | 1.70e-4
4096 | 5.46e-5 | 4.22e-5 | 8.23e-5 | 8.29e-5 | 4.7e-b
8192 | 2.34e-5 | 2.19e-5 | 2.42e-5 | 2.28e-5 | 2.50e-5
Table 4.2: GE and KJ variances estimated in the Asian call test
tLE rLE
i INITIAL | FINAL | INITIAL | FINAL
1024 | 2.19e-4 | 1.18e-4 | 2.24e-4 | 2.09e-4
4096 | 7.06e-5 | 4.02e-5 | 7.17e-5 | 6.36e-5
8192 | 3.21e-5 | 1.52e-5 | 2.87e-5 | 1.90e-5

Table 4.3: LE variances estimated in the Asian call test
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The variances estimated in the simulations are given in the Tables 4.2 and 4.3. We
can conclude that in this test tLE performs the best since its variance dropped the most,
basically cut in half from INITIAL to FINAL.

4.4 Total fitness

The quality measure Lo-discrepancy norm described in Section 2.2.1 was not used in the
fitness function of the developed methods. So we can apply this measure to estimate
independently the total fitness of the obtained point sets. The pseudocode of the total
fitness estimation of a Sobol point set U is presented by Figure 4.4.1.

total fitness (U, window);
for j =2 to s do
start < j — window;
if start <1 then
| start < 1;
end
Uw < Ulstart : j — 1];
up_window <— window;
if j — 1 < window then
| up_window < 7 — 1;
end
mult < 0.9;
for : = up window to 1 do
subset < Uwl[i] U U|j];
L[i] + mult x L2norm(subset);
end
result[j] < max(L);
end
return ave(result)

Figure 4.4.1: Algorithm of total fitness function

Tables 4.4 and 4.5 show the total fitness of Sobol point sets (with s=1000) estimated by
modified Ly discrepancy norm. For n=1024 we can observe the deterioration of uniformity
properties of rGE from INITTAI to FINAL. At the same time, the first 1024 points of Kuo
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and Joe sequence (KJ) are the best uniformly distributed among presented point sets. But
for n=4096 KJ is the least “fit” point set based on the estimation. However, we can see that
for n=4096 and n=8192 the tLE point set demonstrates the largest improvement according

to Lo discrepancy norm.

. tGE rGE KJ
INITIAL | FINAL | INITIAL | FINAL
1024 | 9.82e-5 | 9.0le-5 | 8.97e-5 | 1.06e-4 | 7.95e-5
4096 | 4.92e-5 | 4.12e-5 | 4.59e-4 | 5.36e-5 | 8.54e-5
8192 | 1.77e-5 | 1.67e-5 | 3.6le-5 | 2.42e-5 | 3.19¢e-5

Table 4.4: Total fitness of GE and KJ point sets

0 tLE rLE
INITIAL | FINAL | INITIAL | FINAL
1024 | 1.00e-4 | 8.62e-5 | 1.08e-4 | 9.23e-5
4096 | 5.93e-5 | 3.47e-5 | 5.61e-b | 5.18e-5
8192 | 2.81le-5 | 1.45e-5 | 3.02e-5 | 1.97e-5

Table 4.5: Total fitness of LE point sets
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Chapter 5

Conclusion

This research shows that Genetic Algorithms can be successfully applied for the optimiza-
tion of the Sobol sequence generator. It proposes that the sequence produced by Local
Evolution method based on t-value quality measure is competitive against the most recent
high-dimensional sequences presented in the literature, such as Kuo and Joe sequences, for
a wide range of functions. Thus, we conclude that evolutionary optimization can be consid-
ered when configuring low-discrepancy sequences, as this approach is able to walk its way
through the fitness landscape of the problem and eventually produce efficient quasi-random
sequence generators.

There are several ways to expand the current work. Taking into account the differences
in accuracy and complexity of the quality measures discussed in the paper, someone can
construct the fitness function based not on a single estimator but on the combination of
them and apply it in the evolution turn of the Sobol sequence. The other possibility would
be to apply the methods developed in this research for optimization of other widely used
parametrized sequences such as Faure sequences. Finally, a promising research work can
be done in the analysis of Sobol parameters domain. In this case someone may use Genetic
Algorithms as a tool to explore the changes in the proportion of ’optimal’ parameters with
the growth of dimension.
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