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Abstract

For V ∈ (1, 2) the Bernoulli convolution is defined as the weak star limit of a= = 1/2= ·∑
01...0=∈{0,1}= X

∑=
8=1 08 ·V−8 . The Garsia entropy is defined as lim=→∞ 1/= · �= (V, ?) = −1 ·∑

0∈{0,1}= <? [0] · ;>6("= [01 . . . 0=]). The Garsia Entropy can be used to determine the
Hausdorff dimension of a Bernoulli convolution as dim� (aV) = min(1, � (V)/log(V)) [5].

This paper will review and compare algorithms implemented in [4] and [1] to efficiently
provide lower and upper bounds on the Garsia entropy and thus the Hausdorff dimension of
the Bernoulli convolutions for specific classes of algebraic numbers V.
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Chapter 1

Introduction

The Bernoulli convolution, defined formally in Definition 1.1, is a measure of the redun-
dancy of representations cV (0) =

∑
8 08 · V−8 for binary words in {0, 1}N.

Definition 1.1. For V ∈ (1, 2) the Bernoulli convolution is the weak star limit of

a=? =
∑

01...0=∈{0,1}=
<? [0] · X∑=

8=1 08 ·V−8

The Bernoulli convolution can be rewritten as aV,? = <? ◦ c−1
V
, with the Bernoulli

measure <? defined in definition 1.2.

Definition 1.2. Take ? ∈ (0, 1) then the Bernoulli measure <? is the measure that gives
weight ? to 0 and 1 − ? to 1 for a word in {0, 1}N.

When ? = .5 the Bernoulli measure <? gives equal weight to all words. This refers to
the unbiased Bernoulli Convolution aV [1]. Through the rest of this paper, unless otherwise
mentioned, we will assume ? = .5. There is an active literature on Bernoulli convolutions,
much of which focuses on determining how its Hausdorff dimension, defined in Definition
1.3, varies for different classes of V.

Definition 1.3. The Hausdorff dimension of a measure aV is defined as

dim� (aV) = lim
A→0+

log(aV (G − A, G + A))/log(A) = U

a.e. G ∈ R.

Many authors have investigated for which class of V is dim� (aV) < 1 or for which
class of V is dim� (aV) = 1. Their work has shown that there is a very small set of V with
dim� (aV) < 1 and it is suspected that the only V for which this is true are PV numbers.
Recall that V is Pisot–Vijayaraghavan (PV) if ‖ V ‖ > 1 and ‖ V 9 ‖ < 1, 9 = 2 . . . 3 for

3



LATEX Review of Bounds on Garsia Entropy

V 9 , 9 = 1 . . . 3 roots of the minimal polynomial of V. It was shown by Garsia in [3] if V is
PV then dim� (aV) < 1. Solomyak’s results in [6] lend credance to the idea that PV numbers
are the only class for which this is true as he showed dim� (aV) = 1 for V a.e. ∈ (1, 2).

Hochman in [5] showed that for algebraic V ∈ (1, 2) a function called the Garsia entropy
could be used to determine dim� (aV) via the relation in Equation 1.1. Recall that a number
V is an algebraic integer if its a root of G= + 2=−1 · G=−1 + · · · + 20 with 28 ∈ Z.

dim� (aV,?) = min(1, � (V)/log(V)). (1.1)

The Garsia entropy � (V) is defined in Definition 1.4 along with the finite Garsia entropy
�= (V). It is another measure of binary words having the same representation in V.

Definition 1.4. The Garsia entropy is defined as lim=→∞ �= (V) with

�= (V, ?) = −1 ·
∑

0∈{0,1}=
<? [0] · log("= [01...0=]).

The quantity "= [01...0=] denotes the sum of the Bernoulli measures of the words 1
having the representation cV (0)

"= [01...0=] =
∑

1∈{0,1}=∑
8 18 ·V−8=

∑
8 08 ·V−8

<? [1] . (1.2)

For more background on Bernoulli convolutions see the recent review paper by Varju [7].
Based on the results of [5] in Equation 1.1 Akiyama et al. in [1] and Hare et al. in
[4] created algorithms to obtain lower bounds on the Garsia entropy that are tractable for
many hyperbolic and algebraic V, and algebraic V respectively. Recall that V is hyperbolic if
‖ V ‖ > 1 and ‖ V 9 ‖ ≠ 1, 9 = 2 . . . 3 for V 9 , 9 = 1 . . . 3 roots of theminimal polynomial of V.
This paper will review the bounds and performance of algorithms from the aforementioned
papers for specific algebraic polynomials.

–
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Chapter 2

Algorithms to Bound Garsia Entropy

2.1 Random Matrices and Bounds on Bernoulli Convolu-
tions in [1]

Let V 9 for 9 = 1 . . . 3 refer to the roots of a degree 3 algebraic polynomial.The authors
divide these roots, called Galois conjugates, into 3 potentially empty but distinct groups.
Let |V 9 | ∈ (1, 2) for 9 = 1 . . . A refer to the Galois conjugates in order of decreasing value
with modulus greater than 1. Let 9 = A +1 . . . A +ℓ denote the Galois conjugates of modulus
1 and 9 = A + ℓ + 1 . . . 3 refers to the Galois conjugates with modulus less than 1 in absolute
value. The algorithms in [1] work for algebraic and hyperbolic V (ℓ = 0) by using all Galois
conjugates with modulus greater than one to construct matrices whose Lyaponov exponents
and products provide lower-bounds on the Garsia entropy.

Define the set+V,= = {G =
∑
n8 ·V=−8} for n8 ∈ {−1, 0, 1} and | (∑ n8 ·V=−89

| ≤ 1/(‖ V 9 ‖−1)
for 9 = 1 . . . A.

Define the set +V = ∪=+V,=. When V is algebraic and hyperbolic the set +V will be finite
and can be utilized to provide lower-bounds on the Garsia entropy and thus the Hausdorff
dimension of the ?-Bernoulli convolution. The set +V is constructed as below.

1. Let +V,0 = {1, 0,−1}, �0 = {1, 0,−1}.

2. Let +V,= = +V,=−1 ∪ �= for �= = {V · G − n=, n= ∈ {−1, 0, 1}, G ∈ �=−1, V · G − n= ∈ +V}.

3. Stop when +V,= = +V,=−1.

After constructing the finite set+V lower-bounds on� (V) can be obtained through operations
on two matrices "0 and "1. The matrices "0 and "1 are constructed as below.

1. Create a directed graph � by giving a weighted edge 4 ∈ {−1, 0, 1} for all G, H ∈ +V
when H = V · G + n .

5



LATEX Review of Bounds on Garsia Entropy

2. Prune � by removing vertices with no path from G to 0 for nodes G in �, creating a
pruned graph � ′.

3. Define "0 a |�′|G |�′| matrix whose 8, 9 entries are 1− ? if G 9 = VG8−1, ? if G 9 = VG8,
else 0 for G8, G 9 in �

′.

4. Define "1 a |�′|G |�′| matrix whose 8, 9 entries are 1− ? if G 9 = VG8, ? if G 9 = VG8 +1,
else 0 for G8, G 9 in �

′.

After constructing the sets +V and the pruned directed graph/set � ′ the authors construct
three lower-bounds for � (V), two of which are tractable to compute for many hyperbolic V.

2.1.1 Proof of convergence for hyperbolic V

The authors prove that their algorithm converges for V hyperbolic by creating a set that
contains the differences between elements in +V,=. They obtain lower-bounds on the size of
elements in this set that are equivalent to theminimum possible spacing between elements of
+V,=. lower-bounds on minimal spacing provide an upper-bound on the maximum possible
number of elements of +V,=. When ℓ = 0 they show that this upper-bound is constant
for all = and then as +V,= ⊂ +V,=+1 the set +V will be finite. We know +V,= ⊂ +V,=+1 by
definition as any G in +V,= will meet the same defining inequality in +V,=+1 with n=+1 = 0.
Note also that +V,= ⊂ [−1/(V − 1), 1/(V − 1)]. In Lemma 2.4 of [1] the authors show that
|+V | ≤ � (V) · (= + 1)ℓ + 1. When V is hyperbolic ℓ = 0, +V,= is bounded for all = by a
constant and thus |+V | is finite as +V,= ⊂ +V,=+1.

To prove Lemma 2.4 the authors create a set + ′
V,=
⊂ [−2/(V − 1), 2/(V − 1)] defined as

+
′
V,=

= {G = ∑=
8=0 n8 · V=−8 : n8 ∈ {−2,−1, 0, 1, 2} and |∑=

8=0 n8 · V=−89
| ≤ 2/(|V 9 | − 1)}

Using Lemma 2.2 of [1], that
∏

9=1...3 %(V 9 ) is an integer for V algebraic and % a
polynomial with integer coefficients, the product

∏3
9=1 |G 9 | ≥ 1 for G 9 =

∑=
8=0 n8 · V=−89

. They
then use the properties of the beta conjugates to provide bounds on the magnitudes |G 9 |.

For 9 ∈ {A + ℓ + 1...3} the magnitude |G 9 | ≤ 2/(1 − V 9 ). For 9 ∈ {1...A} the magnitude
|G 9 | ≤ 2/(V 9 − 1). For 9 ∈ {A + 1...A + ℓ} the magnitude |G 9 | ≤

∑=
8=0 2 · 1=−8 = 2 · (= + 1).

Thus for any G ∈ + ′
V,=

, excluding 0, |G | ≥ 1/(∏ 9∈2...3 |- 9 |) ≥ �0(=). �0(=) is defined
using the inequalities for each Galois conjugate as

�0(=) = 21−3 · ©­«
∏

9∈{2...A}
( |V 9 | − 1)ª®¬ · (1/(= + 1)ℓ) · ©­«

∏
9∈{A+ℓ+1...3}

(
1 − |V 9 |

)ª®¬ . (2.1)

Because�0(=) provides a lower-bound on the size of elements in+ ′
V,=

and the difference
between any elements in +V,= will be in +

′
V,=

any two elements in +V,= must be separated by
at least �0(=).
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Chapter 2. Algorithms to Bound Garsia Entropy

Therefore +V,= will contain at most 1+`( [−1/(V − 1), 1/(V − 1)])/�0(=) = � (V) · (= +
1)ℓ+1 elements. Then for V hyperbolic, ℓ = 0 and hence as+V,= ⊂ +V,=+1 the set+V = ∪=+V,=
will be finite and the algorithm in the prior section will converge when +V,= = +V,=−1.

2.1.2 Lower-bound A

The matrices "0 and "1, defined in section 2.1.0, provide a lower-bound on the Garsia
entropy in Equations 2.2 and 2.3 via the product "01 · · · · · "0= .

!= (V, ?) = − sup
8∈�

∑
0∈{0,1}=

<? [01 . . . 0=] · log(
∑
9∈�
("01 · · · · · "0=)8 9 ). (2.2)

The set � indexes the rows and columns of "0 and "1. Proposition 3.3 and Theorem 1.2
of [1] state the below inequality and thus that the quantity != converges to � (V, ?) from
below as = approaches∞ and is a lower-bound on the Garsia entropy.

1/= · �= (V, ?) − 1/= · log(� (V) · (= + ;)ℓ + 1) ≤ 1/= · != (V, ?)
≤ � (V, ?)
≤ 1/= · �= (V, ?).

(2.3)

2.1.2.1 Proof of lower-bound A

The matrices "0 and "1 are created such that they encode the relation

("01 ..."0=)8, 9 =
∑

11......1=∈{0,1}=
V=·G8+

∑=
;=1 (0;−1;)·V=−;=G 9

<? [11 . . . 1=] (2.4)

for a word 0 and G8 and G 9 from �
′. In Lemma 3.2 from [1] they prove that != (V, ?) is

super-additive, that is !=+< (V, ?) ≥ != (V, ?) + !< (V, ?).
They then rely on the finite Garsia entropy �= being subadditive. Recall that a sequence

0= is subadditive if 0=+< ≤ 0= + 0< for all =, < ∈ N. Since �=+< ≤ �= + �< and �= is an
upper-bound on != then � (V) ∈ (1 · !=, 1/= · �=) for all n ∈ # . They then create the set of
cV maps for words of length =, -= = {

∑=
8=1 08 · V−8 : 08 ∈ {0, 1}} and rewrite != as below,

with "G,= referring to the product "01 . . . "0= for any a such that G =
∑=
8=1 08 · V−8.

!= (V, ?) = −
∑
G∈-=
("G,=)1,1 · log(("G,=)1,1) − sup

8∈�

∑
G∈-=
("G,=)1,1 · log(

∑
9∈�
("G,=)8, 9/("G,=)1,1).

(2.5)
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LATEX Review of Bounds on Garsia Entropy

The first term in the equation above is �= and they bound != by moving the sum in
the latter term inside the log function, as the log function is concave. Therefore != ≥
�= − sup8∈� log(∑G∈-=, 9∈� ("G,=)8, 9 ).

Then using the definition of "0 and "1 as an encoding for the sum of measures of
words 1 whose Bernouli projections relate to the word 0 in Equation 2.4 the authors rewrite∑
G∈-=, 9∈� ("G,=)8, 9 as

∑
G∈-=, 9∈�

∑
11...1=∈{0,1}=

V=·G8+V=·G−
∑=
;=1 1; ·V=−;=G 9

<? [11 . . . 1=] which is equal to∑
11...1=∈{0,1}= <? [11 . . . 1=] · |-= (8, V) |. The set -= (8, V) = {G ∈ -= : V= · G8 + (V= · G −∑=
;=1 V

=−; · 1;) ∈ +V}.
They bound the quantity -= (8, V) using Lemma 2.4 which bounds the size of +V,= as

|+ (V, =) ≤ � (V) · (= + 1)ℓ + 1. Therefore
∑
G∈-=, 9∈� ("G,=)8, 9 ≤ � (V) · (= + 1)ℓ + 1 and they

prove Theorems 1.2 and Proposition 3.3 as != ≥ �= − log(� (V) · (= + 1)ℓ + 1).

2.1.3 Lower-bound B

When V is hyperbolic the authors provide a more computationally efficient lower-bound
on the Garsia entropy by moving the supremum 8 in � in the definition of != inside the
summation. They define the below quantity with ‖ ‖ the row-sum norm.

!= (V, ?)
′
= −

∑
0∈{0,1}=

<? [01 . . . 0=] · log(‖ ("01 . . . "0=) ‖). (2.6)

Lower-bound B converges to � (V) for hyperbolic V and != (V, ?)
′ ≤ !=.

2.1.3.1 Proof of Lower-bound B

Since the supremum over 8 in � is moved inside the summation in ! ′= , then lower-bound B
!
′
= ≤ !=.
They apply Lemma 9.9 from [8] to obtain the inequality != (V, ?)

′ ≥ �= (V, ?) −
log(∑G∈-= ‖ "G,= ‖).

Since
∑
G∈-= ‖ "G,= ‖ =

∑
G∈-= max8∈�

∑
9∈� ("G,=)8, 9 ≤

∑
G∈-=

∑
8∈�

∑
9∈� ("G,=)8, 9 .Rearranging

the sums you can then obtain
∑
8∈�

∑
G∈-=

∑
9∈� ("G,=)8, 9 ≤

∑
8∈� (� (V) · (= + 1)ℓ + 1) ≤

|�| ·
(
� (V) · (= + 1)ℓ + 1

)
.

Then for V hyperbolic, ℓ = 0 and hence 1/= · ! ′= ≤ 1/= · �= − 1/= · |�| · (� (V) + 1) and
thus 1/= · ! ′= converges to � (V) from below.

2.1.4 Lower-bound C

For hyperbolic V the authors obtain an additional computationally tractable lower-bound on
the Garsia entropy of the Bernoulli convolution as

− ;=(_) ≤ � (V, ?) (2.7)

8



Chapter 2. Algorithms to Bound Garsia Entropy

for _ the largest eigenvalue of the matrix (1 − ?) · "0 + ? · "1.

2.1.4.1 Proof of lower-bound C

This result is proved by providing a lower-bound on the quantity ! ′= by replacing the row
sum norm with the 1 norm ‖ ‖1 =

∑
8, 9 |"8, 9 |.

1/= ·! ′= ≥ −1/= · log(∑01...0=∈{0,1}= <? [01 . . . 0=] · ‖ "01 ..."0= ‖1). Because"0 and"1
are positivematrices ‖ "0 ‖1+‖ "1 ‖1 = ‖ "0 + "1 ‖1 −1/=·log(∑01...0=∈{0,1}= <? [01 . . . 0=]·
‖ "01 ..."0= ‖1) = −1/= · ‖ ((1 − ?) · "0 + ? · "1)= ‖1. As = approaches infinity 1/= ·
‖ ((1 − ?) · "0 + ? · "1)= ‖1 approaches log(_) and thus � (V, ?) ≥ − log(_).

2.2 Bounding Garsia Entropy in [4]

The algorithm in [4] works by defining the maps )0 and )1 in Equations 2.8 and 2.9 for
algebraic V1 ∈ (1,2) and |V2 | ∈ (1, 2). Note that in contrast with the constraints to use [1],
the algorithm in [1] does not require V to be hyperbolic, only algebraic.

)0(G, H) = (G/V1, H/V2). (2.8)

)1(G, H) = (G/V1 + 1, H/V2 + 1) . (2.9)

Then define the region �V1,V2 or �V as follows

• If V2 > 1 then �V1,V2 = [0, 1/(V1 − 1)] × [0, 1/(V2 − 1)].

• If V2 < −1 then �V1,V2 = [0, 1/(V1 − 1)] × [V2/(V2
2 − 1), V2

2/(V
2
2 − 1)].

The region �V has analogous definitions when V2 ∈ � or when using more than two
Galois conjugates and formulas can be found in [4].

Then !=/(= · log(V)) ≤ � (V)/log(V) for != as defined in Equations 2.10 and 2.11.

!=/(= · log(V)) = (= · log(2) − log(<=))/(= · log(V)). (2.10)

<= = max
(G,H)∈�V1 ,V2

#0102...0= : (G, H) ∈ )01 ◦ )02 ◦ ... ◦ )0= (�V1,V2). (2.11)

The term<= for a given (V1, V2)was obtained by calculating all 2= rectangles)01 ...)0= (�V)
and then the intersections among rectangles, intersections of intersections, etc. until none
are left. Each intersection was associated with its ancestors from the original set of 2=

9



LATEX Review of Bounds on Garsia Entropy

rectangles. This process is visualized in Figures 2.1 through 2.5 for = = 4 and V1 = 1.2987,
V2 = −1.541. Figure 2.5 plots all maps and intersections on the same graph, with original
maps in black, intersections between two maps in yellow, between three maps in blue, and
between four maps in red.

Figure 2.1 All mappings of )01 ...)0= (�V)

Figure 2.2 Intersections of two maps )01 ...)0= (�V)

10



Chapter 2. Algorithms to Bound Garsia Entropy

Figure 2.3 Intersections of three maps )01 ...)0= (�V)

2.2.1 Proof of [4]

The quantity != is proven to be a lower-bound for � (V) as<= is a max taken over �V. Recall
that the region �V is constructed so it will contain the cV (0) representations which define
the Garsia entropy, and Garsia entropy can be defined using a term similar to <=.

Define the �= per Equations 2.12 and 2.13.

�= (V) = −
∑

0∈{0,1}=
1/2= · log(N= (0, V)/2=). (2.12)

N= (0, V) = #{1 ∈ {0, 1}= :
∑

08 · V−8 =
∑

18 · V−8}. (2.13)

Consider  = {∑∞8=1 08 · (V−81 , V
−8
2 )} for 08 ∈ {0, 1}

N. By construction  ⊂ �V and
 = )0( ) ∪ )1( ). Therefore <= ≥ N= (0, V). They show that != (V1, V2) is supadditive
and therefore �= (V) ≥ −

∑
0∈{0,1}= 1/2= · log(<=/2=) = !=. Recall that a sequence 0= is

supadditive if 0=+< ≥ 0= + 0< for all =, < ∈ N.
Therefore � (V) = lim=→∞ �=/= ≥ lim=→∞ !=/= ≥ !=/=.

11
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Figure 2.4 Intersections of four maps )01 ...)0= (�V)

Figure 2.5 All maps and intersections of )01 ...)0= (�V)

12



Chapter 2. Algorithms to Bound Garsia Entropy

2.3 Convergence of lower-bounds in [1] and [4] to the Gar-
sia entropy

The lower-bounds described in the prior section differ in whether or not they will converge
exactly to the Garsia entropy. Lower-bound B in [1] will converge to � (V) while lower-
bound C in [1] and the lower-bound obtained in [4] will not. However as the main intent
of bounding Garsia entropy is to utilize Hochman’s result in Equation 1.1 to determine
the Hausdorff dimension it is mainly of interest to calculate whether � (V)/log(V) > 1
via the lower-bounds. The authors of [4] and [1] include more detailed discussions of the
convergence of their lower-bounds to concepts related to but distinct from dim� .

—
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Chapter 3

Numerical Results and Comparisons

3.1 Performance of Akiyama et al. [1]

The performance of the methods of Akyiyama et al. [1] varies widely for algebraic and
hyperbolic V. Factors such as havingGalois conjugateswithmodulus close to 1 or increasing
the degree of the minimal polynomial (and thus the total number of Galois conjugates) can
cause blow-up in the size of the finite set +V and thus the time it takes to determine the set.
This can be seen by �0(=) defined in Equation 2.1. Galois conjugates close in modulus
to 1 or just increasing the number of Galois conjugates will decrease this value and the
upper-bound on the size of +V is proportional to �0(=)−1.

As an illustration consider the polynomials V5+V4−V2−V−1 and V5+V4−V2−V−1. Using
Equation 2.1 the upper bounds on the size of +V respectively are approximately 11,709,697
and 83,412. The actual sizes of |� ′ | are shown in [1] as 6485 and 13 respectively. Large
differences in the upper bounds for each of these polynomials correspond to differences in
the actual finite set size and thus how quickly the algorithm converges in each case.

Examiningmore computational results in [1] reinforces the wide variability in algorithm
performance. The size of the pruned graphs in Figure 3.1 vary from 5 to 1253.

As |+V | increases the time it takes to calculate it does as well. Table 3.1 lists the set size
and clock computation time in seconds running [1] on the specified polynomials.

Polynomial |+V | time(s)
V3 − V2 − V − 1 7 57

V4 − V3 − V2 + V − 1 69 30
V4 + V3 − V2 − V − 1 69 24

Table 3.1 Calculation Times for given polynomials
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Figure 3.1 table 1 from [1]

Calculating the finite Garsia entropy per [1] increases exponentially in = as it involves
summing over all 2= words 0 ∈ {0, 1}=. Figure 3.2 displays clock time to calculate �= using
methods of [1] for the polynomial V4 − V3 − V2 + V − 1.

Excluding the cost of calculating+V itself, calculating !
′
= will increase exponentially in =

as well, for the same reasons as calculating the finite Garsia entropy. Figure 3.3 displays the
clock calculation time to determine lower-bound B using methods of [1] for the polynomial
V4 − V3 − V2 + V − 1.

16
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Figure 3.2 Calculation Times for [1] of �=, V1 = 1.5129, V2 = −1.1787

Figure 3.3 Calculation Time of Lower-bound B in [1], V1 = 1.5129, V2 = −1.1787

17



LATEX Review of Bounds on Garsia Entropy

3.2 Performance of Hare et al. [4]

The computational costs of computing the lower-bound in [4] also increases exponentially
in = as it involves calculating the max number of intersections between the 2= maps of the
region �V. In contrast with [1] however there is no fixed cost comparable to calculating the
finite set +V and thus computations can still be tractable if a lower-bound greater than 1 is
achieved at a low =. Figure 3.4 shows an exponential increase in calculation time for the
polynomial V6 − V4 + V3 − 2 · V2 + V − 1.

Figure 3.4 Calculation Time for [4], V1 = 1.2045, V2 = −1.6454

Figures 3.5, 3.6 and 3.7 show performance data using Hare et al. to obtain bounds for
the polynomial V5+V4−V3−V2−1. This has two roots of modulus greater than 1 in absolute
value, V1 = 1.14, V2 = −1.68. Figure 3.5 shows that calculation times become expensive
at = = 10, taking over an hour to calculate the lower-bound, and about 25x longer than the
calculation time at the same = for the polynomial in Figure 3.4. Figure 3.6 though shows
that calculating bounds at high = is unnecessary above = = 2 as we have already obtained a
lower-bound greater than 1 and thus proven that dim� = 1. Figure 3.7 shows the calculation
times for = = 1 to 5 and illustrates that the method in Hare et al. has rapidly determined
the dimension of the Bernoulli Convolution defined by V1 = 1.14, V2 = −1.68. In contrast
after an hour of calculation time the algorithm in Akiyama et al. did not converge for the
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same polynomial V5 + V4 − V3 − V2 − 1, and |� ′ | = 139 from [1]. For this polynomial the
performance of Hare et al. was orders of magnitude faster in determining dim� than was
Akiyama et al.

Figure 3.5 Calculation Times for [4], V1 = 1.14, V2 = −1.68
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Figure 3.6 Bounds from [4], V1 = 1.14, V2 = −1.68

Figure 3.7 Calculation Times from [4], V1 = 1.14, V2 = −1.68
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3.3 Further Numerical Results

3.3.1 V3 − V2 − V − 1, V = 1.8393

The polynomial V3 − V2 − V − 1 is PV with root V = 1.8393. As V is PV dim� < 1 based
on the results of Garsia in [3]. The algorithm in Akiyama et al. can then be used to provide
bounds on dim� between lower-bound B, lower-bound C and 1. The finite set |� ′ | = 7
and is shown in Figure 3.8. Figure 3.9 shows the convergence of �= and lower-bound B
to a value below one, and that lower-bound C quickly provides a tight bound on the Garsia
entropy for V = 1.8393.

Figure 3.8 Structure of +V for V = 1.8393

3.3.2 V4 − V3 − V2 + V − 1, V1 = 1.5129, V2 = −1.1787

The polynomial V4 − V3 − V2 + V − 1 is not PV. It’s roots of modulus greater than one
are V1=1.5129, V2=-1.1787. The finite set |+V | = 69 and the pruned graph |� ′ | = 21.
Figures 3.10 and 3.11. Figure 3.12 shows that lower-bound C reveals dim� = 1 with
quick calculation time of 30 seconds given in table 3.1. In contrast Figures 3.13 and 3.14
show that [4] takes orders of magnitude more computation time to obtain a lower-bound
on Garsia entropy that is greater than 1. In [4] a lower-bound > 1 is obtained first at
= = 12, Figure 3.13 shows the lower-bounds obtained up to = = 7 and Figure 3.14 that
beyond n=7 the computation times increase exponentially from 500 s at n=7. Thus for
V4 − V3 − V2 + V − 1 calculations using [1] show that dim� = 1 in orders of magnitude less
time than do calculations using [4].
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Figure 3.9 Bounds from [1], V = 1.8393

3.3.3 V4 + V3 − V2 − V − 1, V1 = 1.1787, V2 = −1.5128

The polynomial V4 + V3 − V2 − V − 1 is not PV. It’s roots of modulus greater than 1 are
V1=1.1787, V2=-1.5128. The finite set |+V | = 69 and |� ′ | = 21 as found by [1]. The time to
determine+V was 24 seconds as shown in table 3.1. Figure 3.15 shows that dim� = 1 based
on lower-bound C and lower-bound B quickly increasing beyond 1. [4] is also quickly able
to determine that dim� = 1 as shown in Figures 3.16 and 3.17. At = = 3 the lower-bound
in Hare et al. is greater than 1 and this is calculated in less than 1 second per Figure 3.17.

3.3.4 V7 − V5 − V3 − V − 1, V1 = 1.2986, V2 = −1.54133

The polynomial V7 − V5 − V3 − V − 1 is not PV. Its roots with modulus greater than 1
in absolute value are V1 = 1.2986, V2 = −1.54133. Figures 3.18 and 3.19 show that [4]
is able to quickly show that dim� = 1. The lower-bound at n=6 is greater than 1 and the
computation time is around 100 seconds. In contrast as this is a seventh order polynomial the
computation time using [1] is likely to be quite large. The bound on |+V | is 2,719,611,421,
calculated using Equation 2.1, and thus |+V | is likely to be quite large and take an inordinate
amount of time to compute.
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Figure 3.10 Structure of +V for V1=1.5129, V2 = −1.1787
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Figure 3.11 Structure of �′ for V1 = 1.5129, V2 = −1.1787

Figure 3.12 Bounds from [1], V1 = 1.5129, V2=-1.1787
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Figure 3.13 Bounds from [4], V1=1.5129, V2 = −1.1787

Figure 3.14 Calculation time for [4], V1 = 1.5129, V2 = −1.1787
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Figure 3.15 Bounds from [1], V1 = 1.1787, V2 = −1.5128

Figure 3.16 Bounds from [4], V1 = 1.1787, V2 = −1.5128
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Figure 3.17 Calculation time for [4], V1 = 1.1787, V2 = −1.5128

Figure 3.18 Bounds from [4], V1 = 1.2986, V2 = −1.54133
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Figure 3.19 Calculation time for [4], V1 = 1.2986, V2 = −1.54133
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3.4 Summary and Conclusions

Calculating how dim� (aV) varies for different categories of algebraic V is an active area
of mathematics. Computational and theoretical evidence discussed in this paper supports
PV numbers being the only class of V with dim� < 1. The algorithms in [1] and [4]
build off the theoretical results of [5] and are able to determine dim� for algebraic and
hyperbolic V and algebraic V respectively. Numerical results in the prior sections show
that for many low-degree algebraic and hyperbolic polynomials both methods can quickly
determine dim� . Table 3.2 summarizes the time to determine dim� = 1 of [4] and [1] for
the non PV polynomials listed in the previous section.

The bounds in [1] quickly become intractable to compute however when V has roots in
modulus close to 1 or when the degree of the polynomial increases. The method of [4] is
not as effected by these concerns which is shown by its several orders of magnitude superior
performance compared to [1] to show dim� = 1 for the polynomials V7 − V5 − V3 − V − 1
and V5 + V4 − V3 − V2 − 1. An additional benefit of [4] is that it is able to prove results
for non-hyperbolic V whereas [1] is restricted to hyperbolic V. There are polynomials,
however, such as V4 − V3 − V2 + V − 1 that [1] is able to determine dim� with performance
several orders of magnitude smaller than that of [4]. The full papers of [4] and [1] in
addition contain numerous examples requiring inordinate amounts of computation time to
determine dim� for both methods. Further research needs to be done to develop tractable
algorithms to calculate dim� , such as roots of higher order polynomials, for V that are not
tractable for either [1] or [4].

Polynomial time(s) [1] time(s) [4]
V4 − V3 − V2 + V − 1 30 >3600
V4 + V3 − V2 − V − 1 24 .1
V7 − V5 − V3 − V − 1 >3600 120
V5 + V4 − V3 − V2 − 1 >3600 .03

Table 3.2 Calculation Times to determine dim� = 1 for [1] and [4]
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