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Abstract

Accurate segmentation of the general population allows companies to effectively allocate
marketing resources and maximize opportunities. In this project, we were entrusted by
an anonymous startup to simulate, segment and analyze a given designed context. In this
research, firstly, we leverage multiple criteria decision-making theory, credibility theory, and
prospect theory to present a complex and systematic simulation model that mimics human’s
process of decision making, reason generating and recommendation learning. Secondly, we
design an accurate and fast approach to draw segmentation on the population through
simulated behavioral data. As a result, our simulation model is general, flexible and
competitive to cover most real-life situations, and our segmentation approach is efficient
and reliable in different scenarios.
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Chapter 1

Problem Setting

1.1 Motivation

Accurate segmentation of the general population into subgroups with different character-
istics can be of immense value to the different industries. For example, for the video
streaming companies like YouTube, segmenting the users into different groups based on
their preferences would render the promotion of advertisements more efficient and fruitful.
For e-commerce companies like Amazon, segregating clients based on their locations, helps
to develop an efficient and smooth logistical administration. By targeting specific groups
of customers, the segmentation model enables companies to effectively allocate marketing
resources and take advantage of the opportunities. In this research, we propose to identify
segments based on people’s knowledge, expertise, and preferences, which not only assist
companies to allocate resources, rather also helps them to analyze the characteristics of
their customers. For example, people who prefer to exercise habitually are more physically
healthier than others. While people having higher knowledge of fashion usually are good
at dressing up. Our motivation is really about constructing a new approach to segment
based on behavioral analysis and comparatives of an intuitive social game construct.

1.2 Background

This research had an industrial collaboration with an anonymous startup promoting healthy
lifestyles through user participation. In particular, we mainly focus on an engaging in-APP
game that is competitive in nature and is designed to incentive healthy behaviors.
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The APP collected data on users’ activities through interactive participation, which was
then analyzed to identify the users’ self-awareness, knowledge and response to incentives.
This analysis was utilized to segregate users in different segments or subgroups.

One of the main endeavors of this project was to design a simulation model that mimics
different users’ decision making processes. This exercise was necessitated as the real data
was not available. Moreover, as the segmentation process was dynamic, with people in
different subgroup being treated differently, it could have led to a butterfly effect with
arguably different results. The simulation model helped us formulate more experiments
and design a better and dynamic simulation algorithm. This simulation model has been
generic and flexible to cover the various types of potential users and situations. We used
the simulation model to test:

1. The ability to identify human behavior patterns.

2. Demonstrate how incentives impacted the segment classifications.

3. Quantify the assimilation of cohort data that improves knowledge over a period of
time.

4. Provide suggestions on how to classify members into just a handful of groups.

Once the simulation model was developed, the second focus of this project was to devise
an analytical toolkit to analyze the user data. This toolkit was first tested using simulated
data and has been envisioned to be applied to real data in the future.

1.3 Overview of Methodology

1.3.1 Description of The Game

High Level

The mobile APP we were entrusted to analyze is a wellness APP. It delivers healthy micro
activities to an individual with the intent of maximizing the user’s probability of good
health and longevity. Users of this APP are frequently asked to upload photos of their
healthy activities and evaluate others’ image of healthy activities. After uploading the
photos, they would receive an evaluation and recommendation from the in-house expert,
which nudges them to become healthy.
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Low Level

In this research project, we mainly focused on the peer to peer wellness game, because
we believed it contained the largest quantity of information among all the activities. As
shown in Figure 1.1, in this game, the player was asked to provide the healthiest activity
he did recently in the form of a photo. These photo moments were then put into a friendly
competition and the photo owners provided with the evaluation and recommendation from
the in-house expert.

After uploading the photos, players receive some points as an award. The number of
points depends on the players decision, he can choose to gain a fixed number of point or
enter into a bet. If he chooses to enter the bet, he can gain a higher number of points if
he wins the food comparison and lower number of points if he loses the comparison. The
rate of bet will also be analyzed as indicators of players’ confidence.

Extra Details

In the APP, after voting an activity pair, experts and players are asked to provide reasons
for the vote, expert will also need to give a recommendation to players be voted. The
reasons similarity, and the feedback of players from recommendation will also be analyzed
as indicators of segmentation.

Expert

Picture
A

Picture
B

Player
C

Player
B

Player
A

upload upload

Win/loss, reason Win/loss, reason

Win/loss, reason, recommendation Win/loss, reason, recommendation

Figure 1.1: The process of the game
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1.3.2 Related Literature

As this research targets a specific circumstance, there were no preceding researches we could
refer to, except for some partially relevant data to support our research. For the decision-
making process of voting, people usually adopt different criteria. Zadeh[1965] introduced
the fuzzy-set theory to simulate the decision-making process with multiple criteria. The
main idea was to assign different scores to these multiple sets with numerous criteria. The
score of a given object was equal to the score of the set which the object was most likely
to be. Gass & Saaty[1955] proposed weighted sums system that multiplies each criterion
with a positive weight and summed them up as one single criterion. Wierzbicki [1980]
introduced the achievement scalarizing function which also combined the multiple criteria
into a single criterion but in a different way. These decision-making model were all rational.
However, most of them were not compatible with our research as our simulation was not
just a pure decision-making model, we also accounted for reasons, recommendations and
players’ learning system for this purpose.

1.3.3 Preview of Conclusion

Our simulation result illustrated that, the reason of difference or the agreement rate with
the expert, are the most efficient features to detect expert-like players. The cumulative win
rate is the best parameter for segmenting same level players. The rate of bet can indicate
players’ confidence by carefully structuring the gamble.

1.4 Table of Contents

Chapter 2 deals with the simulations for the entire gaming process, uploading activities,
voting, providing reasons and recommendations from the prospective players and the ex-
perts, and how players learn from the experts. Chapter 3 elaborates how we used the
credibility theory to update a person’s confidence and how we leveraged the prospect the-
ory to simulate the decision-making process when entering the bet. Chapter 4 interprets
the segmentation model and the performance of different segmentation criteria under dif-
ferent scenarios. Chapter 5 introduce how we identify people’s confidence by structuring
the gamble design. And, Chapter 6 summarizes our works and provides suggestions.
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Chapter 2

Appreciation-Perception Based
Decision Model

In this chapter, we will illustrate our simulation model for uploading activities, voting,
and providing reasons and recommendations, from the prospects of players and the expert.
We will start from introducing the simulation model of multiple criteria decision making
process. Then we analyze the pros and cons of different decision models and explain the
rationale behind our approach. Next, we illustrate how we define the decision model for the
expert and players, and explain how they are different from each other. Finally, we present
our method to generate reason and recommendation based on different decision model, and
how we simulate the learning process of players toward the expert’s recommendation.

2.1 How People Make Decisions

Imagine that you are provided with two choices: going to the gym tonight, or attending a
party with your friends, how will you choose? We know that, going to the gym is not so
entertaining, but it is good for our health and personal attractiveness; attending a party is
quite enjoyable and will improve your social skill, however, it can not improve your physical
healthiness.

Zionts (1979) points out that, the diversity of decisions comes from the difference of
criteria. In other words, different people have various evaluate criteria toward the potential
profit of options, which leads to different choices. So we make two assumptions:

1. Faced with multiple choices, people will choose the one with highest score.
2. People have their own criteria to calculate the score of options.
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2.2 Activity Space

To illustrate how we simulate the decision-making process, we start by introducing how
we define activities mathematically.

In this chapter, we use the process of choosing food to eat as the main target. One
reason is that choosing food is the most common decision we will make, and the process
is quite similar to the decision-making process toward activities. And the other reason is
using food instead of activity helps us convey our idea to readers. In this section, we firstly
review some previous research about quantifying foods to support the rationality of our
approach. And then we interpret why we set some restrictions on our definition and why
they make sense. In this paper, food is just a commonplace of healthy activity.

2.2.1 Relevant Researche

Jolie et.al [2009] use 12 nutritional variables to represent a given food, and use these
features to calculate the nutrition score.

There is a website called Epicurious (https://www.epicurious.com) providing 330000+
recipes with ingredient and nutritional content.

Jaan [2017] proposes an idea of converting food into vector space using the embed-
ding algorithm from Word2Vec. It is a feature learning technique in Natural Language
Processing (NLP) that maps words into vectors of real number while keeping semantics
relationship of the word. For example: King - man + woman = Queen. After training the
embedding algorithm by 95,896 recipes, the model is capable to convert food into a vector
representation of 100 dimensions as long as the name of the food is given and also in the
training data. Similar food will have a close distance in food space.

2.2.2 Activity Space Definition

All of these studies proved that there are some methods which could convert food into a
vector space with each dimension representing one property of the food, so are activities.
Greco et.al [2016] in his book, <Multiple criteria decision analysis>, hypothesized that,
every analyzable object can be represent in a vector space. For example, going to the gym
could be labeled as “health”, “improve physique”, “not relaxed” and etc. Then we could
create a vector space of “fitness”, “improvement”, and “degree of fatigue” to represent this
activity.

Figure 2.1 demonstrates how the distribution of food will be in the food space. For
visualization purpose, we assume food properties has two dimensions: nutritive value and
calorie. However, no matter how large the domain of the feature will be, we need to
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normalize it to eliminate the effect of vary scale. In the simulation, the domain of each
dimension is assumed to be [0,1).

F = (f1, f2, f3, ..., fn) where fi ∈ [0, 1) for i ∈ [1, 2, .., n]

So in simulation, the distribution of foods in food space is actually the distribution
of foods after normalization. Figure 2.2 demonstrates how the distribution will be in the
simulation.

Figure 2.1: Food space Figure 2.2: Food space with normalization

2.2.3 Dummy Variable

Intuitively, some features of food are hard to be measured, for example, the amount of
Vitamin C or the level of fitness of going to the gym. Even for the expert, it is hard to
tell how many Vitamin C the food contained. However, distinguishing whether the food
contains Vitamin C is an easier job. So some dimensions of activities are set as dummy
variables. The final definition of our Activity space is :

F = (f1, f2, f3, ..., fn)

where fi ∈ [0, 1) for i ∈ [1, 2, ..,m] and fi = 0 or 1 for i ∈ [m+ 1,m+ 2, .., n], m ≤ n

7



2.3 Activity Score

In this chapter, we illustrate how we simulate the scoring system of individuals. In the
beginning, we introduce five possible metrics to calculate the total score (τ) of an activity.
Each metric is designed to fix some drawbacks of the last one. Then we present the
definition of appreciation and perception, and how we measure the knowledge and cognitive
bias of individuals.

2.3.1 Piece Wise Constant Scoring System

The piece wise constant scoring system is widely used in the scoring topic. For each
dimension of features, it firstly divides the domain of feature into several subdomains
by some endpoints (b1, b2, .., bm−1), then maps each subdomain into a predefined value
(s1, s2, ..., sm). In the end, it sums up the value of each dimension together as the total
score of the activity.

Sn =


sn,1 0 ≤ fn ≤ bn,1

sn,2 bn,1 < fn ≤ bn,2

...

sn,m bn,m−1 < fn ≤ 1

τ =
n∑
i=1

Si

For example, Marjorie et.al [2002] use alternate healthy eating index (AHEI) score
method to calculate the total score of food. The main idea is using predefined criteria to
evaluate the quantities of different components, then each level of components quantity
corresponding to an AHEI score. In the end, the total score of food was represented as the
sum of all components AHEI score. This method is a piece wise constant scoring system.
This method is easy to use as it only takes the fuzzy value as input to calculate the total
score.

However, there are some drawbacks of this system. Firstly, piece wise constant model
usually contains more parameters than linear model, so it depends a lot on the size of data
and is easily overfitting. Secondly, it is not suitable for the decision-making process. As it
based on piece wise constant, some points in the activity space may have the same score
while their Euclidean distance is quite large. This will result in no activity been chosen as
they got the same score. For example, for a scoring system of:
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S1 =


1 0 ≤ fn ≤ 0.3

2 0.3 < fn ≤ 0.6

3 0.6 < fn ≤ 1

and S2 =


3 0 ≤ fn ≤ 0.3

2 0.3 < fn ≤ 0.6

1 0.6 < fn ≤ 1

τ = S1 + S2

Figure 2.3 shows the distribution of points with the same score in the activity space. All
the points share the same scores.

All the decision making models based on piece wise constant system all have the same
problem. For example, the fuzzy set model presented by Zadeh[1965]. This model defines
some sets in the activity space, and assign a score to each set. The score of an activity
equal to the score of the set where the activity is most likely to be in. So the score of
activities will be the same if activities are all in the same set.

Figure 2.3: Example of points with same score in activity space

2.3.2 Weighted Sum Scoring System

To fix the drawbacks of piece wise scoring system, we introduce the weighted sum scor-
ing system. It assigns different weights (w1, w2, .., wn) to each features (f1, f2, .., fn) and
calculates the weighted sum of features as the total score of activity.
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Predictor variables Coefficient
(Intercept) 0.710 (0.207)
Total fat(g) -0.0538 (0.0414)
Saturated fat(g) -0.423 (0.0944)
Cholesterol(mg) -0.00398 (0.0033)
Sodium(mg) -0.00254 (0.00044)
Total carbohydrate(g) -0.03 (0.0110)
... ...

Table 2.1: Martin et.al. [2009]: Model for predicting food/beverage healthiness based on
12 nutritional variables

τ =
n∑
i=1

wifi

Martin et.al. [2009] asked some experts to rated each of the 205 foods as 11 scales, from
-5 (very unhealthy) to 5 (very healthy). And they present a linear regression model fitted
those date to predict the healthiness of other foods. The result is shown in Table 2.1.

This method solves the “same score” problem of piecewise constant method. Also, the
linear model has fewer parameters compared with the last one. It is a good choice when the
dataset is small, and usually, activity score data is hard to collect as the expert resource
is expensive and scarce.

The drawback of the weighted sum scoring system is that it can’t take features interac-
tion into consideration. For example, Vitamin D could boost the absorption of calcium, so
it is healthier to eat food containing vitamin D and calcium together. The current model
is not capable to simulate the interaction.

2.3.3 Weighted Sum Scoring System with Interaction

To address the problem of no interaction. We expand the total score function:

τ =
n∑
i=1

wifi +
n∑
i=1

n∑
j=i+1

w̄ijfifj,

where w̄ij = 0 if fi has no interaction with fj
To not make the model too complex, we only consider the interaction up to two features.

As for the example of Vitamin D and calcium, the total score in this model will be higher
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than the last model’s as w̄vitaminD,calcium > 0
The shortage of this model is that the partial derivative of total score with respect to

each feature is positive. It means that as long as the weight of the feature is positive,
the higher amount of feature is always better. However, in reality, sometimes the most
appropriate amount is the best.

2.3.4 Weighted Sum Scoring System with Interaction and Kernel
Function

we use the kernel function (k(f)) to address the monotonicity problem. we set the appro-
priate amount to be (a1, a2, .., an). And assume that:

1.

τ =
n∑
i=1

wif̄i +
n∑
i=1

n∑
j=i+1

w̄ijfifj

f̄i = k(fi)

2. The total score is maximized when (f1, f2, .., fn) = (a1, a2, .., an):
∀(f1, f2, .., fn) 6= (a1, a2, .., an),

τ((a1, a2, .., an)) ≥ τ((f1, f2, .., fn))

3. The total score function may be symmetric around (a1, a2, .., an):
∀x > 0 and i ∈ [1 : n] ,if ai + x < 1 and ai − x > 0,

τ((f1, .., ai − x, .., fn)) = τ((f1, .., ai + x, .., fn))

Based on these assumptions, we introduce two kernel functions: piece wise linear and
the quadratic function.

Piece wise linear kernel function:

k(fi) =

{
fi
ai

0 ≤ fi ≤ ai

− fi
ai

+ 2 ai < fi ≤ 1

Quadratic kernel function:

k(fi) = −f
2
i

a2i
+ 2

fi
ai
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Figure 2.4: Piece wise linear kernel func-
tion with appropriate amount = a

Figure 2.5: Quadratic kernel function with
appropriate amount = a

By using the kernel function,
∑n

i=1wif̄i take the maximum value only when
(f1, f2, .., fn) = (a1, a2, .., an), which means every feature research its appropriate amount.
If there is no demand for appropriate amount, then ai = 1 ∀i ∈ [1 : n]

2.4 Appreciation and Perception

As we have defined how the activity score is calculated, in this section, we want to explain
why and how people have different preference toward the same pair of activities and how we
simulate it by introducing appreciation, and perception. In this section, we used weighted
sum scoring system with interaction as our score system.

In weighted sum scoring system with interaction, there are three important variables
that control the final score of an activity, fi, ai and wi. In our simulation, we called fi
perception, ai appropriate amount, and wi the appreciation. In this section, we first present
how we define knowledge of a person, then we introduce how to represent cognitive bias.

2.4.1 Appreciation

We hypothesize that the expert is the “master” and has “omni potent”. So the experts’
appreciations are always the same, which is (w1e, ..., wne, w̄11e, ..., w̄nne). And different from
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experts, ordinary people’s appreciation may bias from the expert’s and different from
each others. Many research (Jennifer et.al[2015],Olga[2016],Sehar[2017]) points out that,
people’s appreciations are conditional. Different circumstance and emotion state will lead
to diverse appreciations. As we can not track the circumstance and emotion state of a
person, we consider appreciations are random variables and not consistent across time.

We use consistency (cns1, ..., cnsn, ¯cns1,2, ..., ¯cnsn−1,n) to describe the uncertainty of a
person’s appreciation, and use knowledge (k1, ..., kn, k̄1,2, ..., k̄n−1,n) to measure how far
away his mean appreciation (wm1, ..., wmn, w̄m,1,2, ..., w̄m,n−1,n) is biased from expert’s ap-
preciation (w1e, ..., wne, w̄1,2,e, ..., w̄n−1,n,e)

If one player has high consistency in some dimension of activity space, his appreciation
of this dimension should be very consistent across time. If one player has low consistency
in some dimension of activity space, his appreciation should be quite divergent. Figure 2.6
shows the difference. In simulation, we set:

∀i ∈ [1, .., n, 11, .., nn], wi ∼ N(wmi, w
2
mi(1− cnsi)), cnsi ∈ [0, 1],

where (wm1, ..., wmn, w̄m11, ..., w̄mnn) is the mean appreciation of this person

Figure 2.6: Left: The long vector represents mean appreciation, short vectors represents
5 appreciations of the same person with high consistency. Right: Appreciation of the low
consistency people.

In the simulation, we set overall knowledge (kl) is the cosine similarity between the
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person’s mean appreciation and expert’s:

kl = cos(θ) =

∑
i=1wmiwei√∑

i=1w
2
mi

√∑
i=1w

2
ei

Figure 2.7: Left: The Solid vector represents expert’s appreciation, the dashed vector
represent a high knowledge people’s mean appreciation. Right: Appreciation of the low
knowledge people.

As kl = cos(θ), so kl ∈ [−1, 1], when kl = 1, this person’s appreciation is same as
the expert’s; when kl = −1, his appreciation is the exactly opposite to the expert’s; when
kl = 0, his appreciation has no correlation with expert’s. Figure 2.7 the difference between
high knowledge person and low knowledge person.

To separate the overall knowledge to several dimension, we set (k1, ..., kn, k̄1,2, ..., k̄n−1,n)
as measurement the knowledge bias in each dimension. It is not appropriate to compare wi
with wei directly. Because people with the different appreciation may still make the same
decisions, as long as w = awe, a > 0. To solve this problem, all the appreciations need to
be normalized before comparing.

ki =
wmi√∑n
i=1w

2
mi

− wei√∑n
i=1w

2
ei

It could be noticed that as we defined our total score function below:

τ =
n∑
i=1

wiki(fi) +
n∑
i=1

n∑
j=i+1

w̄ijfifj,
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the kernel functions ki(x) are also key parameters to evaluate a persons knowledge.
Given the expert’s appropriate points (ae1, ae2, ..., aen) and the player’s appropriate points
(a1, a2, ..., an), we define the modified overall knowledge k̄l as:

k̄l = kl(1− 2

∑n
i=1(aei − ai)

n
)

When aei = ai, ∀i ∈ [1 : n], k̄l = kl, and when aei − ai = 1, k̄l = −kl, ∀i ∈ [1 : n].
In the simulation, we use following step to sample a person’s mean appreciation:
Given modified knowledge k̄l and consistency (cns1, .., cnsn, cns11, .., cnsnn), we will

first sample wmi from N(wei, w
2
eikl), then calculate the cos(θ)(1− 2

∑n
i=1(aei−ai)

n
) as the true

knowledge, if true knowledge 6∈ [k̄l−0.1, k̄l+0.1], resample until it is in the interval. Every
time when calculate the score, sample wi from N(wmi, w

2
mi(1− cnsi))

2.4.2 Perception

As we have defined what is the appreciation (w1, ..., wn, w̄1,2, ..., w̄n−1,n) in our simulation
model, the other key value that will determine the activity score is (f1, f2, ..., fn). It
represents people’s views toward an activity, we call it perception.

People’s perception of the same activity may be different. For example, there are
so many people smoke in their daily life. They choose smoking not only because the
entertainment received from smoking is higher than the harm, but also they are not aware
of how large the harm would be. That’s why many anti-smoking ads try to help people
prevent smoking by showing them the harm: reinforcing the perception of smoking harm.

In 2017 food & health survey by International Food information Council foundation, it
is found that only 13% of people surveyed know exactly the nutrition ingredient of the food
they eat. This survey indicated that perception is also a key point to distinguish nutrition
expert from normal people.

Perception could be influenced by cognitive bias. There are lots of cognitive bias in
psychology and behavior economics. These cognitive biases follow some rules, for example,
IKEA effect. IKEA effect represents the tendency that people like to put a higher value
on objects that they partially or entirely assembled themselves.

Those kinds of bias usually follow some rules, but it is hard to track. For those bi-
ases, instead of tracking all the reason, we prefer to consider them as a random variable.
Expert-like person will has low bias on the perception of activities (p1, p2, .., pn). We use
perceptivity (pcp1, pcp2, .., pcpn) ∈ [0, 1]n to represent the randomness of the bias.

The bias may have such properties:
1. Like activity space, ∀i ∈ [1, 2, .., n], pi ∈ [0, 1]
2. Given an activity (f1, f2, .., fn),∀i ∈ [1, 2, .., n], if pcpi = 1, pi = fi
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3. If pcpi = 0, the value of pi should be very random
So we set perception:

∀i ∈ [1, 2, .., n], pi ∼ pcpifi + (1− pcpi)U(0, 1)

2.4.3 Simulation Process

After introducing both appreciation and perception, in this section, we will summarize the
process of calculating the score of an activity.

Given an activity (f1, f2, .., fn), we first calculate the person’s perception (p1, p2, .., pn)
toward the activity by pi ∼ pcpifi+(1−pcpi)U(0, 1) ,then map the perception(p1, p2, .., pn)

into R
(n−1)n

2 space: (p1, .., pn, p1p2, .., pn−1pn)
Next, sample appreciation (w1, ..., wn, w̄1,2, ..., w̄n−1,n) from N(wmi, w

2
mi(1− cnsi)), cal-

culate the score of the activity by
∑n

i=1wipi +
∑n

i=1

∑n
j=i+1 w̄ijpipj

Notice in our simulation, the score for the same activity may different from each time
because of the randomness of perception.

2.5 Upload Best Activity

In the app we were entrusted to simulate, every players is asked to upload the healthiest
activity he did recently. As we have defined how the activity score is calculated by each
individual, in this section, we present how we simulate this process using the scoring system
we defined.

2.5.1 Score Based Activity Selection

The idea is that for every player, he will first generate several activities randomly, then
pick the one that has the highest score to him as the activity he uploads. We set nof
as the number of food the healthiest food is picked from. For clear notation, we set the
sample set of activities as Φ, the final choice of the activity as F :

Φ = (F1, F2, .., Fnof )

where Fj = (fj1, fj2, .., fjn) and fji ∼ U(0, 1),∀i ∈ [1, 2, .., n],∀j ∈ [1, 2, .., nof ]

F = argmaxFi
(τ(Fi))
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2.5.2 Healthy Activity Distribution

In this section, we will present the distribution of the best activity given different param-
eters.

The nof is set as 14. For visualization purpose, expert’s appreciation is set as (1,1).
Figure 2.8 presents the best activity distribution of a high-level knowledge and percep-

tivity person. Figure 2.8.a is the activity distribution of the expert, his activity is almost
on the top right corner, which is the same direction as his appreciation (1,1). We can see
with the consistency get lower, people’s best activity spread to the other corners and edges
of the activity space. This kind of persons have the impulsion to eat healthy food, and
also know what is good. However, they are not very confident about their knowledge.

Figure 2.9 presents the best activity distribution of a high consistency and perceptivity
person. Different from Figure 2.8, with knowledge decreased, best activities move to the
other sides because their knowledge about the food activity is wrong. However, they are
very confident about their knowledge.

Figure 2.10.a and 2.10.b present the best activity distribution of a low perceptivity per-
son. We can see with perceptivity become lower, his best activities become more scattered.
This kind of person may not have a strong willingness to improve themselves and easy to
be influenced by cognitive bias.

Figure 2.10.c is what we believe a normal person’s distribution: has some bias on the
knowledge, not very confident of his own knowledge, and sometimes have some cognitive
bias on the activity.

2.6 Recommendation & Reason

In the app, after voting an activity pair, experts and players are asked to provide reasons
for the vote, experts will also need to give a recommendation to players be voted. In
this section, we present how we quantify recommendation and reason given by the expert
and players. We use the recommendation sample from the mobile app to illustrate the
rationality behind our approach.

2.6.1 Reason

When an expert or player vote a food pair, he also needs to provide the reason for the vote.
The similarity between reasons from the expert and players is also a key value to evaluate
the level of the player. By level, we means the higher level a player is, the more likely this
player is an expert.
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(a) consistency = (1, 1) (b) consistency = (0.5, 0.5) (c) consistency = (0, 0)

Figure 2.8: Best activity distribution with we = (1, 1), knowledge = 1, perceptivity =
(1, 1)

(a) knowledge=0.6 (b) knowledge=0.2 (c) knowledge=-1

Figure 2.9: Best activity distribution with we = (1, 1), consistency = (1, 1), perceptivity =
(1, 1)

(a) perceptivity=(0.5,0.5) (b) perceptivity=(0,0) (c) Normal People

Figure 2.10: a,b: Best activity distribution with we = (1, 1), consistency = (1, 1),
knowledge = 1 c: Best activity distribution with we = (1, 1), consistency = (0.6, 0.6),
perceptivity = (0.6, 0.6), knowledge = 0.6
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If the reason is given by the form of sentence, there are already some Nature Language
Process techniques that measure the distance between sentence, such as Word Mover’s
distance, a technique that is able to calculate the semantic dissimilarity between sentences
like ”how are you” and ”how old are you”.

While in the app, the job is easier as players and experts only need to choose from
several predefined options. So the key point is calculating the similarity between the
chosen options.

The number of options should be as few as possible to make the app more user-friendly.
So we assume the number of options equal to the number of dimensions of activity space.
In our simulation, we don’t consider reasons of interactions as there is a limitation from
the number of predefined options. Even there may be an interaction between features, the
expert and people can’t express it by only choosing options.

As people can only submit their reason by choosing the predefined options, so the reason
r in our simulation can only contain the information of ”is the reason for winning” and ”is
not the reason for winning”.

Therefor, in simulation, given activity 1: F1 = (f11, f12, .., f1n), activity 2: F2 =
(f11, f12, .., f1n), the person’s appreciation (w1, ..., wn, w̄1,2, ..., w̄n−1,n), and a threshold
λ > 0, the reason R(F1, F2) = (r1, r2, .., rn) is calculated by:

if τ(F1) > τ(F2):
∀i ∈ [1, 2, ..n], ri = 1 if wi(f1i − f2i) > λ, ri = 0 otherwise

if τ(F1) < τ(F2):
∀i ∈ [1, 2, ..n], ri = 1 if wi(f1i − f2i) < −λ, ri = 0 otherwise

Then the similarity between the expert’s reason (re1, re2, .., ren) and the person’s reason
(r1, r2, .., rn, rn) is:

n∑
i=1

|rei − ri|

However, there is a problem of the metric of similarity. We believe it is a pretty bad
situation if the player gave the same reason as expert while they provide opposite vote. In
the current metric, the similarity of this situation is the same of the situation when the
similarity of reason and vote are all the same. We believe different pairs of reason and vote
corresponding to different levels:

Our current similarity metric cannot achieve this. It is because current reason does not
contain the information of direction. So we modify the definition of reason as:

if τ(F1) > τ(F2):
∀i ∈ [1, 2, ..n], ri = 1 if wi(f1i − f2i) > λ, ri = 0 otherwise

if τ(F1) < τ(F2):
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Reason agreed Vote consistency Level
Same reason Same vote Good
Different reason Same vote Fine
Different reason Different vote Bad
Same reason Different vote Very bad

∀i ∈ [1, 2, ..n], ri = −1 if wi(f1i − f2i) < −λ, ri = 0 otherwise
The similarity is:
If V otee(F1, F2) = V ote(F1, F2) :

0.8×
n∑
i=1

|rei − ri|

If V otee(F1, F2) 6= V ote(F1, F2) :

1.2×
n∑
i=1

|rei − ri|

Table 2.2 shows the difference between new similarity score and old similarity score.
We can see that our new measure follows our expectation and the old one is not.

Table 2.2: New similarity VS Old similarity

Reason agreed Vote consistency Level Old similarity New similarity
Same reason Same vote Good 0 0
Different reason Same vote Fine 1 0.8
Different reason Different vote Bad 1 1.2
Same reason Different vote Very bad 0 2.4

2.6.2 Recommendation

After voting, the expert will also provide recommendations to each players. The recom-
mendation will help players to restructure their knowledge.

We assume the number of recommendations equals to the number of expert’s appre-
ciation (w1e, ..., wne, w̄11e, ..., w̄nne). The expert will provide recommendations to players
according to features that contribute less score in activity comparison. For example, given
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player A’s food (f11, f12, .., f1n) and player B’s food (f21, f22, .., f2n), he will give A recom-
mendation on feature i that satisfied weif1i < weif2i.

Because recommendations are sentences like ”Try to eat more vegetables”, and ”Try to
avoid oil food”, the recommendations should be a dummy variable, with +1 representing
encourage and -1 representing discourage. The sign of recommendation should be the same
as the partial derivative of features.

Given activity 1: F1 = (f11, f12, .., f1n), activity 2: F2 = (f21, f22, .., f2n), the
expert’s total score function: τ(F ) and a threshold: λ > 0, the recommendation
(rcm1, .., rcmn, rcm1,2, .., rcmn−1,n) for player 1 is calculated by:

∀i ∈ [1, 2, ..n], rcdi = sign(∂τe(F )
∂fi

), if wei(f1i − f2i) < −λ, ri = 0 otherwise

In our score system, given the expert’s appreciation: (w1e, ..., wne, w̄11e, ..., w̄nne), and
appropriate points: (a1, a2, .., an), we have:

rcmi = sign(
∂τe(F )

∂fi
) = sign(wi(ai − fi)),∀i ∈ [1 : n]

rcmij = sign(
∂τe(F )

∂fij
) = sign(w̄ij),∀i, j ∈ [1 : n], i < j

Learn From Recommendation

As we have defined how the expert generates recommendations, here let us talk about how
people react to the recommendations.

Every individual has his own learning rate (lr). By learning rate, we mean the degree
of willingness a person would like to follow expert’s recommendation.

So given expert’s recommendation (rcm1, .., rcmn, rcm1,2, .., rcmn−1,n) and learning rate
(lr), the person will update their knowledge by adding the recommendation to his mean
appreciation (wm1, ..., wmn, w̄m,1,2, ..., w̄m,n−1,n):

wmi = wmi + rcmilr,∀i ∈ [1, .., n, (1, 2), .., (n− 1, n)]

In the simulation, every player’s lr is set as a constant. The benefit for such setting is
that with time goes, as people attend more and more comparisons, his total appreciation∑n

i=1 ami is also generally increased. As lr is a constant, the effect of recommendation will
decrease if his confidence is stable. We believe the decreased influence of recommendation
follows the reality.

Figure 2.11(a),2.11(b), and 2.12(a) show changes of knowledge of a low knowledge player
with different learning rate. We can see that, the higher learning rate a person has, the
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(a) Learning rate=0.01 (b) Learning rate=0.1

Figure 2.11: Knowledge changed across time with different learning rate

faster his knowledge become similar to the expert’s. Figure 2.12(b) shows the change of
knowledge if we normalize mean appreciation wm before updating. Different from our
design, the effect of recommendation will not decrease as the weight is normalized before
updating. We can see from figure 2.12(b) that, in this design, the knowledge of the player
is not stable.

Consistency & Perceptivity

We assume with listening more and more from experts, players’ consistency (cns) and
perceptivity (pcp) will also increase.

So we define:
cnsi = cnsi + (1− cnsi)lrU(0, 1)

pcpi = pcpi + (1− pcpi)lrU(0, 1)
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(a) Our design (b) Mean appreciation wm is normal-
ized before updating

Figure 2.12: Knowledge changed across time, with learning rate = 1
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Chapter 3

Prospect-Credibility Theory Based
Decision Model

In the last chapter, we have illustrated how we simulate the decision-making process of
choosing the activity. In this chapter, we will present another simulation model targeting
a different decision-making process. We will use credibility theory and prospect theory to
build this simulation model.

In the healthy food comparison game, after uploading food photo and voting on other
food pairs, players would receive some point as an award. The number of point a player
could earn is based on his own decision: he can choose whether to gain a fixed number of
point or enter into a bet. If he chooses to enter into a bet, he will gain a higher amount of
point if he wins the food comparison and gain a lower amount of point or lose some point
if he loses the food comparison.

In this chapter, we will present how we simulate the decision-making process using
credibility theory and prospect theory. We will start by illustrating the confidence of
a person and how confidence changes. Then present the decision-making process using
prospect theory.

3.1 Confidence

We define confidence (C) represents the probability a person thinks he could win the
current comparison. Every people has his own confidence and strength of the belief. In
this section, we will first introduce the credibility theory, and then present how we simulate
confidence using the Buhlmann credibility theory.
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3.1.1 Credibility Theory

Credibility theory is a form of statistical inference that combines several estimates to a
more accurate estimate based on credibility of these estimates. Given two estimates x and
y, by credibility theory, the new estimate is calculate by:

wx+ (1− w)y, 0 ≤ w ≤ 1

where w is called the credibility factor. It is derived with the purpose of maximizing the
likelihood, which would minimize the error of the estimate. The core idea of credibility
theory is the weighted average. It sums up different estimates of a quantity based on
the credibility of the estimates. Higher weight is given to more credible estimate. There
are several way to calculate the credibility factor, in our simulation, we used Buhlmann
credibility in updating the confidence.

Buhlmann Credibility

Buhlmann credibility is the most popular form of credibility theory. It is also called least
squared credibility or Bayesian credibility. It is calculated by minimizing the expected
squared error of a quantity.

Suppose there are two estimates x and y with different mean squared errors u and v.
Assume weight average is:

α = wx+ (1− w)y, w ∈ [0, 1]

Then the expected squared error of α is:

MSE(α) = w2u+ (1− w)2v

Take derivative of MSE(α) we could get:

dMSE(a)

dw
= 2wu− 2(1− w)v

Set the derivative equal to 0, it can be calculated that:

w =
v

u+ v

So, given estimates x and y, with mean squared errors u and v, the least square credibility
estimate is calculated as:

a =
vx

u+ v
+

uy

u+ v
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The credibility factor w could be expressed as:

w =
v

u+ v
=

1

1 + u
v

So when u
v
→ 0, w → 1 and when u

v
→∞, w → 0. This means the smaller mean squared

error one estimate has, the higher weight is assigned to this estimate.

3.1.2 Least Square Credibility for Confidence Update

In our simulation, every person has two estimates of his expected win rate: his own belief
b and the win rate wr calculated from history.

Because both the expert and players will vote on food pairs, every player will have two
win rate: one is the win rate based on the expert’s vote wre, the other is the win rate
based on players’ vote wrp. We assume both wre and wrp follow Bernoulli distribution, so

they have mean = wr and mean squared error = wr(1−wr)
n−1

We assume the total win rate is a weight average of these two win rate:

wr =
2wre + wrp

3

Then the mean squared error of wr is:

MSE(wr) =
(2

3

)2wre(1− wre)
ne − 1

+
(1

3

)2wrp(1− wrp)
np − 1

We assume one’s belief b is an estimate with mean square error = s. So one’s confidence
(C) is calculated by credibility theory:

C =
MSE(wr)b+ swr

s+MSE(wr)
= wb+ (1− w)wr

where

w =
1

1 + s
MSE(wr)

We can see if s
wr
→ 0, w → 1, then C ≡ b. If ne, np → ∞, then MSE(wr) → 0, so

s
MSE(wr)

→∞, which indicates that w → 0, as the result C → wr.
As we can see here, s control the speed of update with confidence. We called s: suscep-

tibility, and it measures the strength of someone’s belief. The lower susceptibility someone
has the less influence of win rate on his confidence.
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3.1.3 Update Rule

As we have defined the method to update the confidence, there are two options coming up
about how to treat the initial belief:

1. Update initial belief and susceptibility with new confidence and mean squared error
every time confidence is updated.

2. Keep initial belief and susceptibility unchanged across time
In our simulation, we treat initial belief as the second option. In this section, we will

illustrate the difference between two options and gave reasons for our choice.

Option 1 Process

If using option 1, the process of updating confidence will be:
At time t, the person has his own belief bt and susceptibility st. After a certain time

period tp, he collects ne,t:t+tp vote result from the expert and np,t:t+tp vote results from
players within this time period. As we have introduced in the last section, we will use
these results within this time period as an evaluate, the person’s confidence is calculated
as:

confidence = wb+ (1− w)wrt:t+tp

where

w =
1

1 + s
MSE(wrt:t+tp)

The mean sqaured error of this confidence is:

MSE(C) = w2s+ (1− w)2MSE(wrt:t+tp)

Then we will update the brief and susceptibility with

bt+p = C

st+p = MSE(C)

At the end of the next time period, we will use bt+p and st+P as the brief and suscepti-
bility to update the next confidence.

Option 2 Process

If using option 2, the process of updating confidence will be:
Keep initial belief and susceptibility unchanged. At any time t, we use ne,0:t vote results

from the expert and np,0:t vote results from players across the time as an estimate. Calculate
the confidence with the same rule:
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c = wb+ (1− w)wr0:t

where

w =
1

1 + s
MSE(wr0:t)

Options Difference

We set up a simulation to test the performance of two options. This is a simulation with
5 high-level players, 5 low-level players, and 15 normal players. By what we mean high,
low and normal, Table 4.1 shows the parameter setting with different level. The detailed
process of the simulation run is not necessary for this section, we will illustrate it in the
next chapter. Every player’s initial belief and susceptibility are set as random numbers
sampled from U(0,1).

Figure 3.1 shows plots of the difference between players’ confidence and win rate across
time with option 1 and option 2. Generally, most people’s confidence converges to his win
rate. Option 2 has a better performance than option1 as everyone’s difference shrink to
[-0.05,0.05] in option 1, while the other is mostly between [-0.2,0.1] and has some outliers
that the confidence diverges from win rate with time goes.

We draw figure 3.2 to figure our the reason for the divergence. Figure 3.2 present the
time series of players’ confidence with different options. We can see that in Figure 3.2.a,
which is the figure for option 1, there are some players’ confidence stay unchanged at 0.
That is because, by chance, there may be a time period that someone’s win rate is 0, which
leads to:

MSE(wrt:t+tp) =
wr(1− wr)

n− 1
= 0

So w = 0, which means that:

C = wb+ (1− w)wrt:t+tp = 0

MSE(C) = w2s+ (1− w)2MSE(wrt:t+tp) = 0

If we update b and s by C and MSE(C), his confidence will stay at 0 and never changed.
Figure 3.2.b shows there is no such issue with option 2 and everyone’s confidence slowly
moves to his historical win rate. Therefore in the simulation, we will leverage option 2,
which keeps belief and susceptibility unchanged across time.
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(a) Option 1 (b) Option 2

Figure 3.1: Every players’ Confidence-win rate difference across time

(a) Option 1 (b) Option 2

Figure 3.2: Every players’ Confidence across time

3.1.4 Confidence & Susceptibility Relation

In the last section, when running the simulation, we set confidence and susceptibility
are independent of each other and all sampled from U(0,1). However, in reality, high
confidence people is probably also stubborn. In other words, their susceptibility is small.
On the opposite, low confidence people is probably infirm, so their susceptibility is relatively
large.
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To follow the reality, for susceptibility, instead of sampling from U(0,1), we set

susceptibility ∼
∣∣ 1

N(10C, 1)

∣∣
Further more, in simulation, we hypothesis that high knowledge people are more likely

to be confident, and low knowledge people are more likely to be low in confidence. So given
one’s knowledge k, we set his initial belief b follows truncated normal distribution between
[0,1]:

b ∼ N(k, 1), b ∈ [0, 1]

By this design, a knowledgeable person may more willing to choose bet when two
options have equal utility. For example, if a knowledgeable person’s historical win rate
is 50%. Given win = 20, loss = -10 and fix = 5, irrespective of loss aversion and risk
aversion, he would very likely to enter into the bet. By credibility theory, his confidence
is wb + (1 − w) ∗ 0.5, which is larger than 0.5 as long as b > 0.5. As his initial belief
b ∼ N(k, 1), b ∈ [0, 1], so it is very likely that b > 0.5, which indicates that he will choose
bet.

3.1.5 Activity Based Confidence

The least square credibility confidence has a drawback: the confidence being calculated
is a overall confidence, which means it is independent with the activity he just uploads.
However, in reality, people’s confidence also depends on the activity: confidence for the
strong activity is higher and for the weak activity is lower. The problem is, how do a
people define strong and weak activity? In this research, we purpose k nearest neighbor to
address this problem:

K Nearest Neighbor

The main idea is finding k activities with the nearest score from historical activities. Then
calculate the mean and mean squared error of these activities as a new estimate. As shown
in figure 3.3, there are points, triangle points and x marker on the scatter plot, with points
represent historical activities that lost, triangle points represent activities that won and
x marker represents the current activity. The confidence is modified by the win rate of
k nearest activities of his perception (p1, p2, .., pn) of the current activity in the activity
space. In this simulation, we use Euclidean distance to as the metric to calculate distance:

For the perception of activity 1: P1 = (p11, p12, .., p1n) and the perception of activity 2:
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P2 = (p21, p22, .., p2n), the Euclidean distance between P1 and P2 is:

n∑
i=1

(p1i − p2i)2

For example if k=6, the k nearest activities formed into a new estimate with mean= 83.3%,
and squared error = 1

36
. We will then tune the overall confidence with new estimates using

least squared credibility. Figure 3.4 shows the difference between original confidence and
modified confidence, where k = n|4.

With this design, for players with high perceptivity, his will have high confidence with
strong activities and low confidence with weak activities. For players with low perceptivity,
he may by chance have a high confidence with a weak activate and low confidence with a
strong activate.

Figure 3.3: A sample of historical win &
loss in activity space. Points represent his-
torical activities that lost, triangle points
represent activities that won and x marker
represents the current activity

Figure 3.4: A sample of modify confidence
(dashed line) and original confidence (solid
line).
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3.2 Prospect Theory Based Decision Making Simula-

tion

In the last chapter, every option has several dimensions of profit, the key point of the
variety is that different people value these profits differently. However, in this chapter,
there is only one-dimensional profit: the point. So when making decisions, instead of
considering appreciation toward each dimension, people consider more about gain, loss,
and probability. The key point of the variety in this chapter is that different people have
different attitudes toward risk, loss, and confidence. In this section, we will present how
we use prospect theory to simulate the decision-making process of whether or not entering
into the bet. We will start by introducing prospect theory, then illustrate how we will use
prospect theory and explain the rationale behind our approach.

3.2.1 Prospect Theory

In prospect theory, Prospect is defined as state-contingent outcomes. Usually, prospect x
is denoted as (E1 : x1, ..., En : xn), yielding xi under event Ei,..,yielding xi under event Ei,
.., and xn under event En. For clear notation, we write x1px2 to denote (E1 : x1, E2 : x2)
and p(E1) = p, for example 1000 1

4
0. As in our simulation, there are only two events: win

and loss, so for simplicity, we use Mpm to denote the prospect that has probability p to
win M and probability (1-p) to loss m.

For any person, given two prospect x and y. x < y means this person prefer x to y;
x ∼ y means x < y and y < x. The preference is hypothesized to have transitivity, which
means if x < y and y < z, then x < z. Prospects that yield the same outcome for each
event are called constant prospects. In this paper, we use α to denote constant prospects
and its outcome always equal to a constant number m̄. A constant prospect α is called the
certain equivalent (CE) of a prospect x if α ∼ x. In this simulation, the main problem is:
if prospect x has two fixed outcomes M > m and their probabilities are p and 1− p. How
much should CE(x) be?

Pure rationally, the certain equivalent equal the expected value of prospect x, which is:

CE(x) = pM + (1− p)m

However in reality, it is not. In an experiment of Tversky & Kahneman [1981] , most of
people expressed the following preference:

240 < 1000 1
4
0

0 1
4
− 1000 < −750
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These preference indicate that:
When m̄, M and m > 0, even with m̄ < pM + (1− p)m, most of people prefer α than

x.
In some other circumstance, When m̄, M and m < 0, even m̄ ≥ pM + (1− p)m, most

of people prefer x than α.
These phenomena are called risk aversion, traditional economics explain them by in-

troducing two concepts: utility concavity, probability weighting. Prospect theory believes
there is one more component leading to these phenomena: reference dependence.

Utility Concavity

Most economics researchers believe these phenomena are because of risk aversion. And
they proposed to use utility function with different concavity to describe people’s attitude
toward risk. In other words, instead of using CE(x) = pM + (1 − p)m, they proposed to
use U(CE(x)) = pU(M) + (1− p)U(m) to calculate certain equivalent.

To make readers better understand how concavity relates to risk aversion, we start by
introducing how risk aversion and risk neutrality are defined. In Peter’s book: Prospect
theory for risk and ambiguity [2010], risk aversion, risk-seeking, and risk neutrality are
defined as:

Risk aversion holds if every prospect is less preferred than its expected value. For
example: 50 < 100 1

2
0

Risk seeking holds if every prospect is preferred to its expected value. For example:
50 4 100 1

2
0

Risk neutrality holds if every prospect is indifferent to its expected value. For example:
50 ∼ 100 1

2
0

Figure 3.5 shows how risk aversion looks like.
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Figure 3.5: Peter [2010]: Risk aversion

We can transform these definition to the uitility form:
Risk aversion: U(pα + (1− p)β) ≥ pU(α) + (1− p)U(β), ∀p ∈ [0, 1],α,β
Risk seeking: U(pα + (1− p)β) ≤ pU(α) + (1− p)U(β), ∀p ∈ [0, 1],α,β

Risk neutrality: U(pα + (1− p)β) = pU(α) + (1− p)U(β), ∀p ∈ [0, 1],α,β
Which are the same as the definition of the concave function, convex function, and

linear function.(See Figure 3.8)

Figure 3.6: Peter [2010]: Concavity, linearity, and convexity.

So they believe:
Risk aversion ⇔ U is concave
Risk seeking ⇔ U is convex

Risk neutrality ⇔ U is linear
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Probability Weighting

It is found that apart from outcome-based risk aversion, probabilistic risk aversion also ex-
ists. Kobberling & Peter [2003] examined that in some simulation, increasing risk aversion
in terms of probability weighting leads to more favorable outcomes. So it is suggested that
instead of using U(CE(x)) = pU(M) + (1 − p)U(m) to calculate certain equivalent, use
the rank-dependent utility (RDU) is more appropriate. For prospect with two outcomes
M¿m, rank-dependent utility is calculated as:

U(CE(x)) = w(p)U(M) + (1− w(p))U(m)

where w : [0, 1] → [0, 1] is a probability weighting function that increases strictly and
satisfied w(0)=0 and w(1)=1.

Reference Dependence

Utility curvature and probability weighting can explain many risk aversion phenomena.
However, Peter [2010] said more than half of the risk aversion empirically observed is not
because of utility curvature or probability weighting. Instead, they are generated by loss
aversion.

In Tversky & Kahneman[1981] experiment, people are asked to make choice from two
scenarios:

240 versus 1000 1
4
0

0 1
4
− 1000 versus -750

For scenario one, the majority chose the left prospect, indicate that they are risk aver-
sion. For scenario two, the majority chose the right prospect, which indicates that they
now risk seeking.

The utility function and probability weighting function should be consistent, however,
the risk attitude of people is inconsistent. Prospect theory points out that, the change of
risk attitude is loss aversion. Loss aversion is the main empirical phenomenon of reference
dependence, it means that total unhappiness from loss may exceed the total happiness
from gain. In reference dependence, the weights of loss and gain are relative to a reference
point x0. And the reference-dependent utility function has the form: u(x|x0) = v(x− x0),
where v is risk aversion toward gain and risk-seeking toward loss. Otherwise, it will result
in Rabin Paradox that if someone rejects a small positive expected value gamble, he must
be extremely risk aversion and will reject all gambles no matter how much the gain is if
provided with lager (for example 10 times) loss. The proof of Rabin Paradox is in the
appendix. In our simulation, we the scale of the gain and loss won’t change much, so
it is fine we set reference point stay at 0. Given a basic utility function u and a loss
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aversion parameter λ > 0, with u(0) = 0, the overall Utility function U is defined as:
U(α) = u(α) for α ≥ 0, U(α) = λu(α) for α ≤ 0

Loss aversion holds if λ > 1, Gain seeking holds if λ < 1. Figure 3.7 shows how the
utility with loss aversion looks like.

Figure 3.7: Peter [2010]: Loss aversion.

3.2.2 Utility Function

There are two most popular parametric family of utility: power utility and exponential
utility, which defined as following:

Power Utility

For α > 0, and given parameter denoted θ:
for θ > 0, u(α) = αθ

for θ = 0, u(α) = ln(α)
for θ < 0, u(α) = −αθ
For θ > 1, the function is convex; for θ = 1, the function is linear, and for θ < 1, the

function is concave

Exponential Utility

for θ > 0, u(α) = 1− e−θα
for θ = 0, u(α) = α
for θ < 0, u(α) = e−θα − 1
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For θ > 0, the function is convex; for θ = 0, the function is linear, and for θ < 0, the
function is concave

Problems of Utility Functions

Consider loss aversion, the Utility is defined as:
U(α) = u(α), if α > 0
U(α) = −λu′(α), if α < 0
Tversky & Kahneman [1992], Peter [2010], Kobberling & Wakker [2003] point out that

for using power utility to study loss aversion, there are three significant problems:
1. Loss aversion depends on the monetary unit.
2. Not always −U(α) > U(α) for all α > 0
As we have only one monetary and usually the range for α that −U(α) < U(α) is

usually quite small. Using power utility is not a problem for us.
For using exponential utility, De Giogi & Hens (2006) argued that piecewise exponential

utility is too shallow for extreme positive outcomes and too steep for extreme negative
outcomes, which will hamper estimations of loss aversion if an extreme outcome is involved.

In our simulation, as there are no extreme outcomes involved, using exponential utility
is also not a problem for us.

The proof of these problems is skipped. In this simulation, we use power utility as it
is more popular compare with exponential utility and we have some empirical value found
by Tversky & Kahneman [1992] and this value has been verified by lots of researches.

3.2.3 Probability Weighting Function

A psychological phenomenon is found by lots of research (Peter[2010], Tversky,&
Wakker[1995], Wu & Gonzalez[1999]) that people’s probability weighting function is too
shallow in the middle and too steep near endpoint. This phenomenon is called Likelihood
insensitivity. In other words, if the probability of an event equal to 0.05, people’s feeling
of the probability is higher than 0.05, if the probability equal to 0.95, people’s feeling of
the probability is lower than 0.95. See Figure 3.6.
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Figure 3.8: Likelihood insensitivity

There are lots of choice of the weight function to describe the inverse S shape. In this
research, we considered two weighting function: Goldstein & Einhorn[1987] and Tversky
& Kahneman[1992].

Goldsteim & Einhorn [1987]

w(p) =
bpa

bpa + (1− p)a
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Figure 3.9: Goldstein & Einhorn [1987] family

Figure 3.9 shows the Goldstein & Einhorn [1987] family with different pairs of a and b.
a > 0 affects likelihood insensitivity, and b is an anti-index of pessimism. a < 1 indicates
a inverse S shape; a > 1 indicates a S shape; when a = 1, this utility function becomes
a power utility; Goldsteim & Einhorn [1987] found the best parameters that fit observed
data are a=0.69 and b=0.77.

Tversky & Kahneman[1992]

w(p) =
pc

(pc + (1− p)c)1/c

Figure 3.10 shows the Tversky & Kahneman [1992] family with different c. for c ≥ 0.28;
for smaller c the function is not strictly increased. When c=1 the weight function is linear.
Tversky & Kahneman[1992] found for gain, the best fit parameter is c=0.61 and for loss
is c=0.69

In this simulation, we use Tversky & Kahneman[1992] weighting function as its empirical
value is calculated with respect to loss aversion and power utility.

Figure 3.10: Tversky & Kahneman [1992] family
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3.2.4 Parameter Setting

In our simulation, every player will be randomly assigned with some parameters: loss
aversion λ, risk aversion parameter toward gain θ, risk aversion parameter toward loss θ′,
likelihood insensitivity parameter for gain c, and likelihood insensitivity parameter for loss
c′ .

We hypothesis that people’s risk aversion, probability weight and loss aversion are
independent with all parameters defined in the last chapter. Tversky & Kahneman [1992]
found the the empirical value for these parameter are: θ = θ′ = 0.88, λ = 2.25, c = 0.61
and c′ = 0.69. So we set:

Risk Aversion Parameter for Gain (θ)

θ = N(0.88, σ2
θ)

We use ρ denote the percentage of people that is risk aversion when gain. Therefore σθ
can be calculated as:

σθ =
1− µθ
Φ−1(ρ)

=
0.12

Φ−1(ρ)

where Φ−1() is the quantile function of standard normal distribution.

Risk Aversion Parameter for Loss (θ′)

θ′ = N(0.88, σ2
θ′)

σθ′ =
1− µθ′
Φ−1(ρ′)

=
0.12

Φ−1(ρ′)

ρ′ denote the percentage of people that is risk aversion when loss.

Loss Aversion Parameter (λ)

λ = Γ(k = 1.8, θ = 1.25)

which calculate from mean =2.25, mode =1. Refer the emperical finding of Summer N
Clay et.al [2017] Figure 3.11) and Tversky & Kahneman [1992]
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Figure 3.11: Summer N Clay et.al [2017], empirical distribution of loss aversion parameter

Parameter of Tversky & Kahneman Family for Gain (c)

c = N(0.61, 0.038), c ≥ 0.28

Refer to the empirical finding of Adam et.al [2009]

Parameter of Tversky & Kahneman Family for Loss (c’)

c = N(0.59, 0.061), c ≥ 0.28

Refer to the empirical finding of Adam et.al [2009]

3.2.5 Decision Making Process

Faced with a pair of point when win G, point when loss L and point when not bet F . The
player will firstly calculate his confidence c and mean squared error of c by:

c = wb+ (1− w)wr0:t

MSE(c) = w2s+ (1− w)2MSE(wr0:t)

where

w =
1

1 + s
MSE(wr0:t)

Next, modify c with new estimate from k nearest neighbour:

c′ = w′c+ (1− w′)wrknn
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where

w′ =
1

1 + MSE(c)
MSE(wrknn)

Finally, make decison with the option with highest utility:

argmax(G,L);F (U(G)w(c) + U(L)(1− w(c)), U(F ))

where

U(α) = αθ, w(p) =
pc

(pa + (1− p)c)1/c
, α > 0

U(α) = −λ(−α)θ
′
, w(p) =

pc
′

(pa + (1− p)c′)1/c′
, α < 0
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Chapter 4

Segmentation Based On Knowledge

Until now, we have illustrated all the elements that needed to run the ”health food compar-
ison”. In this chapter, we present how we segment same level players into the same group.
By the same level, we mean if two players lie in the same level, their winning probabilities
are both approximately 50% when compared with each other. As the detailed setting of
the game is in the Non-disclosure Agreement, we will only provide the necessary concept
of the setting for readers to understand the simulation.

4.1 Simulation Setting

In this section, we will present the detailed setting about the simulation. Firstly, we will
talk about players setting, then illustrate the simulation process.

4.1.1 Players Setting

The propose of this simulation is finding good indicators to segment players. We set there
are in total 25 people in the game. 5 of them are high at knowledge, consistency, and
perceptivity. 5 of them are low at knowledge, consistency, and perceptivity. And the other
15 players are normal people. Table 3.2 shows what we mean by high, low and normal.
Their knowledge, consistency, and perceptivity will be a random number between their
corresponding interval. Every player’s default learning rate is a random variable sample
from U(0,0.1).

The expert’s weight (we1, we2, .., wen) is set as a vector of 5 random numbers sampled
from Normal(2, 9). The expert is set as a person with knowledge, consistency, and per-
ceptivity all equal to 1
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Table 4.1: Simulation setting

Level knowledge consistency perceptivity
High (0.8,1) (0.8,1) (0.8,1)
Normal (0.5,0.8) (0.5,0.8) (0.5,0.8)
Low (0.2,0.5) (0.2,0.5) (0.2,0.5)

4.1.2 Simulation Process

In the beginning, players will be randomly assigned to 5 different groups. In each group,
every player will upload his best activity to the server. And the server will randomly
generate pairs of activity from the same group to expert and players. Upon receiving
activity pairs from the server, the expert and players will provide vote and reason based
on the simulation model we talked about the last chapter, and the expert will also send
recommendations to players. In the end, players will receive 2 pairs of vote results and
reasons from experts, and 4 pairs of vote results and reasons from other players. They will
adjust their appreciation based on the expert’s recommendation and their own learning
rate, which based on their confidence at that time point. The simulation will run 3 rounds
per week, and every week we will regroup players by some rules to make every people’s
win rate is around 50%.

4.2 Candidate Segment Criteria & Segment Process

In this section, we will talk about the candidate segment criteria of our segmentation rules
and how we segment players based on these segment criteria.

4.2.1 Candidate Segment Criteria

From the prospect of the app company, there are 4 elements that can be observed and
recorded from the game:

1. Players’ win & loss data from the expert
2. Players’ win & loss data from other players
3. Players’ reason and the expert’s reason toward the same activity pair
4. Players’ vote and the expert’s vote toward the same activity pair
These data could be engineered into several features:
1. Win rate based on expert’s vote across the time
2. Win rate based on expert’s vote within one month

44



3. Win rate based on expert’s vote within one week
4. Win rate based on players’ vote across the time
5. Win rate based on players’ vote within one month
6. Win rate based on players’ vote within one week
7. Reason similarity defined in 2.6.1
8. Reason similarity defined in 2.6.1 within one month
9. Rate of player’s vote agreed expert’s vote
10. Rate of player’s vote agreed expert’s vote within one month
We will use these feature as the segment criteria.

4.2.2 Segment Process

when run the simulation, We will regroup players every week. Given a segment criteria,
at the end of every week, we calculate each player’s value under the segment criteria, then
sort players by these values, and regroup them in order.

4.3 Segment Analyze

when running the simulation, We will regroup players every week. Given a segment crite-
rion, at the end of every week, we calculate each player’s value under the segment criteria,
then sort players by these values, and regroup them in order.

4.3.1 Evaluate Metrics

We mainly focus on two properties of a given segment criterion: accuracy, speed, and the
win rate after segmentation.

Accuracy

As the game consists of 5 high-level players, 5 lower level players, and 15 normal level
players. So our regroup algorithm should be able to segment all high-level players into one
group and all low players into another group. The accuracy of the segment is considered
as a metrics to evaluate the regroup algorithm. We use the percentage of players been
successfully classified into their corresponding group as the accuracy of regrouping. The
accuracy may different var time, the mean accuracy across the whole time is considered
the index of overall accuracy.
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Speed

We use the number of weeks when for the first time all players are correctly grouped as
the index of the speed.

Win Rate After Segmentation

Our main goal is to segment players so that everyone’s win rate equal to 50%. For high-
level players and low-level players, we know it is the best to group them together. However,
for normal level players, we should not only make sure they are in the correct group but
also their win rate should all approximate to 50 %. As every run contain 20 weeks, We
use the absolute deviation from 50 % of the last 10 weeks average win rate of normal level
players as another metrics to evaluate the performance of the model.

4.3.2 Result and Analyze

To get a stable estimation, for every criterion, we run the simulation 100 times with each
run contain 20 weeks. Table 4.2 shows the segmentation result with different criteria. We
can see that for classifying high-level players, reason similarity and vote agree rate are
very good indicators. Both of them have fast speed and high accuracy. However, the
performance of these two criteria on classifying low-level players and keeping win rate at
50% is not as good as the performance of win rate from the expert. The win rate from
players has no use in classifying people as two criteria related to it all got the lowest speed
and accuracy.

Figure 4.1: High level player movement across time

Also the stability of convergence needs to be considered. Figure 4.1 shows a sample of
the movement of high level players. Usually, a stable segmentation will also have a high
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accuracy across time, figure 4.2 shows the average performance every week using different
criteria. It presents the convergence stability of the segmentation, the high value it gets, the
more stable the segmentation is. We can see that criteria based on the whole time usually
outperform the criteria based on only recent one month in the convergence stability.

From the result, we can see that win rate from expert, reason similarity and vote agree
rate are pretty good indicators. As the win rate from the expert within one month has the
lowest win rate deviation, we will deeply test these four criteria in the next subsection.

Table 4.2: Segmentation result

Candidate
criteria

First time all
success
(High level)

Average
accuracy
(High level)

First time all
success
(Low level)

Average
accuracy
(Low level)

Win rate
deviation after
segmentation

Win rate
from expert

11.76 0.617 9.76 0.694 4.92%

Win rate
from expert,
one month

18.1 0.463 14.93 0.498 4.50%

Win rate from
players

19.4 0.556 16.8 0.672 5.40%

Win rate
from players,
one month

20 0.306 20 0.46 5.10%

Reason
similarity

4.8 0.854 8.6 0.677 6.11%

Reason
similarity,
one month

6.07 0.759 10.5 0.603 5.77%

Vote agree
rate

4.9 0.779 14.3 0.654 5.94%

Vote agree
rate, one
month

9.86 0.642 16.2 0.530 5.58%

4.4 Scenario Test

In this section, we will do more test with these four criteria.
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(a) Win rate based on expert’s vote (b) Win rate based on players’ vote

(c) Reason similarity (d) Vote agree rate

Figure 4.2: Average performance in different week

4.4.1 Expert Is Not A God

In our simulation, we set the expert knowledge, consistency, and perceptivity all equal to
1. However, in reality, even the expert is very knowledgeable, he may have some bias on
the perception of foods because expect can’t know every component food exactly. So we
set the expert’s perceptivity equal to 0.9 and scale every players’ perceptivity by 0.9. The
result is shown in Table 4.3. As we can see that, the accuracy of classifying high-level
player of reason similarity and vote agree rate is decreased however is still the highest.
Win rate from the expert is the best criteria for classifying low-level player and has the
lowest win rate deviation.

4.4.2 All Random

In the last several simulations, we predefined there are 5 high-level players, 5 low-level
players, and 15 normal level players. What if we set every player’s parameters are random
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Table 4.3: Segmentation result

Candidate
criteria

First time all
success
(High level)

Average
accuracy
(High level)

First time all
success
(Low level)

Average
accuracy
(Low level)

Win rate
deviation after
segmentation

Win rate
from expert

10.5 0.64 9.23 0.659 4.97%

Win rate
from expert,
one month

18.1 0.469 17.44 0.49 5.09%

Reason
similarity

4.8 0.82 13.03 0.64 6.60%

Vote agree
rate

7.33 0.75 14.93 0.627 6.34%

Sum
1 & 3 & 4

6.47 0.838 12.43 0.737 5.80%

Table 4.4: Segmentation result

Win rate
from expert

Win rate
from expert
,one month

Reason
similarity

Vote agree
rate

Win rate
deviation after
segmentation

5.61% 6.18% 6.46 6.48

numbers? In this subsection, we set every player’s knowledge, consistency and perceptivity
are sampled from the truncated Normal distribution with mean=0.7, variance=1, lower
bound =0.2, and upper bound =1. As we introduce higher randomness to players’ level,
we run simulation 200 times instead of 100 to achieve a more robust result. Also, in this
simulation, we still assume the expert is not a god as we believe this assumption follows
the reality.

As in this simulation, we don’t know the level of players, there are no metrics to evaluate
the speed and accuracy. So the only metrics is the win rate deviation. Instead of only
calculating the deviation of normal level people, in this subsection, we calculate everyone’s
deviation.

As is shown in Table 4.4, ”win rate from the expert” has the lowest deviation.
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4.4.3 Shuffle Players Every Month

In this simulation, we want to test the performance of these criteria if we shuffle players
into new groups at the end of each month.

We can see from Table 4.5 that, ”win rate from the expert” and ”one-month win rate
from the expert” all have a higher speed compared with other simulations. This is because,
in this simulation, high-level players have more chance to be grouped with lower level
players. The ranks of different criteria in each metrics remain the same.

Table 4.5: Segmentation result

Candidate
criteria

First time all
success
(High level)

Average
accuracy
(High level)

First time all
success
(Low level)

Average
accuracy
(Low level)

Win rate
deviation after
segmentation

Win rate
from expert

8.07 0.657 7.47 0.672 5.05%

Win rate
from expert,
one month

8.01 0.471 6.02 0.52 5.06%

Reason
similarity

5.47 0.85 8.03 0.701 6.20%

Vote agree
rate

6.81 0.772 10.59 0.625 6.25%

4.5 Our Approach

From all simulations we did in the previous we can get a conclusion that: reason similarity
and vote agree rate are good indicators for classifying high-level players, while the win rate
from the expert is good at group normal and low-level players.

So the better approach should be:
criteria = (w1”Win rate from expert” +w2Reason similarity +w3Vote agree rate)/(w1 + w2 + w3)

when the player is likely to be high level, w2 and w3 is higher, when the player is not
likely to be high level, w1 is higher.

Table 4.3 shows the result when w1 = w2 = w3 = 1, this new criteria got the highest
accuracy on classifying both high level and low-level players. The speed is not the fastest
but the second fast. Win rate deviation is on the average level.
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One idea of tuning wi is finding the threshold th1, th2 for reason similarity and vote
agree rate classify someone is a high-level player. If the reason similarity < th1, w1 is
higher, so does th2 and w2. We run simulations repeatly and find th1 = 2.33 and 0.78.

The Approach 1

For player i
w1i = 1 if reason similarity < 2.33, else w1i = 0
w2i = 1 if reason similarity > 0.78, else w2i = 0
w3i = 1 if w1i + w2i = 0, else w3i = 0

The Approach 2

For player i
w1i = 2 if reason similarity < 2.33, else w1i = 1
w2i = 2 if reason similarity > 0.78, else w2i = 1
w3i = 2 if w1i + w2i = 2, else w3i = 1
However, in reality, the th1 and th2 will be different. If there is no data that high-level

players already been labeled, it is hard to find these thresholds. We purposed another idea.
Get the rank for reason similarity, the rank of reason agree rate. If one player’s rank of
reason similarity is small, w1 is higher. So does w2

The Approach 3

For player i
w1i = 2 if rank(reason similarity)≤5, else w1i = 1
w2i = 2 if rank(reason similarity)≤5, else w2i = 1
w3i = 3 if w1i + w2i = 2, else w3i = 2

The Approach 4

For player i
w1i = 1.5 if rank(reason similarity)≤5, else w1i = 0.5
w2i = 1.5 if rank(reason similarity)≤5, else w2i = 0.5
w3i = 2 if w1i + w2i = 1, else w3i = 1

The Approach 5

For player i
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w1i = 1 if rank(reason similarity)≤5, else w1i = 0
w2i = 1 if rank(reason similarity)≤5, else w2i = 0
w3i = 1 if w1i + w2i = 1, else w3i = 0

The Approach 6

For player i
w1i = 1/(10+rank(reason similarityi)
w2i = 1/(10+rank(rate agree ratei)
w3i = 1/(10+25-rank(win ratei)

Result

The result is shown in table 4.6. The approach 3 and 6 stand out with high accuracy, fast
speed and low deviation.

Table 4.6: Segmentation result

Candidate
criteria

First time all
success
(High level)

Average
accuracy
(High level)

First time all
success
(Low level)

Average
accuracy
(Low level)

Win rate
deviation after
segmentation

Sum
1 & 3 & 4

6.47 0.838 12.43 0.737 5.80%

approach 1 11.03 0.78 16.37 0.70 5.56%
approach 2 10.07 0.803 12.7 0.723 5.21%
approach 3 7.56 0.81 12.93 0.740 5.05%
approach 4 11.33 0.734 12.83 0.723 4.82%
approach 5 17.4 0.61 16.36 0.63 4.79%
approach 6 9.63 0.823 12.03 0.747 5.32%
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Chapter 5

Segmentation Based On Confidence

In this chapter, we mainly focus on constructing game to identify people’s confidence. It
is believed that in the same level group, self-aware people is usually healthier than people
who is not. So in this chapter, we present how we detect high-confidence or low-confidence
players by changing the win-loss-fix point combination presented to them. We will first
present how we find the best combination for a given targeted confidence, then we will
illustrate our method to estimate one’s confidence by comparing his rate of bet with some
threshold.

5.1 Win, Loss, Fix Combination

In this section, we mainly focus on answering the following question: Faced with a com-
bination of win W , loss L, and fix F , the person would generate a decision based on his
confidence, risk aversion parameter, likelihood insensitivity parameter, and loss aversion
parameter as we introduced in 3.2.5. With risk aversion parameter, likelihood insensitivity
parameter, and loss aversion parameter are all unknown, what is the best combination to
approximate his confidence?

In this section, we first introduce the criteria to evaluate the efficiency and the accuracy
of given combination. Then we show the result generate from simulation to illustrate how
we select the optimal combination regard different level of confidence.

5.1.1 Evaluate Criteria

For classification problem, directly using accuracy as evaluate criteria could be appropriate
in most case. However, for imbalance data problems, employing accuracy as model criteria
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is inappropriate. For example, there is such a model: all passengers took off from the airport
in Canada are simply labeled as non-terrorists. It is known that Canada has an average of
100 million passengers throughout the year, and a total of 10 terrorists have been found in
2018, the model reached nearly perfect accuracy: 99.999999%. However, it is obvious that
this model is not applicable as it is incapable in recognizing terrorist. To figure out this
problem, we introduce four common used evaluate criteria: recall, precision,Fβ score,and
area under the ROC curve (AUC).

Recall

Recall was defined as:

Recall =
true positives

true positives + false negatives

where true and false denote whether the predictor get the same result as its true label,
and positive and negative denote the predicted label. For Terrorists problem, the all-
passenger-model got recall=0, which correctly indicates that the model is not appropriate
at all. However, if define all passengers are terrorists, the recall become 1, which means
only use recall is also not appropriate.

Precision

Precision is defined as:

Precision =
true positives

true positives + false positives

So when all passengers are defined as terrorists, the recall become 1, however the pre-
cision become 0 instead.

Therefore, when evaluating a model, we need to consider recall and precision together.
One very popular method is Fβscore.

Fβ score

Fβ score is defined as:

Fβ = (1 + β2)
precision× recall
β2precision+ recall

where β control the weight of precision and recall, which is commonly set to 1.
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Area Under The ROC Curve (AUC)

As for classification problem, the output of model is the probability of the target belong
to each class. For a binary class problem, if we change the threshold from 0 to 1 instead
of fixed value 0.5, we should get a vector of different pair of true positive rate and false
positive rate. They are defined as:

true positive rate = Recall =
true positives

true positives + false negatives

false positive rate =
false positives

false positives + true negatives

Then a plot can be draw to describe the relationship between true positive rate and
False positive rate. Figure 6.1 is a classic plot of ROC curve, the model, whose area under
the ROC curve is higher than the others’, generally performance better. The area under
ROC curve (AUC) is a matric from 0 to 1. Intuitively, we want the area under the curse as
large as it can to made the model relatively better no matter how beta in Fβ score change.
So the higher value the AUC is, the better the models ability in classification.

Figure 5.1: A sample of the ROC curve. Generally the dense line has better performance
than densely dot line
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5.1.2 Main Idea

Our hypothesis is, people’s decision of whether bet or not are based on his confidence, risk
aversion, likelihood insensitivity, and loss aversion. So, based on the hypothesis, we can
deduce that individuals who are willing to bet are more likely to be confident, and vice
versa. We can also deduce that a person’s knowledge won’t directly affect his decisions,
however it can indirectly impact the decisions as his confidence is related to his knowledge.
(As we defined in 3.1.4).

So we proposed to use the rate of bet (rob), which denote the percentage of bet among
all one’s historical decisions, as the indicator of the confidence. Given a targeted confi-
dence, there is a threshold λ compared with rob to determine whether or not someone is
more confident than our targeted confidence. As the threshold is unknown, AUC is the
appropriate metric for our research.

5.1.3 Simulation Setting & Process

As we don’t know every person’s risk aversion parameter, likelihood insensitivity parameter,
and loss aversion parameter, so will using Monte Carlo method to find the most likely
combination by running our simulation. In our simulation, we will set every one’s initial
brief b (defined in 3.1.2) sampled from U(0,1). As in last chapter, we have present our
method to segment players into different level of groups, in this chapter, we assume our
players are in the same level. Their risk aversion parameters for gain and loss, likelihood
insensitivity parameter for gain and loss, loss aversion parameters, are sampled as been
stated in 3.2.4. The percentage of risk aversion people ρ is set as 75% for both gain and
loss.

Given a combination (W,L, F ). after running the simulation, we will get every player’s
rate of bet rob. We also record every player’s confidence (c1, c2, .., ct) across time, and use

the mean of confidence
∑t

i=1 ci
t

as one’s overall confidence. For a given targeted confidence
ct, we calculate the AUC score for each predefined combination.

Finally, the combination with highest AUC score is chosen as the best indicator to
evaluate one’s confidence.

5.1.4 Result

Table 6.1 shows the result:
To detect if confidence < 0.4, win=30, loss=0, fix =10 has the best performance.
To detect if confidence < 0.3, win=35 loss=0, fix =10 has the best performance.
To detect if confidence > 0.6, win=17 loss=0, fix =10 has the best performance.
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To detect if confidence > 0.7, win=15 loss=0, fix =10 has the best performance.
To detect if confidence < 0.5, win=25 loss=0, fix =10 has the best performance.
Notice that when loss < 0, the combination usually has poor performance than when

loss ≥ 0. That is because every person has different degree of loss aversion, which will
introduce noise when identify people’s confidence. For example, given win = 25, loss=-10,
and fix = 5, players with high confidence may still not willing to bet as his loss aversion
parameter might be quite big.

Table 5.1: Simulation result

Confidence <0.4 Confidence <0.3 Confidence >0.6
Combinations

AUC
Combinations

AUC
Combinations

AUC
Win Loss Fix Win Loss Fix Win Loss Fix
20 -10 5 0.857 25 -10 5 0.866 15 -10 5 0.880
25 -10 5 0.835 30 -10 5 0.885 20 -10 5 0.911
30 -10 5 0.846 35 -10 5 0.854 25 -10 5 0.843
20 0 10 0.885 25 0 10 0.934 15 0 10 0.911
25 0 10 0.942 30 0 10 0.943 16 0 10 0.955
28 0 10 0.951 33 0 10 0.949 17 0 10 0.957
30 0 10 0.964 35 0 10 0.967 18 0 10 0.956
32 0 10 0.946 37 0 10 0.952 25 0 10 0.932
35 0 10 0.912 40 0 10 0.922 25 0 10 0.932

Confidence >0.7 Confidence <0.5
Combinations

AUC
Combinations

AUC
Win Loss Fix Win Loss Fix
10 -10 5 0.919 15 -10 5 0.872
13 -10 5 0.901 20 -10 5 0.855
17 -10 5 0.906 25 -10 5 0.873
11 0 10 0.822 17 0 10 0.932
13 0 10 0.946 20 0 10 0.940
15 0 10 0.960 22 0 10 0.954
17 0 10 0.949 25 0 10 0.959
19 0 10 0.939 27 0 10 0.918
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5.2 Best Threshold

As in the last section, we have presented how we find the optimal combination for a given
targeted confidence, in this section, we present how we select the best threshold λ defined
in 5.1.2.

5.2.1 Main Idea

Given a targeted confidence and win-loss-fix combination, we will test the performance of
different threshold λ. We use F0.5, F1, and F2 score introduced in 5.1.1 as the metric to
evaluate the performance of each threshold as this is the most common choice of combining
recall and precision together.

5.2.2 Result

Table 5.2-5.6 show the result for each confidence level. We use F1, F2, and F0.5 as the
metric, with F2 weights more on recall and F0.5 weights more on precision. For example,
When detect who has low confidence (confidence < 0.3), if we care more about the people
we found all with low confidence, then F0.5 score is the appropriate metric; if we care more
about finding all low confidence people, then F2 score is the appropriate metric; if there is
no preference, F1 is the best choice.

From Table 5.2 we can see that: for classifying confidence < 0.4, if we use combination
of win = 30 loss = 0, fix = 10, λ = 0.7 got the highest F1 score; λ = 0.8 got the highest
F2 score; λ = 0.4 got the highest F0.5 score;

From Table 5.3 we can see that: for classifying confidence < 0.3, if we use combination
of win = 35, loss = 0, fix = 10, λ = 0.5 got the highest F1 score; λ = 0.5 got the highest
F2 score; λ = 0.2 got the highest F0.5 score;

From Table 5.4 we can see that: for classifying confidence > 0.6, if we use combination
of win = 17, loss = 0, fix = 10, λ = 0.3 got the highest F1 score; λ = 0.1 got the highest
F2 score; λ = 0.6 got the highest F0.5 score;

From Table 5.5 we can see that: for classifying confidence > 0.7, if we use combination
of win = 15, loss = 0, fix = 10, λ = 0.5 got the highest F1 score; λ = 0.3 got the highest
F2 score; λ = 0.6 got the highest F0.5 score;

From Table 5.6 we can see that: for classifying confidence < 0.5, if we use combination
of win = 25, loss = 0, fix = 10, λ = 0.7 got the highest F1 score; λ = 0.9 got the highest
F2 score; λ = 0.3 got the highest F0.5 score;
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Table 5.2: result for confidence < 0.4

Confidence <0.4, win = 30, loss = 0, fix =10
λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall 0.536 0.621 0.695 0.721 0.840 0.848 0.893 0.929 0.950
Precision 0.960 0.942 0.932 0.930 0.854 0.846 0.833 0.753 0.70
F1 score 0.669 0.736 0.786 0.802 0.839 0.840 0.857 0.827 0.804
F2 score 0.581 0.661 0.727 0.750 0.838 0.843 0.877 0.884 0.884
F0.5 score 0.805 0.842 0.863 0.870 0.846 0.841 0.841 0.780 0.740

Table 5.3: result for confidence < 0.3

Confidence <0.3, win = 35, loss = 0, fix =10
λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall 0.661 0.734 0.788 0.813 0.954 0.965 0.986 0.992 0.996
Precision 0.827 0.825 0.774 0.752 0.667 0.636 0.596 0.493 0.436
F1 score 0.703 0.751 0.757 0.754 0.770 0.754 0.731 0.644 0.591
F2 score 0.671 0.735 0.769 0.781 0.864 0.862 0.859 0.804 0.768
F0.5 score 0.761 0.786 0.761 0.747 0.703 0.676 0.642 0.543 0.486

5.2.3 Example

For example, we want to find the confident (confidence> 0.6) and non-confident (confidence
< 0.4) people in the high level group. Every time a person upload his activity, We will
provide one of the two win-loss-fix combinations to the person, which are win = 30, loss=0,
fix = 10 and win =17, loss = 0, fix =10. For simplicity, we call the first combination s1
and the other s2. We could calculate the rate of bet for each person of two combinations
(robs1 and robs2). If we use the lambda that has the highest F0.5 score, then:

confidence


∈ [0, 0.4] robs1 ≤ 0.4, robs2 < 0.6

∈ (0.4, 0.6] robs1 > 0.4, robs2 < 0.6

∈ (0.61] robs1 > 0.4, robs2 ≥ 0.6

If robs1 ≤ 0.4, robs2 ≥ 0.6, this player is probably a random player.
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Table 5.4: result for confidence > 0.6

Confidence >0.6, win = 17, loss = 0, fix =10
λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall 0.954 0.931 0.856 0.815 0.791 0.648 0.612 0.533 0.456
Precision 0.736 0.781 0.852 0.856 0.867 0.933 0.943 0.959 1
F1 score 0.826 0.846 0.849 0.829 0.821 0.756 0.734 0.711 0.694
F2 score 0.897 0.894 0.852 0.819 0.801 0.686 0.654 0.612 0.589
F0.5 score 0.769 0.805 0.849 0.843 0.846 0.850 0.842 0.833 0.790

Table 5.5: result for confidence > 0.7

Confidence >0.7, win = 15, loss = 0, fix =10
λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall 0.992 0.973 0.932 0.878 0.846 0.623 0.592 0.488 0.375
Precision 0.447 0.514 0.631 0.693 0.725 0.894 0.891 0.903 0.916
F1 score 0.600 0.653 0.731 0.748 0.758 0.701 0.675 0.629 0.593
F2 score 0.773 0.800 0.828 0.809 0.801 0.655 0.625 0.561 0.508
F0.5 score 0.497 0.560 0.665 0.710 0.734 0.786 0.767 0.748 0.741

Table 5.6: result for confidence < 0.5

Confidence <0.5, win = 25, loss = 0, fix =10
λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall 0.470 0.640 0.717 0.731 0.809 0.829 0.856 0.896 0.935
Precision 0.980 0.965 0.951 0.943 0.913 0.896 0.884 0.815 0.789
F1 score 0.713 0.762 0.812 0.818 0.852 0.856 0.864 0.850 0.853
F2 score 0.619 0.683 0.751 0.763 0.825 0.839 0.858 0.876 0.899
F0.5 score 0.848 0.869 0.888 0.887 0.886 0.878 0.874 0.828 0.813
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Chapter 6

Conclusion

Here we wish to conclude and briefly review several aspects of our simulation model. We
will begin in Section 6.1 with a summary of what we did and our achievement. This is
followed by a discussion of potential issues of our simulation and possible improvements.
Finally, in Section 6.3, we have a brief look at potential directions for future work.

6.1 Summary

In this research, we design several models to mimic the decision-making process of different
types of people, aiming at simulating the process of a given game context.

For simulation models of decision-making process given multiple criteria, we use
weighted sum scoring system with interaction and kernel function as the basic structure,
which is rational and general to cover most of the real-life situations. Furthermore, this
design of structure makes our models capable to generate reasons and recommendations
based on the decision. More importantly, our models are compatible to work with each
other and learning from each other. Our modular design makes it easy in the future to
replace any possible module, for example, a different and appropriate scoring system.

For the decision-making process of the gamble, we leverage credibility theory to up-
date people’s general confidence and utilize k nearest neighbor algorithm to modify the
confidence based on the specific object. Moreover, instead of expected utility, we employ
prospect theory to simulate the phenomenon of risk aversion, likelihood insensitive, and loss
aversion when individuals make the decision. Furthermore, We present a rational method
to sample the general population based on the empirical study, so that the simulation
result is more close to the reality.

Based on the simulation results, We produced a reasonable, fast, and accurate segmen-
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tation model, so that same level people are grouped together. We did several scenario tests
to study the pros and cons of different segmentation criteria. We found that reason sim-
ilarity and vote agree rate are good indicators for classifying high-level players, while the
win rate from the expert is good at grouping normal and low-level players. We proposed
several approaches to combine these criteria together, test their performance and give two
approaches that good at segment every level of people.

Finally, we present how we constructing game to identify people’s confidence. We use
the AUC score to find the best combination of a given targeted confidence and find the
best threshold for detecting a given confidence and combination.

6.1.1 Potential issues

One potential issue of our simulation models in chapter 2 is, these models are all based on
the same score system: weighted sum scoring system with interaction and kernel function.
This system already covers most of the situations, however, if people’s activity score is
based on the highest or lowest score in different criteria, our current system can’t simulate
this process. Wierzbicki [1980] introduced the achievement secularizing function to figure
out this problem, which defines several functions to calculate the score of an activity and
choose the lowest score as the final score. We didn’t employ this method as it introduced
too much freedom and make it harder to generate the general population. To figure out
this issue, we proposed the decision tree based model to mimic the general population,
with different level of people has a different number of training set generate form expert.
However, we couldn’t find an appropriate method to generate recommendations and learn
from others based on this system. Our current model is the most compatible model to
cover all the necessary part of the simulation, and it intuitively follows the process for
healthy activity selection. For a more general decision-making process, our model may
have a little bias.

Another potential issue is currently, we use the exhaustion method to generate general
population. As is illustrated in chapter 2, we randomly generate parameters of person
until they satisfied some condition. This method is feasible but lack of efficiency. For very
large population setting, this method is inadvisable as the speed of simulation becomes a
problem.

The third potential issue is the way we generate population. Currently, it is based on
empirical research. However, In reality, the true distribution of these parameters may be
different, as our simulation is targeting to a specific gaming context.
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6.1.2 Future work

Fixing the three potential issues is one of our future works. Our method of using decision
tree model to mimic players’ behavior is a workable solution to fix the first potential issue.
However, an appropriate way of generating recommendation and learning is still under
construction.

Another work could be done in the future is designing a better model to find a person’s
confidence. In our model, we use combination and threshold to classify the range of a
player’s confidence. So our method is not able to generate a likelihood for our estimate
and we can’t give a specific number of confidence. One possible solution is using Bayesian
theory. Let s1, s2, .., sn denote the decisions made by a player when faced with different
combinations, then our main target is calculating the probability of the player being high
level, normal level, and low level, which are P(high level |s1, s2, .., sn), P(normal level
|s1, s2, .., sn), and P(low level |s1, s2, .., sn). Using Bayesian theory we can imply that:

P (high level|s1, s2, .., sn) =
P (s1, s2, .., sn|high level)P (high level)∑high

some=low P (s1, s2, .., sn|some level)P (some level)

P (high level), P (normal level), and P (low level) could be found by survey or experi-
ment. Then we just need to find P (s1, s2, .., sn|some level). However, as P (s1|some level),
P (s2|some level),..,P (sn|some level) are not independent, finding P (s1, s2, .., sn|some level)
is not an easy job. So we proposed to put them into future work.

The third future work is segmentation by one’s learning rate. Ultimately, we hope to
segment players by their knowledge, confidence and learning rate. However, as time limits,
we put them as our future work. In here, we just give our ideas of estimating one’s learning
rate: 1. track one’s reason similarity and rate agree rate to see if there is a trend of getting
smaller; 2. track expert’s recommendation and calculate the similarity between consecutive
recommendations. If the expert always gives the same recommendation to a player, this
player may not a recommendation taker.
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