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Abstract

Baumert and Hall [2] specify how to construct the Williamson array based on quater-
nions. A Williamson array H is a 4 x 4 symbolic matrix which satisfies HH? = (A% +
B? + C? + D?)I,;. Here A, B,C, D are the entries of H as indeterminates. A Williamson
array is an orthogonal design of order 4. Quaternions can be seen as the generalization of
complex numbers and can be extended to larger dimension by the Cayley-Dickson process.
The algebras associated with the process are called Cayley-Dickson algebras. By analogy
to Baumert and Hall’'s method, we extend the construction of Williamson arrays to higher
order using matrix representations of Cayley-Dickson algebras. In this paper, we give an
example about how to construct orthogonal designs of order 128 using matrix representa-
tions of order 128 Cayley-Dickson algebra. Using Grobner basis, we find the solutions of
a polynomial system which give us orthogonal designs of order 128. We further construct
Hadamard matrices based on the orthogonal designs we find.

il



Acknowledgements

I would like to thank my supervisors, Mark Giesbrecht and Ilias Kotsireas, for all their help
and guidance this summer, and my second reader, George Labahn, for reading this paper
and providing valuable feedback. I would also like to thank all members of the Centre for
Computational Mathematics in Industry and Commerce for their support throughout this
year.

v



Dedication

For my family, who offered me unconditional love and support throughout the course
of this research paper.



Table of Contents

1 Introduction
2 Orthogonal designs

3 Duplication Technique, Cayley-Dickson Algebras
3.1 Examples . . . . ..
3.2 Ourapproach . . . . . . . . . ..

4 Grobner Bases Computations
4.1 Over the Rationals . . . . . . . . .. ... .
42 OverF, (modpecase) . . . . ... .. .

5 Substitution Techniques and Structure of Associated Grobner Bases
6 Results on Orthogonal Designs

7 Constructing Hadamard Matrices

7.1 Hadamard matrices form =3,5 . . . . . . . .. ... ... ... ...
8 Conclusion and Future Work

References

vi

12

16

19
20

22

23



Chapter 1

Introduction

An orthogonal design is an orthogonal matrix whose entries are indeterminates. An or-
thogonal matrix has the property that the product of itself and its transpose is an identity.
In particular, by assigning +1 to the indeterminate entries, one can get various Hadamard
matrices from an orthogonal design. More formally, We make the following definition:

Definition 1 Let x1,...,x; be commuting indeterminates. An orthogonal design X of
order n and type (s1,...,8;), denoted by OD(n;sy,...,8;), where s1,...,8; are positive
integers, is a matriz of order n with entries from {0, +x1,...,+x,}, such that

t
XX = (Z si22) I,
i=1
where XT" denotes the transpose of X and I,, denotes the identity matriz of order n.[17]

An example of an orthogonal design is given as below:

A B C D
-B A -D (C
- D A -B
-D -C B A

Hy =

Here, HiH]" = (A?+B?+C?+D?)I, and H, is an orthogonal design of type OD(4;1,1,1,1).
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Orthogonal designs are used in combinatorics, statistics, coding theory, telecommu-
nications, and other areas. For more details on orthogonal designs, see[l(, 141] and on
Hadamard matrices see [6].

In this article, we will explore the existence of the orthogonal designs of order 128. We
will use the matrix representation of the so-called Cayley-Dickson algebra to construct an
order 128 symbolic matrix which is almost an orthogonal design and then use Grébner
bases to find the solutions which make this “Near-orthogonal” symbolic matrix satisfy the
definition of an orthogonal design.

Given the basis elements of a Cayley-Dickson algebra, we can associate a multiplication
table about these basis elements. An example of a multiplication table for quaternions is
given by the four elements 1,1, 7, k, having the properties

=1, =1,k =—1,ij =k, ji = —k,ik = —j, ki =j, jk =i, kj = —i.

The multiplication table is as follows:

<117 |j |k
T1]7 |j [k
i i [-1]k |
17 |k [-1]q

k|lkl|j |-]-1

Suppose we have a Cayley-Dickson algebra of order ¢ = 2" with basis elements being
1,e1,...,e;1. Define v =[1,e1,...,e;1]". Then by right multiplications v-1,v-ey,...,v-
e;_1, we can associate a matrix to each basis element (the right multiplications for quater-
nions are detailed in Chapter 3). In this article, we consider the Cayley-Dickson algebra of
dimension 128 (the details of this algebra are described in Chapter 3), associating matri-
ces to the basis elements by the right multiplication. We add all these matrices together
linearly with indeterminate coefficients and get a large symbolic matrix. We then try to
find the solutions which make the matrix an orthogonal design.

We show how to apply Grobner bases to this problem through a substitution technique
in order to find the solutions to a system of thousands of equations. The equations are just
the entries of the order 128 symbolic matrix multiplied by its transpose. We show that the
Grobner bases has some nice properties which make it easier to find the solutions. The
substitution technique can reduce the number of equations and help us find more solutions.
Each solution gives exactly one orthogonal design, and we then use these orthogonal designs
to later construct Hadamard matrices.



In this article, we find new orthogonal designs of order 128 with different types. They
are OD(128;1,1,63,63), OD(128;1,1,2,62,62), OD(128;1, 1,2, 4,60, 60),
OD(128;1,1,2,4,8,56,56), and OD(128;1,1,2,4,8,16,...,16). We use orthogonal design
of OD(128;1,1,2,4,8,16,...,16) to construct Hadamard matrices of order 384 and 640.

C. Koukouvinos and D. E. Simos [13] listed a table of orthogonal designs they found.
They constructed a orthogonal design of type OD(128;16, 16,16, 16, 16, 16, 16, 16). Here,
we provide a new orthogonal design of type OD(128; 16, 16, 16, 16, 16, 16, 16, 16) by equat-
ing variables in OD(128;1,1,2,4,8, 16, . . ., 16).



Chapter 2

Orthogonal Designs

Recall the definition of orthogonal design:

Let zy,...,z; be commuting indeterminates. An orthogonal design X of order n and
type (s1,...,5:) denoted by OD(n;s1,...,5s;), where sq,...,8; are positive integers, is a
matrix of order n with entries from {0, &1, ..., +z,}, such that

t
XX = (> sad)l,,
=1

where X7 denotes the transpose of X and I,, denotes the identity matrix of order n [12].

An orthogonal design of type OD(n;s1,...,s;) is called a full orthogonal design, if
n==58+8+ -+ 5.

Recall the example of orthogonal design given before:
A B C D ]
-B A —-D C
-C D A -B

| -D -C B A

H,

Here, HyHI™ = (A? + B? + C? + D?)I,, if we assign the entries A, B,C,D the val-
ues (71,29, r3,74), then HyHI" = (Zle x?)Iy. So Hy is an orthogonal design of type
OD(4;1,1,1,1). Furthermore, it is also a full orthogonal design.



Definition 2 The Radon function p is defined by p(n) := 8q + 2" when n = 2% - p, where
pEZtisodd, k=4q+r, and 0 <r < 4. see [)]

The Radon function gives an upper bound of the number of different variables. That
is, given a full orthogonal design of type OD(n; s1, ..., s;), we have t < p(n).

For n = 128, we have 128 = 27, so k = 7, and ¢ = 1,r = 3. Therefore, we have
p(128) = 16 meaning the upper bound for orthogonal design of order 128 is 16.

There are various methods to construct orthogonal designs. For more the details, see
[5].

Some important conjecture about the orthogonal designs are as follows:
Conjecture 1 There exists an OD(8t;t,t,t,t,t,t,t,t) for every positive integer t. [5]
Conjecture 2 There erxists an OD(128,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8). [//

Orthogonal designs provide some of the most important constructions for Hadamard
matrices. These conjectures can help us better understand the existence and constructions
of Hadamard matrices.



Chapter 3

Duplication Technique,
Cayley-Dickson Algebras

In mathematics, the Cayley-Dickson construction produces a sequence of algebras over the
field of real numbers, each with twice the dimension of the previous one [12]. The algebras
produced by this process are called Cayley-Dickson algebras. In this paper, we will use
these algebras to construct orthogonal designs.

Starting from real numbers R, we get complex numbers C by applying Cayley-Dickson
construction to R. Repeatedly applying this process to complex numbers C, we get the well-
known Cayley-Dickson algebra which is Quaternions. Quaternions were first introduced
by Irish mathematician Sir William Hamilton in 1843. Quaternions can be seen as an
extension of complex numbers, whose operation is defined by two rules below:

(1) (a,b)* = (a*,-b),
(2) (a,b)(c,d) = (ac — d*b,da + bc*).

Here, a, b, ¢, d are all complex numbers, so a quaternion can be seen as a pair of complex
numbers with * denoting the conjugation operation. The conjugation operation is defined
recursively by (1). The conjugation of a real number is just itself. As we can see, the
first rule defines the conjugation rule of quaternions which is just an extension of the case
in complex numbers, and the second rule defines the multiplication rule of quaternions.
Quaternions have dimension 4 over the real numbers.

Having quaternions already defined, we then form the ordered pairs of quaternions,
which are called the Octonions, with multiplication and conjugation rules defined as before
for quaternions. Octonions have dimension 8 over the real numbers.



Continuing with this duplication technique, we can construct algebras of dimension 2.
This is the so-called Cayley-Dickson construction, and the associated algebras are called
Cayley-Dickson algebras.

3.1 Examples

A basis for quaternions is given by the four elements 1,i,j,k, having the properties: 2 =

~1,j2=—-1,k*=—1,ij =k, ji = —k,ik = —j, ki = j, jk = i, kj = —i. Then we associate
a 4 x 4 matrix to each basis element.

Let v = [1,4, 7, k7" and consider the right multiplications v - 1,v - i,v - j,v -k, v-1 =

1 0 0 0
0100
(1,4, 7, k]T". We obtain a matrix ¢; = 0010l Continuing v-i = [i, —1, —k, j]7" and
0 0 0 1]
0 1.0 O
-1 0 0 O
we obtain a matrix ¢u = 0 00 1l Similarly, v-j = [j, k, —1, —i]7" and this gives
0 01 O
0 0 10 0 0 0 1
0O 0 01 k= [k —j.i 1] and th 0 0 -1 0
q3 = .v-k=|k,—7,9,—1|"" and this gives q4 =
311 0 o ! 01 0 0
0 -1 00 -1 0 0 O
The matrices g1, o, g3, g4 have the same properties as quaternions: gs - g3 = q4, Q2 - @4 =
—d43,93 - 42 = —q4,43 - 4 = §2,44 - G2 = §3,44 - 43 = —92»Q§ = CJ§ = qi = —q1. Let

Hy = Aq, + Bgs + Cq3 + Dqy. Then it is easy to check that HI" = Aq — Bgy — Cq3 — Dqy
and so we have HyH]" = (A*>+ B*+ C*+ D*)q; = (A*+ B*+ C? + D?)I,. Thus H, is an
orthogonal design of type OD(4;1,1,1,1). This method was first described by Baumert
and Hall [2) 3].



3.2 QOur approach

By applying the Cayley-Dickson construction repeatedly, one obtains a Cayley-Dickson
algebra of dimension 128 with basis eg = 1,¢e1,62, -, e197. We do not present the multi-
plication table here because it is too large.

To associate a 128 x 128 matrix to each basis element, we use the right multiplication
operator, on the column vector

v=[1,e1," - 6127}%
Then the 128 right multiplications v-eq, v-eq, - - - v-e197 give rise to one hundred and twenty-
eight 128 x 128 matrices qo, q1, - - - , q1o7- Let Ay, Ag, - -+ | Aj9g be commuting indeterminates.

The sum H = zllig Ai11q; is equal to a 128 x 128 matrix with the property that the diagonal
elements of HH™™ are all equal to Z}iﬁ A?) but whose other elements are not necessarily
all zero. By requiring that all elements of HH”" (except the diagonal elements) equal to
zeros, we obtain 5088 equations in 126 variables (all variables except Ajp, Ags, these two

variables are cancelled).

In the 4 x 4 case, we use Cayley-Dickson algebra of dimension 4 with bases 1, e, es, e3.
We associate four matrices g1, g2, q3, g4 to the four basis elements. We sum them and get
H, = Aq + Bgs + Cq3 + Dqy. In this case HiH]" = (A* + B? + C? + D?)I, which is
already a diagonal matrix. Therefore, we do not need to require all non-diagonal elements
of HyH]™ equal to zeros. This also happens in 8 x 8 case. However, when the dimension
goes higher, we will lose this nice property.

Finding the solutions of the 5088 equations is a very difficult computational problem.
However, for each of those polynomials, there seems to be another polynomial which is
equal to it up to sign (we do not say “equation” here to avoid confusion, if we require
the polynomials to be zeros, then we get the equations). In other words, the structure of
these 5088 polynomials is actually like this: {fi, —f1, fa, —f2, ...} if we ignore the order.
Therefore, we can reduce the 5088 equations to 2544 in the best case. This is a process
of “cleaning up” or simplifying the equations. Theoretically, exempting all the redundant
equations is expensive, but in practice, our “cleaning up” algorithm works very well, and it
produces only 2546 equations after cleaning up (it may still have redundant polynomials,
but only 2 extra in the worst case).

Once the “cleaning up” is done, we need to find the possible substitutions which make
the 2546 equations become zero. We will use Grobner bases to find good substitutions.
These are introduced in Chapter 4 and Chapter 5.



Chapter 4

Grobner Bases Computations

In this section, we introduce some basic concepts about Grobner bases, which are a fun-
damental object of study in computational algebra and its applications. Let F' be a field
and I = (p1,...,px) an ideal in the multivariate polynomial ring F'|xy, ..., x,]|. A Grébner
basis for [ is a basis that can be computed from the polynomials py,...,p, with many
properties that make it effective in computations within that ideal.

Definition 3 Given a term order (lezicographic order, graded lezicographic order,..etc),
the leading term of a polynomial f is the mazimal term of the polynomial (up to the given
term order), which is denoted by Lp(f). The leading coefficient of a polynomial is the
coefficient of the leading term, denoted by Lc(f).

A Grébner basis G of an ideal I in a polynomial ring R over a field is characterized by
the following property, relative to some term order:

The leading term of any polynomial in I is divisible by the leading term of some poly-
nomial in the basis G. [/]

A Grobner basis is called reduced if the leading coefficient of each element of the basis
is 1 and no monomial in any element of the basis is in the ideal generated by the leading
terms of the other elements of the basis (that is, no monomial in any element of the basis
can be divided by the leading term of any other element of the basis) [1]. Grobner bases can
be computed by the classical Buchberger algorithm and also can be computed by the much
more efficient algorithms Fy and F5 by Faugere [7, 8] (but which still require exponential
time). These algorithms are all implemented in many computer algebra systems. For
this paper, we will use the implementation of Grébner bases in Maple and Singular (using
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Sage). These are both well-known computer algebra systems at the current time with good
implementations of up-to-date methods.

One of the characteristics of a Grobner basis is that it can answer the question: does
a system of equations have a solution. Also, a reduced Grobner basis for a system of
polynomials is an equivalent and hopefully simpler form of that system relative to an
ordering, from which information about the solutions of the system can be found.

4.1 Over the Rationals

In the previous section, we described a system of 2546 equations with 126 variables (A; and
Ags are missing). Our primary goal is to compute the Grobner basis over the polynomial
ring of rationals. In Maple, however, our methods seem to take very long time and makes
it unfeasible to compute directly over the rationals. We can still solve a small case directly
over rational field. As an example, see [12], where the Grébner basis of 42 equations is a
set of 21 simpler equations. The memory cost is very expensive over QQ in Maple due to
the growth of coefficients. As an alternative, we will replace the rational field by a finite
field (modulo some prime) as the ground field of the polynomial ring. This will keep the
size of intermediate coefficients constant and so save considerable time.

In this article, we will have to compute Grobner bases of systems with different number
of equations. Basically, we have found that if the number of equations is over 500, then the
computation of Grobner basis over rational field is an extremely time and space consuming
process which makes it almost unfeasible and unpractical. In Chapter 5, we will compute
Grobner basis of systems with 2546, 591, 126 equations. For the 126 equations, we will
still compute it over rational field, while for the 2546 and 591 equations, we will replace
the rational field by a finite field.

4.2 Over F, (mod p case)

Intermediate coefficient swell is a notorious difficulty of Buchberger’s algorithm for com-
puting Grobner basis over the rational numbers. During the execution of the algorithm,
many intermediate polynomials are computed. Unfortunately, the coefficients of these in-
termediate polynomials can grow up to enormous size, even if the final Grébner basis has
very small coefficients [1]. Regarding this, the modular approach can be very useful to
reduce the cost of the algorithm (especially for saving the memory).

10



To implement the modular approach, we need to introduce the definition of “lucky”
primes.

Definition 4 A prime integer, p, is called lucky for I if and only if Lp(G) = Lp(G,).
Here I = (fy,..., fr) is an ideal in Q[X]. G is the reduced Grobner basis for I in Q[X]
and G, the reduced Grébner basis for I, = (fi,..., f») € Z,[X]. [1]

Recall the definition of Lp(x), for example, Lp(5zxy + 4x) = xy. The Grobner basis
modular a lucky prime is the one that doesn’t lose algebraic information about the correct
Grobner basis. More specifically, the leading terms of the G, are same as the leading terms
of G'. Once we get G, for different lucky primes p, we can use techniques like the Chinese
remainder theorem [1] or p-adic to lift it back to G and check if G = G. There are many
papers about these techniques, see, e.g. [1, 9]. In this paper, we just choose a large prime
p, and simply make G = Gp.

Once we get G, we need to check and make sure that the result is correct. The following
theorem from [1] is helpful:

Lp(Gyp), G is a

Theorem 1 Let G € Q[X] be a set of polynomials such that Lp{é) = Lp(
), and I C (G). Then

Grébner basis for the ideal that it generates, which is denoted by (

I=(G). [1]

Note that Theorem 1 does not require p to be a lucky prime. This theorem tell us that
once we get G by making G = G, we need to do two things to check whether G is the
correct candidate: The first is to check whether G is a reduced Grobner basis for the ideal
that it generates in Q[X]. This is obviously true since no monomial term of a polynomial
in G can be divided by the leading term of any other polynomial in G. Next, we must show

that I C (G). This can simply be done by showing that the generators of I, fi,..., f;,
reduced to zero using G.

We will use this modular approach to compute the reduced Grobner basis of the large
system (more than 500 equations) in the following content of this paper. First, we choose
a prime p = 32771, which is the next prime of 2' and compute G, in the polynomial ring
Z,[X]. After we get the candidate G = G,, we then further check whether G is actually
equal to G by checking all the polynomials of the system reduced to zero modular G. If so,
then we are done. If not, we choose another prime, compute the reduced Grobner basis G,
and let G = Gy, then check it again. We can simply use Maple command “NormalForm()”
to do this check.

11



Chapter 5

Substitution Techniques and
Structure of Associated Grobner
Bases

Given a system of equations with many indeterminates, finding the substitutions which
provide the solutions of the system is an interesting problem. We describe a method to
solve this problem in this chapter:

1) If the number of equations is small, we simply compute the reduced Grébner basis of
the system and find the substitutions, since in this case the reduced Grobner basis usually
has a very simple and nice form.

2) If the number of equations is large, the reduced Grébner basis will also usually be a
large set. In this case, we may not find interesting substitutions directly. However, usually
we can find a substitution which can reduce the number of equations significantly with the
help of the reduced Grobner basis. Once we find it, we use the substitution to obtain a
system with much fewer equations. We compute a reduced Grobner basis of this smaller
system again and find the substitution to reduce the size. We repeat this procedure until
the reduced Grobner basis becomes “simple and nice”.

We give two examples to explain this method:

Example 1 is from [12], where the reduced Grobner basis of a set of 42 equations with
14 variables has 21 equations. Each equation is a binomial. The solutions of it can be
easily found.

Example 2 is the system of 2546 equations with 126 variables we get in Chapter 3. It fits

12



case (2) in our method above. We first compute the reduced Grobner basis here, expecting
that it can provide us more clear guidance. Also, the solutions of Grobner basis are same
as its generators (i.e, the Grobner basis of a set of polynomials is equivalent to the set
itself). After we computed the Grébner basis, as we expected, the reduced Grébner basis
of the 2546 equations has some nice properties. The binomials of the reduced Grobner
basis (there are still lots of polynomials with many terms) have a very simple and nice
form:

Ain+64 - AiAj+64,V’i,j - 2, o ,64 (51)

Since the number of equations is huge, we will employ some substitution techniques
here to reduce the number of equations. The binomials (5.1) of the Grobner basis above
give us insight about how to substitute (equating variables). Once we do the substitution,
the number of equations will become much less than that it was before. We then compute
the Grobner basis again and do further substitution. We repeat this procedure until all
the elements of Grébner basis are binomials (this will happen when the size of the system
is small).

As we know from Chapter 3, A; and Ags are cancelled and they are not in the system,
which means we don’t need to relate them to other indeterminant (these two can be
independent to other indeterminates in our substitutions). Also, if we fix i, and assume
Aires # A;, then due to the structure of (5.1), we must first require that

Aiver = Ajroa, Vi =2,...,64;

A =A;Vj=2,...,64
We substitute A; = A;,j =2,...,64, Aj 64 = Aites,7 = 2,...,64 into the 2546 equations,
and find all the equations become zeros eventually. Therefore this substitution gives us a
solution of the system: A2 = Ag == A63 = A64 and A66 = A67 == A127 = Algg.
From the substitution, we get a orthogonal design which is OD(128;1,1,63,63) (A1, Ass
are two independent variables, the other 126 variables are partitioned into two groups as
above).

Since there is no limitation on ¢, then for any ¢ between 2 and 64, A;, ¢4 # A; will lead
to the same substitution: AQ = Ag == A63 = A64 and A66 = A67 == A127 = A128~
Therefore, we only need to consider two cases:

Aires # A,V =2,...64 and the resulting solution:
Ay = Az =+ = Ags = Apa, Ags = Agr =+ = Apzr = Ajas, (5.2)

Ai+64 - AZ,VZ - 2, . 64 (53)

13



We substitute (5.3) into the system, and get another system of 591 equations of 62 variables
(Ass is cancelled, A; has not been in the system from the beginning). Then we try to
compute the reduced Grobner basis of these 591 equations to find the solution as we did
before. The interesting thing is that the reduced Gobner basis of these 591 equations has
the same nice properties as the case of the 2546 equations. That is: the binomials of the
reduced Grobner basis also has a very simple form:

Ain+32 - AiAj+327Vi7j = 27 s 732
As we have discussed before, we consider two cases:

Aiygo # A, Vi =2,...32 and the resulting solution:

Ay=Ag=---= A3 = Ay, Ay = Azs = --- = Ag3 = Agy (5.4)
Ai+32 = AZ,VZ = 2, e 32 (55)
Since we assume A; 64 = A;, Vi =2,...,64, (5.5) will give us another orthogonal design

of type OD(128;1,1,2,62,62). That is Ay, Ags, As3 = Ag7, and the other 124 variable are

separated into two parts.

We continue to move on to substitute (5.5) into the system of 591 equations and then
get a system of 126 equations with 30 variables (A;7 is cancelled). We then compute the
reduced Grobner basis of these 126 equations and as we expected, we get the nice binomials
with the simple form:

AjAH-lG — AjAjH@,‘v’i,j = 2, Cey 16.

We then consider two cases similar to what we did before:

Aiv1 # A, Vi =2,...16 and the resulting solution:

Ay =Az3 == Ay = Ass, Aig = Ayg = - - - = Az = Az (5.6)
Aire = Ay, Vi =2,...16. (5.7)
Because we already assume A;, 30 = A;,Vi = 2,...,32, and also the first substitution

Aives = Aj,Vi = 2,...,64, case (5.7) will give us another orthogonal design of type
OD(128, 1, 1,2,4,60,60) That is Al,A65,A33 — A97,A17 — A49 = A81 = All?) and the
other 120 variables are separated equally into two parts.

14



We continue to substitute (5.7) into the system of 126 equations and get another system
of 21 equations with 14 different variables (A; and Ag are missed). The Grobner basis of
the 21 equations has exactly the form as below:

AjAH_g - AiAj+8,Vi,j =2,...,8 (58)
Equation (5.8) has two solutions:

A1=A2="'=A7=As, A10=A11="'=A15=A16; (5-9)
Ai+8 :AZ,’L - 2,...,8. (510)

Solution (5.10) leads to an orthogonal design of type OD(128;1,2,4, 8, 56,56). Solution
(5.10) leads to an orthogonal design of type OD(128;1,2,4,8,16,...,16).

15



Chapter 6

Results on Orthogonal Designs

In the previous chapter we found all the solutions of the system of 2546 equations using
the Grobner bases and the substitution techniques. Each solution gives us one orthogonal
design. We now list all of the orthogonal designs of order 128 we have found here:

(1). OD(128:1,1,63,63):

o Ay

o Ags;

o Ay =A3 =" = Agz = Ass;

o Ags = Agr = -+ = Ajor = Ajss.

(2). OD(128;1,1,2,62,62):

o Ay

o Ags;

o A3 = Agr;

o Ay =A3 =" = Az = Age = A7 = - = Age;
® Ayy=Ags =+ =A== Ags = Agg = Aus.

(3). OD(128;1,1,2, 4,60, 60):

16



As;

Ags;

Asz = Agr;

Arr = Ayg = Ag1 = Aun;
Ay=-=Ag=Asy = =Ag = Agg = - = Agp = Agg = - - - = Ay12;
Aig=-=Ap=A0=-=Ap=Aso = = Agg = Aj1a = -~ = Apss.

(4). OD(128;1,1,2,4,8, 56, 56):

A

Ags;

Ass = Aogr;

Arr = Ayg = Ag1 = Aun;

A9 = A25 = A41 = A57 = A73 = A89 = A105 = A121;

Ay = =g =Ag==Ay=Ayy = =Ay=As50 = -+ = Ass = Ass =
e =Ap=Agp = = Agg = Agg = = Ajos = Aria = -+ = Aro;
A= =Ag=Ap = =Apn=Ap = =Ag=Ags = = Apu = Ay =
= Agg = Agg == Agg = Arog = - = Anp = Ao = -0 = Agos.

(5). OD(128;1,1,2,4,8,16,...,16):

A

Ags;

Asz = Agr;

Arr = Ayg = Ag1 = Auns;
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Ay = Ay = A1g = Agg = Agy = Ayg = A5 = Asg = Ags = Aqs = Ago = Agy = Agg =

Aros = Ar1a = A122;

AS = All :A19 = A27 = A35 :A43 = A51 :A59 :A67 = A75 = A83 :A91 = A99 =

Aror = A1z = A123;

Ay = Ajg = Ayg = Aog = Asg = Ayy = Aso = Ago = Ass = Arg = Asga = Ago
Aroo = Aios = Aris = A124;

As = A1z = Ay = Agg = Azr = Ays = Asz = Ag1t = Asg = Arp = Ags = Ags
Aro1 = Aigg = Az = A125;

As = Ay = Agy = Agp = Asg = Aue = Asy = Aga = Ayg = Arg = Age = A
Aoz = Ao = Anis = A126;

Ay = Ais = Agg = A1 = Azg = Ay = Ass = Ags = A = Azg = Agr = Ags
Aoz = A1 = Ao = A127;

AS = A16 = A23 = A32 = A4O = A48 = A56 = A64 = A72 = ASO = A88 = A96
A104 = A112 = AlQO = A128~
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Chapter 7

Constructing Hadamard Matrices

We will use the orthogonal designs from the last chapter to construct Hadamard matrices of
order 128n. For the orthogonal design of Hyos = OD(128; 16, . ..,16) which can be obtained
by equating variables of corresponding (1,1,2,4,8) from OD(128;1,1,2,4,8,16,...,16)

found in the previous chapter, we have eight indeterminates Ay, As,--- , As. We replace
Ay, As, - -+, Ag by matrices, and let n denote the order of n X n matrices A, Ay, -, Ag.
Imitating the classical Williamson construction (see [I1]), we take the eight matrices
Aq, Ay, -+, Ag to be symmetric circulant matrices of order n each, defined via the ma-
trix
010 -+ 0
001 -0
U= Do el
000 -+ 1
100 --- 0

Define the eight matrix Ay, Ag, - -+, Ag to be polynomials in U, so that they commute with
each other (can be checked easily):

Ay =apl, +a U+ +a, U,

A2 = bOIn + blU + o+ b’n,—lUn_l,

A7 =golpy + U + -+ g U™,
Ag - hOIn + hlU + -+ hnflUnil.
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Also, the eight matrix Ay, Ay, - -+, Ag will be symmetric if we require:
Un—i = i, by = by, Cpi = i, dp = d,

en—i = €is fui = fir Gn—i = Gis hn—i = hy.
fori=1,...,n— 1

Now let Hisg, denote the matrix obtained by replacing A, As, -+, Ag with circulant
matrices of order n defined above. Then Hisg, is of order 128n and by block matrix
multiplication, we have the property:

Hiogn Hiog = Tios ® (1643 + 16 A3 + 16 A5 + 16 AT + 16 A2 + 16 A7 + 1642 + 16 A3), (7.1)

where ® denotes the Kronecker product. By requiring 1643+ 1643+ 16 A%+ 16 A3 + 16 A2 +
16AZ + 16A2 + 16 A2 be a diagonal matrix, we can find the solutions which make Hisg,, be
Hadamard matrices.

7.1 Hadamard matrices for n = 3,5

For n = 3, we obtain only one equation from (7.1):
apay + boby + cocq + dody + eger + fofi + gog1 + hohi +4 = 0.
This equation has exactly 3584 solutions when all 16 variables take 41 values. These

solutions give rise to Hadamard matrices of order 384.

For n =5, we obtain two equations:

a1ag9 + arag + blbO + blbg + cico + c1c0 + d1d0 + d1d2 + ejeg +ereq + flfo
+f1fa + 9190 + G192 + haho + hihy +4 =0,

and
AoQo + a102 + bobg + ble + copC2 + C1C2 + dodg + d1d2 + epes + e1ea + f0f2
+f1fa + 9092 + 9192 + hoha + hihy +4 = 0.

The solutions of these two equations give rise to Hadamard Matrices of order 640.

If we use OD(128;1,1,2,4,8,16,...,16) instead of the simplified OD(128;16,...,16),
we can get many more solutions because we have more variables.
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In fact, for n = 3, we obtain one equation:

ajag + lllo + leko + 4j1j0 + 82.17;() + 1661[)[) + 160100 + 16d1d0
+ 16e1e9 + 16f1f0 + 169190 + ].Ghohl + 64 = 0.

This equation has exactly 43904 solutions when all 24 variables take +1 values. Each
solution give rise to a Hadamard matrix of order 384.

For n = 5 we have two equations:

64 + 16e1e9 + 16e1e9 + 161 fo + 16 f1 f2 + 169190 + 169192 + 16h1ho + 16h1 0y
+8i1ig + Sivia + 4j1jo + 4j1js + 2k1ko + 2k1ks + Lily + Lilo + arag
4ayas + 16b1bg + 16b1b5 4+ 16¢1¢co + 16¢1co + 16d,dy + 16d,dy = 0,

and
64 + 16e1ey + 16egeq + 16 f1fo + 16 fofo + 169192 + 16gogs + 16h1hy + 16hghs
+8iyig + Sigis + 4J1j2 + 4joja + 2kiky + 2koks 4 lilo 4 loly + ajas
+agay + 16b1by + 16bgby + 16¢1co + 16ccy + 16d1dy + 16dgdy = 0.

The solutions of these two equations give rise to Hadamard matrices of order 640.
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Chapter 8

Conclusion and Future Work

In this article, we have found new orthogonal designs of order 128 and also constructed
Hadamard matrices using orthogonal designs we have found. This method can be general-
ized to higher dimension and can be used to construct higher order orthogonal design and
Hadamard Matrix.

Recall Conjecture 1 in Chapter 2. From what we have constructed, we have shown that
this conjecture holds for ¢ = 16.

Recall the Radon function in Chapter 1. We have shown that the maximum number
of different variables for orthogonal design of order 128 can’t exceed 16. Also, since we
have constructed OD(128;1,1,2,4,8,16,...,16), we know that the maximum number is
not less than 12. Therefore, the maximum number of different variables for orthogonal
design of order 128 is between 12 and 16.

For lower order cases, Kotsireas and Koukouvinos [12] has found OD(32;4,4,4,4,4,4,4, 4
)and OD(64;8,38,8,8,8,8,8,8) using this techniques. We constructed OD(128; 16, 16, 16, 16
,16, 16,16, 16), so it is reasonable to conjecture that for every integer n, this method can
be used to construct OD(2";s,...,s) where s = 2"73. This conjecture should be studied

in the future.
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