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Abstract

Over the past years, Deep Neural Networks (DNNs) have brought a transformative im-
pact in various domains, including Artificial Intelligence (AI), Nature Language Processing
(NLP), and Finance. Concomitant with this achievement, there have been numerous con-
cerns related to the reliability and security issues associated with DNNs. Examples of
security problems comprise various types of attacks, including but not limited to adversar-
ial, data poisoning, and membership inference attacks. These problems become particu-
larly acute when considering DNN in the context of mission-critical tasks such as Airborne
Collision Avoidance Systems (ACAS) for aircraft. To address these issues, this report
introduces a tester, CGDTest, to verify the robustness of the DNN. CGDTest is a novel
approach in the research field of neural network verification and the first to apply the
Gradient Descent (GD) method for verifying the robustness of DNNs. CGDTest aims to
find a DNN input that satisfies user-specified constraints. Firstly, CGDTest parses user-
specified constraints and converts them into a differentiable constraint loss function. Then,
CGDTest employs gradient descent methods to modify the initialized DNN input, moving
in the direction of decreased loss using the computed gradient value with respect to the
input. If an input results in a constraint loss function of zero, it is considered a satisfiable
assignment for the constraints. Otherwise, CGDTest outputs UNSAT (i.e., unsatisfiable).
CGTest has achieved VNN-COMP compliance. VNN-COMP is an excellent platform for
comparing the performance of various verification and testing tools over large real-world
benchmarks, so VNN-COMP is an effective metric for evaluating verification and testing
tools in handling real-world benchmarks.
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Chapter 1

Introduction

The improvements in novel Machine Learning (ML) algorithms, coupled with the avail-
ability of more computational resources and data has contributed to the rise in the uses
of ML, including image processing, intelligent assistant, and safety-critical systems in au-
tonomous cars and drones [18]. Deep Neural Networks (DNN)s are one of the prominent
ML techniques, and they have had a significant impact in many fields including AI, science,
and engineering. However, they can be vulnerable to different types of attacks, such as ad-
versarial and model stealing attacks [26]. These problems become particularly acute when
considering using DNNs in the context of mission-critical tasks, such as ACAS systems for
aircraft [2].

To address the above issues, several tools to check if DNNs exhibit vulnerability have
been developed by leading researchers. In this report, I introduce a new testing algorithm
that are scalable, expressible, and can be applied to a wide variety of DNN architectures,
named CGDTest [22]. CGDTest is a new approach proposed by Vineel Nagisetty, who
is a talented researcher from the Borealis AI. CGDTest tests DNN vulnerabilities that
utilize Constrained Gradient Descent (CGD). CGDTest aims to verify the robustness is-
sues such as adversarial robustness and bias in DNNs. CGD allows testing ML models
for multiple types of vulnerabilities due to the fact that it allows constraints to express
properties. Further, it is highly scalable. This approach is avant-garde, and the approaches
can significantly impact the field of neural network verification/testing.

Comparing existing DNNs verification solvers is helpful in verifying the performance
of developed algorithms. The International Verification of Neural Netorks Competition
(VNNCOMP) is a good metric for testing the performance of a neural network verification
tool. Participating in the VNN-COMP is the most intuitive way to make a comparison
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among all the algorithms because VNN-COMP is an annual competition that intends to
attract researchers working on testing and verifying neural networks. VNN-COMP includes
all the state-of-art testing and verification techniques, so it is a success marker to validate
the performance of algorithms. The input of the neural network verification or testing
problem consists of two parts: a neural network and its specification. The specification
describes the assertions on the input and output of the DNN. The verification or testing
algorithms can determine whether there exists one satisfying assignment such that the
input and output constraints are satisfied. For example, giving a neural network M and
specification (M(x) < 5 AND x > 0), the verification or testing algorithms aim to find an
input x, such that (M(x) < 5 AND x > 0) is satisfied. Additionally, the DNN verification
or testing algorithms can also be used to find an adversarial input for the DNN by setting
the desired constraint.

As CGDTest is a scalable and expressible testing tool for evaluating the robustness of
DNNs, we want to understand its potential impact on the field of neural network verifica-
tion. So, participating in VNN-COMP can be a good metric for evaluating CGDTest. To
ensure that CGDTest meets the VNN-COMP standards, we have developed and assessed
the algorithm, making it a flexible tool for various applications. The evaluation will be
based on the instances from VNN-COMP, such as ACAS-Xu which are machine learning
models for air-to-air collision avoidance systems. Below is a list of some contributions I
have made to this project:

Contributions:

1. Adapting CGDTest to Meet VNN-COMP Standards. I have participated in
the implementation phase of CGDTest. The overall goal of this project is not only
to implement the approach but also to make the approach more flexible in real-world
applications. The implementation steps were designed to ensure that CGDTest has
high accuracy and a low PAR-2 score. The PAR-2 score is the performance metric for
the VNN-COMP, and the PAR-2 score of a solver on a benchmark is the wall-clock
runtime if the benchmark is successfully solved; otherwise, it is twice the wall-clock
runtime.

2. Proposing ideas of enhancing CGDTest. CGDTest has some limitations; for
instance, it may fail to produce the desired result and return UNKNOWN for a
verification problem. To address these issues, we propose several ideas aimed at
enhancing CGDTest’s accuracy when solving neural network verification problems.

2



Chapter 2

Background

2.1 Neural Networks

Neural Network (NN) is one of the most powerful techniques in the field of machine learning
and has enabled significant advancements in various applications, such as natural language
processing, fraud detection, and image recognition. NN algorithm is inspired by the struc-
ture and function of biological neurons in the human brain, and the neurons are the basic
building blocks of an artificial neural networks (ANN) [1].

The neurons in an ANN consist of several key components, such as input from previous
neurons, weights, and activation functions. Neurons are organized into layers, including
input layers that receive data, hidden layers that perform the bulk of the processing,
and output layers that produce the output score. All the layers are interconnected with
weights, and the bias term plays a crucial role in fine-tuning the output of each neuron
and enhancing the ANN’s ability to learn data patterns.

ANNs are designed as computational models used for solving complex problems. And
a therorm called Universal Approximation theorem states that a feedforward ANN with a
single hidden layer containing a finite number of neurons can approximate any continuous
data pattern:

Universal Approximation Theorem [12]: Let C(X, Y ) represent the set of con-
tinuous functions from X to Y. Let σ ∈ C(R,R). Then σ is not polynomial if and
only if for every n ∈ N,m ∈ N, compact K ⊆ Rn, f ∈ C(K,Rm), ϵ > 0 there exist
k ∈ N, A ∈ Rk∗n, b ∈ Rk, C ∈ Rm∗k such that
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Figure 2.1: [8] Adversarial attacks can occur when a neural network is presented with a
slightly perturbed input image. For example, a panda picture with a small perturbation
added may be misclassified as a gibbon with high confidence by the neural network.

sup
X∈k

||f(X)− g(X)|| < ϵ

where

g(X) = C · (σ(A ·X+ b))

Thus, an ANN can effectively capture intricate data patterns when the architecture is
configured suitably.

2.2 Neural Network Verification

Concomitant with the success of DNNs, numerous concerns have emerged regarding their
application in mission-critical tasks, such as self-driving cars, medical diagnosis, and fi-
nance. DNNs can produce undesirable behaviors under adversarial and model stealing
attacks [26]. To address these issues, a dedicated research field called Neural Network
Verification has emerged as one of the most effective approaches to validate user-specified
properties of DNNs, ensuring their reliability and robustness.
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When utilizing a neural network verification tool, users may want to validate a range
of properties, such as robustness, correctness, fairness, monotonicity, and interpretability,
to ensure the DNN’s reliability, performance, and ethical use [35, 31, 24, 32, 29, 34, 33].

Robustness verification problems address the vulnerability of DNNs to small input
perturbations that can lead to significant changes in the output. Robustness is a crucial
property to verify in mission-critical applications, as adversarial examples can result in
potentially harmful behavior [8]. Adversarial attacks employ these input perturbations to
exploit DNN vulnerabilities. Refer to the provided figure 2.1 for an example of adversar-
ial attacks. The primary objective of robustness verification is to guarantee that DNNs
produce consistent and accurate outputs even with minor input perturbations.

Correctness verification problems address the accuracy of the DNN’s output compared
to the expected outcomes. A DNN is considered correct if it produces an output that aligns
with the anticipated outcomes while adhering to a specified specification. For instance,
consider verifying a DNN designed to diagnose lung cancer based on a CT image. In this
scenario, the correctness problem focuses on ensuring that the DNN produces accurate and
reliable diagnoses.

Fairness verification problems address the fairness of DNN’s output based on specific
sensitive attributes, such as gender, race, or age. A DNN is considered fair if it does not
exhibit unintended biases related to sensitive attributes. For example, consider verifying
a DNN designed to select candidates for employers; the fairness problem ensures that the
DNN does not discriminate based on the applicants’ race or gender.

Monotonicity verification problems address the specification that a DNN’s output
consistently increases or decreases concerning specific features. A DNN is considered to
exhibit monotonicity if a change in the specified features’ values results in a corresponding
increase or decrease in the output. For instance, consider verifying a DNN used to predict
house prices in a city; the monotonicity specification states that as the house size increases,
the estimated house price should also increase.

Interpretability verification problems address the property of understanding the rea-
soning and decision-making processes of DNNs. DNNs are considered ”black boxes” due
to their complexity and the nonlinear relationships between input and output layers [17].
Therefore, having high interpretability can help build trust in a DNN’s output, especially
in mission-critical tasks such as medical, finance, and autonomous driving.
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2.3 Neural Networks Verification Tools

In recent years, many neural network verification tools have been developed by leading AI
researchers to check if DNNs satisfy specific specifications. However, not all tools employ
the same techniques to address the verification problem. Some of them are based on
satisfiability modulo theories (SMT) solvers, such as Marabou [15], while some of them
encode the problem as a mixed-integer linear program (MILP) and use a MILP solver
to find a solution, for example, Planet [6] and MIPVerify [27]. A tool known as the
α, β−Crown applies linear bound propagation and a branch-and-bound approach to solve
the verification problem [35, 31, 24, 32, 29, 34, 33].

These tools can be broadly categorized into three major groups: testing, verifica-
tion/analysis, and reachability. While testing tools do not give guarantees, both verifica-
tion/analysis and reachability tools do verify networks and can give guarantees. However,
I categorize verification/analysis and reachability tools separately due to the differences in
their capabilities as explained below.

Testing methods search for inputs that exhibit model vulnerability to a given attack
or property. Testing tools often use some form of gradient descent to search efficiently.
Examples of these tools include the Fast Gradient Sign Method (FGSM) [15], the Carlini &
Wagner (C & W) attack [5], and the Brendel & Bethge attack [4]. These attacks are
efficient, extremely generalizable, and require nothing more than access to the model-
under-test (and possibly an input to modify). However, they come at the expense of
both expressibility and guarantees. Other standard testing methods include input fuzzing
and genetic algorithms that attempt to do the same. Examples include DLFuzz [10] which
utilizes neuron coverage statistics to guide search in the direction of greater neuron coverage
to find adversarial examples. DLFuzz has difficulty scaling to industrial-sized networks and
is limited to searching for adversarial examples.

Verification/Analysis tools encode the model-under-test symbolically and represent
properties as formulas or constraints, with the aim of providing a certificate of guaran-
tee (i.e., no violations of properties) or producing a counterexample. Several tools such as
the ones by MIPVerify [27] encode DNNs and properties as MILP problems and use corre-
sponding solvers to prove or disprove the existence of property-violating examples. They
often restrict DNN activation functions and architectures to be piecewise-linear DNNs. On
the other hand, tools like ReluPlex[13] and Marabou[15] are simplex-based methods that
can handle arbitrary piecewise linear activation functions.

Finally, reachability tools define an allowable input region and propagate that region
through the network, resulting in an output domain that encapsulates any possible reach-
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able output given one of the input values. Via this method, one can verify robustness by
limiting the input region to a shape around an example (such as a perturbation bound) and
verifying that the reachable outputs do not include incorrect classifications. Examples of
such tools include ERAN [23] and NNV [28]. Reachability tools can indeed verify networks
and scale better than standard verification techniques.

Currently, all the three groups checking DNNs vulnerability are powerful in different
contexts. Testing tools can scale to large DNN models, and reachability tools can verify
various types of properties and are somewhat scalable. Verification tools are able to test
for many kinds of properties. However, there are some limitations. Firstly, testing tools
can only search for a limited number of vulnerabilities. Secondly, since the reachability
methods verify robustness by limiting the input region to a region where the reachable
outputs do not include incorrect classification, they require the vulnerabilities to be defined
using geometric regions and can over-approximate their solution. Although the reachability
tools have scalability issues, they are powerful approaches to verifying neural networks in
some contexts (e.g., acas-xu). Thirdly, the verification tools may not be able to scale to
large models.

A neural network verification tool typically requires two inputs: the DNN itself and
the user-specified constraints relevant to the specification that needs to verify. And it will
result in three possible outputs:

• Satisfiable (SAT): A satisfiable assignment exists that meets the specified con-
straints.

• Unsatisfiable (UNSAT): No assignment exists that satisfies the specified con-
straints.

• UNKNOWN: The tool fails to solve the problem.

2.4 Formulation of Robustness Verification

One of the most popular challenges in robustness verification is verifying the adversar-
ial robustness of DNNs. Adversarial robustness problems address the property of DNNs
maintaining stable performance, meaning that minor input perturbations will not result
in significant spikes in the DNN’s output[14]. Since DNNs are trained using a finite set of
training data, they may not capture adversarial input during the training process. As a
result, verifying their performance in such cases is essential.
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Figure 2.2: [35, 31, 24, 32, 29, 34, 33] The area above the decision boundary corresponds to
a negative predictive score (i.e., a dog label), while the area below the decision boundary
represents a positive predictive score (i.e., a cat label). The specification is verified by
ensuring that the perturbation box remains below the decision boundary.

Definition 1[14] A DNN is δ − locally − robust at point X0 if and only if

∀X, ||X −X0|| ≤ δ → DNN(X) = DNN(X0)

This definition states that for all input X in close proximity to X0 (i.e., the neighbors of
X0), the DNN should result in the same outputs for both X and X0. The value of δ refers
to the ”distance” between X and X0; larger values of δ indicate better robustness. For
instance, consider a classification neural network for dogs and cats. The network produces
a predictive score for an input image; when the score is greater than zero, the network
labels the image as a cat; and otherwise a dog. Suppose we want to verify the robustness
of this network when given some perturbations to an image of a cat. The problem should
be formulated as follows:

Example 1 Suppose an input X0 and a perturbation set C that arround X0, we need
to verify:

DNN(X) > 0, ∀X ∈ C

8



This example states a specification that verifies the DNN can still correctly label the
image as a cat when adding all the possible perturbations into the image. Figure 2.2
visualizes the example.

During the robustness verification process using a neural network verification tool, user-
specified constraints are interpreted as the definitions of counterexamples for the property
being verified. For instance, when verifying a binary neural network to ensure that it
produces consistent results for an input and its perturbed variations, the user-specified
constraints should be defined as counterexamples. The objective is to find a perturbation
input that falsifies the result; if such perturbation input exists, the tool will output SAT,
which means there is a counter-example that disproves the specification. Consequently, a
property is considered ”correct” if the specification is shown to be UNSAT, and a property
is shown to be violated if a counterexample is found [21].

To use a neural network verification tool, users need to specify the constraints for the
tool. The constraint file normally includes three parts: declaration of the input/output
variables, input constraints, and output constraints. The input and output constraints
should be represented as box constraints (i.e., variables bounded by upper and lower
bounds). For instance, when setting up constraints for a binary classifier, the input con-
straints should be the defined perturbation set, and the output constraints should be the
defined counter-example that falsifies the desired property.

Verifying local robustness can only demonstrate that a DNN is robust under a single
specification. In this case, a verified DNN does not necessarily mean it won’t be attacked.
For example, a DNN may be robust in classifying a perturbed cat image but might not be
robust in classifying a perturbed dog image. We need to establish different specifications
to verify a DNN at a higher level.

2.5 VNNCOMP

The International Verification of Neural Networks Competition (VNN-COMP) is a plat-
form that draws researchers in the field of neural network verification[21]. VNN-COMP is
a highly recognized competition frequently used as a benchmark for testing and verifying
algorithms within the community. Participating in the competition is an intuitive approach
to comparing the performance of a developed tool with state-of-the-art tools.

Since a neural network verification tool typically takes a DNN and specified constraints
as input, VNN-COMP uses a unified format for NNs called ONNX [3] and a unified format
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Table 2.1: Overview of VNN-COMP benchmarks. [21]

Category Benchmark Application Network Types

Complex Carvana UNet Image Segmentation Complex UNet
NN4Sys Dataset Indexing& Complex (ReLU + Sigmoid)

Cardinality Prediction
CNN&ResNet Cifar Bias Field Image Classification Conv. + ReLU

Collins RUL CNN Condition Based Maintenance Conv. + ReLU
Large ResNet Image Classification ResNet (Conv. + ReLU)

Oval21 Image Classification Conv. + ReLU
SRI ResNet A/B Image Classification ResNet (Conv. + ReLU)

VGGNet16 Image Classification Conv. + ReLU + MaxPool
FC MNIST FC Image Classification FC. + ReLU

Reach Prob Density Probability density estimation FC. + ReLU
RL Benchmarks Reinforcement Learning FC. + ReLU

TLL Verifiy Bench Two-Level Lattice NN FC. + ReLU

for specified constraints called VNN-LIB [9]. In the context of VNN-COMP, a benchmark
represents a combination of ONNX and VNN-LIB.

The final score of a participation tool is the sum of all benchmark scores, and each
benchmark score is the number of points achieved based on the Instance Score:

• Property Proven: 10 points;

• counterexample found: 10 points;

• Incorrect result: -100 points;

and Time Bonus:

• The fastest tool for each solved instance: 2 points;

• The second fastest tool: 1 points

To assess the performance of neural network verification tools, VNN-COMP employs a
variety of real-life benchmarks. You can find a detailed information of these benchmarks
in the Table 2.1.

10



2.6 Converting User-specified Constraints to Loss

In the context of VNN-COMP, the constraint language is composed of Boolean combi-
nations of term comparisons, where each term either represents a constant or a differen-
tiable function defined across the inputs, intermediate layers, and outputs of the DNNs.
To convert the user-sepecified constraints into differentiable loss functions, some designed
mappings need to be performed by following the approach introduced in Probabilistic Soft
Logic [16]. These mappings utilize the Lukasiewicz t-norm and its corresponding co-norm
[22]. The mappings are designed to be precise at extreme values (i.e., ”completely true”
or ”completely false”); when a variable assignment results in a constraint loss of zero, that
assignment is considered to be the satisfiable assignment for the specified constraints.

The transformation rules for boolean combination of constraints are listed as follows:

• L(ϕ
′ ∧ ϕ

′′
) := L(ϕ

′
) + L(ϕ

′′
)

• L(ϕ
′ ∨ ϕ

′′
) := L(ϕ

′
) ∗ L(ϕ′′

)

The transformation rules for comparison terms as follows:

• L(t ≤ t
′
) := max(t− t

′
, 0)

• L(t ̸= t
′
) := ϵ ∗ [t = t

′
]

• L(t = t
′
) := L(t ≤ t

′ ∧ t
′ ≤ t)

• L(t < t
′
) := L(t ≤ t

′ ∧ t
′ ̸= t)

If a constraint contains negation, the rules is listed below:

• L(¬(t = t
′
)) := L(t ̸= t

′
)

• L(¬(t ≤ t
′
)) := L(t

′
< t)

• L(¬(t ̸= t
′
)) := L(t = t

′
)

• L(¬(t < t
′
)) := L(t

′ ≤ t)

• L(¬(ϕ′ ∧ ϕ
′′
)) := L(¬ϕ′ ∨ ¬ϕ′′

)

• L(¬(ϕ′ ∨ ϕ
′′
)) := L(¬ϕ′ ∧ ¬ϕ′′

)
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The above rules follow a list of properties:

• The converted loss value is non-negative

• Larger the loss value, greater the number of violations

• A loss value of zero represents all the constraints are satisfied

• Sub-differentiable (i.e., differentiable almost everywhere)

2.7 Constraint Gradient Descent

Algorithm 1 The CGD Algorithm

Require: DNN M , Label y, Weight α, Constraint φ
Ensure: DNN Input x s.t. (argmax(M(x)) = y) ∧ φ(x)
1: φ′ = ConstraintLoss(φ) //Convert Constraint to Loss
2: initialize x
3: while True do
4: if (argmax(M(x)) = y) AND φ′(x) = 0 then
5: break //Stopping criteria
6: end if
7: l1 = φ′(x) //compute constraint loss
8: l2 = Loss(M(x), y) //compute misclassification loss
9: ∇x1 = ∂l1

∂x
//gradient value

10: ∇x2 = ∂l2
∂x

//gradient value
11: x = x−α ∗ (∇x1+∇x2) //Alter x in a direction of decreased loss
12: end while
13: return x

The Constrained Gradient Descent (CGD) algorithm was introduced to tackle chal-
lenges in neural network verification[22]. CGD improves gradient descent (GD) techniques
by integrating the capability to specify logical constraints for evaluating DNNs against
specific properties. These properties are not generally supported by the most popular
testing, verification, or reachability tools. CGD utilizes the converted constraint loss and
minimizes the constraint loss values using a GD method (Please refer to Algorithm 1)[22].

First, CGD maps the specified constraint φ into a constraint loss function φ
′
(line 1).

The constraint loss function φ
′
has the property that it is equal to 0 if and only if all
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the constraints are satisfied. An input x to the DNN is randomly initialized as a starting
point (line 2). The process then enters a loop that terminates when the constraints are
satisfied (i.e., the constraint loss equals 0) (lines 4-6). If x meets the criteria in line 4, the
loop will break and return x as the counterexample for the specification (line 13). If x
does not meet the criteria, both constraint loss (line 7) and classification loss (line 8) are
calculated, followed by computing the gradient values of both losses concerning x (lines 9-
10). Finally, the gradient values are combined to adjust x slightly using a small α, moving
in the direction of decreased loss (line 11). The loop ensures the process continues until
either x satisfies the criteria or a timeout is reached.

The gradient values for constraint gradient loss and misclassification loss (Lines 9-10)
play roles in the CGD algorithm to find global minima. If a global minimum for both losses
does not exist, there is no possible solution for the verification problem. Moreover, CGD
may not always be able to find a solution even if a solution exists[22]. This represents the
most significant limitation of CGDTest, which arises because the losses may be non-convex,
causing the GD algorithm to get stuck in a local minimum potentially.

2.8 CGDTest

The concept of CGDTest[22], proposed by Vineel Nagisetty, introduces an approach that
enables users to integrate logical constraints within the loss function of a gradient descent
(GD) algorithm (Refer Section 2.6 for more details), and the objective to generate deep
neural network (DNN) inputs that satisfy user-defined specifications. CGDTest effectively
addresses the concerns of model developers:

• Scalability: A tool that scales to industrial size DNNs

• Generality: A tool that can be applied to most of the architecture of DNNs

• Expressibility: Users can specify specification they want.

CGDTest takes ONNX (i.e., DNN) and VNN-LIB (i.e., user-specified constraints) as
inputs. It utilizes a pre-processing step to transform these user-specified constraints into
a constraint loss function while converting the ONNX into a PyTorch model.Then the
tool proceeds to the main process detailed in Section 2.7. Please refer to the architecture
diagram of CGDTest in Figure 2.3.

A proposed work called DL2[7] also converts user-specified constraints into differentiable
loss as proposed for CGDTest; however, DL2 has benefits for training neural networks. We
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Figure 2.3: The architecture diagram of CGDTest. CGDTest first converts the ONNX
and VNN-LIB into torch model and constraint loss function, then enters the main solver
that describes in section 2.7

use the idea in the verification/testing of neural networks. CGDTest also seeks different
gradient descent solvers (e.g., PGD and GA solvers); we will investigate more solvers and
find more potential combinations of solvers and optimization techniques.

CGDTest is designed to test whether a neural network satisfies a given constraint. We
assume that this tool is used by the model developer or a model validator with white-box
access to the model. The constraints can encapsulate various types of properties, such as
vulnerability to fairness, bias and robustness [20, 19]. Note that, if an adversary uses the
CGDTest tool, he/she would require white-box access to the model. However, this can
be circumvented by model-stealing attacks, where an adversary is able to create a local
copy of a target model using only black-box access, and adversarially attack the local copy
using white-box methods (such as CGDTest) and use those to attack the target model
successfully.
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Chapter 3

CGDTest Implementation

I joined the team responsible for implementing the CGDTest and ensuring its compliance
with VNN-COMP standards. The goal of the implementation was to enhance the flexibility
of CGDTest in both VNN-COMP and real-world applications. We implemented CGDTest
tool using Pytorch. We implemented CGDTest using Pytorch 1.110 in Python 3.8. In this
section, I include my contributions to the implementation.

3.1 Pre-processing in CGDTest

We incorporated a pre-processing step into CGDTest (please refer to Figure 1). The
pre-processing engine plays a crucial role in parsing input DNNs and input constraints
(VNNLIB).

Parsing ONNX. We employed a Python tool called onnx2torch to parse ONNX mod-
els into PyTorch models. However, we encountered some bugs in this tool when parsing
Convolutional Neural Networks (CNNs). After debugging and refining the tool, we ensured
it could parse all types of DNNs in the VNN-COMP.

Parsing VNN-LIB. VNN-LIB is the standard for neural network verification bench-
marks. This standard is built upon the ONNX model description format and the Satisfi-
ability Modulo Theories Library (SMT-LIB) format for the property specification [9]. To
parse the VNN-LIB constraint format, we incorporated a wrapper that encapsulates all
the constraints and translates them into a language that the CGDTest parser can under-
stand. Furthermore, we included a parser that can convert CGDTest’s constraints into a
constraint loss function.
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3.2 VNN-COMP Compliant

The organizers of VNN-COMP evaluated all participating tools using Amazon Web Ser-
vices (AWS). We ran our tool on the permitted instance, the m5.16xlarge, with 64 vCPUs
and 256 GB RAM. We developed scripts to enable CGDTest evaluation on AWS and en-
sured that CGDTest could run all the benchmarks in the competition. To ensure that
CGDTest can run successfully on AWS, we conducted numerous tests on both GPU and
CPU using Compute Canada. CGDTest is capable of verifying DNNs on either a CPU or
GPU by utilizing a flag in the command line.
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Chapter 4

Experiments Result

CGDTest has been evaluated by participating in VNN-COMP. In this section, the VNN-
COMP results are presented [21]. The benchmarks used for evaluation are described in
Section 2.5. According to VNN-COMP rules [21], participants are not required to run
all the provided benchmarks. On the other hand, they can choose a minimum of two
benchmarks to evaluate their tool. All tools are scored according to the rules described in
Section 2.5, and their ranking is based on the total scores.

In this report, cactus plots are utilized to compare the performance of all participants.
The X-axis represents the number of benchmarks the tools solved, while the Y-axis indicates
the Wallclock Runtime required for the tools to solve a problem. For each solver, we sorted
the runtime in ascending order for each solver. In a cactus plot, lower Wallclock Runtimes
signify a faster solver for a verification problem. Therefore, the solver is better if the line
is closer to the bottom right.

This section will first introduce the overall scores achieved by CGDTest when running
all the provided benchmarks. Secondly, it will discuss the results of CGDTest for the
benchmarks in which CGDTest stood second place, including cifar100-tinyimagenet-resnet,
cifar-biasfield, and sri-resnet-a.
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Figure 4.1: Catus plots for the tools in VNN-COMP

4.1 Total Score

CGDTest stood fifth overall among the 11 participating tools (Please see Table 4.1 for the
rank). The scoring rule is detailed in section 2.5.

Figure 4.1 presents a cactus plot that compares the performance among all participants.
CGDTest is depicted by an orange line. The plot also proves that CGDTest ranked fifth
overall. It demonstrates that CGDTest successfully solved approximately 700 benchmarks,
while the winner (i.e., α, β− Crown) solved more than 1300 benchmarks.
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Figure 4.2: Catus plots for the tools in solving cifar100-tinyimagenet-resnet

4.2 Results on cifar100-tinyimagenet-resnet

CGDTest ranked second in solving the benchmark called cifar100-tinyimagenet-resnet. By
referring to the cactus plot in Figure 4.2, CGDTest successfully solved the most bench-
marks when addressing cifar100-tinyimagenet-resnet. However, as referenced in Table 4.2,
CGDTest placed second due to producing three incorrect results, which led to a score
penalty.

Please note that only four tools are included in this benchmark set because the other
tools either do not support this benchmark or fail to solve the problems.
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Figure 4.3: Catus plots for the tools in solving cifar-biasfield

4.3 Results on cifar-biasfield

CGDTest ranked second in solving the benchmark called cifar-biasfield. By referring to
the cactus plot in Figure 4.3, CGDTest successfully solved the most benchmarks when
addressing cifar-biasfield. Furthermore, CGDTest is the most efficient tool in this bench-
mark set, as its line is positioned at the bottom right. However, as referenced in Table
4.3, CGDTest placed second due to producing one incorrect result, which led to a score
penalty.
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Figure 4.4: Catus plots for the tools in solving sri-resnet-a

4.4 Results on sri-resnet-a

CGDTest ranked second in solving the benchmark called sri-resnet-a. By referring to
the cactus plot in Figure 4.4, CGDTest successfully solved the most benchmarks when
addressing sri-resnet-a. Furthermore, CGDTest is the most efficient tool in this benchmark
set, as its line is positioned at the bottom right. As indicated in Table 4.4, CGDTest’s score
is very close to the first place, and CGDTest has the highest number of verified benchmarks
in this benchmark set.
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Table 4.1: VNN-COMP Results

Rank Tool Score

1 α, β− Crown 1274.9
2 MN-BAB 1017.5
3 Verinet 892.4
4 Nnenum 534.0
5 CGDTest 408.4
6 Peregrinn 399.0
7 Marabou 372.2
8 Debona 222.9
9 Fastbatlnn 100.0
10 Verapak 98.2
11 Averinn 29.1

Table 4.2: Benchmark cifar100-tinyimagenet-resnet

Rank Tool Verified Falsified Fastest Penalty Score

1 α, β− Crown 69 0 56 0 813
2 CGDTest 95 0 28 3 725
3 MN-BAB 60 3 10 0 673
4 Verinet 48 3 6 0 540
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Table 4.3: Benchmark cifar-biasfield

Rank Tool Verified Falsified Fastest Penalty Score

1 α, β− Crown 69 1 1 0 736
2 CGDTest 71 0 55 1 731
3 Verinet 69 1 0 0 721
4 Verapak 71 0 0 1 635
5 MN-BAB 36 1 17 0 404
6 Marabou 27 0 0 0 270
7 NNenum 4 0 0 0 43

Table 4.4: Benchmark sri-resnet-a

Rank Tool Verified Falsified Fastest Penalty Score

1 α, β− Crown 20 12 7 0 356
2 CGDTest 26 6 14 0 352
3 MN-BAB 18 12 19 0 343
4 Verinet 12 12 4 0 248
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Chapter 5

Limitations, Future Work and
Conclusion

5.1 Limitations

A current limitation of CGDTest is that it is an incomplete tool. An incomplete solver
is an algorithm that may not always produce a satisfiable output for constraints, even if
one does exist. However, incomplete solvers are particularly useful for large-size models,
since they are more efficient than complete solvers. In the context of CGDTest, it can only
guarantee that the SAT output is indeed satisfiable, but it cannot guarantee a UNSAT
output in the current phase. This is because GD methods may not always reach a global
minimum, as they sometimes get stuck at local minima. Therefore, we cannot conclude
that a problem is UNSAT when the minimum is greater than zero, as there is a probability
that a global minimum of 0 exists. However, if a DNN’s input results in a constraint loss
of zero, then CGDTest can guarantee SAT.

CGDTest was the only incomplete tool participating in the VNN-COMP. Since the
VNN-COMP does not have a category for incomplete tools, we employed an ”estimate”
approach to enable CGDTest to produce UNSAT results. We dynamically define an ϵ value
for each benchmark, and if the loss minimum found by the GD method is greater than ϵ, it
outputs UNSAT. If the loss minimum found by the GD method is less than ϵ but not equal
to zero, it outputs UNKNOWN. The limitation of this approach is that it may potentially
produce incorrect results, which could result in penalties from the competition.

We proposed ideas to boost CGDTest to a higher level to address the above limitations
(Section 5.2, 5.3 and 5.4).
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5.2 Dividing Input Search Domain

To prevent the GD method from moving in the direction of local minima, we propose the
idea of dividing the input search domain into a set of sub-domains. This idea is inspired by
the divide-and-conquer algorithm [25]. Since the GD method in CGDTest aims to search
for a DNN input that results in the minimum loss, dividing the search domain into a set
of sub-domains allows each minimum (including global and local minima) to be placed in
different sub-domains. We can then apply the GD method to each sub-domain to find all
the minima for all the sub-domains. The smallest minimum from all the sub-domains will
be treated as the global minimum. We believe that this approach will help avoid the GD
method from getting stuck at a local minimum.

We already have a prototype for this idea. The current splitting heuristic is to choose
the input variable in a DNN with the largest range and then split the box constraints for
this variable into a set of box sub-constraints (where the combined sub-constraints should
equal the original one). This splitting heuristic is inspired by a paper on parallelization
techniques for neural network verification[30]. However, in our experiments, this prototype
does not significantly improve the solving of verification problems. As a result, further
tuning or new splitting heuristics may need to be applied to enhance this approach.

5.3 Utilizing MILP to Break Out of Local Minima

Another idea is to help the GD method break out of local minima. In the current version
of CGDTest, we utilize random noise to prevent the GD method from getting stuck at
local minima. We propose a new approach to help the GD method in breaking out of local
minima, which involves using a MILP solver, such as Gurobi[11]. When the GD method
is detected that stucking at a minimum during the process, we can encode the problem
into a MILP using the current search input. The objective function is to minimize the
constraint loss function. We then use Gurobi to find a satisfiable assignment that results
in a lower loss. If Gurobi finds a satisfiable DNN input that leads to a lower loss, we can
apply the GD method again, using that DNN input found by Gurobi as a starting point.
The challenge of this idea is that we need to encode and include a large Torch model within
a Gurobi model, which may slow down Gurobi’s performance.
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5.4 Integrate CGDTest into an Algorithm Selection

We are currently working on integrating CGDTest into an algorithm selection tool for
neural network verification called Goose. Goose is another neural network verification
tool from our research team, which is led by Mr. Joseph Scott. Goose aims to select the
optimal DNN verification tool for a given DNN, which is decided by the Algorithm Selection
Engine (ASE). Goose is a complete verification tool, and the ASE includes state-of-the-art
verification tools. In experiments using the VNN-COMP benchmarks, Goose achieved a
higher score than the VNN-COMP winner. Based on the results of CGDTest from VNN-
COMP, we observed that CGDTest was the fastest at solving some of the benchmarks
in VNN-COMP. We believe integrating CGDTest into Goose’s ASE can improve Goose’s
performance.

5.5 Conclusion

To enhance the security of Deep Neural Networks (DNNs) in mission-critical applications,
we implemented a novel testing tool for neural network verification, called CGDTest.
CGDTest takes user-specified constraints and transforms them into a differentiable loss
function named the constraint loss function. By employing the gradient descent method,
CGDTest could find a DNN input that minimizes the loss function. When an input results
in a loss value of zero, it signifies a satisfiable assignment for the constraints.

CGDTest was submitted to VNN-COMP, where it stood fifth place out of 11 partici-
pants. Furthermore, it achieved second place in several benchmarks within the competition.
However, CGDTest has its limitations, as it is an incomplete solver and may not always
produce a satisfiable assignment for the constraints. Several ideas for enhancing CGDTest
have been proposed, and we believe that these approaches will elevate CGDTest’s perfor-
mance to a higher level.
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