
Numerical Study of a Partial
Di↵erential Equation Approach to

Deep Neural Networks

by

Helsa Chan

A research paper
presented to the University of Waterloo

in partial fulfillment of the
requirement for the degree of

Master of Mathematics
in

Computational Mathematics

Supervisor: Prof. Justin Wan

Waterloo, Ontario, Canada, 2017

c� Helsa Chan Public 2017

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Deep neural networks, a technique in machine learning, have had remarkable achieve-
ments in various domains, including visual recognition, natural language processing, anomaly
detection and text generation. Deep neural networks are typically trained by the stochastic
gradient descent method, which seeks the parameters that minimize a non-convex objective
function.

Chaudhari et al. [3] have developed four optimization algorithms using a partial di↵er-
ential equation approach. The algorithms, namely ESGD, H-ESGD, HEAT and HJ, have
modified the stochastic gradient method by minimizing the objective function smoothened
via local entropy, heat equation and Hamilton-Jacobi equations.

This paper provides a numerical study of the performance of the four optimization algo-
rithms under di↵erent parameter settings, including the number of iterations per update,
amount of smoothing, momentum and mini-batch size. Each of the algorithms are applied
to four datasets and deep neural network architectures, and compared to the stochastic
gradient descent method based on iteration count and wall clock time. According to the
experimental results, stochastic gradient descent still remains the most e�cient algorithm,
but the new optimization algorithms could bring improvement to the solution under certain
conditions.

iii

Acknowledgements

I would like to thank my supervisor Prof. Justin Wan for his guidance towards this
project, and Prof. Yaoliang Yu for taking his time to read my paper.

iv

Dedication

This is dedicated to my family.

v

Table of Contents

List of Figures viii

1 Introduction 1

2 Background 4

2.1 Deep Neural Networks . 4

2.1.1 Fully Connected Neural Networks 5

2.1.2 Convolutional Neural Networks . 6

2.2 Techniques in Deep Neural Networks . 8

2.2.1 Batch Normalization . 8

2.2.2 Data Pre-processing . 10

2.2.3 Choosing Activation Functions . 10

2.2.4 Constructing Deep Neural Networks 12

2.3 Training Deep Neural Networks . 12

2.3.1 Loss Function . 12

2.3.2 Overfitting and Underfitting . 14

2.3.3 Regularization . 15

2.4 Optimization in Deep Neural Networks . 15

2.4.1 Gradient Descent . 16

2.4.2 Stochastic Gradient Descent . 16

2.4.3 Other Optimization Algorithms . 19

vi

3 Methodology 20

3.1 Smoothing of the Loss Function by Local Entropy and Homogenization . . 21

3.1.1 Local Entropy and the Viscous Hamilton-Jacobi Equation 21

3.1.2 Gradient of Local Entropy . 23

3.1.3 Local Entropy via Stochastic Di↵erential Equations 24

3.2 Smoothing of the Loss Function by the Heat Equation 26

3.3 Smoothing of the Loss Function by Inf-convolution 27

3.3.1 The Non-viscous Hamilton-Jacobi Equation 27

4 Empirical Evaluation 30

4.1 Setup . 30

4.1.1 Notations . 30

4.1.2 Datasets . 31

4.2 Experiments . 33

4.2.1 Loss and Accuracy versus the Number of Epochs 34

4.2.2 Loss and Accuracy versus CPU Time 35

4.2.3 Varying L and T . 38

4.2.4 Varying L with T fixed . 39

4.2.5 Varying Amount of Smoothing . 44

4.2.6 Varying Momentum . 54

4.2.7 Varying Mini-batch Size . 56

5 Conclusion 75

References 76

vii

List of Figures

1.1 A deep neural network . 2

2.1 A fully connected neural network with 2 hidden layers. 6

2.2 An example of a 2D convolution . 7

2.3 An example of 2⇥ 2 max pooling . 9

2.4 An example of 2⇥ 2 max pooling with stride 2 9

2.5 Underfitting, appropriate fitting and overfitting 15

4.1 Comparison of accuracy or loss against number of epochs for the optimiza-
tion methods SGD (black), HJ (green), HEAT (red), ESGD (blue) and
H-ESGD (purple) on four datasets. 36

4.2 Comparison of accuracy or loss against CPU time for the optimization meth-
ods SGD (black), HJ (green), HEAT (red), ESGD (blue) and H-ESGD (pur-
ple) on four datasets. 37

4.3 Comparison of accuracy against number of epochs for the optimization meth-
ods HJ, HEAT, ESGD and H-ESGD on the Mushroom dataset with L set
to be 20 (green), 40 (red) and 100 (blue). 40

4.4 Comparison of accuracy against number of epochs for the optimization meth-
ods HJ, HEAT, ESGD and H-ESGD on the Covertype dataset with L set
to be 20 (green), 40 (red) and 100 (blue). 41

4.5 Comparison of loss against number of epochs for the optimization methods
HJ, HEAT, ESGD and H-ESGD on the House Sales dataset with L set to
be 20 (green), 40 (red) and 100 (blue). 42

viii

4.6 Comparison of loss against number of epochs for the optimization methods
HJ, HEAT, ESGD and H-ESGD on the Dow Jones Index dataset with L set
to be 20 (green), 40 (red) and 100 (blue). 43

4.7 Comparison of accuracy against number of epochs for the optimization meth-
ods HJ, HEAT, ESGD and H-ESGD on the Mushroom dataset with L set
to be 1 (black), 5 (green), 20 (red) and 100 (blue). 45

4.8 Comparison of accuracy against number of epochs for the optimization meth-
ods HJ, HEAT, ESGD and H-ESGD on the Covertype dataset with L set
to be 1 (black), 5 (green), 20 (red) and 100 (blue). 46

4.9 Comparison of loss against number of epochs for the optimization methods
HJ, HEAT, ESGD and H-ESGD on the House Sales dataset with L set to
be 1 (black), 5 (green), 20 (red) and 100 (blue). 47

4.10 Comparison of loss against number of epochs for the optimization methods
HJ, HEAT, ESGD and H-ESGD on the Dow Jones Index dataset with L set
to be 1 (black), 5 (green), 20 (red) and 100 (blue). 48

4.11 Comparison of accuracy against number of epochs for the optimization meth-
ods HJ, HEAT, ESGD and H-ESGD on the Mushroom dataset with � = 0.05
(green), 0.1 (red) and 0.25 (blue). 50

4.12 Comparison of accuracy against number of epochs for the optimization meth-
ods HJ, HEAT, ESGD and H-ESGD on the Covertype dataset with � = 0.02
(green), 0.04 (red) and 0.1 (blue). 51

4.13 Comparison of loss against number of epochs for the optimization methods
HJ, HEAT, ESGD and H-ESGD on the House Sales dataset with � = 0.0005
(green), 0.001 (red) and 0.0025 (blue). 52

4.14 Comparison of loss against number of epochs for the optimization methods
HJ, HEAT, ESGD and H-ESGD on the Dow Jones Index dataset with � =
0.002 (green), 0.004 (red) and 0.01 (blue). 53

4.15 Comparison of accuracy or loss against number of epochs for SGD on the
four datasets with the momentum set to 0.5 (green), 0.9 (red) and 0.99
(blue). 55

4.16 Comparison of accuracy against number of epochs for the optimization meth-
ods HJ, HEAT, ESGD and H-ESGD on the Mushroom dataset with the
momentum set to 0.5 (green), 0.9 (red) and 0.99 (blue). 57

ix

4.17 Comparison of accuracy against number of epochs for the optimization meth-
ods HJ, HEAT, ESGD and H-ESGD on the Covertype dataset with the
momentum set to 0.5 (green), 0.9 (red) and 0.99 (blue). 58

4.18 Comparison of loss against number of epochs for the optimization meth-
ods HJ, HEAT, ESGD and H-ESGD on the House Sales dataset with the
momentum set to 0.5 (green), 0.9 (red) and 0.99 (blue). 59

4.19 Comparison of loss against number of epochs for HEAT on the House Sales
dataset with the momentum set to 0.5 (green), 0.9 (red) and 0.99 (blue),
after the deletion of a deviant instance. 60

4.20 Comparison of loss against number of epochs for the optimization meth-
ods HJ, HEAT, ESGD and H-ESGD on the Dow Jones dataset with the
momentum set to 0.5 (green), 0.9 (red) and 0.99 (blue). 61

4.21 Comparison of accuracy or loss against number of epochs for SGD on the
four sets with the mini-batch size set to 32 (green), 64 (red) and 128 (blue). 63

4.22 Comparison of accuracy or loss against CPU time on the four sets with the
mini-batch size set to 32 (green), 64 (red) and 128 (blue). 64

4.23 Comparison of accuracy against number of epochs for the optimization meth-
ods HJ, HEAT, ESGD and H-ESGD on the Mushroom dataset with the
mini-batch size set to 32 (green), 64 (red) and 128 (blue). 65

4.24 Comparison of accuracy against CPU time for the optimization methods HJ,
HEAT, ESGD and H-ESGD on the Mushroom dataset with the mini-batch
size set to 32 (green), 64 (red) and 128 (blue). 66

4.25 Comparison of accuracy against number of epochs for the optimization meth-
ods HJ, HEAT, ESGD and H-ESGD on the Covertype dataset with the
mini-batch size set to 32 (green), 64 (red) and 128 (blue). 67

4.26 Comparison of accuracy against CPU time for the optimization methods HJ,
HEAT, ESGD and H-ESGD on the Covertype dataset with the mini-batch
size set to 32 (green), 64 (red) and 128 (blue). 68

4.27 Comparison of loss against number of epochs for the optimization methods
HJ, HEAT, ESGD and H-ESGD on the House Sales dataset with the mini-
batch size set to 32 (green), 64 (red) and 128 (blue). 69

4.28 Comparison of loss against number of epochs for ESGD on the House Sales
dataset with the mini-batch size set to 32 (green), 64 (red) and 128 (blue),
after the deletion of a deviant instance. 70

x

4.29 Comparison of loss against CPU time for the optimization methods HJ,
HEAT, ESGD and H-ESGD on the Dow Jones dataset with the mini-batch
size set to 32 (green), 64 (red) and 128 (blue). 71

4.30 Comparison of loss against CPU time for ESGD on the House Sales dataset
with the mini-batch size set to 32 (green), 64 (red) and 128 (blue), after the
deletion of a deviant instance. 72

4.31 Comparison of loss against number of epochs for the optimization methods
HJ, HEAT, ESGD and H-ESGD on the Dow Jones Index dataset with the
mini-batch size set to 32 (green), 64 (red) and 128 (blue). 73

4.32 Comparison of loss against CPU time for the optimization methods HJ,
HEAT, ESGD and H-ESGD on the Dow Jones Index dataset with the mini-
batch size set to 32 (green), 64 (red) and 128 (blue). 74

xi

Chapter 1

Introduction

Humans perform many activities in daily life without much di�culty. We could easily
recognize faces and understand what a person says. Computers, on the other hand, find it
much di�cult to interpret sentences or identify objects. While we want computers to be
able to perform similar tasks, the rules cannot be described to computers explicitly.

Machine learning is the field of study that gives computers the ability to learn without
being explicitly programmed [21]. The “machine”, often an agent for machine learning
algorithms rather than a physical machine, is given a large set of data, in which it dis-
covers and learns the underlying patterns by itself. For instance, given the image of a
digit, a machine can “learn” to identify the digit shown in the image after observing a
su�cient amount of “examples” containing thousands of images and their corresponding
digits shown; similarly, a machine could learn to estimate housing prices based on a dataset
containing information of many houses and their corresponding prices. Such information
available as inputs are collectively known as “features”. For instance, if you evaluate the
price of a house based on its size and geographical location, then “size” and “geographical
location” are the features of a house; similarly, we can think of each pixel of an image as
a feature.

During training, a dataset is pre-divided into the training set, validation set and testing
set [9]. First, the machine builds upon its knowledge on the training set based on the input
features and the corresponding labels which act as “supervisors” for the machine to learn
the parameters. Then, the pre-trained machine is applied on the validation set, which is
used to assess the performance of the machine on an unseen dataset and tuning. Finally,
the trained machine is applied on the testing set, which is unused during the training
process, for a fair evaluation of performance of the machine. Supervised learning [9] is

1

input layer hidden layer 1 hidden layer 2 output layer

Figure 1.1: A deep neural network

further divided into classification and regression problems. The purpose of a classification
problem is to classify an instance into a category. For instance, in the digit recognition
problem, the goal is to classify each image into one of the ten possible digits. The purpose
of a regression problem is to predict continuous values. For instance, in the house price
estimation problem, the goal is to assign each house with a value representing the price of
the house.

Among all the machine learning techniques, deep neural networks [7] have become
one of the most successful and fastest-growing tools. Deep learning, the study of deep
neural networks, have had remarkable achievements in various domains, including visual
recognition [12], natural language processing [4], anomaly detection [26] and even text
generation [22].

A deep neural network [7], more often conceived as layers with interconnections, is a
composition of many mathematical functions. Each input vector of a dataset can be seen
as entering the neural network through the first (input) layer, then proceeds to move along
the subsequent (hidden) layers, until it exits the last (output) layer producing an output
(Figure 1.1). In between layers, there are parameters which decide the weighting of the
values sent from a layer to the next layer. Such an architecture provides neural networks
with high flexibility to approximate and express the underlying functions which cannot be
written explicitly.

In the case of a neural network, the machine undergoes the training process for the
best parameters producing the correct outputs on the training set, and is then evaluated

2

according to its performance on the validation set. The question is, how do we quantify
the performance of a neural network? One approach is to define a loss function to measure
the discrepancy between the desired output and the output values predicted by the trained
neural network. A smaller loss implies a better parameter combination and neural network,
as the neural network produces predictions that are closer to the correct outputs. Hence,
the training goal of a neural network is to seek parameters that minimize the loss function.
The challenge lies in solving the optimization problem, in which the objective loss function
is very often non-convex and has dimensions as high as millions. Second-order methods
such as Newton’s method are generally infeasible, as computing the Hessian is complex and
of huge cost. While first-order methods such as gradient descent provide an option, ideally
we also want a method that converges to a satisfactory solution in a reasonable amount of
time. As the loss function is often noisy and contains many local minima, the traditional
gradient descent also su↵ers from the problem of being trapped in local minima, and
solutions fail to update any further. Variants of gradient descent have arose to alleviate
the problem, with the stochastic gradient descent method (Section 2.4.2) becoming the
default choice for training neural networks parameters [7].

Another common issue in deep neural networks is over-fitting, i.e. the parameters give
low loss on the training set but high loss on the validation or testing set, implying the
parameters fail to generalize to unseen data. This usually happens when the neural network
contains too many layers, causing the network to fit “too well” to capture the noise of the
training set as well. Fortunately, there are many regularization remedies to reduce over-
fitting (Section 2.3.3); techniques such as batch normalization [10] (Section 2.2.1) also leads
to faster learning and better solution in general.

Chaudhari et al. [3] have recently proposed a new model which establishes connections
between the optimization of deep neural networks and partial di↵erential equations. In
particular, the solutions of the Hamilton-Jacobi equations and a new function called the
local entropy [1] are found to smoothen the loss function of deep neural networks. It is
anticipated that the four algorithms ESGD, H-ESGD, HEAT and HJ, which all apply a
di↵erent form of smoothing to the loss function, could bring improvements to the general-
ized error of deep neural networks. Based on the theoretical results discussed in the paper,
we are interested in a more comprehensive numerical study of the algorithms. We will
compare their e↵ectiveness with stochastic gradient descent method, the traditional way
to train deep neural networks.

This research paper is organized as follows. Chapter 2 provides readers with the neces-
sary background in machine learning and deep neural networks. Chapter 3 gives a summary
of the previous results by Chaudhari et al. [3]. The numerical study is discussed in Chapter
4. Finally, we give a conclusion in Chapter 5.

3

Chapter 2

Background

Machine learning allows a machine to learn underlying patterns of a given data and perform
tasks such as digit recognition and house prices estimation. Di↵erent machine learning
algorithms allow machines to learn under di↵erent mechanisms. For deep neural networks,
our ultimate goal is to seek the parameters to give accurate and e�cient predictions.

We will first introduce fully connected neural networks and convolutional neural net-
works. Then, we will discuss how a deep neural network is formulated into an optimization
problem, trained, and evaluated.

2.1 Deep Neural Networks

A neural network is a composition of many mathematical functions with a high number of
parameters. It is called a “neural network” because it is conceived as a sequence of layers
with interconnections, resembling a neural network. The number of layers determine the
“deepness” of a neural network.

We will first introduce fully connected neural networks, the simplest kind of deep neural
networks. Then, we move on to convolutional neural networks [7], a variation of fully
connected neural networks involving convolutions, which are more complex but often give
better predictions for image datasets.

4

2.1.1 Fully Connected Neural Networks

Mathematically, a fully connected neural network is written as a nested composition of M
functions �

1

, . . . , �
M

, where �
i

is a composition of a linear function g
i

and a non-linear
function h

i

. We use d
i

to denote the number of outputs of �
i

. We define d
0

to be the
dimension of an input instance (or equivalently, the number of features).

Denote z
i

the input at layer i. The linear function g
i

can be alternatively written as

g
i

(z
i

) = W
i

z
i

+~b
i

or

g
i

(z
i

) =
⇣
~b
i

W
i

⌘✓1
z
i

◆
, (2.1)

where W
i

2 Rd

i

⇥d

i�1 is the weight parameter and ~b
i

2 Rd

i is the bias parameter. The non-
linear function h

i

, which provides more flexibility to the network, applies an activation
function h : R ! R to each element of g

i

(z
i

), giving an output of dimension d
i

. More
information on how to choose h is described in Section 2.2.3.

For each input ⇠, the overall function is given by

⇡(⇠) = �
M

(�
M�1

(. . . �
1

(⇠)) . . .) = h
M

(g
M

(h
M�1

(g
M�1

(. . . h
1

(g
1

(⇠))) . . .). (2.2)

We can portray (2.2) as a sequence of layers. Figure 2.1 shows the architecture of a
simple fully connected neural network of two hidden layers. The term “fully connected”
means the nodes on two consecutive layers form a fully connected bipartite graph with
weights along the edges. Black and blue edges represent weight parameter terms and
bias terms respectively. Each layer is referred to as a “fully connected layer”, and the d

i

dimensions of each function output are often referred to as “units” or “nodes” of a layer.
For each layer i, the extra input “1” is introduced to include the bias term. It is then easier
to use the matrix multiplication as in (2.1) to think of the linear transition from layer i to
layer i+ 1. Although the multiplication vector and matrix now have one extra dimension,
the extra node is excluded when we describe the number of nodes of the layer. Each of the
d
i

linear outputs is then passed through the activation function to give the final output of
the layer z

i+1

= h
i

(g
i

(z
i

)), which is also the input of the next layer. This process repeats
until the output layer is reached.

5

1
1

1

input layer
layer 1

hidden layer 1
layer 2

hidden layer 2
layer 3

output layer

⇠ = z
1

z
2

z
3

z
4

= ⇡(⇠)

d
0

= 4 d
1

= 3 d
2

= 2 d
3

= 1

h
1

(W
1

z
1

+ b
1

) h
2

(W
2

z
2

+ b
2

) h
3

(W
3

z
3

+ b
3

)

�
1

�
2

�
3

Figure 2.1: A fully connected neural network with 2 hidden layers.

2.1.2 Convolutional Neural Networks

A convolutional neural network is a special type of fully connected neural networks which
involves the use of a convolutional layer. Convolutional neural networks are especially
useful for processing input data that contains a spatial structure, for instance images,
which can be seen as 2D grids of pixels.

Given an image, a convolution operation can be viewed as the weighted sum of the
neighboring pixels. Figure 2.2 shows a simple example of the operation of a 2D convolution.
Suppose we have a 3⇥ 4 image and a 2⇥ 2 matrix, which is called a “kernel” and contains
some values determining the weights. Then, there are 2 ⇥ 3 ways to place the kernel
matrix right above of the image, so that all the elements of the kernel coincide with the
elements of the image. For each possible placement of the kernel, we calculate the sum of
the element-wise product of the kernel and the 2 ⇥ 2 block of the image. This results in
2⇥ 3 sums corresponding to di↵erent positions of the image. The resulting 2⇥ 3 matrix is
the convolution of the image and the kernel, often called the “feature map”.

The kernel can be thought of as a “sliding window” which allows the machine to focus on
a small region of the whole picture. Di↵erent weights of the kernel correspond to di↵erent

6

Figure 2.2: An example of a 2D convolution

7

image features that we want to extract. For instance, in digit recognition, if we want to
extract the feature “1”, a suitable kernel would be one that captures the vertical stroke
characteristics of the digit “1”. The size and number of kernels correspond to the “width
of the window” and “number of windows” respectively. The specific weights of the kernel
are the parameters that we want the machine to learn. We can similarly define convolution
for higher dimensions.

Unlike fully connected layers, the parameters or weights in a convolutional layer are
shared among all the pixels in the image in the form of a kernel matrix. In the case of Figure
2.2, the 3⇥4 image is first reshaped into a 12-dimensional vector, then left-multiplied by the
6⇥12 weight matrix, which is a sparse matrix containing non-zero elements k

11

, k
12

, k
21

, k
22

corresponding to the kernel matrix, giving the 6-dimensional output which is reshaped back
to 2⇥3. The bias term is zero. Since the weights are shared, a convolutional neural network
often has fewer parameters to train compared to the fully connected layers.

A convolutional layer is often followed by a pooling layer to allow feature extraction.
The pooling layer also has a sliding window for feature selection. The pooling layer provides
summary statistics of the neighboring outputs. For example, the max pooling layer gives
the maximum value within a neighborhood of the image, as demonstrated in Figure 2.3.

Up till now, convolutions and pooling are performed using the “sliding window” kernel
which shifts 1 pixel at a time. When the size and number of kernels get large, the amount
of computation is huge. To increase e�ciency, it is common to introduce a “stride” which
determines the number of pixels that the window is shifted before one operation is per-
formed. The resulting neural network is smaller, and the image is downsampled by a factor
of the stride. Figure 2.4 gives an example of a 2⇥ 2 maximum pooling with stride 2.

2.2 Techniques in Deep Neural Networks

2.2.1 Batch Normalization

Batch normalization [10] follows the same procedures as usual normalization, i.e. nor-
malizing outputs of a linear layer by subtracting the mean and dividing by the standard
deviation, except that the mean and standard deviation are approximated using a small
subset of randomly selected instances called the mini-batch. The overall e↵ect is still a
linear function, but performing batch normalization generally makes training more robust
by avoiding very large or small outputs that usually accumulate along the network. In
practice, batch normalization is optionally performed after the activation function of each
hidden layer.

8

0

3

4

5

6

2

0

1

0

0

4

1

7

9

2

�1

2⇥ 2
max pooling

6

4

5

6

4

4

9

9

4

Figure 2.3: An example of 2⇥ 2 max pooling

0

3

4

5

6

2

0

1

0

0

4

1

7

9

2

�1

2⇥ 2
max pooling

stride 2

6

5

9

4

Figure 2.4: An example of 2⇥ 2 max pooling with stride 2

9

2.2.2 Data Pre-processing

Data pre-processing refers to the process of modifying, selecting, refining and tidying up
data to prepare them for the training stage.

Data pre-processing is necessary when the raw collected data is problematic for training.
For instance, missing values during the data collection stage must be handled, since training
cannot proceed with incomplete data. One solution is to simply discard all the instances
containing missing values; another solution is to perform imputation, i.e. we fill in the
missing values with the mean, median or mode of the particular feature. Another example
of data pre-processing is the normalization of input data, which is especially important
when di↵erent features of the input have very di↵erent ranges of values. For image datasets,
it is typical to rescale the values linearly to numbers between 0 and 1.

In other cases, data pre-processing is performed as an optional procedure to improve
neural network performance. Feature selection and data cleansing are often performed
to select relevant features from a dataset before passing to training. When it comes to
categorical variables, it is also common to use one-hot encoding, i.e. transform the variables
into boolean columns to indicate whether an instance fall into each category.

2.2.3 Choosing Activation Functions

The activation function h : R 7! R not only alters the outputs of the linear function for a
more flexible network, but also allows extraction of useful information.

The activation function h is chosen depending on the machine learning task. For
instance, if we are performing binary classification, we want the single output value to be
a binary value indicating whether an instance belongs to a class. A suitable choice would
be the threshold function

h(z) =

(
1 z � 0

0 z < 0
,

where “1” indicates the input belongs a certain class and “0” otherwise. A“softer” version
of the threshold function is the sigmoid function defined as

h(z) =
1

1 + exp(�z)
, (sigmoid)

10

which squishes a real value to (0, 1) and outputs a probability value. The softmax function
defined as

h(z
k

) =
exp z

kP
j

exp z
j

generalizes this e↵ect to multi-class classification, in which the output values and represent
a categorical distribution. Thus, the number of nodes on the output layer is the same as
the number of classes, and the output values add up to 1. For the case of regression, we
set the activation function to be the identity function because there is no need to alter the
linear outputs.

For hidden layers, the preferred activation functions are those with easily computable
derivatives within an appropriate range, as they facilitate the training process of the neural
network. The derivatives of the activation functions in the hidden layers are related to the
speed of parameters update.

Gradients that are close to zero should be avoided, as they cause the network to learn
very slowly. The sigmoid function has the derivative

d

dz

1

1 + exp(�z)
=

exp(�z)

(1 + exp(�z))2
,

which is very close to zero for most z 2 R. During the training process which involves the
gradient descent method (Section 2.4.1), the parameters would then be updated extremely
slowly. Gradients that are very large should also be avoided, as they cause the parameters
to change too quickly and “overshoot” during the gradient descent. The neural network’s
training progress would all be lost as a result.

One appropriate choice of the activation function for hidden layers is the rectified linear
units (ReLUs)[17]

h(x) = max{0, x}.

Rectified linear units1 are found to give satisfactory results when used as activation func-
tions for the hidden layers. We will also use ReLUs as the default activation function choice
for our experiments.

1Note that ReLUs are not di↵erentiable at 0 [17]. We define the derivative of ReLUs at 0 to be 0.

11

2.2.4 Constructing Deep Neural Networks

In a given machine learning problem, the input and output dimensions are often pre-
determined. Before proceeding to training, the number of hidden layers and nodes on each
hidden layer have to be determined.

Deep neural networks are known for its flexibility and capability to capture the complex
underlying function. A higher number of hidden layers and nodes allows more “twists” in
the function represented by the neural network, and are capable in expressing more complex
functions. However, if the number of hidden layers and nodes are set too high, the neural
network not only takes a longer time to train, but could also increase the generalized error
and lead to the problem of overfitting. Section 2.3.2 further elaborates this point.

In general, the more amount of input data, the more hidden layers and nodes are
required. However, the specific numbers chosen are often heuristic. The number of hidden
nodes on each layer can be as large as hundreds or thousands, and hence the number of
parameters can easily reach the millions.

Once we have decided the architecture of the deep neural network, the next step is to
train the network.

2.3 Training Deep Neural Networks

2.3.1 Loss Function

To quantify the performance of a neural network, we define a loss function to measure the
discrepancy between the desired output and the output values predicted by the trained
neural network. A smaller loss implies a better parameter combination and neural network,
as the network produces predictions that are closer to the correct outputs. The training
goal of a neural network is to seek parameters W

i

and ~b
i

that minimize the loss function.

For convenience, we will use x to denote the parameter vector that is formed by re-
shaping and concatenating all the W

i

’s and ~b
i

’s:

x :=

0

BBBBB@

~w
1

~b
1

...
~w
M

~b
M

1

CCCCCA

12

where ~w
i

is obtained by reshaping all the elements of W
i

into a long vector.

For an input ⇠
i

, we use f
i

(x) to denote the discrepancy between the prediction ⇡(x; ⇠
i

)
and the actual desired output ⇡

i

. Let N be the number of training examples. The overall
objective is the empirical loss function that takes the average of all the discrepancies

f(x) :=
1

N

NX

i=1

f
i

(x). (2.3)

There are many ways to define f
i

. In a classification problem with C classes, the final
output ⇡(x; ⇠

i

) is a length-C vector representing the categorical distribution of ⇠
i

, and the
actual desired output ⇡

i

is represented as another length-C vector, with value 1 for the
desired class and 0 otherwise. To compare the two outputs, we usually choose the cross
entropy

f
i

(x) := �
CX

c=1

⇡
ic

ln�
ic

,

where

⇡
ic

=

(
1 if ⇠

i

belongs to class c

0 otherwise

is the c-th element of ⇡
i

, and �
ic

, which predicts the probability of ⇠
i

falling into class c, is
the c-th element of ⇡(x; ⇠

i

).

Ideally, we want the final outputs to indicate a high probability for the correct class and
low probabilities for the wrong classes. The cross-entropy produces a small value when ⇡

i

is close to ⇡(x; ⇠
i

) and a large value when ⇡
i

is far away from ⇡(x; ⇠
i

). By minimizing the
cross-entropy, the deep neural network is encouraged to be more confident in its predictions.

To perform the classification task, an input instance is classified to the class with the
highest probability output. We can then compare the predicted class with the correct class
and evaluate the performance of the neural network by the accuracy, i.e. the percentage
of instances that are classified into the correct class. A higher accuracy indicates that the
neural network has better predictions. In most cases, the accuracy of the neural network
is reported as the performance of the neural network.

In regression problems, the usual choice is the square loss given by

f
i

(x) := k⇡(x; ⇠
i

)� ⇡
i

k2 ,

which is non-negative. It is common to report the loss value directly as the performance
of the neural network.

13

Our goal is to seek the parameters x⇤ to minimize f(x), i.e. to solve the optimization
problem

x⇤ = argmin
x

1

N

NX

i=1

f
i

(x). (2.4)

In most situations, this is a non-convex minimization problem with a high number of
parameters.

2.3.2 Overfitting and Underfitting

One common issue in deep neural networks is overfitting, i.e. the parameters give low loss on
the training set but high loss on the validation or testing set, implying the parameters fail
to generalize to unseen data (Figure 2.5). This usually happens when the neural network
contains too many layers, causing the network to fit “too well” to capture the noise of
the training set as well. As opposed to overfitting, underfitting is the problem that occurs
when the network does not express the data well enough.

The bias-variance tradeo↵ [9] studies the balance between underfitting and overfitting.
Bias refers to the generalized error caused by the limited flexibility of the neural network,
and a high bias indicates underfitting; on the other hand, the variance refers to the neural
network’s sensitivity to the training data, and a high variance indicates overfitting.

The expected generalization error of a neural network can be decomposed into the bias,
variance, and irreducible error caused by the noise in collecting data. For instance, suppose
we have a regression problem with one output. The expected square loss on an unseen
input ⇠0 and actual output ⇡0 is given by

E[(⇡(x; ⇠0)� ⇡0)2] = E[⇡(x; ⇠0)� ⇡0]| {z }
bias

2 + E[⇡(x; ⇠0)2]� E[⇡(x; ⇠0)]2| {z }
variance

= bias2 + variance + irreducible noise.

In general, when a neural network has a higher complexity (i.e. contains more hidden
layers and nodes), the bias decreases and the variance increases. Ideally, we want a model
that has appropriate complexity and strikes a balance between the bias and variance, so
that the expected error is minimized. To reduce underfitting, we can simply expand the
neural network by adding more nodes and layers to reduce underfitting. Other remedies
in regularization (Section 2.3.3) can also be applied to mitigate overfitting.

14

Figure 2.5: Underfitting, appropriate fitting and overfitting

2.3.3 Regularization

Regularization is a common technique in deep learning which aims to modify the loss
function, so that the generalized error is reduced instead of the training error.

One example to avoid overfitting is to introduce a dropout layer, which explicitly sets
a random fraction of units to zero and implicitly “dropping” them out from the neural
network. Another way to apply regularization is to add a penalty term �

2

kxk2
2

to the loss
function f(x), where � > 0 controls the weight of the regularization term, so that the
parameters are encouraged to be smaller in magnitude and does not overly favor a good
loss in the training examples. A similar method is to smoothen the loss function, so that
the parameters do not over-fit to the small fluctuations existing in the underlying function
⇡(x; ⇠). Section 3 provides a summary of Chaudhari et al. [3] for their applications of local
entropy to smoothen the loss function.

2.4 Optimization in Deep Neural Networks

In optimization, the traditional way of minimizing a non-convex function is gradient de-
scent. However, in deep learning where accuracy, e�ciency and computational costs are
all crucial, gradient descent may not be the most appropriate optimization algorithm.

In this section, we will first discuss the application and drawbacks of gradient descent.
Then, we introduce the stochastic gradient descent algorithm, a variation of gradient de-
scent which becomes the default optimization algorithm choice in training deep neural

15

networks. We will also briefly discuss other optimization algorithms, including AdaGrad,
RMSProp and Newton’s method.

2.4.1 Gradient Descent

Gradient descent (or steepest descent) [19] is a traditional method in non-convex optimiza-
tion. Given the objective function f(x), we perform the update

xk+1 = xk � ⌘
k

rf(xk) (2.5)

with any initial guess x0. The parameter ⌘
k

> 0 is called the step-size or learning rate at
iteration k.

In the case of training deep neural networks, the gradients are computed based on the
training examples. Recall the objective f(x) which is the average of discrepancies of all
the training examples. Using equation (2.3), the update is given as

xk+1 = xk � ⌘
k

N

NX

i=1

rf
i

(xk). (2.6)

There are two major drawbacks of gradient descent. Firstly, gradient descent can get stuck
at a local minimum and fail to give updates, especially when the underlying function is
noisy. Secondly, from (2.6) we see that the gradient descent is calculated based on the
whole training set. A large dataset also requries high computational time. These issues
make gradient descent method impractical for training of large data sets.

2.4.2 Stochastic Gradient Descent

Stochastic gradient descent (SGD) [7] is developed to address the drawbacks of gradient
descent. It is similar to the usual gradient descent (2.5), except that the gradient is
approximated using a randomly selected sample from the training dataset. The stochastic
gradient descent procedure is written as

xk+1 = xk � ⌘
k

rf
i

k

(xk), (2.7)

where i
k

is sampled uniformly from the set {1, . . . , N} and represents one of the N training
examples. Since the time to compute the gradient based on one randomly selected sample
is much shorter, stochastic gradient descent could take many more steps and updates

16

within a fixed amount of time. Unlike gradient descent which steadily moves the solution
towards a direction that decreases the loss value, stochastic gradient descent has a much
noisier trajectory and does not easily get stuck at a local minimum. The overall empirical
performance of stochastic gradient descent is that the loss value decreases as the number
of iterations increases, but there could be small fluctuations in the loss value.

However, the gradient calculated based on only one randomly selected sample to repre-
sent the overall gradient is noisy and highly inaccurate. It is more common to avoid either
extremes and take the balance by calculating the average of gradients evaluated using a
“mini-batch”, which is a subset of the training set. This variation of stochastic gradient
descent is sometimes also called the “mini-batch gradient descent”. Let B ⇢ {1, . . . , N},
we denote the mini-batch gradient as rf

B

(x), and the update rule becomes

xk+1 = xk � ⌘
k

rf
B

(xk)

= xk � ⌘
k

|B|
X

i2B

rf
i

(xk). (2.8)

In practice, we will first shu✏e the order of the entire training set, and then divide the
queue of training sets into mini-batches of a fixed mini-batch size N

mb

. Then, we evaluate
the gradient based on each mini-batch. We use the first mini-batch to perform the first
iteration, and then the next mini-batch for the next iteration, and so on, until we go
through all the mini-batches. The training set is re-shu✏ed and divided into mini-batches
and the iteration continues. An “epoch” is defined as the number of iterations required to
go through all the mini-batches, given by dN/N

mb

e, and it is conventional to report the
performance of a deep neural network in terms of epochs.

It is necessary to reduce ⌘
k

as k increases in practice [7]. The stochastic gradient descent
algorithm guarantees solution convergence if

1X

k=1

⌘
k

= 1 and
1X

k=1

⌘2
k

< 1.

Choosing the learning rate is a trial-and-error process and there is no absolute right
answer. The usual practice is ⌘

k

= O(k�1), or decrease the initial learning rate ⌘
0

linearly
until iteration ⌧ , then keep ⌘ constant after iteration ⌧ . Let ⌘

0

be the initial learning rate,
a possible setting is

⌘
k

= max

⇢
⌘
0

1 + 0.5k
, 0.01⌘

0

�
. (2.9)

17

The values of ⌘
0

are specified in the corresponding experiments.

A modification of the stochastic gradient descent involves the Nesterov momentum [23],
which often results in faster convergence. The idea of the Nesterov momentum is to take
the previous movement into account when deciding the movement for the current iteration.
The gradient step often then escapes from a local minimum and is less prone to the large
changes of directions.

To obtain stochastic gradient descent with Nesterov momentum, we replace the update
in (2.7) by:

vk+1 = µvk � ⌘
k

rf
B

(xk + µvk)

xk+1 = xk + vk+1 (2.10)

where µ, the momentum, is typically chosen to be 0.5, 0.9 or 0.99. It is worth noting that
if we denote x⇤ = x+ µv and rename x⇤ back to x, then the above update becomes

vk+1 = µvk � ⌘
k

rf
B

(xk)

xk+1 = xk � µvk + (1 + µ)vk+1. (2.11)

This form is more similar to the original stochastic gradient descent update, and hence is
easier to apply to variations of stochastic gradient descent. For instance, if a given method
has the form

xk+1 = xk � ⌘
k

�(x
k

),

we can easily modify (2.11) to obtain the corresponding Nesterov form

vk+1 = µvk � ⌘
k

�(x
k

)

xk+1 = xk � µvk + (1 + µ)vk+1. (2.12)

Recall that the parameter x is a reshaped and concatenated vector formed by the weight
parameters W

i

and bias parameters b
i

occurring in layer i. Each element of x as parameters
of the neural network do not appear as direct inputs of a function, but are arranged in a
hierarchical manner in the network. Using the chain rule in advanced calculus, the gradient
of f with respect to a parameter in the earlier part of the neural network is written in term
of the gradients with respect to parameters in the later part of the neural network. This
process of calculating gradients is called “backpropagation” [7][20], which means changes
in the output layer are propagated backwards along the network.

18

The backpropagation process naturally updates parameters on the same layer of similar
values with a similar amount of change. If all the parameters are set to the same value,
the neural network could fail to converge to the appropriate underlying function as all
the parameters on the same layer would change in the same manner. A small amount
of variance is necessary to break the symmetry in the neural network architecture. In
addition, setting x0 close to zero has the advantage of avoiding z

i

from getting too large
and causing overflow errors. Hence, the initial guess x0 is typically set to be random values
taken from the uniform distribution with mean zero and small variance.

2.4.3 Other Optimization Algorithms

Besides stochastic gradient descent, AdaGrad [5] and RMSProp [7] are also popular first-
order methods in deep neural networks. The AdaGrad algorithm is a variation of gradient
descent with an adaptive learning rate for each parameter: parameters with a larger partial
derivative have a larger decrease in learning rate, while parameters with a smaller partial
derivative have a relatively smaller decrease in their learning rate. However, AdaGrad
works well on only some of the deep neural networks [7]. The reason is that AdaGrad
adapts the learning rate based on the entire history of the training process, which could
possibly make the learning rate too small in the later part of training. The RMSProp
algorithm modifies AdaGrad’s gradient accumulation setting to an exponentially decaying
average, hence discarding the history from the early iterations. The resulting algorithm is
empirically e↵ective and has satisfactory performance on deep neural networks.

In optimization, second order methods such as Newton’s method [7] are usually seen as
having faster convergence in non-convex optimization problems. However, in the case of
deep neural networks, the number of parameters is often in the millions. Computing the
Hessian is complex and of huge cost, especially when the Hessian has to be computed for
each iteration. In addition, Newton’s method is suitable only when the Hessian is positive
definite. These requirements have limited the application of Newton’s method to the case
when the neural network has very few parameters. Hence, Newton’s method is generally
seen as impractical for training deep neural networks.

19

Chapter 3

Methodology

This chapter provides a summary of Chaudhari et al. [3] on the connections between
non-convex optimization methods for training deep neural networks and the theory of
partial di↵erential equations (PDE). The proposed main idea is to apply stochastic gradient
descent on the smoothened version of the original loss function f(x) for a better chance to
converge to an improved solution.

In the previous results, the viscous and non-viscous Hamilton-Jacobi equations (HJ
equations) studied turn out to have solutions that smoothen the original loss function as
the partial di↵erential equations evolve with time. In addition, the heat equation and
homogenization of stochastic di↵erential equations are studied to provide more variations
in terms of smoothing. As a result, four new optimization algorithms are proposed. Each
of the new algorithms, namely ESGD, H-ESGD, HEAT and HJ, corresponds to a di↵erent
method to apply smoothing to f(x) and are beneficial to the optimization procedure in
di↵erent ways.

The methods of smoothing can be further categorized into three main “smoothing
tools”, namely local entropy, heat equation, and inf-convolution. We will begin this chapter
by introducing the smoothing of loss function performed by the local entropy. We will study
the viscous Hamilton-Jacobi equation, which has the local entropy of f(x) as its solution.
We will explore the PDE properties of the local entropy and subsequently show that the
evolution of the time-scale can be identified with the smoothing parameter of the local
entropy. The local entropy gives rise to two additional optimization algorithms: the local
entropy-equivalent Elastic-SGD algorithm, known as ESGD, and its homogenized version,
known as H-ESGD. Next, we introduce the HEAT algorithm, which is similar to ESGD but
instead derived from the heat equation. Finally, we introduce the smoothing method by

20

the inf-convolution. We will study the non-viscous Hamilton-Jacobi equation, which has
a solution u(x, t) that preserves the local minima of f(x) and widens the convex region of
f(x). We will derive the HJ algorithm, which performs gradient descent on u(x, t) instead
of f(x), with an elegant expression for r

x

u(x, t) which does not depend on the dimension
of x.

All the algorithms listed in this section are variations of stochastic gradient descent.
Hence it should be well understood that during the actual implementation, all gradients
are calculated based on a mini-batch of data. The algorithms are slightly modified to
facilitate the implementation of the numerical study.

3.1 Smoothing of the Loss Function by Local Entropy
and Homogenization

Under certain assumptions, the local entropy smoothens the original loss function f(x)
and leads to improved generalized performance in deep neural networks. This yields the
ESGD algorithm, which performs stochastic gradient descent on the local entropy of f(x).

We will also introduce a tool called “homogenization” in stochastic di↵erential equa-
tions, which achieves a smoothing e↵ect on the loss function by considering the averaged
solution for a system of stochastic di↵erential equations with rapidly changing coe�cients.
This method yields the H-ESGD algorithm, i.e. the homogenized version of the ESGD
algorithm.

3.1.1 Local Entropy and the Viscous Hamilton-Jacobi Equation

The local entropy of f is defined as

f
�

(x) = � log
⇥
G

�

(x) ⇤ e�f(x)

⇤
,

where G
�

(x) = (
p
2⇡�)�de�

kxk2
2� is the heat kernel, d is the dimension of x, and ⇤ is the

convolution operation defined as

(f ⇤ g)(x) =
Z

f(x� y)g(y)dy.

The parameter � controls the variance of the Gaussian smoothing kernel; a larger � can
be seen as more amount of smoothing applied.

21

The first result is given by the following theorem, which shows that the local entropy
f
�

(x) with � = t is the solution of the viscous Hamilton-Jacobi equation given as

@u

@t
+

1

2

����
@u

@x

����
2

=
1

2
�u

u(x, 0) = f(x),

(3.1)

where � is the Laplacian.

Theorem 3.1.1. The local entropy f
�

(x) with � = t is the solution of the initial value
problem for the viscous Hamilton-Jacobi equation.

Proof. Define v(x, t) = e�f

t

(x) = G
t

(x) ⇤ e�f(x). Then, v(x, t) is the solution of the heat
equation @v

@t

= 1

2

�v with initial condition v(x, 0) = e�f(x). Let u(x, t) = � log v(x, t), then

@v

@t
= �v

@

@t
f
t

(x)

and it follows that

@u

@t
+

1

2

����
@u

@x

����
2

= �1

v

@v

@t
+

1

2

�����
1

v

@v

@x

����
2

= �1

v

@v

@t
+

1

2v2

����
@v

@x

����
2

.

On the other hand,

1

2
�u =

1

2

nX

i=1

@2u

@x2

i

=
1

2

nX

i=1

@

@x
i

✓
�1

v

@v

@x
i

◆

=
1

2

nX

i=1

�1

v

@2v

@x2

i

+
1

v2

✓
@v

@x
i

◆
2

!

= � 1

2v
�v +

1

2v2

����
@v

@x

����
2

= �1

v

@v

@t
+

1

2v2

����
@v

@x

����
2

,

which is the same as u
t

+ 1

2

|ru|2.

22

As t increases and (3.1) evolves, and the solution is given by f
t

(x) = � log
⇥
G

t

(x) ⇤ e�f(x)

⇤
.

A larger t has more smoothing e↵ect on f(x), and hence t can now also be viewed as the
parameter controlling the amount of smoothing applied on f(x). Theorem 3.1.1 explicitly
identified � and t and connects the local entropy to an evolving PDE. Throughout the pa-
per, � and t will be used interchangably, with t referring to the time-scale of the evolution
of PDE and � otherwise.

3.1.2 Gradient of Local Entropy

If we wish to apply gradient descent on f
�

(x), the update is given as

xk+1 = xk � ⌘
k

rf
�

(x),

and it would be useful to know �rf
�

(x), the negative gradient of f
�

(x). There are two
ways to express �rf

�

(x), both obtained by first di↵erentiating e�f

�

(x) = G
�

⇤ e�f(x). One
approach is as follows:

�rf
�

(x)e�f

�

(x) = r
�
e�f(x) ⇤G

�

�

=
�
re�f(x)

�
⇤G

�

= �
Z

rf(x� y)e�f(x�y)G
�

(y)dy

=) �rf
�

(x) =

Z
[�rf(x� y)] ⇢1

1

(y; x)dy, (3.2)

where ⇢1
1

(y; x) / exp
⇣
�f(x� y)� kyk2

2�

⌘
. Alternatively,

�rf
�

(x)e�f

�

(x) = r
�
G

�

⇤ e�f(x)

�

= (rG
�

) ⇤ e�f(x)

= �
Z

��1(x� y)G
�

(x� y)e�f(y)dy

=) �rf
�

(x) =

Z ⇥
���1(x� y)

⇤
⇢1
2

(y; x)dy, (3.3)

where ⇢1
2

(y; x) / exp
⇣
�f(y)� kx�yk2

2�

⌘
. Both expressions (3.2) and (3.3) explicitly take

the average over a probability distribution function.

23

3.1.3 Local Entropy via Stochastic Di↵erential Equations

Equations (3.2) and (3.3) provide the gradient of rf
�

(x) in terms of a probability dis-
tribution. Now, the di�culty to apply gradient descent on f

�

(x) lies in computing the
probability distributions ⇢1

1

(x) and ⇢1
2

(x).

The Langevin dynamics [24] is proposed to compute the distributions ⇢1
1

(x) and ⇢1
2

(x).
The Langevin dynamics provide the updates for y, which is then coupled with the updates
of x to form a system of stochastic di↵erential equations. The convergence to the probabil-
ity distributions is exponentially slow for non-convex energies f(y)+ 1

2�

kx� yk2. However,
when I + �r2f(x) � 0, we have exponential convergence.

With reference to Pavliotis and Stuart [18], we first consider the system of stochastic
di↵erential equations (SDEs) given by

dx(s) = h(x, y)ds

dy(s) = �1

✏
g(x, y)ds+

1p
✏
dW (s),

(3.4)

where h, g are smooth functions and W (s) 2 Rn is the standard Wiener process, i.e.
dW (s) =

p
dsN(0, 1). For simplicity, we may assume the heterogenieties in (3.4) to be

periodic in space. The parameter ✏ ⌧ 1 is a microscopic length scale of the problem which
corresponds to the period of heterogenieties. Meanwhile, we also define the microscopic
length scale L, which determines the size of the domain of s. During the implementation
of algorithms, L specifies the number of iterations per mini-batch and ✏ is set to be the
reciprocal of L. However, to maintain an overall learning rate of ⌘

k

per mini-batch update,
we have modified the algorithms by scaling down the learning rate by a factor of L.

To determine the updates for x(s), we use a common tool in stochastic di↵erential
equation called “homogenization”. Homogenization is used to analyze dynamical systems
with multiple time-scales, which have slowly-evolving variables that can be coupled with
one another. The theory of homogenization is used to obtain averages of solutions of partial
di↵erential equations when the coe�cients of the equations are rapidly changing. In the
case of (3.4), we are interested in its limit when ✏ ! 0.

Notice that as we take ✏ ! 0, the coe�cients of dy(s) in (3.4) varies rapidly. The aim of
homogenization is to characterize the highly varying system of SDEs in (3.4) with constant
coe�cients. The e↵ect of homogenization is similar to the application of smoothing of x(s).

The homogenized vector field for x is defined as

h̄(x) =

Z
h(x, y)⇢1(y; x)dy

24

for some probability distribution function ⇢1 of the variable y. Under certain conditions,
it is shown that the given dynamics in (3.4) can be approximated by

dx̄(s) = h̄(x)ds (3.5)

with an upper bound on the approximation error given by

E

sup

0sT

kx(s)� x̄(s)kp
�
 C✏

p

2

for some constant C and all p > 1, where T is the time of the SDE.

Recall that we want to apply gradient descent on f
�

(x). Using (3.2) and (3.3), we have
h̄(x) = �rf

�

(x) by choosing h(x, y) = �rf(x� y), ⇢1 = ⇢1
1

and h(x, y) = ���1(x� y),
⇢1 = ⇢1

2

respectively.

First, we use the setting in (3.2) and consider (3.5). This yields the approximation

dx̄(s) = h̄(x)ds = �rf
�

(x)ds, (3.6)

which suggests that we should put h(x, y) = �rf(x � y) in (3.4). In addition, by the
Langevin dynamics, we can compute the distribution ⇢1

1

(y; x) and yield the update

y(s) = �1

✏


y

�
�rf(x� y)

�
ds+

1p
✏
dW (s). (3.7)

We can hence combine (3.6) and (3.7) and consider the following system of SDEs as a
model for the optimization problem (2.4):

dx(s) = �rf(x� y)ds

dy(s) = �1

✏


y

�
�rf(x� y)

�
ds+

1p
✏
dW (s).

(3.8)

By an Euler discretization, we obtain the ESGD algorithm for the k-th mini-batch:

xj+1

k

= xj � ⌘
k

L
rf

B

(xj

k

� yj)

yj+1 = yj � ⌘
k

L


1

✏

✓
yj

�
�rf

B

(x� y)

◆�
+

r
⌘
k

L✏
N(0, 1)

=

✓
1� ⌘

k

L✏�

◆
yj +

⌘
k

L✏
rf

B

(x� y)�
r

⌘
k

L✏
N(0, 1),

(ESGD)

25

with x0

k

= xk, y0 = 0, j = 0, 1, . . . , L � 1, and we set xk+1 = xL

k

. L = 20 is chosen by
default.

Similarly, we can use the setting in (3.3) and consider (3.5). In this case, the system of
SDEs becomes

dx(s) = ���1(x� y)ds

dy(s) = �1

✏


rf(y) +

1

�
(y � x)

�
ds+

1p
✏
dW (s).

(3.9)

The system (3.9) converges to the homogenized dynamics given by dx̄(s) = �rf
�

(x)ds.
In addition, rf

�

= ��1 (x̄� hyi) where

hyi =
Z

y⇢1(y; x̄)dy = lim
T!1

Z
T

0

y(s)ds (3.10)

and y(s) is the solution of (3.9) when x is fixed. Putting L = ✏�1 in (3.10) corresponds to
T = 1; to investigate the e↵ect of T ! 1 in (3.10), we will also explore the possibilities
of setting T = L✏, the time of the PDE evolution, to a value other than 1.

By performing an Euler discretization on (3.9), we obtain the update rule

xk+1 =

(
xk � ⌘

k

��1(xk � yk) if (✏k) is an integer

xk otherwise

yk+1 = yk � ⌘
k

⇥
rf

B

(yk) + ��1

�
yk � xk

�⇤
.

(3.11)

The parameter L should be set to 20 for H-ESGD. We can view (3.11) as performing L
updates on y per update on x, and rewrite it as

yj+1 = yj � ⌘
k

L

⇥
rf

B

(yj) + ��1

�
yj � xk

�⇤
, j = 0, 1, . . . , L� 1

xk+1 = xk � ⌘
k

��1(xk � yL)
(H-ESGD)

with y0 = xk.

3.2 Smoothing of the Loss Function by the Heat Equa-
tion

Compared to the smoothing performed by the local entropy, smoothing performed by heat
equation is more commonly seen in the deep learning literature [8][15].

26

The dynamics for the heat equation is given by:

dx(s) = �rf(x� y)ds

dy(s) = � 1

✏�
yds+

1p
✏
dW (s).

(3.12)

The HEAT algorithm is obtained by performing a similar derivation that yields ESGD,
but using the heat equation instead of the viscous Hamilton-Jacobi equation. The solution
to the heat equation yields the update rule for the k-th mini-batch

xj+1

k

= xj � ⌘
k

L
rf

B

(xj

k

� yj)

yj+1 = yj � ⌘
k

L✏�
yj �

r
⌘
k

L✏
N(0, 1)

=

✓
1� ⌘

k

L✏�

◆
yj �

r
⌘
k

L✏
N(0, 1),

(HEAT)

with x0

k

= xk, y0 = 0, j = 0, 1, . . . , L� 1, and we set xk+1 = xL

k

. The parameter L = 20 is
chosen by default.

Notice that the y update rule in (HEAT) is di↵erent from (ESGD) by one term, which
is the di↵erence between the smoothing performed by local entropy and the smoothing
performed by heat equation. In fact, the heat equation itself also di↵ers from the viscous
Hamilton-Jacobi equation by one term.

3.3 Smoothing of the Loss Function by Inf-convolution

The use of f
�

(x) in the optimization has benefits that are independent of the coe�cient of
the viscosity in (3.1). In contrast to the viscous Hamilton-Jacobi equation, the non-viscous
Hamilton-Jacobi equation not only has a simpler expression, but also preserves the local
minimum of f(x) for small t, and widens the convex regions of f(x).

3.3.1 The Non-viscous Hamilton-Jacobi Equation

The non-viscous Hamilton-Jacobi equation is given as

@u

@t
+

1

2

����
@u

@x

����
2

= 0

u(x, 0) = f(x),

(3.13)

27

which is the same as (3.1) without the viscosity term. By the Hopf-Lax formula [6], the
solution of (3.13) at time t is given as the inf-convolution or Moreau envelope function
[16][25] of f(x) and 1

2t

kxk2, i.e.

u(x, t) = inf
y

⇢
f(y) +

1

2t
kx� yk2

�
. (HL)

Recall that t is identified with � in Theorem 3.1.1. The same applies here as the PDE
given in (3.13) has more smoothing e↵ect as t increases. However, the evolution of PDE is
more interesting here.

The first observation is that the convex regions of u(x, t) are quickly widened and the
concave regions are shrunk as t increases. This can be shown using the fact that solution
u(x, t) of (3.13) is semi-concave. A function f is said to be semi-concave with a constant
C if f(x)� C

2

kxk2 is concave.

To show that u(x, t) is semi-concave, we first define g(x; y) = f(y) + 1

2t

kx� yk2 to be
a function of x parametrized by y. Observe that each g(x; y) is semi-concave with C = 1

t

,
since

g(x; y)� C

2
kxk2 = f(y) +

1

2t
kx� yk2 � C

2
kxk2

d

dx
g(x; y) =

1

2t
(x� y)� C

2
x

d2

dx2

g(x; y) =
1

2t
� C

2

is concave when C � 1

t

. Subsequently, u(x, t) = inf
y

g(x; y) is also semi-concave with
C = 1

t

as well. The proof of the widening of convex regions of u(x, t) can be found in
Section 5 of [3].

The second observation is the neatly computed gradient of u(x, t) with respect to x.
The gradient can be computed as

r
x

u(x, t) =
x� y⇤

t
= rf(y⇤),

where y⇤ is the optimizer of (HL). Moreover, suppose I + tr2f(x) � �I for some � > 0.
Then the gradient p⇤ := r

x

u(x, t) is the unique steady solution to

dp(s)

ds
= �t (p(s)�rf(x� tp(s))) . (3.14)

28

Using Euler’s method, we can discretize (3.14) as

pj+1 = (1� t�
s

)pj + t�
s

rf(x� tpj). (3.15)

The stability condition for (3.15) is |1� t�
s

|  1 , i.e. 0  �
s

 t�1, setting �
s

= t�1 yields
the iterative scheme

pj+1 = rf(x� tpj), with p0 = 0 (3.16)

where j is the index of the iteration. Similar to the convergence to the gradient of f
�

(x)
mentioned in Section 3.1.3, the iteration is exponentially convergent if I + tr2f(x) > 0.

By (3.15), after we identify t back to �, the HJ algorithm can be written as

pj+1 = rf
B

(xk � �pj), j = 0, 1, . . . , L� 1,with p0 = 0

xk+1 = xk � ⌘
k

pL
(HJ)

Typically, we perform L = 5 time steps of p to estimate p⇤. Notice that setting L = 1
recovers the usual stochastic gradient descent method.

Finally, unlike the HEAT and ESGDmethod, smoothing performed by the inf-convolution
only requires one update of x per mini-batch. The computational cost of HJ is therefore
lower than HEAT and ESGD. This allows the HJ algorithm to work e↵ectively in the
setting of deep neural networks, where the parameter x often has high dimensions.

29

Chapter 4

Empirical Evaluation

In this section, we discuss the experimental results on deep neural networks using the
aforementioned PDE methods (HJ, HEAT, ESGD and H-ESGD) and compare them to
the stochastic gradient descent method. Chaudhari et al. [3] showed that the new pro-
posed methods led to improved classification on image datasets and convolutional neural
networks. The specific datasets used in their paper are the MNIST dataset [13] and CIFAR-
10 dataset [11].

To provide a more comprehensive view, we demonstrate the methods on four datasets
of di↵erent sizes and neural network architectures, and compare the performance of the
PDE methods on di↵erent datasets and hyperparameters1.

The datasets and networks are described in Section 4.1 and the experimental results
can be found in Section 4.2.

4.1 Setup

4.1.1 Notations

We use input
d

to indicate an input layer with d dimensions. We use fc
d, h

to denote a
fully connected layer with d output dimensions, followed by the activation function h, if

1Hyperparameters refer to the parameters that are manually tuned in a neural network before training,
such as the learning rate and mini-batch size. The usage of the word “hyperparameter” here is simply to
distinguish them from the parameter x that we would like the machine to learn by itself.

30

applicable. In our networks, we consider rectified linear units and the softmax function as
the activation functions, and we will denote them as “ReLU” and “softmax” respectively.
If batch normalization is applied after h, we will use “BN” to indicate the process.

For instance, the neural network

input
112

! fc
100,ReLU,BN

! fc
2, softmax

has an input layer with 112 nodes. The hidden layer has 100 nodes, which has the rectified
linear unit as the activation function, and is followed by batch normalization. The output
layer has 2 nodes, with the softmax function as the activation function.

4.1.2 Datasets

It was previously mentioned that we typically divide the dataset into training set, validation
set and testing set. However, Chaudhari et al. [3] suggested that it is customary in the
deep learning literature to not use a separate testing set for the datasets considered. Hence,
instead of a separate testing set, we follow their practice and report test error on the
validation set itself, and the validation error is reported directly.

For each dataset, the default initial learning rate ⌘
0

and smoothing parameter � are
found manually. We decay the learning rate using (2.9) as the number of iterations k
increases, and keep � constant throughout the learning process.

The four datasets and their corresponding neural networks, learning rates and � are
specified as follows:

1. Mushroom (UCI Machine Learning Repository)

The Mushroom dataset is provided by the UCI Machine Learning Repository [14]
with 8,124 instances of mushrooms’ information including color, odor, habitat and
other characteristics, summing up to 23 categorical features. The dataset is split
into 7,311 for training and 813 for validation. The aim is to determine whether each
mushroom is edible or poisonous. This is a binary classification problem.

The “stalk root” feature is excluded because it has missing attributes. After per-
forming one-hot encoding, each input is expressed as a binary vector of dimension
112.

Since the dataset is relatively small and easy to handle, we use a simple neural
network structure with one hidden layer of 100 units. The fully-connected network

31

on the Mushroom dataset is defined as

mushroom-fc : input
112

! fc
100,ReLU,BN

! fc
2, softmax

The default setting is ⌘
0

= 0.1 and � = 0.05.

2. Covertype (UCI Machine Learning Repository)

The Covertype dataset contains 581,012 samples for predicting forest cover types from
four wilderness areas found in the Roosevelt National Forest of northern Colorado.
There are 54 features in total, including 44 binary variables specifying wilderness
areas and soil type, and 10 quantitative variables specifying elevation, aspect, slope
and other measurements. The quantitative variables are normalized to zero mean
and unit variance. The aim is to classify the inputs into one of the 7 forest cover
types: Spruce/Fir, Lodgepole Pine, Ponderosa Pine, Cottonwood/Willow, Aspen,
Douglas-fir, and Krummholz. This is a multi-class classification problem.

This dataset is reported to have 70% accuracy using one 120-unit hidden layer of
neural networks [2]. We use the same setting here:

coverytype-fc : input
54

! fc
120,ReLU,BN

! fc
7

The train/validation/test split equal to 11,340/3,780/565,892. Since we do not intend
to use a separate test set, the given test set is combined into the validation set.

The default setting is ⌘
0

= 0.05, � = 0.02.

3. House Sales (Kaggle datasets)

The House Sales dataset2 contains 21,613 instances of house sale prices for King
County, USA between May 2014 and May 2015. The dataset is split into 6,483 for
training and 15,130 for validation. Each house contains 19 features, and the aim is
to predict the price of the house. This is a regression problem with one output value.

In our experiments, the “zip code” feature is excluded and the quantitative features
are normalized to zero mean and unit variance. Integral features, such as the number
of bathrooms, bedrooms and floors, are treated as categorical and one-hot encoding
is applied. The following neural network architecture is applied:

house-fc : input
54

! fc
15,ReLU,BN

! fc
8,ReLU,BN

! fc
4,ReLU,BN

! fc
1

The default setting is ⌘
0

= 0.0001, � = 0.0005.

2The House Sales dataset can be found on this website: https://www.kaggle.com/harlfoxem/

housesalesprediction

32

https://www.kaggle.com/harlfoxem/housesalesprediction
https://www.kaggle.com/harlfoxem/housesalesprediction

4. Dow Jones Index (UCI Machine Learning Repository)

The Dow Jones Index dataset contains weekly data for the Dow Jones Industrial
Index of 30 stocks in the first six months of 2011. The 360 instances in the first
quarter (January to March) are used for training and the 390 instances in the second
quarter (April to June) are used for validation. The dataset contains attributes
including the name of the stock, the last business day of the work, opening price,
closing price, highest price and lowest price of the stock during the week, and the
percentage change of volume and price over the last week. The goal is to predict
information about the opening price, closing price and the percentage of change and
return in the following week, and the number of days till the next dividend.

The dataset is pre-processed by converting the date of each instance to the ordinal
day of the year3, and then normalizing to zero mean and unit variance. After applying
one-hot encoding to the names of the stock, the total number of features is 39 and
the output dimension is 5. Hence, this is a regression problem with 5 output values.

The neural network architecture is given by:

dowjones-fc : input
39

! fc
15,ReLU,BN

! fc
10,ReLU,BN

! fc
5

The default setting is ⌘
0

= 0.001, � = 0.002.

For classification problems (Mushroom and Covertype), we train the network using the
cross-entropy loss and report the accuracy; for regression problems (House Sales and Dow
Jones Index), we train the network using the mean-square loss and report the loss value.

4.2 Experiments

We run the experiments with the Nesterov Momentum variation in (2.11) for the update
of x in SGD, HJ, HEAT, ESGD and H-ESGD. By default, we set L = 1 for SGD, L = 5
for HJ, and L = 20 for HEAT, ESGD, H-ESGD. The default mini-batch size is set to be
128, and the default momentum is set to be 0.9. All experiments are performed using the
Tensorflow library in Python using a 128GB RAM on a Intel(R) Xeon(R) CPU E5-2630
v2 @ 2.60GHz.

In the upcoming experiments, we explore the e↵ect of various hyperparameters includ-
ing L, T (i.e. L times ✏), �, momentum and mini-batch size. We are mainly interested

3For example, February 5, 2011 translates to Day 36 of Year 2011.

33

in the performance (accuracies and losses) of di↵erent algorithms versus the number of
epochs (the size of the training set divided by the size of the mini-batch), which provide a
direct comparison of the numerical convergence rate to a local minimum. However, since
some algorithms take a longer time to finish an iteration than the others, the wall clock
time measurement to converge to a certain level of accuracy or loss is often more relevant
to practical usage. Hence, the accuracies and losses versus CPU time are also studied
whenever necessary.

For each experiment, we report and plot the mean across 10 random seeds on the
validation set. Each random seed corresponds to a set of initialized parameters randomly
picked from a uniform distribution of zero mean and 0.1 variance. We plot the curves
of each of the algorithms for the mean values against number of epochs; if applicable,
the results against CPU time are also displayed. Then, we shade the regions around the
corresponding colored curves to indicate the region within 1 standard deviation from the
mean. The higher the standard deviation, the more likely that the performance of an
algorithm depends on the initialization of parameters.

Starting from the first epoch, all of the curves are plotted at an interval of 1 epoch. The
case at epoch 0 is omitted and corresponds to the performance of the initialized parameters
without any tuning. We run the Covertype dataset for 10 epochs and the other datasets
for 20 epochs. The range of the y-axis is chosen to best highlight the loss or accuracy
di↵erence. As a result, some of the reported losses or accuracies for the first few epochs
could be truncated. For a curve plotted against CPU time, the additional time period
before the curve starts indicate the amount of time required to build the neural network
framework and perform the first epoch of parameter tuning.

4.2.1 Loss and Accuracy versus the Number of Epochs

In the first experiment, we provide the direct comparison of each algorithm versus number
of epochs when applied to each deep neural network. The performance of each algorithm
against the number of epochs provides information on the rate of convergence that is
independent of hardware installations. The results are shown in Figure 4.1.

In all plots, SGD and HJ have indistinguishable behavior and their curves almost
completely overlap with each other. This is possibly because the values of � make little
di↵erence between the original loss function f and the inf-convolution of f , which SGD
and HJ aim to minimize respectively. However, the same � values applied to ESGD and
H-ESGD have a noticeable di↵erence in their learning curves when compared to SGD,

34

implying that the same value of � has more smoothing e↵ect in local entropy than in
inf-convolution.

In most cases, HEAT and ESGD also have very similar behaviors, because their update
rules di↵er by only one term. In the Mushroom dataset, the curves of HEAT and ESGD
coincide each other; in the Covertype and Dow Jones Index datasets, ESGD outperforms
HEAT slightly. The exception is the House Sales dataset, in which HEAT outperforms all
of the other algorithms. A possible explanation is that smoothing performed by HEAT
manages to reduce the noise of the original loss function and cause the update of x to
escape from a local minimum, whereas the same choice of � leads to little di↵erence with
smoothing by local entropy. From this observation, we can deduce that the same value of
� has more smoothing e↵ect in heat equation than in local entropy. Meanwhile, we also
observe that H-ESGD has achieved a better solution than ESGD on average.

In general, the algorithms have very di↵erent relative performance on each dataset.
For instance, ESGD converges slower than SGD in Mushroom and Covertype datasets but
much faster in Dow Jones Index. H-ESGD, on the other hand, behaves relatively well in
House Sales but poor on the other datasets. SGD and HJ tend to have smaller variance
than the other three algorithms, suggesting that they may be more stable and have little
dependence on the initialization of parameters.

Up till now, all of the newly introduced algorithms except HJ have been shown to
outperform SGD on at least one dataset. An appropriate amount and method of smoothing
can indeed lead to more e�cient optimization in training deep neural networks.

4.2.2 Loss and Accuracy versus CPU Time

Sometimes, the size of the dataset could be huge and it is time-consuming to train a deep
neural network. However, in situations such as stock prices and weather prediction, time
is an important factor. In these scenarios, we are often more interested in algorithms that
can converge to a solution with decent loss or accuracy in a timely manner, rather than
algorithms that eventually converge to a much better solution after a prolonged period of
time. This experiment studies the performance of each algorithm in terms of CPU time.
The results allows us to compare and contrast the algorithms for their e�ciency during
actual implementation.

Figure 4.2 shows the performance of each of the algorithms in terms of CPU seconds.
Recall that L is the number of updates per mini-batch. The amount of overall CPU time
for each algorithm is hence directly proportional to both L and the number of epochs. In
this case, as compared to HEAT, ESGD and H-ESGD which all have default values L = 20,

35

Figure 4.1: Comparison of accuracy or loss against number of epochs for the optimization
methods SGD (black), HJ (green), HEAT (red), ESGD (blue) and H-ESGD (purple) on
four datasets.

36

Figure 4.2: Comparison of accuracy or loss against CPU time for the optimization meth-
ods SGD (black), HJ (green), HEAT (red), ESGD (blue) and H-ESGD (purple) on four
datasets.

37

SGD which has a default value of L = 1 requires a significantly less amount of time to
finish one iteration, and could be a more practical choice of algorithm. In the case of the
Mushroom and Covertype datasets, SGD indeed reaches a better accuracy than the other
algorithms in a shorter amount of time. As for House Sales and Dow Jones Index, SGD
also tends to reach a better loss in the first few seconds. This is quickly followed by HJ
with L = 5.

Since L is the number of iterations per mini-batch, L is directly proportional to the
wall clock time required to finish one mini-batch update. Hence, a smaller L likely gives
a more e�cient convergence. This motivates us to perform the next experiment, in which
we fix the value of ✏ and investigate the results with di↵erent L.

4.2.3 Varying L and T

The previous experiment suggests that a smaller L or T = L✏ could be beneficial if we want
faster convergence to a satisfactory accuracy or loss value in terms of wall clock time. We
perform the experiment with ✏ = 0.05 and L = 20, 40, 100; this corresponds to T = 1, 2, 5.

Figure 4.3 shows the results on the Mushroom dataset. Di↵erent values of L give similar
results to HJ and H-ESGD, where all of the three curves coincide and are indistinguishable
from the plots. A larger L directly increases the number of iterations in HEAT and ESGD
and gives an improved performance. A similar trend is observed in the Covertype (Figure
4.4) and Dow Jones Index (Figure 4.6).

However, for the ESGD algorithm in the loss for House Sales (Figure 4.5) suggest
that L = 100 gives a worse performance than L = 20 or 40. For HJ, the results are
similar, with the curves L = 20 and L = 40 coincide and both achieve a better loss than
L = 100. One possible explanation is that the the neural network of House Sales has large
gradients. When L is large, there could be round-o↵ errors in the calculation of gradients
that accumulate and make the update directions inaccurate during implementation.

Another reason to explain the behavior of HJ is that the choice of � is too large. Recall
that L determines the number of iterations to estimate the fixed-point solution p⇤, which
approximates the gradient of u(x, t), the smoothened loss function with inf-convolution.
According to (3.14), a larger L should converge to a more accurate solution to the ODE;
however, the loss in the first few epochs of HJ is higher when L is larger. Recall that the
exponential convergence is guaranteed only if I + �r2f(x) > 0, which suggests that the
value of � may be too large and the convergence condition is not guaranteed. Finally, a
similar trend is observed for both HEAT and L-ESGD for all choices of L.

38

To conclude, a larger L gives a better performance in most cases, but can have a worse
performance when � or the gradients of the network is large. In addition, since a larger L
also directly increases the run time of each algorithm, a smaller value of L could converge
to a better solution in a shorter period of time. Hence, a small value of L, for instance
L = 20, is still recommended.

4.2.4 Varying L with T fixed

In this experiment, we are interested in the e↵ect of L on HJ, HEAT, ESGD and H-ESGD
while keeping T = L✏ fixed at 1. We perform the experiments with L = 1, 5, 20, 100 and
produce the plots for each dataset. Note that HJ solely depends on L and does not depend
on ✏, and the case L = 1 in HJ is identical to the stochastic gradient descent. In addition,
similar to the previous experiment, a larger L require a proportionally higher amount of
run time.

An overview of the results shows that the e↵ect of L highly depends on the choice of
algorithms, datasets and neural networks. Unlike the previous experiment which suggests
that a larger L gives a better performance in general, the results in this experiment do not
have a distinct trend or pattern. For instance, in the Mushroom dataset (Figure 4.7), a
smaller L gives a faster convergence in terms of the number of epochs; however, a larger L
is preferred for Dow Jones Index (Figure 4.10). For the Covertype and House Sales dataset
(Figures 4.8 and 4.9), ESGD performs better when L is small, while H-ESGD performs
better when L is large. It is therefore easier to analyze the results by looking at each
algorithm individually.

For the HJ algorithm, we observe that HJ has the same performance for di↵erent values
of L. The curves for each HJ plot overlapped each other, except for the House Sales dataset
which has a slightly poorer loss for L = 100. This result matches the previous experiment.
Since HJ is independent from ✏, this experiment is essentially the same as the one described
in the previous section, where we set L to values 20, 40 and 100 and fix ✏. As we see that
the convergence in terms of number of epochs is similar when we set L = 1, 5, 20, 100 for
HJ, it is recommended that L is set to 1 for a shorter run time. In other words, SGD is
preferred over HJ.

For the H-ESGD algorithm, the results in Mushroom and Dow Jones Index show little
di↵erence when di↵erent values of L are used. The curves formed by di↵erent L values
overlap each other. Both the results of Covertype and House Sales show that L = 5, 20, 100
have similar performance, and the performance with L = 1 is poorer. To explain this
behavior, recall that ✏ is the period of heterogenieties in (3.4). When L is large, ✏ = L�1

39

Figure 4.3: Comparison of accuracy against number of epochs for the optimization methods
HJ, HEAT, ESGD and H-ESGD on the Mushroom dataset with L set to be 20 (green), 40
(red) and 100 (blue).

40

Figure 4.4: Comparison of accuracy against number of epochs for the optimization methods
HJ, HEAT, ESGD and H-ESGD on the Covertype dataset with L set to be 20 (green), 40
(red) and 100 (blue).

41

Figure 4.5: Comparison of loss against number of epochs for the optimization methods HJ,
HEAT, ESGD and H-ESGD on the House Sales dataset with L set to be 20 (green), 40
(red) and 100 (blue).

42

Figure 4.6: Comparison of loss against number of epochs for the optimization methods HJ,
HEAT, ESGD and H-ESGD on the Dow Jones Index dataset with L set to be 20 (green),
40 (red) and 100 (blue).

43

decreases, and the equation (3.9) converges to the homogenized dynamics. Taking the run
time into account, it is recommended that we choose L = 5 for H-ESGD.

The cases for HEAT and ESGD are more complicated. For HEAT, a smaller L gives a
better accuracy in Mushroom and Covertype, while a larger L gives a better loss in House
Sales and Dow Jones Index. For ESGD, a larger L gives a better performance in Dow
Jones Index, while a smaller L is preferred for the other three datasets. To explain this,
recall that both HEAT and ESGD have a stochastic term present in their update rules
given by (HEAT) and (ESGD). A larger L has the advantage of allowing higher number
of iterations per mini-batch allows more gradient steps to improve the loss with a smaller
learning rate. The small learning rate makes learning proceed slower, but also does not
“overshoot” the local minimum. A larger L also implies having to perform more updates
using the stochastic term and gives a higher uncertainty. The parameters update could
take a step in a wrong direction, causing the loss to grow instead, and the accuracy to
drop. Hence, setting L = 1 or 100 on HEAT and ESGD could be beneficial or harmful to
the learning process. For a higher e�ciency, it is recommended that L is set to 5.

Overall, L has little e↵ect on HJ, and the influence of L on the other algorithms highly
depend on the datasets and neural networks. A value of L = 1 or 100 is extreme and
can potentially give improved results, while the result of L = 5 or 20 have more stable
results. For HEAT, ESGD and H-ESGD, it is recommended that L is set to 5. For HJ, it
is recommended that L is set to 1 to recover the SGD method.

4.2.5 Varying Amount of Smoothing

As observed in Section 4.2.1, the same smoothing parameter � can have di↵erent degree or
results of smoothing when referred to di↵erent smoothing methods. The results in Section
4.2.1 suggested that the same value of � on the same dataset has the most smoothing e↵ect
in heat equation, and the least smoothing e↵ect in inf-convolution.

In this section, we further explore the performance of the algorithms when using dif-
ferent choices of �. For each dataset, we manually set a default value for � and compare
with the results obtained when � is multiplied by 2 or 5.

We have seen that SGD performs the best on the Mushroom dataset in Section 4.2.1. As
shown in Figure 4.11, HJ has a similar learning trend when di↵erent � values are applied,
and the learning curves coincide. For HEAT, ESGD and H-ESGD, a smaller � improves
the results for the Mushroom dataset, which suggests that the Mushroom dataset has an
underlying function which requires little to no smoothing. When too much smoothing is
applied, for instance in H-ESGD with � = 0.25, the decision boundary is blurred and the

44

Figure 4.7: Comparison of accuracy against number of epochs for the optimization methods
HJ, HEAT, ESGD and H-ESGD on the Mushroom dataset with L set to be 1 (black), 5
(green), 20 (red) and 100 (blue).

45

Figure 4.8: Comparison of accuracy against number of epochs for the optimization methods
HJ, HEAT, ESGD and H-ESGD on the Covertype dataset with L set to be 1 (black), 5
(green), 20 (red) and 100 (blue).

46

Figure 4.9: Comparison of loss against number of epochs for the optimization methods
HJ, HEAT, ESGD and H-ESGD on the House Sales dataset with L set to be 1 (black), 5
(green), 20 (red) and 100 (blue).

47

Figure 4.10: Comparison of loss against number of epochs for the optimization methods
HJ, HEAT, ESGD and H-ESGD on the Dow Jones Index dataset with L set to be 1 (black),
5 (green), 20 (red) and 100 (blue).

48

predictions become less accurate, indicating an underfitting issue. For all algorithms, a
value of �  0.05 is preferred for the Mushroom dataset.

Figure 4.12 shows the validation loss for the Covertype dataset. Similar to the Mush-
room dataset, di↵erent values of � have very little impact on HJ. For HEAT and ESGD,
a smaller � gives a larger standard deviation of the predictions. This can be explained
by consider the objective function, which is noisy and has more local minima when less
smoothing is applied. When the objective function is noisier, the behavior of gradient
descent becomes more dependent on the random initialization; solutions are more likely
trapped in di↵erent local minima. We can also observe that a larger � gives a better ini-
tial accuracy for HEAT and ESGD, mostly because the smoothing e↵ect allows gradient
descent update in a more e↵ective direction. For H-ESGD, a slightly better accuracy is
obtained when � is smaller. A value of � = 0.02 works the best.

Figure 4.13 shows the validation loss for House Sales. Once again, � has little impact
on HJ and HEAT. Notice that � = 0.001 gives the lowest loss in ESGD while � = 0.0005
and � = 0.0025 leads to similar losses, which suggests that the appropriate value of � for
ESGD is likely between � = 0.0005 and � = 0.0025. As for H-ESGD, choosing � = 0.0025
again produces too much smoothing and leads to a poor loss. A value of � = 0.0005 works
the best for HEAT and H-ESGD; a value of � = 0.001 works the best for ESGD.

Finally, the results of Dow Jones Index are shown in Figure 4.14. HJ and H-ESGD have
little change with � and the curves in each plot almost coincide completely. For HEAT
and ESGD, increasing � improves the loss and achieves a similar e↵ect as increasing L. A
value of � = 0.01 works the best for HEAT and ESGD; a value of � = 0.002 works the
best for ESGD.

To conclude, � has little e↵ect on HJ. While smaller � is preferred for H-ESGD, a
larger � potentially improves the results for HEAT and ESGD. Recall that � is applied to
smoothen the loss function only as an aid to improve the training process of the neural
network. If � is set to a large value, the smoothened loss function could depart too much
from the original loss function. For practitioners, it is recommended that � is picked
with a small initial value (e.g. 0.005), and then decreased to zero as learning proceeds.
However, the optimal choice of � is still a trial-and-error process, and the e↵ect of � on
the performance of HEAT and ESGD depends on the neural network architecture and
datasets.

49

Figure 4.11: Comparison of accuracy against number of epochs for the optimization meth-
ods HJ, HEAT, ESGD and H-ESGD on the Mushroom dataset with � = 0.05 (green), 0.1
(red) and 0.25 (blue).

50

Figure 4.12: Comparison of accuracy against number of epochs for the optimization meth-
ods HJ, HEAT, ESGD and H-ESGD on the Covertype dataset with � = 0.02 (green), 0.04
(red) and 0.1 (blue).

51

Figure 4.13: Comparison of loss against number of epochs for the optimization methods
HJ, HEAT, ESGD and H-ESGD on the House Sales dataset with � = 0.0005 (green), 0.001
(red) and 0.0025 (blue).

52

Figure 4.14: Comparison of loss against number of epochs for the optimization methods
HJ, HEAT, ESGD and H-ESGD on the Dow Jones Index dataset with � = 0.002 (green),
0.004 (red) and 0.01 (blue).

53

4.2.6 Varying Momentum

Recall from Section 2.4.2 that the Nesterov momentum is introduced to consider the ac-
cumulated movements to determine the movement for the current iteration. The typical
values to set the momentum µ in (2.12) is 0.5, 0.9, 0.99. We explore the performance of
each algorithm when di↵erent momentum values are used.

Figure 4.15 shows the result for di↵erent values of momentum on SGD. For Mushroom
and Dow Jones Index, setting the momentum to 0.9 and 0.99 give indistinguishable results
that outperform a momentum of 0.5. For House Sales, a larger momentum has a distinc-
tively faster convergence to a local minimum. However, the loss also bounces back after
the first epoch: the large momentum “pushes” the gradient step too hard and misses the
local minimum. For Covertype, the optimal momentum is 0.9. A momentum of 0.5 has
slower convergence, while a momentum of 0.99 induced a large update step and jumps to
a local minimum with a worse accuracy. In addition, as a larger momentum accumulates
previous movements further, when the initialized parameters have highly-varied descending
directions, a large standard deviation can be observed.

Figure 4.16 shows the performance of di↵erent algorithms on the Mushroom dataset.
For all of the algorithms, a larger momentum induces faster convergence. For the case of
HJ and H-ESGD, the curves obtained by setting 0.9 and 0.99 overlap. While setting the
momentum to 0.9 and 0.99 has little di↵erence, both outperform the momentum of 0.5. A
similar observation applies to the results for Dow Jones Index dataset, as shown in Figure
4.20.

Figure 4.17 gives the results on the Covertype dataset. Similar to the case of SGD,
a momentum of 0.9 outperforms 0.5, and a momentum of 0.99 gives poor results in all
of the four algorithms. However, on average, H-ESGD showed the least di↵erence in
accuracy from the other momentum values, while the di↵erence for HEAT and ESGD
between momentum of 0.99 and other momentum values is substantial. A larger standard
deviation is also observed for HJ and H-ESGD for a momentum of 0.99. This observation
is di↵erent from the intuition that HEAT and ESGD are more stochastic than HJ and
H-ESGD due to the stochastic term N(0, 1) in their update rules.

The results on the House Sales dataset are given in Figure 4.18. The first key observa-
tion is that a momentum of 0.99 gives the best loss for HJ, and ESGD, and a momentum
of 0.5 gives the worst results. A similar pattern is observed in H-ESGD, except that a
momentum of 0.9 slightly outperforms 0.99. In addition, a larger momentum has a smaller
variation for ESGD and H-ESGD. For HEAT, a momentum of 0.99 has a high mean and
standard deviation caused by one of the 10 random seeds with a huge loss value. The

54

Figure 4.15: Comparison of accuracy or loss against number of epochs for SGD on the four
datasets with the momentum set to 0.5 (green), 0.9 (red) and 0.99 (blue).

55

stochastic term in the y update of (HEAT) can give a wrong update direction and a in-
duce a large increase in loss. Excluding this instance gives Figure 4.19. A momentum of
0.5 and 0.9 gives similar results, while a momentum of 0.99 gives a poorer loss.

Overall, the results of di↵erent momentum on di↵erent algorithms are similar to SGD,
and a momentum of 0.9 gives the best results.

4.2.7 Varying Mini-batch Size

In general, a larger mini-batch size provides a more accurate estimate of the gradient and
requires a smaller number of iterations per epoch, while a smaller mini-batch size is noisier
and achieves a better generalization error. In this section, we explore the e↵ect of di↵erent
mini-batch sizes on di↵erent algorithms.

Figure 4.21 and 4.22 provides the overview of di↵erent mini-batch sizes applied to SGD
in terms of number of epochs and CPU time in seconds respectively. As we can see from the
results, a smaller mini-batch size gives a higher accuracy and lower loss in most cases. The
only exception is the Covertype dataset, which achieves a higher accuracy when a mini-
batch size of 128 is used instead of 32 and 64, possibly because the mini-batch size of 128
is already relatively small for the Covertype dataset, and a further decrease in mini-batch
size makes the predictions highly stochastic.

In general, a larger mini-batch size also has a shorter runtime for the same number
of epochs, since the number of mini-batch updates per epoch is smaller. For Dow Jones
Index and Mushroom which have a relatively smaller data size, a mini-batch size of 64
appears require a very slightly smaller amount of time than a mini-batch size of 128. This
is possibly due to small round-o↵ errors when the overall CPU time is small. The di↵erence
is more apparent when the data size is larger and the neural network is trained for a longer
period of time, for instance in Covertype and House Sales.

Figure 4.23 gives the results of the Mushroom dataset in terms of number of epochs
and Figure 4.24 gives the results in terms of CPU time. In general, a mini-batch size of
32 achieved the best accuracy in the same amount of epochs, while a mini-batch size of 64
achieved the best accuracy in the shortest amount of time. The overall training time to
finish 20 epochs is the shortest for mini-batch size of 128 and longest for 32. This di↵erence
in runtime is the most apparent in H-ESGD.

The results of Covertype dataset are shown in 4.25 and 4.26. A mini-batch size of 32
achieved a better accuracy for HEAT and ESGD, while a mini-batch size of 128 achieved
a better accuracy for HJ and H-ESGD. Recall that the stochastic term is present in the

56

Figure 4.16: Comparison of accuracy against number of epochs for the optimization meth-
ods HJ, HEAT, ESGD and H-ESGD on the Mushroom dataset with the momentum set to
0.5 (green), 0.9 (red) and 0.99 (blue).

57

Figure 4.17: Comparison of accuracy against number of epochs for the optimization meth-
ods HJ, HEAT, ESGD and H-ESGD on the Covertype dataset with the momentum set to
0.5 (green), 0.9 (red) and 0.99 (blue).

58

Figure 4.18: Comparison of loss against number of epochs for the optimization methods
HJ, HEAT, ESGD and H-ESGD on the House Sales dataset with the momentum set to
0.5 (green), 0.9 (red) and 0.99 (blue).

59

Figure 4.19: Comparison of loss against number of epochs for HEAT on the House Sales
dataset with the momentum set to 0.5 (green), 0.9 (red) and 0.99 (blue), after the deletion
of a deviant instance.

updates rules (HEAT) and (ESGD), but not in HJ and H-ESGD, possibly because the
stochastic term has an alleviation and regularization e↵ect of the noisy updates caused
by the small mini-batch size. In all cases, a larger mini-batch size requires a significantly
shorter amount of time to finish running 10 epochs.

For the results of House Sales dataset against number of epochs (Figure 4.27), HJ
achieves a better learning curve with a smaller mini-batch size. HEAT has an opposite
result: a smaller mini-batch size gives a higher and noisier loss. Similar to the case of
HEAT in Section 4.2.5, a certain instance in ESGD has caused the mean and standard
deviation of the loss to rise quickly for a mini-batch size of 32. Removing this instance and
re-plotting gives Figure 4.28. We can see that a smaller mini-batch size gives the fastest
convergence to a local minimum. For this case, changing the mini-batch size has opposite
e↵ect on HEAT and ESGD. For the results versus CPU time (Figure 4.29), the removal
of the abnormal instance in HEAT yields Figure 4.30. The di↵erence in mini-batch size
on H-ESGD is mainly reflected in the CPU time rather than the number of epochs, where
the three curves all eventually reach a similar loss. A mini-batch size of 128 requires the
shortest amount of time to finish the whole training.

As for the Dow Jones Index dataset, a smaller mini-batch size has an advantage of a
faster convergence to a local minimum in terms of both the number of epochs and CPU
time. The results can be found in Figures 4.31 and 4.32 respectively.

60

Figure 4.20: Comparison of loss against number of epochs for the optimization methods
HJ, HEAT, ESGD and H-ESGD on the Dow Jones dataset with the momentum set to 0.5
(green), 0.9 (red) and 0.99 (blue).

61

To sum up, a similar di↵erence in mini-batch size is observed for all of the algorithms
as in SGD. A smaller mini-batch size tend to give a better loss or accuracy while requiring
a longer time of training.

62

Figure 4.21: Comparison of accuracy or loss against number of epochs for SGD on the four
sets with the mini-batch size set to 32 (green), 64 (red) and 128 (blue).

63

Figure 4.22: Comparison of accuracy or loss against CPU time on the four sets with the
mini-batch size set to 32 (green), 64 (red) and 128 (blue).

64

Figure 4.23: Comparison of accuracy against number of epochs for the optimization meth-
ods HJ, HEAT, ESGD and H-ESGD on the Mushroom dataset with the mini-batch size
set to 32 (green), 64 (red) and 128 (blue).

65

Figure 4.24: Comparison of accuracy against CPU time for the optimization methods HJ,
HEAT, ESGD and H-ESGD on the Mushroom dataset with the mini-batch size set to 32
(green), 64 (red) and 128 (blue).

66

Figure 4.25: Comparison of accuracy against number of epochs for the optimization meth-
ods HJ, HEAT, ESGD and H-ESGD on the Covertype dataset with the mini-batch size
set to 32 (green), 64 (red) and 128 (blue).

67

Figure 4.26: Comparison of accuracy against CPU time for the optimization methods HJ,
HEAT, ESGD and H-ESGD on the Covertype dataset with the mini-batch size set to 32
(green), 64 (red) and 128 (blue).

68

Figure 4.27: Comparison of loss against number of epochs for the optimization methods
HJ, HEAT, ESGD and H-ESGD on the House Sales dataset with the mini-batch size set
to 32 (green), 64 (red) and 128 (blue).

69

Figure 4.28: Comparison of loss against number of epochs for ESGD on the House Sales
dataset with the mini-batch size set to 32 (green), 64 (red) and 128 (blue), after the deletion
of a deviant instance.

70

Figure 4.29: Comparison of loss against CPU time for the optimization methods HJ,
HEAT, ESGD and H-ESGD on the Dow Jones dataset with the mini-batch size set to 32
(green), 64 (red) and 128 (blue).

71

Figure 4.30: Comparison of loss against CPU time for ESGD on the House Sales dataset
with the mini-batch size set to 32 (green), 64 (red) and 128 (blue), after the deletion of a
deviant instance.

72

Figure 4.31: Comparison of loss against number of epochs for the optimization methods
HJ, HEAT, ESGD and H-ESGD on the Dow Jones Index dataset with the mini-batch size
set to 32 (green), 64 (red) and 128 (blue).

73

Figure 4.32: Comparison of loss against CPU time for the optimization methods HJ,
HEAT, ESGD and H-ESGD on the Dow Jones Index dataset with the mini-batch size set
to 32 (green), 64 (red) and 128 (blue).

74

Chapter 5

Conclusion

In this paper, we have explored the four optimization algorithms HJ, HEAT, ESGD and H-
ESGD for their performance on neural networks. We studied the e↵ect of hyperparameters
on each algorithm when applied to di↵erent datasets.

Among all the algorithms, SGD has the shortest CPU run time and performs the best
when the underlying function requires little smoothing. HJ is theoretically useful, but the
e↵ect is not highlighted in the tested datasets. HEAT, ESGD and H-ESGD tend to achieve
a better solution on more complicated machine learning tasks. It is advised that L is set
to 5 and ✏ is set to 0.2. However, the optimal learning rate and smoothing parameter �
highly depend on the datasets and neural network architecture. HEAT and ESGD tend to
be more dependent on the initialization of parameters; on the other hand, H-ESGD tends
to have a more stable performance. This means that HEAT and ESGD can potentially
produce the best performance among all the algorithms; however, the algorithms could
also result in a poor performance if the neural network contains large gradients.

For all of the algorithms, a momentum of 0.9 is recommended. The choice of mini-batch
size depends on the purpose of training the neural network. If e�ciency is more important
than the overall quality of the solution, a mini-batch size of 128 is recommended; otherwise,
a mini-batch size of 32 likely gives an improved solution.

To summarize, if the time allowed to train the neural network is limited, SGD is likely
the best choice of algorithm. In general, SGD is recommended over HJ for a higher e�-
ciency, whereas HEAT, ESGD and H-ESGD could be better algorithms than SGD when
accuracy is more crucial and the underlying function is noisy. We conclude that HEAT,
ESGD and H-ESGD do improve the neural network performance by applying smoothing
to the loss function of the tested datasets, but the e↵ect of HJ is not as noticeable.

75

References

[1] C. Baldassi, A., C. Lucibello, L. Saglietti, and R. Zecchina. Local entropy as a mea-
sure for sampling solutions in constraint satisfaction problems. Journal of Statistical
Mechanics: Theory and Experiment, 2(023301), 2016.

[2] A. Blackard, Jock, and Denis Dean. Comparative accuracies of artificial neural net-
works and discriminant analysis in predicting forest cover types from cartographic
variables. 24:131–151, 12 1999.

[3] P. Chaudhari, A. Oberman, S. Osher, S. Soatto, and G. Carlier. Deep relaxation:
Partial di↵erential equations for optimizing deep neural networks. April 2017.

[4] R. Collobert and J. Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. International Conference on Machine
Learning, 2013.

[5] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(2011):2121–
2159.

[6] L. C. Evans. Partial Di↵erential Equations: Second Edition (Graduate Studies in
Mathematics). American Mathematics Society, 1998.

[7] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[8] C. Gulcehre, M. Moczulski, M. Denil, and Y. Bengio. Noisy activation functions.
April 2016.

[9] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Second Edition. Springer, 2009.

76

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[10] S. Io↵e and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. March 2015.

[11] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (canadian institute for advanced
research). 2009. http://www.cs.toronto.edu/

~

kriz/cifar.html.

[12] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems.
Curran Associates, Inc., 2012.

[13] Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010. http://yann.

lecun.com/exdb/mnist/.

[14] M. Lichman. UCI machine learning repository, 2013. http://archive.ics.uci.edu/
ml.

[15] H. Mobahi. Training recurrent neural networks by di↵usion. February 2016.

[16] J. Moreau. Proximité et dualtité dans un espace Hilbertien. Bulletin de la Société
Mathématique de France, 93:273–299, 1965.

[17] V. Nair and G. Hinton. Rectified linear units improve restricted boltzmann machines.
International Conference on Machine Learning, 2010.

[18] G. A. Pavliotis and A. M. Stuart. Multiscale Methods – Averaging and Homogeniza-
tion. Springer, 2007.

[19] S. Ruder. An overview of gradient descent optimization algorithms. June 2017.

[20] D. Rumelhart, G. Hinton, and R. Williams. Learning representations by back-
propagating errors. Nature, 323(6088):533–536.

[21] A. Samuel. Some studies in machine learning using the game of checkers. 1959.

[22] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. Generating text with recurrent
neural networks. International Conference on Machine Learning, 2011.

[23] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization
and momentum in deep learning. International Conference on Machine Learning,
2013.

[24] M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient Langevin dy-
namics. 2011.

77

http://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[25] Y. Yu. Better approximation and faster algorithm using the proximal average. In
Advances in Neural Information Processing Systems, 2013b.

[26] S. Zhai, Y. Cheng, W. Lu, and Z. Zhang. Deep structured energy based models for
anomaly detection. June 2016.

78

	List of Figures
	Introduction
	Background
	Deep Neural Networks
	Fully Connected Neural Networks
	Convolutional Neural Networks

	Techniques in Deep Neural Networks
	Batch Normalization
	Data Pre-processing
	Choosing Activation Functions
	Constructing Deep Neural Networks

	Training Deep Neural Networks
	Loss Function
	Overfitting and Underfitting
	Regularization

	Optimization in Deep Neural Networks
	Gradient Descent
	Stochastic Gradient Descent
	Other Optimization Algorithms

	Methodology
	Smoothing of the Loss Function by Local Entropy and Homogenization
	Local Entropy and the Viscous Hamilton-Jacobi Equation
	Gradient of Local Entropy
	Local Entropy via Stochastic Differential Equations

	Smoothing of the Loss Function by the Heat Equation
	Smoothing of the Loss Function by Inf-convolution
	The Non-viscous Hamilton-Jacobi Equation

	Empirical Evaluation
	Setup
	Notations
	Datasets

	Experiments
	Loss and Accuracy versus the Number of Epochs
	Loss and Accuracy versus CPU Time
	Varying L and T
	Varying L with T fixed
	Varying Amount of Smoothing
	Varying Momentum
	Varying Mini-batch Size

	Conclusion
	References

