
An Updated Stable Primal-Dual
Interior-Point Algorithm for Linear

Programming

by

Ryan Hughes

A Masters Research Project
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Masters
in

Computational Mathematics

Waterloo, Ontario, Canada, 2019

c© Ryan Hughes 2019

Examining Committee Membership

Supervisor: Henry Wolkowicz
Professor, Dept. of Combinatorics & Optimization,
University of Waterloo

Second Reader: Thomas Coleman
Professor, Dept. of Combinatorics & Optimization,
University of Waterloo

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

We revisit the stable linear programming algorithm developed by Gonzalez-Lima, Wei,
& Wolkowicz [13] and provide an update that performs favorably on well-conditioned dense
and sparse linear programs. The algorithm follows the primal-dual interior-point framework
by applying Newton’s method to the perturbed optimality conditions. It efficiently finds
the Jacobian for a reduced system that has been shown to remain well conditioned as you
approach optimality. Once in a region of quadratic convergence, the algorithm converts to
taking a purely Newton step (with no backtracking) if the Jacobian is not ill conditioned.
Numerical results are presented with comparisons to Mosek, Matlab’s LinProg and SDPT3
on random dense problems. A heuristic for creating random dense linear programs is
presented and used in the testing of the updated stable method. Also, results for solving
sparse problems from the Netlib problem set show favorable results.

iv

Acknowledgements

I would like to thank my wife, Peggy, for her help and support while I completed this.
Also, I would like to especially thank Henry W. for his countless hours of help and patience
as I completed this work.

v

Table of Contents

List of Tables viii

List of Algorithms ix

List of Figures x

Glossary xi

List of Symbols xiii

1 Introduction 1

1.1 History . 1

1.2 Linear Programming . 2

1.3 Duality . 3

1.4 Further Preliminaries . 5

1.5 Outline . 5

2 Classical Primal-Dual Framework 6

3 Stable Method 9

3.1 Search Directions . 9

3.1.1 Normal Equations . 9

3.1.2 Stable Approach . 11

3.2 Stability and Convergence . 13

vi

4 Implementation Details 17

4.1 Stopping Criteria . 17

4.2 Backtracking & Steplength . 18

4.3 Starting Point . 18

4.4 Crossover . 20

5 Numerical Experiments 24

5.1 Random (Dense) Problems . 24

5.2 NETLIB Problems . 26

5.3 Results . 28

6 Future Work 32

7 Conclusion 33

References 34

vii

List of Tables

5.1 Average results over 5 dense random problems with Cm = log(m). ?Mosek
and LinProg should have double number of iterations since they are using
Mehrotra’s Predictor Corrector method . 28

5.2 Comparisons of NETLIB problems for the 3 different solvers. ?Mosek and
LinProg should have double number of iterations since they are using Mehro-
tra’s Predictor Corrector method . 29

5.3 Comparisons of NETLIB problems . 29

viii

List of Algorithms

2.0.1 Primal-Dual Framework for Linear Progams [27, p. 8] 8
4.3.1 Generating starting point [21, Section 14.2] 20
4.4.2 Modified stable primal-dual interior-point algorithm 23
5.1.1 Construction of well-conditioned dense random problems 27

ix

List of Figures

5.1 Performance profiles for 4 solvers for 20 random (dense) problems of size
1100x2500 with Cm = log(m) for time to solve. The Stable method is a hor-
izontal line at 1.0, indicating it solved the problems in the smallest amount
of time . 30

5.2 Performance profiles for 4 solvers for the sparse Netlib problems 31

x

Glossary

backward error 20

centering parameter 7

central path 7

condition number 20

dual linear program 3

dual program 3

dual value 3

dual variables 3

Dual-Simplex 21

ellipsoid method 2

error magnification factor 21

feasible 3

forward error 20

interior-point method 2

Lagrangian 18

linear program 1

xi

log-barrier parameter 7

LU factorization 13

NETLIB 26

Newton search direction 6

normal equations 1, 9

null space method 13

objective function 2

optimal 3

primal problem 2

primal value 3

primal variable 2

primal-dual methods 2

pure Newton method 1, 20

relative backward error 20

relative forward error 20

residuals 7

simplex method 1

stable reduction 13

standard form 2

starting point 18

steplengths 7

xii

List of Symbols

Bbasis 26

Cm 25

Diag 5

D 26

Γ 26

αd 7

αp 7

βB 26

βE 26

β 26

K 10

∆s 6

‖ · ‖F 5

Fstable 12

Fs 13

Fµ(x, y, z) 6

γB 26

xiii

γE 26

Js 13

‖ · ‖ 5

Fµ(v, y) 14

Ωs 3

Ω 3

Pstable 12

Px 10

Pz 9

rs 7

σ 7

a 26

µ 6

R̃ 26

e 5

xiv

Chapter 1

Introduction

The purpose of this paper is to revisit the stable linear program, LP, path-following method
given in [13]. This algorithm is a primal-dual path-following method that is based on an
inexact Newton method. A reduced system is solved at each iteration and then a backsolve
step is used to obtain the complete search direction. No ill-conditioning is introduced as in
the traditional normal equations approach. Stability of this method is shown in Theorem
3.2.2. It assumes that the constraint matrix to the LP has a special structure described in
Section 3.1.2. We include the crossover technique used in [13] but have a dynamic estimate
for the crossover based on the conditioning of the problem. If conditioning is poor, then no
crossover occurs and the algorithm continues without switching to a pure Newton method.

Numerical testing is performed on well-conditioned dense random problems and a
heuristic is presented on how to generate such problems. This updated approach per-
forms favourably against modern solvers on dense well-conditioned random problems and
some nondegenerate NETLIB problems.

1.1 History

Linear Programming first appeared when G.B. Dantzig developed the simplex method. The
simplex method for solving a linear program was introduced by Dantzig in the 1940’s when
he was working as a Mathematical Advisor to the United States Air Force Comptroller [5].
Along with T.C. Koopmans, Dantzig laid down a major part of the foundations of linear
programming during this time and developed the details of the simplex method [6, 7, 5, 8],
an extremely effective algorithm for solving an LP.

1

For decades, Dantzig’s simplex method was the primary algorithm that was used to
solve linear programs despite it being an exponential-time algorithm in the worst case. In
practice (on average), it proved to be quite effective despite the worst case poor behaviour.
In 1979, L.G. Khachian [18] showed that the ellipsoid method of Nemirovski-Shor [23], [4]
could be used to solve LP in polynomial-time. However, this algorithm turned out to be
a computational disappointment. It was not practical and generally not competitive with
the simplex method.

A few years later, in 1984, Karmarkar [17] developed a polynomial-time algorithm, quite
unlike the simplex method or the ellipsoid method. It solves an LP by travelling through
the interior of the feasible region, an interior-point method. The simplex method iterates
on the boundary of the feasible region and the ellipsoid method is an exterior method, so
this was a revolutionary idea that sparked excitement in the field of linear programming.
From this, the field of primal-dual methods were developed that iterate through both
the primal feasible region and the dual feasible region simultaneously to reach optimality.
Primal-dual methods have matured to elegantly solve many very large problems [3]. More
details about primal-dual methods are given in Chapter 2.

LP’s are widely used in many areas including profit maximization, optimal resource
allocation in manufacturing, bridge design to minimize weight, aircraft flight plan selection
to minimize fuel and computer chip design for maximal heat dissipation. This is certainly
not an exhaustive list of uses of LP’s.

1.2 Linear Programming

Linear Programming is concerned with finding the optimal solution to a linear function,
called the objective function, given in terms of decision variables with some imposed linear
constraints to the problem. Depending on the problem, the objective function is to be either
minimized or maximized subject to the constraints. The constraints are a combination of
linear equalities, inequalities, or sign restrictions imposed on the decision variables.

The LP we consider in standard form is given by:

p∗ := min cTx
(LP) s.t. Ax = b (∈ Rm)

x ≥ 0 (∈ Rn
+)

(1.2.1)

where c, x ∈ Rn, b ∈ Rm , and A ∈ Rm×n. A, b and c are given with x called the primal
variable. This LP is called the primal problem.

2

1.3 Duality

Every LP has a corresponding problem called its dual program. The concept that every
LP has a companion dual program is very important in optimization theory. This section
on Duality is outlined in [12].

The corresponding dual linear program, DLP, to (1.2.1) is given by:

d∗ := max bTy
(DLP) s.t. ATy + z = c (∈ Rn)

z ≥ 0 (∈ Rn
+)

(1.3.1)

where y ∈ Rm , z ∈ Rn and c, x, b, A are as above and y, z are called the dual variables.
Note that if z ≥ 0 =⇒ ATy ≤ c is an equivalent statement.

For an LP, x∗ ∈ Rn is considered optimal if cTx∗ ≤ cTx for all feasible values of x,
namely ∀x ≥ 0 such that Ax = b. Similarly for DLP, y∗ ∈ Rm and z∗ ∈ Rn are optimal if
bTy∗ ≥ bTy for all feasible values of y and z, that is ∀y and ∀z ≥ 0 such that ATy + z = c.
We assume that we have primal-dual strict feasibility with the primal-dual feasible and
strictly feasible set given by, respectively,

Ω : =
{

(x, y, z) : Ax = b, ATy + z = c, x ≥ 0, z ≥ 0
}

;
Ωs : =

{
(x, y, z) : Ax = b, ATy + z = c, x > 0, z > 0

}
.

The primal value, p∗, is the minimum value that the LP obtains, which is equal to
cTx∗. Similarly for DLP, the dual value, d∗, is the maximum value of the dual, namely
bTy∗.

Theorem 1.3.1 (Weak Duality). If x∗ is a solution to LP (1.2.1), and ŷ is dual feasible,
then

cTx∗ ≥ bT ŷ

Proof. From dual feasibility, we know that c ≥ AT ŷ. Since x∗ is a primal feasible solution,
then we know that x∗ ≥ 0, Ax∗ = b and (x∗)T c ≥ (x∗)T AT ŷ. From this we get

cTx∗ = (x∗)T c ≥ (x∗)T AT ŷ = bT ŷ

3

As a result of the Weak Duality Theorem, we have the following 3 corollaries:

Corollary 1.3.2. If x̂ is primal feasible and ŷ dual feasible where cT x̂ = bT ŷ then x̂ and ŷ
are optimal solutions to LP and DLP, respectively.

Proof. From Theorem 1.3.1 we know that for every optimal solution x∗, we have

cTx∗ ≥ bT ŷ = cT x̂

Thus, x̂ is an optimal solution to LP. A Similar result is obtained for DLP.

Corollary 1.3.3. If LP is unbounded below, then DLP is infeasible.

Proof. For any feasible solution, ŷ of DLP, Theorem 1.3.1 indicates that cTx∗ is bounded
below by bT ŷ.

Using similar arguments, we have the following:

Corollary 1.3.4. If DLP is unbounded above, then LP is infeasible.

With these results, we can now obtain a stronger result called the Strong Duality The-
orem:

Theorem 1.3.5 (Strong Duality for Linear Programming).

1. If either p∗ or d∗ obtains a finite value, then so does the other and p∗ = d∗.

2. If either LP or DLP has an unbounded objective value then the other has no feasible
solution.

Strong Duality states that there is no duality gap between p∗ and d∗. This is an
important concept in primal-dual algorithms that is used to “measure” how close we are
to the optimal solution as we sequentially iterate through the feasible region. Next we see
that all active constraints in the optimal solution are tight.

Theorem 1.3.6 (Complementary Slackness).

1. If x∗ and (y∗, z∗) are optimal solutions for LP and DLP respectively, then (x∗)T z∗ =
0;

4

2. If x̂ feasible for LP, (ŷ, ẑ) feasible for DLP and (x∗)T z∗ = 0 then x̂ and (ŷ, ẑ) are
optimal for LP and DLP respectively.

From Theorem 1.3.6 we see that once complementary slackness has been achieved for
feasible x and (y, z), we have an optimal solution. Collecting all the criteria for optimal
conditions, we have the following conditions to finding an optimal solution to LP and
DLP.

Theorem 1.3.7 (KKT Optimality Conditions). Given LP and DLP, x is optimal for
LP, and (y, z) are optimal for DLP if the following conditions are met:

1. Ax = b, x ≥ 0 (primal feasibility)
2. ATy + z = c, z ≥ 0 (dual feasibility)
3. xT z = 0 (complementary slackness)

Theorem 1.3.7 outlines the conditions for an optimal solution. Our interior point
method iterates to find an optimal solution by solving perturbed optimality conditions
to converge to achieve the KKT conditions. More details on the Primal-Dual framework
and the method used are given in Section 2.

1.4 Further Preliminaries

Throughout this paper we will use the additional notation: I is the identity matrix of
appropriate dimension; for x ∈ Rn, we let X :=Diag(x) be the diagonal square matrix
with the elements of x on the diagonal; a vector of all ones with appropriate dimension is
denoted by e. Norms used in the stopping criteria is the L2 norm, denoted ‖ · ‖, and the
Frobenius norm, denoted ‖ · ‖F . Given F : Rn → Rn, we let F ′(x) be the Jacobian of F at
x. To help differentiate between block matrices and vectors throughout this paper we use
square brackets,

[
·
]
, to denote a matrix and round brackets,

(
·
)
, to denote a vector.

1.5 Outline

The framework for primal-dual algorithms is given in Chapter 2. Our updated stable
method is outlined in Chapter 3 with the proof of method stability shown in Theorem
3.2.2. Stopping Criteria, Backtracking, Starting Point and Crossover details are given in
Sections 4.1, 4.2, 4.3 and 4.4, respectively. The results from the numerical experiments for
both dense and sparse problems are given in Chapter 5. The areas of potential improvement
for future work is given in Chapter 6. Concluding remarks are given in Chapter 7.

5

Chapter 2

Classical Primal-Dual Framework

We follow a primal-dual interior point framework, e.g., [27]. Primal-dual interior point
methods solve both the primal and dual problems simultaneously, but keep x, z > 0, inte-
riority, satisfied at every iteration. We can rewrite and perturb the optimality conditions
for problems (1.2.1) and (1.3.1) as a mapping Fµ : R2n+m → R2n+m in the following way

Fµ(x, y, z) :=

ATy + z − c
Ax− b

ZXe− µe

 = 0, X, Z > 0, (2.0.1)

where the barrier parameter µ > 0, X := Diag(x), Z := Diag(z), and both x, z ∈ Rn
++.

The third term is to ensure complementary slackness, i.e., xizi = 0,∀i in the limit as µ ↓ 0.
The target, µ, is updated at the current iterate using the complementarity equation

µ =
1

n
µeT e =

1

n
eTZXe =

1

n
zTx. (2.0.2)

Algorithm 2.0.1 outlines the framework for primal-dual interior point methods. We al-
low for σ ∈ (0, 1] to be changed adaptively. And we backtrack safely to maintain positivity.
The details for these steps are given in Chapter 4 for the stable method.

At each step, Newton’s method generates the next iteration towards optimality by
finding the Newton search direction, ∆s, as the solution of the following system

F ′(x, y, z)∆s = −F (x, y, z), where ∆s :=

∆x
∆y
∆z

 , (2.0.3)

6

or equivalently with the three residuals, rd, rp, rc0 AT I
A 0 0
Z 0 X

∆x
∆y
∆z

 = −

ATy + z − c
Ax− b

ZXe− µe

 =: −

rdrp
rc

 =: rs. (2.0.4)

If the current point is strictly feasible, s ∈ Ωs, then (2.0.4) becomes0 AT I
A 0 0
Z 0 X

∆x
∆y
∆z

 = −

 0
0
rc

 . (2.0.5)

However, taking a full Newton step does not guarantee that the strict feasibility con-
dition x, z > 0 is maintained. Therefore we use a damped Newton method and choose
primal and dual steplengths αp, αd ∈ (0, 1] to obtain a subsequent point,

x+ αp∆x, y + αd∆y, z + αd∆z. (2.0.6)

It is desirable to have αp ≈ 1 and αd ≈ 1 so we take a large step towards optimality,
but this is not always possible because we exit the feasible region. Often, only small steps
where αp ≈ 0 and αd ≈ 0 are allowed to stay feasible but this results in only taking small
steps toward optimality. The steplength used in this updated stable method is adaptive
and for large αd and αp we increase the steplength to > 1 to approach optimality more
aggressively.

To address the issue of potentially losing feasbility at each iteration, we stay close
to the central path of the feasible region. If Ωs is non-empty then the central path is
well-defined, [27, Chapter 2].

We attempt to maintain that our current iterates stay within a region of the central
path while moving towards the optimal solution. We introduce a centering parameter, σ
∈ (0, 1] such that (2.0.5) becomes0 AT I

A 0 0
Z 0 X

∆x
∆y
∆z

 = −

 0
0

ZXe− σµe

 . (2.0.7)

Here µ > 0 is the so-called log-barrier parameter. A small value of σ means that we aggres-
sively move towards the optimum; while a value close to 1 means that we are conservative

7

and move towards the central path. By solving for ∆s in (2.0.7), there is a way to find a
Newton direction that attempts to move toward optimality while staying within a region
of the central path.

Algorithm 2.0.1 Primal-Dual Framework for Linear Progams [27, p. 8]

1: Given initial point (x0, y0, z0), x0 > 0, z0 > 0,
2: for k=0,1,2,. . . do

3: solve the following for
(
∆xk,∆yk,∆zk

)T
 0 AT I
A 0 0
Zk 0 Xk

∆xk

∆yk

∆zk

 =

 0
0

−XkZke+ σkµke


where σk ∈ (0, 1] and µk = (xk)T zk

n

4: set
(xk+1, yk+1, zk+1)← (xk, yk, zk) + αk(∆x

k,∆yk,∆zk)

choosing αk so that (xk+1, zk+1) > 0
5: end for

8

Chapter 3

Stable Method

The stable method is a modification of the normal equations approach. Here we discuss
the normal equations approach for solving the Newton equations for the search direction,
and we highlight where numerical difficulties can arise. Details of the stable approach is
presented and the stability of the method is shown.

3.1 Search Directions

3.1.1 Normal Equations

The normal equations approach is a standard method used to solve a linear programs,
e.g., [13]. At each iteration of the primal-dual interior point algorithm, the Newton equation
(2.0.3) is solved for the Newton direction ∆s. Solving for the Newton direction without
exploiting the structure is too expensive; so block elimination is employed to solve it
more efficiently. Typically, ∆z is eliminated first. This is equivalent theoretically to left-
multiplying by the elementary block-pivoting matrix Pz, defined as

Pz :=

 I 0 0
0 I 0
−X 0 I

 .
So our Newton system becomes

9

K := PzF
′
µ =

 I 0 0
0 I 0
−X 0 I

0 AT I
A 0 0
Z 0 X

 =

0 AT I
A 0 0
Z −XAT 0

 , (3.1.1)

with the corresponding right-hand side

− PzFµ = −

 I 0 0
0 I 0
−X 0 I

ATy + z − c
Ax− b

ZXe− µe

 = −

 rd
rp

−Xrd + ZXe− µe

 . (3.1.2)

The next step in the normal equations approach is to solve for ∆x. This is equivalent
to further left-multiplying the system by the transformation Px, defined as

Px :=

I 0 0
0 I −AZ−1

0 0 Z−1


to get

PxPzF
′
µ =

I 0 0
0 I −AZ−1

0 0 Z−1

0 AT I
A 0 0
Z −XAT 0

 =

 0 AT In
0 AZ−1XAT 0
In −Z−1XAT 0

 , (3.1.3)

with the right-hand side becoming

−PxPzFµ = −

I 0 0
0 I −AZ−1

0 0 Z−1

 rd
rp

−Xrd + ZXe− µe


=

 −rd
−rp + A(−Z−1Xrd + x− µZ−1e)

Z−1Xrd − x+ µZ−1e

 . (3.1.4)

We can now solve for ∆y and then backsolve. After appropriate rearrangement we get
the equivalent system

10

In 0 AT

0 In −Z−1XAT

0 0 AZ−1XAT

∆z
∆x
∆y

 =

 −rd
Z−1Xrd − x+ µZ−1e

−rp + A(−Z−1Xrd + x− µZ−1e)

 . (3.1.5)

The last block (normal equations) can be solved directly for ∆y. Then we can backsolve
to obtain ∆x and finally ∆z. Though this system can be solved efficiently, this system
becomes ill-conditioned as we approach the optimum, even though the normal equations
for ∆y can remain well-conditioned. An example showing that this system becomes ill-
conditioned near the optimum is given in [13, Example 2.3]. Px is an ill-conditioned trans-
formation near the optimum and this results in the entire system becoming ill-conditioned.

3.1.2 Stable Approach

The stable approach does not have a transformation that makes the problem ill-conditioned.
The stable reduction step in this approach assumes that A has a special block structure
(after a permutation if needed), namely

A =
[
B E

]
, B ∈ Rm×m invertible. (3.1.6)

We assume that B is well-conditioned, and that the triangular factorization B = LU is
inexpensive. In the large, sparse case, we also assume that both L and U are sparse. This
stable approach is discussed in more detail and computational results are given in [13].
Generally, the number of variables n is significantly greater than the number of constraints
m.

To take advantage of the special structure of A, we partition x and z appropriately to

x =

(
xm
xv

)
and z =

(
zm
zv

)
with lengths m and n−m, respectively, i.e., xm, zm ∈ Rm and xv, zv ∈ Rn−m. Subsequently,
the diagonal matrices Xm, Xv, Zm, and Zv are similarly defined square matrices. We
expand the block matrix K in (3.1.1) and define the elementary matrix for block Gaussian
elimination Pstable to be

11

Pstable :=


In 0 0 0
0 B−1 0 0
0 −ZmB−1 Im 0
0 0 0 Iv

 .
We define the resulting system after the block elimination, Fstable, to be

Fstable := PstablePzF
′
µ =


In 0 0 0
0 B−1 0 0
0 −ZmB−1 Im 0
0 0 0 Iv




0 0 AT In
B E 0 0
Zm 0 −XmB

T 0
0 Zv −XvE

T 0



=


0 0 AT In
Im B−1E 0 0
0 −ZmB−1E −XmB

T 0
0 Zv −XvE

T 0

 , (3.1.7)

where the right-hand side from (3.1.2) becomes

−PstablePzFµ = −Pstable(PzFµ)

= −Pstable


rd
rp

−Xm(rd)m + ZmXme− µe
−Xv(rd)v + ZvXve− µe



=


−rd
−B−1rp

ZmB
−1rp +Xm(rd)m − ZmXme+ µe
Xv(rd)v − ZvXve+ µe

 . (3.1.8)

Putting equations (3.1.7) and (3.1.8) together, we solve the following system


0 0 AT In
Im B−1E 0 0
0 −ZmB−1E −XmB

T 0
0 Zv −XvE

T 0




∆xm
∆xv
∆y
∆z

 =


−rd
−B−1rp

ZmB
−1rp +Xm(rd)m − ZmXme+ µe
Xv(rd)v − ZvXve+ µe

 .

(3.1.9)

12

The stable reduction step in solving this system is obtaining ∆xv and ∆y from the bot-
tom two rows of (3.1.9). This step which is the most computationally expensive operation,
is solving the following reduced system

Js

(
∆xv
∆y

)
= Fs, (3.1.10)

where the Jacobian and right hand side are, respectively,

Js :=

[
ZmB

−1E −XmB
T

Zv −XvE
T

]
, and Fs :=

(
ZmB

−1rp +Xm(rd)m − ZmXme+ µe
Xv(rd)v − ZvXve+ µe

)
.

Next, the second row of (3.1.9) is used to backsolve for ∆xm. Finally, another backsolve
of the top row is done to solve for ∆z. In performing these backsolves, the matrix B−1 is
never evaluated but instead the required product is evaluated using system solves and the
LU factorization. For instance, in the second row of (3.1.9), the matrix product B−1(Exv)
is evaluated using a system solve and the LU factorization when solving for ∆xm.

3.2 Stability and Convergence

One important aspect of this stable method is that it remains numerically stable as you
approach optimality. Here we show that the Jacobian maintains numerical stability since
it is nonsingular.

The stable reduction step is based on finding a null space representation of A. The
step is also known as a null space method [2, Chapter 6]. The method has two key
assumptions. It assumes that a particular solution x̂ of Ax = b is available, and that a
matrix N ∈ Rn×(n−m) is available such that AN = 0, that is that the columns of N spans
the null space of A.

Given the initial solution x̂, we use the substitution x = x̂ + Nv, for some v ∈ Rn−m.
Then

b = Ax ⇐⇒ b = A (x̂+Nv)
⇐⇒ b = Ax̂+ ANv = Ax̂, since AN = 0
⇐⇒ b = Ax̂.

13

As stated earlier, this paper assumes that A has the form (3.1.6) and the system Bv = d
has a unique solution, is well-conditioned, and is inexpensive to solve. Furthermore, we
assume that N has the form

N =

[
−B−1E
In−m

]
. (3.2.1)

We note that these properties may only be available for B after a permutation of the
rows and columns of A.

The stable reduction for the Newton search direction obtained from solving (3.1.9) is a
linearization of the perturbed Newton equation given in (3.2.4), below. We first find the
principal submatrix B of A. We now continue with the stable linearization [13].

We can now eliminate the first two linear blocks of equations in (2.0.1) to obtain a
single block of equations for optimality.

Theorem 3.2.1. Suppose x = x̂ + Nv ≥ 0, z = c − ATy ≥ 0 and Ax̂ = b. Also, suppose
that Null(A) = Range(N), then x, y, z are optimal for (1.2.1) and (1.3.1) if and only if

Diag(c− ATy) Diag(x̂+Nv)e = 0 (3.2.2)

We can see that (3.2.2) is equivalent to the complementary slackness condition, ZXe =
0. The perturbed optimality conditions for our primal-dual method is given by

Fµ(v, y) := Diag(c− ATy) Diag(x̂+Nv)e− µe = 0 (3.2.3)

This is a nonlinear system of two variables, v and y. The linearization of this system for

∆ŝ :=

(
∆v
∆y

)
is given by

F ′µ(v, y)∆ŝ = −Fµ(v, y) (3.2.4)

where F ′µ(v, y) is the Jacobian defined as

F ′µ(v, y) :=
[
Diag(c− ATy)N −Diag(x̂+Nv)AT

]
=
[
ZN −XAT

]
. (3.2.5)

Therefore, from (3.2.4) and (3.2.5) our linearized system is

14

[
ZN −XAT

](∆v
∆y

)
= −Fµ(v, y)

ZN∆v −XAT∆y = −Fµ(v, y). (3.2.6)

The first n−m variables is often the larger, more difficult part of (3.2.6) to solve but if
E is sparse then it is inexpensive. The first n−m variables corresponds to solving for ∆v.
The second, usually smaller part is the m variables corresponding to solving for ∆y. The
next theorem shows that the Jacobian matrix F ′µ at optimality does not get ill-conditioned
as µ approaches 0.

Theorem 3.2.2. Suppose we have an LP given by (1.2.1) and its dual given by (1.3.1).
Also suppose A is onto, full-rank and Null(A) = Range(N). Further suppose that N has
full column rank and (x̄, ȳ, z̄) is the unique optimal solution. Then the Jacobian matrix F ′µ
from (3.2.5) is nonsingular.

Proof. Suppose F ′µ∆ŝ = 0, so if we show ∆ŝ =

(
∆v
∆y

)
= 0 then we are done. Let

B = {i : xj = x̂j + (Nv)j > 0} and N =
{
i : zi + ci − (ATy)i > 0

}
. Since A is onto and

full-rank, then B ∩ N = ∅. Also AB, the matrix formed by the columns of A from indices
in B, is nonsingular.

Since F ′µ∆ŝ = 0 and (3.2.6) we have

0 = F ′µ∆ŝ =
(
c− ATy

)
(Nv)− (x̂+Nv)

(
AT∆y

)
. (3.2.7)

From complementary slackness, definitions and (3.2.7), the following conditions must be
satisfied

cj − (ATy)j = 0, x̂j + (Nv)j > 0, (AT∆y)j = 0, ∀j ∈ B
ci − (ATy)i > 0, x̂i + (Nv)i = 0, (N∆v)i = 0, ∀i ∈ N .

(3.2.8)

The first line of (3.2.8) shows that (AT∆y)j = 0 for all j ∈ B, but AB is nonsingular,
therefore ∆y = 0.

We now show that ∆v = 0. Since the range of N is the null space of A then AN = 0,
so

15

0 =
[
AB AN

] [(N∆v)B
(N∆v)N

]
= AB(N∆v)B + AN (N∆v)N︸ ︷︷ ︸

=0

= AB(N∆v)B (3.2.9)

From (3.2.8), we see that AN(N∆v)N = 0 since (N∆v)i = 0, ∀i ∈ N . This gives us

AB(N∆v)B = 0
=⇒ (N∆v)B = 0, since AB is nonsingular
=⇒ ∆v = 0, since N is full-rank.

We use (3.2.3) and the linearization (3.2.6) to develop the stable primal-dual algorithm.

16

Chapter 4

Implementation Details

Components to the implementation of the updated stable algorithm is presented here.
Steplength, stopping criteria, starting point and crossover criteria are given and the com-
plete updated stable algorithm is given in Algorithm 4.4.2.

4.1 Stopping Criteria

Stopping criteria used in our algorithm is checking for a small relative gap [26] if we do
not crossover to take full Newton steps to optimality. If there is no crossover into a region
of quadratic convergence, then the precision must be less than

xT z

1 + max (|cTx|, |bTy|)
.

However, if we do cross over into a region of quadratic convergence then our stopping
criteria changes so our precision must be less than

‖Fs‖
‖A‖F + ‖b‖

.

Complete details for checking the crossover are given in Section 4.4.

17

4.2 Backtracking & Steplength

To prevent ill-conditioning, backtracking is done at each step to stay away from the bound-
ary of the feasible region before the crossover. Steplength is adaptive with steplengths
greater than 1 allowed for large αd and αd.

It is common to use a constant value for the centering parameter, σ. Here, an adaptive
approach is used before the crossover to allow for greater flexibility and potentially better
algorithm performance. If the crossover is taken then centering is not needed and σ = 0.
The Mehrotra’s Predictor-Corrector (MPC) method [19] is not used in this algorithm.

4.3 Starting Point

Having a poor choice of starting point can lead to non-convergence. Only satisfying posi-
tivity of starting points x0 and z0 can still lead to convergence issues so a better choice has
a significant affect on the robustness of the algorithm. Here we use a heuristic for finding
a good starting point given in [21].

The first step is to solve two minimization problems finding the minimum norms for
x̂ and ẑ given the primal and dual constraints. That is, we are solving the following two
problems

min
x̂

1

2
x̂T x̂

s.t. Ax̂ = b
(4.3.1)

and

min
(ŷ,ẑ)

1

2
ẑT ẑ

s.t. AT ŷ + ẑ = c.
(4.3.2)

Finding the Lagrangian of (4.3.1) gives us

L1 (x̂, ŷ) = min
x̂

1

2
x̂T x̂+ ŷT (Ax̂− b). (4.3.3)

Now (4.3.3) is an unconstrained minimization problem so we can set the partial deriva-
tives to zero to find optimal value x̂

18

∇x̂L1 (x̂, ŷ) = x̂+ ŷTA = x̂+ AT ŷ

∇x̂L1 (x̂, ŷ) = 0 =⇒ x̂+ AT ŷ = 0 =⇒ x̂ = −AT ŷ (4.3.4)

Now we find the partial derivative with respect to ŷ and set it to zero

∇ŷL1 (x̂, ŷ) = 0
=⇒ Ax̂− b = 0
=⇒ Ax̂ = b
=⇒ A

(
−AT ŷ

)
= b

=⇒ ŷ = −
(
AAT

)−1
b

Substituting ŷ into (4.3.3) give us x̂ = AT
(
AAT

)−1
b. Performing the similar steps for

(4.3.2), we acquire ẑ = c−AT ŷ. To be a feasible point we need x̂, ẑ ≥ 0, but this first step
cannot guarantee non-negativity.

The second step adds values to both x̂ and ẑ so the resulting vector is positive. The
minimum values of both x̂ and ẑ are used that the resulting vector is above zero. The
resulting values are given by

x̃ := x̂+ max

(
0,−3

2
min x̂i

)
e, and z̃ := ẑ + max

(
0,−3

2
min ẑi

)
e.

To further ensure that the starting point are not too close to zero and not too dissimilar,
we add another term to achieve this. This term is the average element size of x̃, weighted
by the elements of z̃ given by

x0 = x̃+
1

2

x̃T z̃

eT z̃i

Similarly for z̃ we get

z0 = z̃ +
1

2

x̃T z̃

eT x̃i

The complete starting point algorithm used is given in Algorithm 4.3.1.

19

Algorithm 4.3.1 Generating starting point [21, Section 14.2]

1: Inputs:
A ∈ Rm×n, b ∈ Rm , c ∈ Rn

2: y0 ← (AAT)−1Ac . Step 1
3: x̂← AT (AAT)−1b
4: ẑ ← c− ATy0

. Step 2

5: x̃← x̂+ max

(
0,−3

2
min x̂i

)
e

6: z̃ ← ẑ + max

(
0,−3

2
min ẑi

)
e

. Step 3

7: x0 ← x̃+
1

2

x̃T z̃

eT z̃i

8: z0 ← z̃ +
1

2

x̃T z̃

eT x̃i

9: return (x0, y0, z0)

4.4 Crossover

When the current iterate is close enough to the optimal solution, then a Newton type
approach implies that a pure Newton method attains quadratic convergence, i.e., we set
Newton’s method free and take step lengths of one with no backtracking to stay positive.
The crossover boundary where quadratic convergence is attained not only depends on the
relative gap but also on the condition number of the reduced Jacobian matrix, Js.

The condition number of any square matrix A is given by

cond (A) = ‖A‖ · ‖A−1‖

where ‖·‖ is a vector norm. Given an approximate solution xa to the linear system Ax = b,
the backward error and relative backward error are defined to be

‖b− Axa‖, and
‖b− Axa‖
‖b‖

respectively. Additionally, forward error and relative forward error are defined to be

20

‖x− xa‖, and
‖x− xa‖
‖x‖

respectively. The error magnification factor is the ratio between the relative forward error
and the relative backward error, namely

‖x− xa‖
‖x‖

‖b− Axa‖
‖b‖

.

The condition number returns the maximum possible error magnification for solving a
linear system Ax = b over all possible b’s [25].

In order to be efficient computationally, the condition number is estimated by a 1-
norm condition number estimate using the condest function is MATLAB. The condition
number estimate is an efficient way of finding a lower bound for the condition number
of a matrix [15, 16]. To remain competitive the condition number estimate cannot be
calculated at every iteration so this method only performs the calculation once the relative
gap reaches a desired tolerance. If the condition number is small then there is a crossover
to a pure Newton method. However, if the condition number remains large, there is no
crossover and continues iterating as before. The crossover check is only performed once
and not checked again. If the crossover occurs then the algorithm stopping criteria changes
for a precision less than

‖Fs‖
‖A‖F + ‖b‖

The computation time of the estimate is equivalent to approximately 1-2 iterations of
computation so it is therefore important that it is not calculated at each iteration.

During testing of the algorithm, a large condition number for Js caused the crossover
to fail and the system ultimately diverged. Once the condition number was taken into
consideration, the results stabilized. Indications show that the condition number of Js
depend on the condition number of the original basis to the LP. The complete modified
stable algorithm is given in Algorithm 4.4.2.

Mosek also uses a crossover technique to improve performance time. However, Mosek’s
crossover is not marking the region of quadratic convergence, but rather performs a Dual-
Simplex method once within a region around the optimal value. The Dual-Simplex method

21

https://www.mathworks.com/help/matlab/ref/condest.html

keeps dual feasibility and complementary slackness while seeking for primal feasibility at
the optimum.

22

Algorithm 4.4.2 Modified stable primal-dual interior-point algorithm

1: Initialize:
iter ← 0
crossover ← false
testcrossover ← true
crosstol ← tol
x← x0, y ← y0, z ← z0

stopcrit ← xT z

1 + max(|cTx|, |bTy|)
2: while stopcrit<10−digits & iter<maxIters do

3: Find Newton direction, ∆s =
(
∆x ∆y ∆z

)T
by solving (3.1.9)

4: if (stopcrit<crosstol) & (testcrossover) & (NOT crossover) then
5: testcrossover ← false . Only gets checked once
6: if cond (Js) <

1000
crosstol

then . Testing for Crossover
7: σ ← 0, µ← 0, αp ← 1, αd ← 1, crossover ← true
8: end if
9: else
10: if NOT crossover then

11: αp ← 0.997 ·min

(
1, min

i:∆xi<0
− xi

∆xi

)
12: αd ← 0.997 ·min

(
1, min

i:∆zi<0
− zi

∆zi

)
13: µ← xT z/n
14: end if
15: end if
16: x← x+ αp∆x, y ← y + αd∆y, z ← z + αd∆z . Taking step
17: if crossover then . Performing Updates
18: σ ← 0, µ← 0, αp ← 1, αd ← 1

19: stopcrit ← ‖Fs‖
‖A‖F + ‖b‖

. Stopping criteria changes

20: else
21: Adjust σ, αp and αd adaptively

22: stopcrit ← xT z

1 + max(|cTx|, |bTy|)
23: end if
24: rp ← Ax− b, rd ← ATy + z − c, rc ← xT z − σµ
25: iter ← iter+1
26: end while
27: return

(
x y z

)T
23

Chapter 5

Numerical Experiments

Numerical testing was performed on well-conditioned random problems and on some sparse
problems from the NETLIB library. Random problems were generated such that they were
well-conditioned and already in the form satisfying (3.1.6). The method for generating
well-conditioned random problems are given in Section 5.1.

All computations were done in MATLAB 2019a on a Macbook Pro containing a 2.2
GHz Intel i7 CPU with 16GB RAM. The NETLIB problems used were taken from the
University of Florida Sparse Matrix Laboratory [9] in MATLAB .mat file format.

Solver comparisons were done with Mosek [1] and MATLAB’s linprog function for
interior point methods. Initially comparisons were also done with SDPT3 [26] but it
consistently took 2-3 times longer than the slowest of the other solvers so its results were
excluded in the tables. The default settings were used for the 3 solvers except that the
interior point algorithm was chosen for the LinProg solver. Performance profiles [10, 14]
were used to make comparisons between solvers.

5.1 Random (Dense) Problems

To perform numerical experiments on random problems, we construct our problems to en-
sure that the sub-matrix B is well-conditioned and that the optimal solution is unique. Our
algorithm expects the constraint matrix to have the special structure in (3.1.6). Therefore,
we construct B and E appropriately, and then concatenate to form A.

To construct well-conditioned B, we use Algorithm 5.1.1, below. That is we generate
two m ×m orthogonal matrices UB, VB and diagonal matrix ΣB, where cond (ΣB) ≈ Cm.

24

https://www.netlib.org/
https://www.mathworks.com/help/optim/ug/linprog.html

For this work we chose Cm = log(m) because the expected L2 norm condition number
of real m × m matrices generated from a standard normal distribution is approximately
log(m) + 1.537 as m→∞ [11]. The choice of Cm = log(m) is a minor simplification.

To ensure a matrix has a custom condition number, the singular values are constructed
so that the largest singular value is Cm and the smallest is 1. The desired singular values
are Cm...

1

 .

Given a set of descending singular values (σ1, . . . , σm)T , we want to find constants ω and
ξ such that

ωσ1 + ξ = Cm, and (5.1.1)

ωσm + ξ = 1. (5.1.2)

Substituting (5.1.2) into (5.1.1) and solving for ω, we obtain

ω =
Cm − 1

σ1 − σm
, and ξ = 1− ωσm.

This transformation is applied to the diagonal entries of ΣB to obtain the desired condition
number.

We next define B := UBΣBV
T
B . To construct E we proceed in a similar fashion. We

generate orthogonal matrices UE ∈ Rm×m, VE ∈ R(n−m)×(n−m) and diagonal ΣE ∈ Rm×m

where cond (ΣE) ≈ Cm. VE is cropped to R(n−m)×m so that E has the correct size. All
randomly generated problems have n ≥ 2m to perform this step. We then define E :=
UEΣEV

T
E .

Next, we generate the optimal solution vectors. To guarantee strict complementarity,
the primal vector x∗ is generated with m strictly positive values, and dual vector z∗ has
n−m strictly positive values with all remaining entries zero. The dual vector y∗ is randomly
generated with no restrictions. To obtain the complementary slackness holds, elements of
x∗ and z∗ are permuted so that (x∗)T z∗ = 0.

We need to ensure that the final optimal basis remains well-conditioned. The primal
optimal solution, x∗, is already known so subsequently the columns in A that form the

25

optimal basis is also known. Let β be the set of indices of columns of A that form the
optimal basis with |β| = m. Also let

βB := {i ∈ β : i ≤ m} , (5.1.3)

γB := {i /∈ β : i ≤ m} , (5.1.4)

βE := {i ∈ β : i > m} , (5.1.5)

γE := {i /∈ β : i > m} , and (5.1.6)

|βB| := a. (5.1.7)

A QR decomposition is performed on Bbasis, the matrix consisting of basis columns
in B, to obtain orthogonal matrix Q and upper triangular matrix R. Equivalently in
MATLAB notation

Bbasis := B[:, βB].

We construct a new upper triangular block matrix, R̃, that consists of the first a rows
of R, along with a well-conditioned diagonal matrix D. R̃ is given by

R̃ :=

[
R[1 : a, :]§ 0

0 D

]
where D ∈ R(m−a)×(m−a) is a randomly generated diagonal matrix with cond (D) ≈ Cm.
The optimal basis of the random problem is given by Γ := QR̃. The non-basis columns in
E are then replaced by the better-conditioned columns in Γ. The complete construction
of well-conditioned random problems are given in Algorithm 5.1.1.

5.2 NETLIB Problems

We performed numerical tests on a subset of the well-known NETLIB problems to evaluate
effectiveness on sparse matrices. Since the modified stable algorithm is getting good per-
formance on random dense matrices, we would expect even better performance if sparsity
can be taken advantage of. The NETLIB problems are highly degenerate where 71% of

§ In this work we use MATLAB notation to denote row and column indexing

26

Algorithm 5.1.1 Construction of well-conditioned dense random problems

. Well-condtioned B
1: Generate UB, VB ∈ Rm×m, orthogonal matrices
2: Generate ΣB ∈ Rm×m, diagonal with cond (ΣB) ≈ Cm
3: B ← UBΣBV

T
B

. Well-condtioned E
4: Generate UE ∈ Rm×m, orthogonal
5: Generate VE ∈ R(n−m)×(n−m), orthogonal
6: Crop VE to R(n−m)×m

7: Generate ΣE ∈ Rm×m, diagonal with cond (ΣE) ≈ Cm
8: E ← UEΣEV

T
E

9: A←
[
B E

]
. Ensuring optimality

10: Generate x∗ ∈ Rn with m strictly positive values and n−m zeroes
11: Generate y∗ ∈ Rm

12: Generate z∗ ∈ Rn with n−m strictly positive values and m zeroes
13: Permute elements of x∗ and z∗ such that (x∗)T z∗ = 0

. Ensuring optimal solution stays well-conditioned
14: Find Q ∈ Rm×m, R ∈ Rm×a such that QR = Bbasis, where Bbasis ∈ Rm×a is the matrix

of the basis columns in B. a is defined in (5.1.7)
15: Generate D ∈ R(m−a)×(m−a), diagonal with cond (D) ≈ Cm
16: Γ← QR̃, where R̃ :=

[
R[1 : a, :]§ 0

0 D

]
17: A[:, γE]← Γ[:, (a+ 1) : n]§, where γE is defined in (5.1.6)
18: E ← A[:, (m+ 1) : n]
19: b← ATx∗

20: c← ATy∗ + z∗

21: return A, b, c

the problems have infinite condition number [22]. This stable method performs better on
non-degenerate problems.

To ensure that these problems were in the appropriate format given by (3.1.6), the
licols function was used to find the linearly independent columns of A and then moved
to the first m columns. This step accounted for less than 1% of total computation time.
For the NETLIB comparisons we used a stopping criteria of 10−12 and a crossover tolerance
of 10−3.

27

https://www.mathworks.com/matlabcentral/answers/49984-how-to-remove-dependent-rows-in-a-matrix

Specifications Stable Mosek LinProg
m n CPU (s) Itr R-G CPU (s) Itr? R-G CPU (s) Itr? R-G

500 1000 0.465 19.4 3.58e-16 0.927 5.0 1.38e-10 3.183 7.0 3.15e-08
1000 2000 2.387 21.0 1.14e-15 4.728 5.0 2.84e-10 11.245 8.0 1.56e-08
1500 3000 7.230 23.2 4.20e-15 13.534 5.2 2.91e-09 36.543 8.6 8.84e-10
2000 4000 14.961 23.0 6.95e-16 29.297 5.2 3.37e-09 81.522 9.0 7.06e-13
2500 5000 29.705 24.0 1.81e-15 54.655 5.2 5.10e-10 152.018 9.0 8.36e-09
5000 10000 212.604 25.2 3.38e-15 447.508 5.4 2.00e-10 - - -
7500 15000 669.434 26.0 7.97e-15 1488.815 5.2 2.44e-09 - - -

Table 5.1: Average results over 5 dense random problems with Cm = log(m). ?Mosek and
LinProg should have double number of iterations since they are using Mehrotra’s Predictor
Corrector method

5.3 Results

Table 5.1 compares averaged results for time, number of iterations and relative gap, labeled
as CPU, Itr and R-G respectively. The updated stable method results are compared to the
Mosek and LinProg solvers. Currently, Mosek is able to solve the widest variety of problems
in the shortest time [20]. The random problems were generated using Algorithm 5.1.1 for
different problem sizes. For each size the updated stable method solved the problem in
the shortest time. The stable method performed over twice the number of iterations but
could still find the optimal solution in the fastest time. Note that the number of iterations
listed for Mosek and LinProg should be double since they employ Mehrotra’s Predictor-
Corrector. The results of the 2 larger problems for LinProg are not shown because it took
a considerable amount of time to solve and were stopped before completion.

The relative gap for the stable method is several orders of magnitude smaller than both
Mosek and LinProg. This is likely due to the default parameters for Mosek and LinProg.
The stable method stopping criteria was less than 10−12 and when pure Newton steps were
taken, the relative gap shrunk by several orders of magnitude at each step.

One thing we noticed is that when the condition number of A was significantly lower
than Cm, the stable method was able to solve the dense problem even faster despite the
size of the matrix. This indicates that for large, very well-conditioned problems, the stable
method would be able to solve dense problems very quickly.

Figure 5.1 shows performance profiles for solving time to solve 20 random dense prob-
lems of size 1100×2500. The stable method solved all the problems in the shortest amount

28

Stable Mosek LinProg
Problem CPU (s) Itr R-G CPU (s) Itr? R-G CPU (s) Itr? R-G

afiro 0.012 16 8.682e-13 0.304 9 3.024e-12 0.012 7 1.902e-13
adlittle 0.164 24 9.099e-14 0.292 13 2.005e-10 0.015 12 1.147e-13

agg 0.404 44 3.991e-13 0.290 19 3.915e-09 0.037 20 7.293e-13
stocfor1 0.043 24 5.482e-13 0.205 8 3.441e-12 0.012 10 1.414e-12

Table 5.2: Comparisons of NETLIB problems for the 3 different solvers. ?Mosek and
LinProg should have double number of iterations since they are using Mehrotra’s Predictor
Corrector method

Problem m n
Crossed

Over
cond (Js)

Original
cond (B)

Adjusted
cond (B)

afiro 27 51 N 2.384e+07 ∞ 4.800e+00
adlittle 56 138 N 6.548e+23 ∞ 2.170e+06

agg 488 615 N 2.590e+14 ∞ 1.415e+05
stocfor1 117 165 N 1.460e+07 ∞ 2.266e+02

Table 5.3: Comparisons of NETLIB problems

of time and thus always had a value of 1 in the performance profiles (indicating the fastest
solve time). SDPT3 is included in the figure but slower than the other solvers.

The results for the sparse NETLIB problems are given in Table 5.2. The modified stable
algorithm performs very well on the sparse NETLIB problems despite the problems being
ill-conditioned. For the sparse problems, LinProg was able to solve all the problems in the
shortest amount of time. The number of iterations by the stable method is approximately
the same for all 3 solvers (except stocfor1 problem) once the iterations are doubled due to
MPC method. Figure 5.2 shows the performance profile for the NETLIB problems.

None of the NETLIB problems successfully crossed over into the region of quadratic
convergence due to high condition numbers of Js. Table 5.3 shows the condition numbers
of Js for the NETLIB problems when the crossover is checked. The condition number
calculation accounted for 10-50% of the CPU solve time where the larger contribution was
on the smaller problems. It also shows the condition number of the submatrix B before
and after the columns were rearranged to obtain a full rank B matrix.

29

Figure 5.1: Performance profiles for 4 solvers for 20 random (dense) problems of size
1100x2500 with Cm = log(m) for time to solve. The Stable method is a horizontal line at
1.0, indicating it solved the problems in the smallest amount of time

30

Figure 5.2: Performance profiles for 4 solvers for the sparse Netlib problems

31

Chapter 6

Future Work

Some potential areas where this work could be improved is to include exhaustive presolving
to the method [24] to reduce the size of the problem before the iterative algorithm begins.
Also, incorporating Mehrotra’s Predictor-Corrector [19] into the algorithm could improve
the stable method’s performance.

32

Chapter 7

Conclusion

The update to the stable method has been shown numerically to be quite competitive with
modern solvers on this class of nondegenerate problems. The method is computationally
efficient since a reduced system is solved at each iteration and Newton steps are taken if
the Jacobian remains well-conditioned. The updated stable method can take advantage of
sparse problems and solve quickly without losing sparsity. An algorithm for creating well-
conditioned random dense problems with a custom condition number has been presented
and used in testing of this method. Our tests show that this method can take advantage
of sparsity for large well-conditioned problems.

33

References

[1] Erling D. Andersen and Knud D. Andersen. The Mosek Interior Point Optimizer
for Linear Programming: An Implementation of the Homogeneous Algorithm, pages
197–232. Springer US, Boston, MA, 2000.

[2] M. Benzi, G.H. Golub, and J. LIESEN. Numerical solution of saddle point problems.
Acta Numer., 14:1–137, 2005.

[3] R.E. Bixby. A brief history of linear and mixed-integer programming computation.
Doc. Math., (Extra vol.: Optimization stories):107–121, 2012.

[4] Robert G Bland, Donald Goldfarb, and Michael J Todd. The ellipsoid method: A
survey. Operations research, 29(6):1039–1091, 1981.

[5] G. Dantzig. Reminiscences about the origins of linear programming. Operations
Research Letters, 1:43–48, 1982.

[6] G.B. Dantzig. Linear Programming and Extensions. Princeton University Press,
Princeton, New Jersey, 1963.

[7] G.B. Dantzig. Origins of the simplex method. In A history of scientific computing
(Princeton, NJ, 1987), ACM Press Hist. Ser., pages 141–151. ACM, New York, 1990.

[8] G.B. Dantzig. Linear programming. In History of Mathematical Programming: A
Collection of Personal Reminiscences. CWI North-Holland, Amsterdam, 1991.

[9] T. Davis. Lpnetlib, 2018 (accessed October 2018).
https://www.cise.ufl.edu/research/sparse/matrices/LPnetlib/.

[10] Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with
performance profiles. Mathematical programming, 91(2):201–213, 2002.

34

[11] Alan Edelman. Eigenvalues and condition numbers of random matrices. SIAM Journal
on Matrix Analysis and Applications, 9(4):543–560, 1988.

[12] Shu-Cherng Fang and Sarat Puthenpura. Linear Optimization and Extensions: Theory
and Algorithms. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[13] M. Gonzalez-Lima, H. Wei, and H. Wolkowicz. A stable primal-dual approach
for linear programming under nondegeneracy assumptions. Comput. Optim. Appl.,
44(2):213–247, 2009.

[14] Nicholas Gould and Jennifer Scott. A note on performance profiles for benchmarking
software. ACM Transactions on Mathematical Software (TOMS), 43(2), 2016.

[15] W. Hager. Condition estimates. SIAM Journal on Scientific and Statistical Comput-
ing, 5(2):311–316, 1984.

[16] N. Higham and F. Tisseur. A block algorithm for matrix 1-norm estimation, with an
application to 1-norm pseudospectra. SIAM Journal on Matrix Analysis and Appli-
cations, 21(4):1185–1201, 2000.

[17] N.K. Karmarkar. A new polynomial-time algorithm for linear programming. Combi-
natorica, 4:373–395, 1984.

[18] L.G. Khachian. A polynomial algorithm in linear programming. Doklady Akademiia
Nauk SSSR, 244:1093–1096, 1979.

[19] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM
J. Optim., 2(4):575–601, 1992.

[20] H. Mittelmann. Benchmark of barrier lp solvers, 2019 (accessed September 2019).
http://plato.asu.edu/ftp/lpbar.html.

[21] J. Nocedal and S.J. Wright. Numerical optimization. Springer Series in Operations
Research and Financial Engineering. Springer, New York, second edition, 2006.

[22] F. Ordonez and R. Freund. Computational experience and the explanatory value of
condition measures for linear optimization. SIAM Journal on Optimization, 14(2):307–
333, 2003.

[23] Steffen Rebennack. Ellipsoid method, pages 890–899. Springer US, Boston, MA, 2009.

35

[24] Vishnu V. Sadhana. Efficient presolving in linear programming. Master’s thesis,
University Of Florida, Florida, 2002.

[25] Timothy Sauer. Numerical Analysis. Pearson, 2018.

[26] R. H. Tütüncü, K. C. Toh, and M. J. Todd. Solving semidefinite-quadratic-linear
programs using sdpt3. Mathematical Programming, 95(2):189–217, Feb 2003.

[27] S. Wright. Primal-Dual Interior-Point Methods. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, Pa, 1996.

36

	List of Tables
	List of Algorithms
	List of Figures
	Glossary
	List of Symbols
	Introduction
	History
	Linear Programming
	Duality
	Further Preliminaries
	Outline

	Classical Primal-Dual Framework
	Stable Method
	Search Directions
	Normal Equations
	Stable Approach

	Stability and Convergence

	Implementation Details
	Stopping Criteria
	Backtracking & Steplength
	Starting Point
	Crossover

	Numerical Experiments
	Random (Dense) Problems
	NETLIB Problems
	Results

	Future Work
	Conclusion
	References

