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Abstract

Image segmentation is an important problem in computer vision and has significant ap-
plications in the segmentation of cellular images. Many different imaging techniques exist
and produce a variety of image properties which pose difficulties to image segmentation
routines. Bright-field images are particularly challenging because of the non-uniform shape
of the cells, the low contrast between cells and background, and imaging artifacts such as
halos and broken edges. Classical segmentation techniques often produce poor results on
these challenging images. Previous attempts at bright-field imaging are often limited in
scope to the images that they segment. In this paper, we introduce a new algorithm for
automatically segmenting cellular images. The algorithm incorporates two game theoretic
models which allow each pixel to act as an independent agent with the goal of selecting their
best labelling strategy. In the non-cooperative model, the pixels choose strategies greedily
based only on local information. In the cooperative model, the pixels can form coalitions,
which select labelling strategies that benefit the entire group. Combining these two models
produces a method which allows the pixels to balance both local and global information
when selecting their label. With the addition of k-means and active contour techniques
for initialization and post-processing purposes, we achieve a robust segmentation routine.
The algorithm is applied to several cell image datasets including bright-field images, fluo-
rescent images and simulated images. Experiments show that the algorithm produces good
segmentation results across the variety of datasets which differ in cell density, cell shape,
contrast, and noise levels.
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Chapter 1

Introduction

1.1 Cellular Images

In biological science there is often a need to analyse cell images produced by microscopes.
Common tasks include counting the number of cells or detecting events such as cell splitting.
The analysis of these images can be done by a human or by a computer. Whether the
analysis of a cellular image is to be done by hand or automatically, the type of imaging
used plays an important role in the ease of the task. Two general imaging techniques are
used: fluorescent and bright-field imaging. Sample fluorescent and bright-field images of
the same cells can be seen in Figure 1.1.

1.1.1 Fluorescent Imaging

To take a fluorescent image, the cells must first be stained. These stains can target different
parts of the cell such as the nucleus or cytoplasm. When the stained cell is exposed
to a specific wavelength of light, it fluoresces at another wavelength. Only the stained
parts of the cell fluoresces, and so they are easily distinguishable from the background.
This high contrast is highly desirable for analysing cellular images. There are however
some drawbacks to fluorescent imaging techniques. Firstly, when using many stains there
can be conflicts between the wavelengths emitted by the microscope and the wavelengths
fluoresced by the cells. There is also the problem of phototoxicity, which is a degradation
of the stained cells with repeated exposure to the light used in the fluorescent imaging [22].
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1.1.2 Bright-Field Imaging

Another type of imaging is called bright-field imaging. In this type of imaging, no stain
is applied to the cells, which do not fluorescence, but rather are exposed to white light.
This eliminates two of the main problems encountered in fluorescent imaging. The main
disadvantage of bright-field imaging is the low contrast between cells and their background,
however, inventions such as phase contrast microscopy [28] can greatly increase the contrast
available in bright-field images. Bright-field images are particularly suitable for imaging
living cells, and so it is desirable to have automatic segmentation algorithms which can
overcome the challenging low contrast. Other artifacts present in bright-field images are
glowing edges around cells called halos, as well as broken cell edges.

(a) Fluorescent Image (b) Bright-field Image

Figure 1.1: Fluorescent and bright-field images of the same cells

1.2 Image Segmentation

The problem of image segmentation is a well studied problem in computer vision. The goal
is to take an image and automatically divide elements of the image into groups. These
groups could be simple like foreground and background, or more complicated, such as
identifying an apple and an orange in an image of a fruit basket. In this report we focus
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on the segmentation of cellular images. The objective for cellular images is to identify the
cells from the background medium in which they are suspended.

There are two general ways to view the problem of image segmentation. If we think of
an image as a grid of pixels, then the segmentation of that image is simply a labelling of
the pixels as either belonging to the foreground or the background. This will implicitly
define regions and boundaries in the image. This is the setting in which we develop the
game theoretic segmentation algorithm in Section 3.1. Another equally valid way to view
the segmentation problem is to find the boundary between foreground and background
components. This method will provide implicitly defined labels for each pixel. This set-
ting is how the Chan-Vese active contours method is developed in Section 2.4. The two
viewpoints often have subtly different ways of presenting segmentation algorithms, and so
keeping the correct context in mind is important when examining different methods.

1.3 Cellular Image Segmentation

There has been significant research into the area of cellular image segmentation. Most
of this work has been done with fluorescent microscopy, however there has been work
done with bright-field images as well. Tscherepanow et al. propose a mehtod using active
contour methods for bright-field image segmentation [25]. The method performs well, but
is applied to only one type of cell and so questions about its robustness remain. A different
algorithm proposed by Bradbury and Wan uses a spectral k-means method [2] for bright-
field image segmentation. This algorithm was also only tested with one series of images.
A different approach proposed by Selinummi et al. combines multiple bright-field images
of the same cells into a higher contrast projection [22]. The method is successful however
requires a specific imaging technique to be used. A common problem in most cases is that
the method tests only on a single dataset. The methods may not be robust for all the
various issues that arise in different image datasets.

The goal for this work is to provide a cell segmentation routine that performs well on
bright-field images as well as datasets from other imaging techniques. The method will
ideally have minimal parameter tuning which would allow it to perform well on datasets
not considered. The method uses a game theoretic approach not often used in image
segmentation. Chapter 2 will introduce some mathematical background needed to develop
the segmentation routine, which is presented in Chapter 3. Finally, we present some
numerical results in Chapter 4 and some conclusions in Chapter 5.
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Chapter 2

Background

2.1 Classical Image Segmentation Algorithms

Image segmentation is an old and important problem in computer vision, and as such, there
have been many algorithms developed over the years. In the rest of this section we discuss
a few of the classical image segmentation techniques. All three methods discussed behave
quite differently, which gives an intuition into the many possible ways to approach the
image segmentation problem. In all cases we consider the binary segmentation problem,
which is the problem of segmenting an image into two classes.

The first method we will discuss is that of thresholding. In the thresholding method we
simply compare the intensity of each pixel in the image with some constant threshold value.
If the pixels are greater than the threshold they will receive a label of 1 and if not, then
they will receive a label of 0. This is one of the simplest segmentation techniques, but is
often used as a foundation for more complicated algorithms. The most obvious extension
is to find a way to automatically select the threshold value [18, 21].

Another common classical technique for image segmentation is that of active contours or
snakes. This technique is a form of edge detection. The goal is to find edges in an image,
which then represent the boundary between the components we would like to segment.
A common approach is to have this active contour be attracted to regions with large
gradients in the image. This means the boundary will move to regions in the image with
sharp changes in pixel intensity which represent edges. Once the active contour has settled,
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a segmentation can be recovered by considering the inside and outside of the curve. Beyond
the gradient, many different types of information can be used to dictate the behaviour of
the contour, leading to many algorithms [3, 5, 11].

The final classical technique we will discuss is that of region growing. In this method,
initial seed pixels are selected in the image. From these seeds, neighbouring pixels are
considered. If a neighbouring pixel is deemed a good enough fit, it is incorporated into the
grouping around that seed pixel. In this way, regions grow out from the seeds until they
run into each other and every pixel in the image belongs to a group. The determination
of whether a pixel will join a region or not can be done in many different ways as well as
the selection of the initial seeds, all of which lead to a wide variety of algorithms based on
this concept [1, 10, 29].

The method we present in this paper will involve yet a different model. We will present
a segmentation algorithm based on game theory. Game theory can be used in a number
of different ways for segmentation [4, 8, 27], however is not a very common technique for
segmentation purposes. In Section 2.2 we will introduce the necessary components of game
theory before presenting the algorithm in Chapter 3.

2.2 Game Theory

The basic elements of game theory are fairly simple concepts. First is the notion of a game.
A game is simply a set of rules within which a number of players act. These players, called
agents, are trying to achieve the best possible reward for themselves within the rules of the
game. The reward for an agent is described by an objective function. An agent typically
has a specific set of actions they can perform. The objective function provides a pay-off
for the agent based on his action and the actions of the other players. Game theory is
the study of these games, and is concerned with predicting the outcomes while making
assumptions about the behaviour of the agents.

Games can be broken down and studied in many different ways. We will introduce here a
very broad classification of games that will be important in the description of our algorithm.
This is the distinction between a cooperative game, and a non-cooperative game. In a non-
cooperative game the agents act self-interestedly. This means that the agents care only
about maximizing their objective value and are not concerned with the objective values of
the other agents. To understand the outcome of such games, game theorists often consider
the concept of a Nash Equilibrium [17].
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A Nash Equilibrium in a game is a set of strategies for all agents in the game such that no
agent would improve their objective value by taking a different strategy. In this context
a strategy represents a distribution over the actions available to an agent. A Nash Equi-
librium defines strategies for rational agents in that to maximize ones objective value an
agent playing a game with other rational agents should play the strategy dictated by the
Nash Equilibrium. John Nashed proved that in a finite game with rational agents playing
strategies which are distributions over actions, a Nash Equilibrium is guaranteed to exist,
although the proof is non-constructive. In practice, Nash Equilibria can be difficult to find.

The Nash Equilibrium for a game can often be unintuitive. The classic example is of this
is the Prisoner’s Dilemma [16]. In this game, the Nash Equilibrium represents an outcome
where two prisoners betray one another and end up both serving longer sentences than if
both had stayed silent. If both prisoners had kept quiet, they would both have received a
lesser sentence than that identified as the Nash Equilibrium. The reason why this happens
is because the agents are acting only for themselves, regardless of the other prisoners
decision, confessing will improve a prisoners objective value. Had they been cooperating,
the agents would have chosen to both stay silent. Allowing cooperation leads to a new
paradigm in game theory, which is the study of cooperative games.

In a cooperative game, the agents are allowed some form of cooperation. The type of coop-
eration allowed can be quite varied. One common form of cooperative game allows agents
to form coalitions. By acting together in a coalition, the agents can often improve their
objective values over what they would have achieved playing self-interestedly. Determining
how agents will form coalitions is another area of study within game theory named the
coalition structure generation problem.

2.3 K-means

The k-means algorithm [13] is a clustering method used to group a sequence of n vectors,
(z1, z2, . . . zn) into k distinct classes S = (S1, S2, . . . Sk), where each vector is zi is present
in one and only one class Sj. To split the vectors, the k-means algorithm attempts to
minimize the within-cluster sum of squares according to the following formula:

arg min
S

k∑
i=1

∑
z∈Si

‖z − µi‖2, (2.1)
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where µi is the within cluster mean:

µi =
1

|Si|
∑
z∈Si

z. (2.2)

This is a hard optimization in general, and so the k-means algorithm does not guarantee
an optimal solution. The k-means algorithm is initialized by picking k starting centres.
These are the vectors µ1, . . . ,µk that will be compared with our input vectors. These can
be chosen a number of ways, one of which is to randomly select k of the input vectors to
become the centres.

The algorithm then proceeds by alternating two steps: the assignment step, and the update
step [12]. In the assignment step, each input vector zi is compared to each centre µj.
Each vector is then assigned to whichever class had the centre with which it had the least
Euclidean distance. After the assignment step, we proceed with the update step. In the
update step, the new centres µ are computed using equation (2.2).

The k-means algorithm iterates until no more changes are made in an assignment step.
The result is a clustering of the n vectors into k classes.

2.4 Chan-Vese Active Contours

The active contours method of Chan and Vese [5, 24] is an active contours segmentation
algorithm. The algorithm attempts to find a deformable boundary between foreground and
background components. This is a different way to view the segmentation problem than
the labelling of pixels we will use to describe the main algorithm in Chapter 3, however
they are interchangeable. We introduce this model as it is used as a post-processing step
in the main algorithm.

The algorithm uses a deformable curve, D, defined by the zero level set of a function φ,
D = {(x, y) | φ(x, y) = 0}. This curve represents a segmentation; all pixels (i, j) inside the
curve will have φi,j < 0, and all pixels outside the curve will have φi,j > 0. To find φ, the
algorithm solves the following optimization problem:

arg min
µ0,µ1,D

F (µ0, µ1, D), (2.3)
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where F is the functional:

F (µ0, µ1, D) = ρ · Length(D)

+ λ1

∫
inside(D)

|u(x, y)− µ0|2dx dy

+ λ2

∫
outside(D)

|u(x, y)− µ1|2dx dy. (2.4)

Here ρ is a model parameter that controls the strength of the length regularization term.
λ1 and λ2 are also model parameters but are often set to 1. µ0 is the average pixel intensity
of the image u inside of D and similarly µ1 is the average pixel intensity outside of D.

The main components of this functional are the two integral terms. These two terms com-
pare pixels inside or outside of the curve with the average pixel intensity in the respective
region. If a pixel inside the curve has intensity very far from the average pixel intensity
inside the curve, the pixel will exert a stronger influence on the boundary, moving it such
that the pixel will be outside the boundary. In normal active contours methods, gradient
information is used to determine when to stop changing the boundary. The boundary in
the Chan-Vese algorithm stops changing when a balance is reached between the intensities
of the pixels inside and outside the curve. This process is much less local than relying on
gradient information and in general produces good segmentation results.

The other term in the functional controls for the length of the boundary; ρ is a scaling
parameter that can be adjusted to allow for a long winding boundaries, or more compact
circular ones. The value of ρ will often depend on the types of images being segmented.

From the optimization problem, one can derive the Euler-Lagrange equations and from
those a numerical approximation of the PDE can be made. The resulting discretization is:

φn+1
i,j − φni,j

∆t
= δh(φ

n
i,j)

[
ρ

h2
∆x
− ·
(

∆x
+φ

n+1
i,j√

(∆x
+φ

n
i,j)

2/(h2) + (φni,j+1 − φni,j−1)2/(2h)2

)

+
ρ

h2
∆y
− ·
(

∆y
+φ

n+1
i,j√

(φni+1,j − φni−1,j)2/(2h)2 + (∆y
+φ

n
i,j)

2/(h2)

)

− λ1(ui,j − µ0(φ
n))2 + λ2(ui,j − µ1(φ

n))2

]
, (2.5)
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where h is the space step, δh is a regularization of the Dirac delta function, and ∆x
+,∆

x
−,∆

y
+,

and ∆y
− are forward and backward differences in the x and y directions respectively. An

artificial time step ∆t is also introduced. The function δh is defined as follows:

δh(z) =
1

z2 + 1
. (2.6)

This function is used to ensure that φ changes only near the boundary (the zero level set
of φ). The four finite difference operators are defined as follows:

∆x
+φi,j = φi+1,j − φi,j, (2.7)

∆x
−φi,j = φi,j − φi−1,j, (2.8)

∆y
+φi,j = φi,j+1 − φi,j, (2.9)

∆y
−φi,j = φi,j − φi,j−1. (2.10)

We can solve this implicit discretization by alternatingly solving for φn+1, and updating
µ0 and µ1. We stop the iterations after a maximum of T steps or if φ has sufficiently
converged.

2.5 ISBI 2013 Cell Tracking Challenge

The IEEE International Symposium on Biomedical Imaging 2013 Cell Tracking Challenge1

was held to establish methods for evaluating different automatic cell tracking algorithms
[15]. There were eight different datasets used in the competition and six competing al-
gorithms. As part of the evaluation, segmentation quality was measured. It is this seg-
mentation quality we wish to use when evaluating our algorithm described in Chapter
3.

2.5.1 Datasets

The eight datasets can be divided into real videos and simulated videos, and also 2D and
3D videos. The real videos are obtained from a variety of imaging techniques. Our efforts

1Challenge website: http://www.codesolorzano.com/celltrackingchallenge/Cell_Tracking_

Challenge/Results_First_CTC.html
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focus only on the 2D images. For each dataset, a number of ground truths are provided.
Due to the high number of frames and cells, however not all cells or frames have ground
truths provided. At least one frame in each dataset is guaranteed to be fully segmented,
while cells in other frames are chosen randomly to be given labels in the ground truth.
Considering only the 2D videos, we are left with four datasets which are described below.
Sample frames are shown in Figure 2.1.

C2DL-MSC

One of the real video datasets. The cells are rat mesenchymal stem cells. The video
consists of 2D images taken at low resolution using cytoplasmic labelling. Two different
time series are given for this cell type, having sizes 992× 832 and 1200× 782 respectively.
Segmentation challenges include a high signal-to-noise ratio and cells often having long
protrusions.

N2DH-GOWT1

One of the real video datasets. The cells are GOWT1 mouse embryonic stem cells. The
video consists of 2D images taken at high resolution using nuclear labelling. Two differ-
ent time series are given for this cell type, both having size 1024 × 1024. Segmentation
challenges include variations in staining intensity and cell splitting.

N2DL-HeLa

One of the real video datasets. The cells are histone 2B expressing HeLa cells. The video
consists of 2D images taken at low resolution using nuclear labelling. Two different time
series are given for this cell type, both having size 1100 × 700. Segmentation challenges
include the large number of cells and frequent cell splitting in the images.

N2DH-SIM

One of the simulated video datasets. The simulated videos are generated using a simulation
toolkit [23]. Six different time series are given for this cell type, the largest of which has
size 510 × 580. The variations amongst the simulations provide different challenges to
segmentation, including different noise levels and cell densities.

10



(a) C2DL-MSC (b) N2DH-GOWT1

(c) N2DL-HeLa (d) N2DH-SIM

Figure 2.1: Sample frames from ISBI 2D videos

2.5.2 Submissions

Six groups submitted algorithms to the cell tracking challenge. Below we briefly describe
the segmentation algorithm used by each.

COM-US

Segmentation is performed by first computing an intensity histogram. It proceeds by
iteratively computing a best-fit N-point histogram. The middle value of this N-point
histogram provides a threshold for segmentation [6].

11



HEID-GE

Before segmentation a Gaussian filter is applied. Next an initial segmentation was achieved
using adaptive region thresholding. Finally the segmentation is cleaned up using median
filtering and hole filling [9].

KTH-SE

A smoothed image and a background estimation are produced by convolving two different
Gaussian kernels with the original image. After a band pass filter with these two new
images a global thresholding is done to produce a segmentation [14].

LEID-NL

In this algorithm segmentation and tracking are performed simultaneously. At each time
step each cell is fit with a model which evolves over time. The models are fit by performing
gradient descent on an energy functional encapsulating different image data [7].

PRAG-CZ

The image is first smoothed by Gaussian filter. Segmentation is performed using an iter-
ative thresholding based on k-means. Thresholding is computed on a sliding window to
correct for differences in different parts of the image [19].

UPM-ES

This algorithm uses spatio-temporal filtering followed by label clustering based on his-
togram analysis [20].
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Chapter 3

Methodology

The segmentation of cellular images presents various challenges that classical segmentation
techniques often fail to overcome. Two challenges in particular are the low contrast be-
tween foreground and background pixels as well as the noise introduced by the microscopic
imaging techniques. For these reasons, novel approaches are required to effectively segment
cellular images.

In this chapter we outline the algorithm we use to perform cellular image segmentation.
We frame the segmentation problem as a game theoretic one, with each pixel in the image
acting as an agent. For cellular image segmentation we are required to divide the image
into foreground and background - the cells, and the medium in which they are situated.
The pixels acting as agents must choose between two strategies representing the foreground
and background. When all agents have reached a consensus on their respective strategies,
we are left with our final segmentation.

The game theoretic portion of the algorithm is detailed in Section 3.1. It is based on work
by Guo, Yu and Ma [8]. It consists of a non-cooperative component described in Section
3.1.2, as well as a cooperative component described in Section 3.1.3. In the non-cooperative
game, agents act self-interestedly and rely only on local information to make their decisions.
In the cooperative game, agents are allowed to form coalitions. By acting together in a
coalition, agents can improve the coalition-wide results to the detriment of certain agents.
By coming to a consensus as a coalition the agents are acting upon information from a
much larger portion of the image than in the non-cooperative game.
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The algorithm proceeds by combining the results of the cooperative and non-cooperative
components. This is possible because in both games, the agents use objective functions
built on the same underlying energy minimization problem described in Section 3.1.1. The
integration of the components is described in Section 3.1.4.

Additional components are discussed in subsequent sections. The initial splitting of fore-
ground and background components using k-means is described in Section 3.2, and the
initial configuration of coalitions is described in Section 3.3. Finally in section Section 3.4
we describe a smoothing procedure which uses a Chan-Vese active contours model on the
binary image that is the output of the game theoretic segmentation routine.

3.1 N-agent Game Theoretic Image Segmentation

In this model we represent the m × n pixel image as a 2D grid of points. We index the
points either by a conventional pair (i, j), with i ∈ {1 . . .m}, j ∈ {1 . . . n} or as a single
index s ∈ S = {1 . . . N} where N = m · n. We can convert from (i, j) to s using the
following formula:

s = m · (j − 1) + i. (3.1)

The image data is given as u = (u1, . . . , uN), where each us takes a value between 0 and
1, representing the intensity of a pixel. The goal of image segmentation is to identify
foreground and background components. To achieve this we would like to assign each pixel
in the image to either the background or the foreground represented by a label 0 or 1. We
represent the segmentation as w = (w1, . . . , wN), here each ws is a binary variable taking
either 0 or 1. A segmentation w thus provides each pixel with a label giving us potential
foreground and background components.

3.1.1 Game Theoretic Objective Function

There are 2N possible segmentations of a given image with N pixels. We would like
to find the best possible segmentation of our image. We call this optimal segmentation
w∗. The segmentation w∗ is that segmentation which is best explained by the pixels
in our image. We can write this as a conditional probability P (w|u). This probability
represents the quality at which a given segmentation w is explained by the image u. Finding
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the segmentation w∗ which maximizes this probability is an optimization problem with
objective function P (w|u). By applying Bayes’ rule we arrive at the following optimization
problem:

w∗ = arg max
w

P (w|u) = arg max
w

P (u|w)P (w). (3.2)

Under the random field model we are using, we have that P (u|w) is independent across all
points in the grid, so:

P (u|w) =
∏
s

P (us|ws). (3.3)

We further assume that the distribution of P (us|ws) is Gaussian. We have two classes,
foreground and background, represented by 0 and 1. Each class will be represented by
its own Gaussian distribution. We specify these distributions by means and standard
deviations: (µ0, σ0) for class 0, and (µ1, σ1) for class 1. We will let k represent one of the
two possible labels for a pixel, 0 or 1, so k ∈ {0, 1}. We are now ready to write down the
distribution for P (us|ws) for a pixel s taking class k:

P (us|ws) =
1√

2πσk
exp

(
−(us − µk)2

2σ2
k

)
. (3.4)

To simplify our optimization we take the log of the argument. This preserves optimality
since log is a monotone function. We get:

w∗ = arg max
w

∑
s

[
log (P (us|ws))

]
+ log (P (w)) . (3.5)

The 2D grid that we have presented with the Gaussian distribution is a Markov Random
Field (MRF). It satisfies the conditions of the Hammersley-Clifford Theorem, which allows
us to write P (w) according to a Gibbs distribution:

P (w) =
1

Z
exp

(
−
∑
X∈X

V X(w)

)
. (3.6)

Here, Z is called the normalizing constant, and can be ignored after taking the logarithm.
The function V X is called the clique potential for a clique X. A clique is a set of pixels all
of which neighbour each other. We consider only four neighbours for each pixel (up, down,
left, and right) so cliques in our grid consist only of pairs of pixels. Here X represents the
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set of all cliques. We consider four neighbours for each pixel which produces only cliques
of size two. This is because all pixels in a clique must be neighbours with one another.
Since we only ever consider cliques of size two, we can redefine the potential function
correspondingly:

V X(w) ≡ v(ws, wr) =

{
−β if ws = wr

β if ws 6= wr
,where X = {s, r}. (3.7)

Here β is a model parameter, which controls the scaling of the clique potential.

We can express our optimization in terms of energy. We wish to find the lowest total
energy Etot. We express this by expanding P (w) in our objective function and grouping
all terms by index s to get:

w∗ = arg min
w

Etot ≡ arg min
w

∑
s

E(u,w, s), (3.8)

where E(u,w, s) represents the local energy for a given pixel s. It is the combination of
terms from the Gaussian distribution and the clique potentials of all cliques to which s
belongs. Recall, a pixel can be labelled 0 or 1 in our segmentation w. We define the energy
when pixel s is labelled 0 to be E0(u,w, s). Similarly, when pixel s is labelled 1 the energy
is E1(u,w, s). To minimize the total energy, we define the local energy of each pixel to be
the minimum of these two:

E(u,w, s) = min
[
E0(u,w, s), E1(u,w, s)

]
. (3.9)

The energy E0(u,w, s) is computed using (µ0, σ0) from the Gaussian distribution for class
0, and is defined as follows:

E0(u,w, s) = log(
√

2πσ0) +
(us − µ0)

2

2σ2
0

+
∑
r∈N(s)

v(0, wr), (3.10)

where N(s) represents the neighbourhood of pixel s (all pixels belonging to a clique with
s). We can similarly define E1(u,w, s):

E1(u,w, s) = log(
√

2πσ1) +
(us − µ1)

2

2σ2
1

+
∑
r∈N(s)

v(1, wr). (3.11)
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Equations (3.10) and (3.11) give us a way to compare the two possible labels to which we
can assign to pixel s. They will be the foundation on which we build the cooperative and
non-cooperative components described in the following sections.

3.1.2 Non-Cooperative Strategy

From an initial segmentation w0, we allow the pixels (agents) to compete in a non-
competitive game where each pixel tries to minimize its local energy, using the labels
of its neighbours as information. By finding a Nash equilibrium amongst the agents we
can achieve the desired result where no agent is able to improve its objective value by
changing its label.

There are two difficulties in finding this equilibrium. Firstly, we are not allowing the
pixels to pick strategies which are distributions over their actions, and as such the Nash
Equilibrium is not guaranteed to exist. Secondly, even if it does exist it may be difficult
to find due to the number of agents involved. We turn to a technique called best response
dynamics, which is a method by which agents choose their strategies. It is an iterative
procedure by which agents update their strategy based on local information. In this case,
the pixels will update their label based on the labels of their neighbours. By this we mean
that each pixel s will compute E0 and E1 based on the previous segmentation, and choose
either the strategy 0 or 1 which produced the lowest energy. This process can converge to
a Nash equilibrium or sometimes get stuck in a cycle. Our observations are that if a cycle
is encountered it is only with a small portion of the pixels. We can halt the iterations if
this cycling occurs and the result is sufficient to achieve the desired results.

The general procedure for the non-cooperative game is outlined in Algorithm 3.1. The
inputs for the algorithm are the original image, u, some initial segmentation w0, as well
as a limit on the number of iterations, K, which will be a model parameter. The initial
segmentation comes from the initialization process described in Section 3.2 or from previous
iterations of the iterative procedure described in Section 3.1.4.
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Algorithm 3.1 Non-Cooperative Segmentation

Input: Image u, initial segmentation w0

Output: Segmentation wnon−coop, local energies Enon−coop

1:

2: function Non-Cooperative-Segmentation(u,w0)
3: for i = 1 to K do
4: Compute µ0, σ0, µ1, σ1 from wi−1 and u
5: for Each pixel s ∈ S do
6: Compute E0 = E0(u,wi−1, s)
7: Compute E1 = E1(u,wi−1, s)
8: if E0 < E1 then
9: Set wis = 0

10: Set Enon−coop
s = E0

11: else
12: Set wis = 1
13: Set Enon−coop

s = E1

14: end if
15: end for
16: if wi = wi−1 then
17: return wi, Enon−coop

18: end if
19: end for
20: return wK , Enon−coop

21: end function

Each iteration i of the algorithm starts by computing the mean and standard deviation
for the two classes 0 and 1. This is done by using the segmentation labels provided by the
previous iteration (or the initial segmentation w0). The algorithm proceeds by computing
energies E0 and E1 for each pixel s using equations (3.10) and (3.11). Finally the algorithm
chooses the preferred label wis for each pixel by comparing E0 and E1. It also stores the
value of the local energy it has chosen in the variable Enon−coop, which is also indexed by S.
These local energies and the final segmentation wnon−coop are the outputs of the algorithm.

Segmentation results from this algorithm are generally not very good. In this non-cooperative
game the agents make decisions base only on information from their four neighbouring pix-
els. This tends to produce a lot of noise in the final segmentation. We wish to provide a
way for the pixels to incorporate information into their decisions from further away in the
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image. In the next section we introduce a cooperative component to the game that allows
the agents to do just this.

3.1.3 Cooperative Strategy

To introduce cooperation into the game that the agents are playing we first introduce the
concept of a coalition. Here we define a coalition C to be a collection of pixels C ⊆ S,
such that all pixels are all spatially connected, meaning all pixels can be reached from
one another by travelling amongst shared neighbours. We can split the entire image into
coalitions in this way. We introduce the collection of all coalitions, C = {C1, C2, . . . , CP},
with the properties that the entire image is divided amongst the coalitions, S = C1 ∪C2 ∪
. . . ∪ CP , and that no two coalitions share any pixels, Ci ∩ Cj = ∅,∀i 6= j.

We also introduce an extension to the local energy functions from (3.10) and (3.11) to
define energies for an entire coalition:

E0(u,w,C) ≡
∑
s∈C

E0(u,wC,0, s), (3.12)

E1(u,w,C) ≡
∑
s∈C

E1(u,wC,1, s). (3.13)

Here we use special segmentations wC,0 and wC,1 as input to the local energy functions;
wC,0 is a modification of the segmentation w in which every pixel s ∈ C is re-labelled 0,
and similarly wC,1 is a modification of the segmentation w in which every pixel s ∈ C is
re-labelled 1.

With a set of coalitions, C, we proceed by allowing each coalition to decide as a group
which strategy all pixels belonging to that coalition will take. This procedure is detailed
in Algorithm 3.2. Inputs to the algorithm are the image u, an initial segmentation w0, and
a set of coalitions C.
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Algorithm 3.2 Cooperative Segmentation

Input: Image u, initial segmentation w0, coalitions C
Output: Segmentation wcoop, local energies Ecoop

1: function Cooperative-Segmentation(u,w0, C)
2: Compute µ0, σ0, µ1, σ1 from w0 and u
3: for C ∈ C do
4: Let wC,0 = wC,1 = w
5: Set wC,0s = 0,∀s ∈ C
6: Set wC,1s = 1,∀s ∈ C
7: Compute E0 =

∑
s∈C

E0(u,wC,0, s)

8: Compute E1 =
∑
s∈C

E1(u,wC,1, s)

9: if E0 < E1 then
10: ∀s ∈ C, set wcoops = 0
11: ∀s ∈ C, set Ecoop

s = E0(u,wC,0, s)
12: else
13: ∀s ∈ C, set wcoops = 1
14: ∀s ∈ C, set Ecoop

s = E1(u,wC,1, s)
15: end if
16: end for
17: return wcoop, Ecoop

18: end function

The algorithm begins by computing the means and standard deviations for the classes 0
and 1 specified by the initial segmentation w0. It continues by computing coalition energies
for each C ∈ C. It computes the energy E0 given that the entire coalition C takes label
0 using equation (3.12) and the energy E1 given that the entire coalition C takes label
1 using equation (3.13). By comparing these two coalition wide energies, the coalition
makes a decision as to which label all its members should take. It stores the relevant local
energies and also the labels that are chosen by each coalition. We are left at the end with
the cooperative segmentation wcoop and the collection of local energies, Ecoop, which each
pixel computed when choosing its label.

This cooperative game tends to produce large coalitions, and has trouble segmenting fine
details in the image because there is no way to reduce coalition size. To achieve a segmen-
tation with strengths from both the the non-cooperative routine as well as this cooperative
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one, we incorporate the two into a single segmentation algorithm, described in the next
section.

3.1.4 Strategy Integration

In this section we describe the procedure by which the non-cooperative and cooperative
segmentation routines are integrated into a single procedure. We have segmentations pro-
duced by those routines: wnon−coop and wcoop. We also have the collection of local energies
computed as each pixel chose its label in Algorithms 3.1 and 3.2: Enon−coop and Ecoop.

Normally two segmentations would be hard to compare and combine, however we built each
routine upon the same local energy functions (3.10) and (3.11). To produce a combined
segmentation, wcomb, we simply compare the cooperative and non-cooperative energies from
Enon−coop and Ecoop. The details of this are presented in Algorithm 3.3.

Algorithm 3.3 Combine Non-Cooperative and Cooperative Segmentations

Input: Segmentations wnon−coop and wcoop, energies Enon−coop and Ecoop

Output: Segmentation wcomb

1: function Combined-Segmentation(wnon−coop, wcoop, Enon−coop, Ecoop)
2: for s ∈ S do
3: if Enon−coop

s < Ecoop
s then

4: Set wcombs = wnon−coops

5: else
6: Set wcombs = wcoops

7: end if
8: end for
9: return wcomb

10: end function

As mentioned, the inputs to the algorithm are the two segmentations and the two collections
of local energies: wnon−coop, wcoop, Enon−coop, and Ecoop. For each pixel s, the algorithm
compares the local energies Enon−coop

s and Ecoop
s . Whichever has the smaller energy, provides

the label for the combined segmentation wcomb. In this way each pixel in the combined
segmentation is provided with a label from wither wnon−coop or wcoop.
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Similar to the iterations in the non-cooperative component with the intent of converging to
a Nash equilibrium, we can iterate this combination procedure until a stable segmentation
is reached. At each step we must update the coalitions with information from the new
combined segmentation. To form the new set of coalitions we group all spatially connected
pixels with the same label in wcomb. In this work we consider only maximal coalitions. That
is coalitions of spatially connected pixels taking the same strategy must be in the same
coalition. This can be done using breadth first search, the details of which are detailed in
Algorithm 3.4.

Algorithm 3.4 Coalition Reformation

Input: Segmentation w
Output: Set of coalitions C

1: function Get-Coalitions(w)
2: Initialize C1 = {}
3: i = 1
4: Initialize C = {}
5: Initialize Ms = false,∀s ∈ S
6: while ∃s, such that Ms = false do
7: Find s, such that Ms = false
8: Let Q = {s}
9: while Q not empty do

10: Let Q = Q \ {s}
11: Let Ci = Ci ∪ {s}
12: Set Ms = true
13: for r ∈ N(s) do
14: if ws = wr and Mr = false then
15: Let Q = Q ∪ {r}
16: end if
17: end for
18: end while
19: Let C = C ∪ Ci
20: Let i = i+ 1
21: Let Ci = {}
22: end while
23: return C
24: end function
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The breadth first search marks each pixel s as it is found, storing that information in M .
The algorithm continues as long as there are unmarked pixels. When an unmarked pixel s
is found, a new coalition is formed. The algorithm proceeds by adding all pixels r spatially
connected to s that have the same label (ws = wr) to the coalition. All pixels in this
coalition are then marked and we proceed to look for another unmarked pixel. The end
result is a new set of coalitions C.

With a new set of coalitions we repeat the process of computing both the non-cooperative
and cooperative segmentations, as well as performing the combination procedure. These
steps are iterated a certain number of times specified by parameter L. In general, the
algorithm is found to converge in ∼ 10 iterations.

The complete algorithm is presented in Algorithm 3.5. The inputs to the algorithm are
an image u, an initial segmentation w0 and an initial set of coalitions C. The procedure of
how to get w0 and C are discussed in Sections 3.2 and 3.3.

Algorithm 3.5 Game Theoretic Segmentation

Input: Image u, initial segmentation w0, initial coalitions C
Output: Segmentation wgt

1: function GT-Segmentation(u,w0, C)
2: wgt = w0

3: for i = 1 to L do
4: wnon−coop, Enon−coop = Non-Cooperative-Segmentation(u,wgt)
5: wcoop, Ecoop = Cooperative-Segmentation(u,wgt, C)
6: wgt = Combined-Segmentation(wnon−coop, wcoop, Enon−coop, Ecoop)
7: C = Get-Coalitions(wGT )
8: end for
9: return wgt

10: end function

Each iteration of the algorithm starts by computing (wnon−coop, Enon−coop) using Algorithm
3.1 and (wcoop, Ecoop) using Algorithm 3.2. We then produce a combined segmentation
wcomb using Algorithm 3.3. The final step is to recompute the coalitions for use in the next
iteration using Algorithm 3.4.

The final game theoretic segmentation wgt produced by this algorithm is found to be quite
good in practice. We will apply some post-processing procedures to eliminate noise that
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is often present when noisy images are used as input. This process is described in Section
3.4. Numerical results and sample segmentations using this algorithm are presented and
discussed in Chapter 4.

3.2 Segmentation initialization using two class k-means

The game theoretic segmentation presented in Section 3.1 requires an initial segmentation
as input. This could be a circle dividing up the image into two groups or some other
trivial division of the pixels. Experiments with several methods of choosing an initial
segmentation showed that the algorithm converges more quickly if the initial segmentation
has some resemblance to the final segmentation.

We use the k-means algorithm described in Section 2.3 for this purpose. We consider only
the two class k-means algorithm (k = 2) and our input will be the pixel intensities which
are scalars. This gives us a simplified version of equation (2.1). Using the notation from
our image segmentation problem we get the k-means optimization problem:

arg min
w

∑
s: ws=0

‖us − µ0‖2 +
∑

s: ws=1

‖us − µ1‖2. (3.14)

This greatly simplified k-means runs quickly even for a large number of pixels.

The k-means algorithm will divide the pixels into two groups based on intensity. This is
generally not a good segmentation for low contrast images such as the cellular images we
are concerned with, but the k-means algorithm for two classes with scalar inputs is fast,
and the result is sufficient for our initialization purposes.

An added benefit is that the k-means algorithm implicitly returns the mean of each class
which saves that computation from the first iteration of the game theoretic segmenta-
tion. K-means is a heuristic algorithm and therefore not guaranteed to converge to the
global optimum. This is again is acceptable for our purposes as we require only a rough
segmentation to initialize our algorithm.

Figure 3.1 shows an example k-means segmentation used as input to the game theoretic
segmentation.
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(a) Bright-field cellular image (b) Two class k-means segmentation

Figure 3.1: Two class k-means run on bright-field cellular image pixel intensities.

3.3 Coalition initialization

The cooperative component of the game theoretic segmentation from Section 3.1.3 requires
an a initial set of coalitions C. Using Get-Coalitions from Algorithm 3.4 after the k-
means segmentation is one option, however there are a few problems that rule it out. The
cell images we are segmenting are often noisy. This results in a k-means segmentation that
is quite noisy. If we run Get-Coalitions on this segmentation we end up with numerous
coalitions that consist of only a few or even single pixels. These numerous small coalitions
cause a lot of work in the cooperative component of the algorithm while at the same time
losing the more global property we desire from our coalitions.

We instead divide the entire image into square blocks of size B × B, which become our
coalitions. B is a model parameter that must be selected carefully; we balance block sizes
being too small to give desirable coalition benefits or too large and losing resolution in
the cooperative segmentation resulting from the coalitions. On the first iteration of the
game theoretic algorithm the coalitions will not represent spatially connected pixels with
the same label as they do in the remaining iterations.

Figure 3.2 shows an example cooperative segmentation resulting from these block coali-
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tions.

(a) Bright-field cellular image (b) Cooperative segmentation using 8× 8
block coalitions

Figure 3.2: First iteration for cooperative segmentation on bright-field cellular image.

3.4 Smoothing using Chan-Vese Active Contours

We use the Chan-Vese active contours method described in Section 2.4 as a post-processing
step after the game theoretic segmentation algorithm. The game theoretic algorithm can
often have a fair amount of noise in the final segmentation, and we use the active contours
method to achieve a smoother segmentation. We use the binary output of our game
theoretic segmentation as input to the active contours algorithm.

3.4.1 Initialization

The function φ defining our boundary should be a signed distance function. For a general
image, Chan-Vese segmentation usually begins with a circle or other simple shape defining

26



the boundary. The signed distance function in this case is easy to define. We however
would like to start with the zero level being the boundary defined by the output of the
game theoretic segmentation.

Computing the signed distance for the complicated shapes resulting from the image seg-
mentation is challenging. We instead approximate this by computed a signed Manhattan
distance on the grid specified by the pixels. This is done by giving interior pixels next to
the boundary a value of 1. Interior pixels that are neighbours to the pixels of value 1 are
given a value of 2 and so on. The same procedure is done for pixels outside of the boundary
however the values are negative. An example of this can be seen in Figure 3.3.

-3 -2 -1 -1 -2 -3 -4
-2 -1 1 1 -1 -2 -3
-1 1 2 2 1 -1 -2
-1 1 2 2 1 -1 -2
-1 1 2 3 2 1 -1
-1 1 2 2 1 -1 -2
-1 1 1 1 -1 -2 -3

Figure 3.3: Example initialization of φ with interior pixels (gray) positive and exterior
pixels (white) negative.

3.4.2 Smoothing Procedure

The active contours algorithm uses several parameters to control the resulting segmenta-
tion: ρ, λ1, λ2, h,∆t, T . With these parameters specified, and φ0 initialized as in Section
3.4.1, we are ready to begin the algorithm. We solve equation (2.5) for φn+1, and iter-
ate until convergence or until we have reached T iterations. Generally ∼ 10 iterations is
sufficient for our smoothing purposes.

The final output is a significantly smoother version of the segmentation generated from
the game theoretic algorithm. A comparison of before and after smoothing can be seen in
Figure 3.4.
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(a) Segmentation before smoothing (b) Segmentation after smoothing

Figure 3.4: Sample output from the smoothing procedure using active-contours.
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Chapter 4

Numerical Results

From Chapter 3 we have a collection of parameters we must specify for the model. From
the game theoretic portion we have: B, the block size of the initial coalitions; L, the
maximum number of iterations we will perform; β, a parameter in the energy function
controlling the tendency to allow noise; and K, the number of iterations allowed in the
non-cooperative component. In all cases we fix L = 10 and K = 30.These values were
deemed sufficient for convergence in every instance tested.

For the smoothing procedure we use the Chan-Vese active contour algorithm which itself
has a number of parameters: h, the space step size; ∆t, the time step size; λ1, λ2 and ρ,
scaling parameters; and T , the maximum number of iterations. In all cases we fix h = 1,
∆t = 0.3, λ1, λ2 = 1, and T = 10. The values for h, λ1, and lambda2 are taken from
literature and the values for ∆t and T were selected from experimentation.

When listing parameters for a given segmentation result only B, β, µ will be specified. A
small B is often required for images with many small details. The parameter β has the most
effect on the resulting segmentation; a small β punishes pixels less for choosing strategies
different from their neighbours. Several consequences result from choosing a small β value,
we can segment regions of the image that are harder to distinguish from the background
but at the same time it can also lead to over segmentation and more noise in the final result.
Large β values swing the trade-off in the other direction, giving less noise and less over-
segmentation, but less difficult to segment regions are ignored. The parameter ρ controls
the smoothness of the result produced by Chan-Vese, in other words how aggressively it
will eliminates noise and sharp corners. This parameter can vary depending on the general
shape of the cells in the images we wish to segment.
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4.1 Bright-Field Images

The bright-field images used are of C2C12 cells [26]. The result of the two segmentation
on the same bright-field image can be seen in Figures 4.1 and 4.2. In Figure 4.1 we have
chosen a large value for β, while in Figure 4.2 a smaller β. We can see that the algorithm
captures most of the cells. Two cells on the right hand side of the image contain some
difficult to capture low contrast regions. The result with smaller β captures more of the
difficult cells but it also over-segments in several locations. Which result is better may be
a matter of contention.

Figure 4.1: Bright-field image segmentation using game theoretic algorithm. Top row:
original image, segmentation before smoothing. Bottom Row: final segmentation, visual-
ization B = 12, β = 2.2, ρ = 6. Image size: 512× 512.
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Figure 4.2: Bright-field image segmentation using game theoretic algorithm. Top row:
original image, segmentation before smoothing. Bottom Row: final segmentation, visual-
ization. B = 12, β = 0.6, ρ = 6. Image size: 512× 512.

Improvements can be made if we isolate cells in the image and perform segmentation
on them individually. This is not unexpected as the information from other cells could
negatively influence the segmentation of a specific cell. Figures 4.3 and 4.4 offer two
instance where an isolated segmentation results in an improved result from the full image
segmentation.
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Figure 4.3: Bright-field image segmentation using game theoretic algorithm. Left-to-right:
original image, segmentation before smoothing, final segmentation, visualization. B = 6,
β = 0.5, ρ = 6. Image size: 256× 256.

Figure 4.4: Bright-field image segmentation using game theoretic algorithm. Left-to-right:
original image, segmentation before smoothing, final segmentation, visualization. B = 12,
β = 1.2, ρ = 6. Image size: 128× 128.

Some timing results for different image size can be found in Table 4.1. Each step up in
size is actually a quadrupling in the number of pixels. We see a roughly ten-fold increase
in time taken for the game theoretic algorithm at each size increase and less than that for
the smoothing portion.

Image Size Game Theoretic Time (s) Chan-Vese Time (s)
128× 128 1.410101 0.977529
256× 256 15.03144 4.95104
512× 512 138.67926 34.69564

Table 4.1: Timing results for different size bright-field images
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4.2 ISBI 2013 Cell Tracking Challeng Datasets

4.2.1 Jaccard Similarity Index

The results published in [15] use a standard measure to compare segmentation results across
the different algorithms. We compare our segmentation results so that we can compare
the effectiveness of our algorithms to that of the submitted algorithms described in Section
2.5.2.

From an image frame I, a ground truth G was hand labelled. Due to the number of total
cells across all data sets, only a certain number of cells in each frame was labelled, although
one frame was guaranteed to be fully labelled in each dataset. For each labelled frame then,
we compare it to the segmentation produced by our algorithm. For each labelled cell R,
we first decide whether there is a corresponding cell in our segmented image. We consider
each cell S present in the segmented image and consider them matching if

|R ∩ S| > 0.5 · |R| (4.1)

The size of a cell or its intersection with another cell is simply the number of pixels in that
labelled cell. After we determine that the cells correspond to one another, we measure
their similarity using the Jaccard similarity index:

J(R, S) =
|R ∩ S|
|R ∪ S|

(4.2)

We can see that if the segmentation matches the ground truth exactly, R ∩ S = R ∪ S
and so we will have J(R, S) = 1. Likewise, if the segmentation does not match the ground
truth cell will have J(R, S) = 0.

By averaging the Jaccard index across every cell in each frame of a dataset we can produce
a score between 0 and 1. This give an indication of how successful the segmentation
algorithm is and can be used to compare the effectiveness of different algorithms.

4.2.2 Results

Segmentation results from the IEEE International Symposium on Biomedical Imaging 2013
Cell Tracking Challenge compared with our game theoretic algorithm is presented in Table
4.2.
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Dataset C2DL-
MSC

N2DH-
GOWT1

N2DL-
HeLa

N2DH-
SIM

Series 01 02 01 02 01 02 01 02 03 04 05 06

COM-US 0.06 0.15 0.69 0.39 0.33 0.3 0.75 0.77 0.65 0.64 0.64 0.75
HEID-GE 0.34 0.43 0.84 0.89 0.83 0.8 0.91 0.9 0.82 0.83 0.81 0.89
KTH-SE 0.49 0.66 0.86 0.91 0.88 0.89 0.91 0.89 0.84 0.83 0.8 0.83

LEID-NL N/A N/A 0.84 0.88 0.74 N/A 0.93 0.91 0.83 0.84 0.84 0.91
PRAG-CZ 0.15 0.21 0.86 0.92 0.78 0.76 0.8 0.8 0.75 0.78 0.76 0.79

UPM-ES 0.41 0.19 0.55 0.63 0.63 0.65 0.91 0.89 0.81 0.82 0.77 0.86
GameTheoretic 0.55 0.75 0.86 0.93 0.69 0.73 0.9 0.92 0.84 0.86 0.94 0.89

Table 4.2: Segmentation scores for ISBI 2013 Cell Tracking Challenge as well as game
theoretic algorithm1. Bolded entries are the highest score for that dataset.

There are a number of notable results we can see from the scores. The KTH-SE submission
is one the strongest of the submitted algorithms. It performs the best on all but one of the
real videos and quite well on the simulated videos. The game theoretic algorithm achieves
a better segmentation score than the KTH-SE algorithm on nine of the twelve datasets.
The LEID-NL submission did not perform well on the real datasets, but had the best
segmentation for five of the six simulated videos. Comparing our game theoretic algorithm
to LEID-NL, we can see that it out performs it on five of the six simulated videos. From
these comparisons we can conclude that the game theoretic algorithm we have developed is
a good segmentation algorithm, which has out performed two of the strongest submissions
to the ISBI Cell Tracking Challenge.

Of all the datasets from the challenge, the game theoretic algorithm struggled most with
the N2DL-HeLa videos, scoring below several of the submitted algorithms. Sample images
and segmentations can be seen in Figures 4.9 and 4.10. We can see from these images that
they contain a large number of densely packed cells. We note in particular that the game
theoretic algorithm has a tendency to over segment (labelling extra background pixels as
belonging to cells near the borders). The over segmentation is especially harmful when
there are so many densely packed, as the segmentations of neighbouring cells will begin to
overlap. This problem might be addressed with more intensive parameter tuning or might
involve a more sophisticated approach to creating coalitions.

The C2DL-MSC datasets provide a different story however. Here we can see big im-

1Adapted from http://www.codesolorzano.com/celltrackingchallenge/Cell_Tracking_

Challenge/Results_First_CTC.html
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provements in the segmentation score by the game theoretic algorithm over those of the
submitted algorithms. Many of the submitted algorithms had difficulty segmenting the im-
ages from both C2DL-MSC series. The C2DL-MSC datasets are challenging because they
contain whole cells with irregular shapes, whereas many of the other datasets contain more
uniform rounded cell nuclei. Figures 4.5 and 4.6 show sample images and segmentations
for these datasets.

Sample segmentations for the N2DH-GOWT1 series can be seen in Figures 4.7 and 4.8.
Of note for this dataset is the large difference in intensities of certain cells. In Figure 4.7
we see a cell near the bottom of the image that was present in the ground truth but not
completely segmented by our algorithm. Elsewhere in the image we find segmented cells
that are hard to see even with the human eye.

Sample segmentations for the simulated N2DH-SIM series can be seen in Figures 4.11 to
4.16. Of note in these datasets are the bright spots in the cells of Figures 4.15 and 4.16,
which lead to low contrast near the borders of the cells.
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Figure 4.5: Segmentation for C2DL-MSC dataset, series 01. Top row: original image,
ground truth. Bottom Row: final segmentation, visualization. B = 16, β = 2.5, ρ = 10.
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Figure 4.6: Segmentation for C2DL-MSC dataset, series 02. Top row: original image,
ground truth. Bottom Row: final segmentation, visualization. B = 16, β = 2.5, ρ = 10.

37



Figure 4.7: Segmentation for N2DH-GOWT1 dataset, series 01. Top row: original image,
ground truth. Bottom Row: final segmentation, visualization. B = 25, β = 2.6, ρ = 10.
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Figure 4.8: Segmentation for N2DH-GOWT1 dataset, series 02. Top row: original image,
ground truth. Bottom Row: final segmentation, visualization. B = 16, β = 1.8, ρ = 10.
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Figure 4.9: Segmentation for N2DL-HeLa dataset, series 01. Top row: original image,
ground truth. Bottom Row: final segmentation, visualization. B = 14, β = 2.2, ρ = 10.
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Figure 4.10: Segmentation for N2DL-HeLa dataset, series 02. Top row: original image,
ground truth. Bottom Row: final segmentation, visualization. B = 20, β = 2.0, ρ = 10.
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Figure 4.11: Segmentation for N2DH-SIM dataset, series 01. Top row: original image,
ground truth. Bottom Row: final segmentation, visualization. B = 20, β = 1.2, ρ = 10.
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Figure 4.12: Segmentation for N2DH-SIM dataset, series 02. Top row: original image,
ground truth. Bottom Row: final segmentation, visualization. B = 20, β = 1.2, ρ = 10.
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Figure 4.13: Segmentation for N2DH-SIM dataset, series 03. Top row: original image,
ground truth. Bottom Row: final segmentation, visualization. B = 12, β = 1.2, ρ = 10.
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Figure 4.14: Segmentation for N2DH-SIM dataset, series 04. Top row: original image,
ground truth. Bottom Row: final segmentation, visualization. B = 16, β = 1.2, ρ = 10.
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Figure 4.15: Segmentation for N2DH-SIM dataset, series 05. Top row: original image,
ground truth. Bottom Row: final segmentation, visualization. B = 25, β = 1.2, ρ = 10.
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Figure 4.16: Segmentation for N2DH-SIM dataset, series 06. Top row: original image,
ground truth. Bottom Row: final segmentation, visualization. B = 25, β = 1.2, ρ = 10.
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Chapter 5

Conclusions

In this work we developed a novel algorithm to perform segmentation using a combination
of game theoretic models not often used for segmentation purposes and more classical
segmentation techniques. The game theoretic component combines two paradigms of game
theory, cooperative and non-cooperative games, into a single algorithm. Combined with
automatic initialization using k-means and post-processing using active contours, the result
was a robust segmentation algorithm that requires minimal parameter tuning.

The algorithm was tested using a set of bright-field images as well as twelve datasets from
the ISBI 2013 Cell Tracking Challenge. The cell tracking challenge provided twelve 2-
dimensional datasets, six of which were simulated and six of which were microscope images.
On the bright-field images, the algorithm performed well. The method is able to segment
the entire frame containing multiple cells. Results were better when the cells are isolated.
This suggests that a more localized approach may produce better results when segmenting
the entire frame. For the datasets from the Cell Tracking Challenge, segmentations were
compared using the Jaccard similarity index. This allowed a direct comparison between
our game theoretic algorithm and the segmentation scores of the algorithms submitted to
the competition. Our algorithm perform well across most datasets in the competition. The
game theoretic algorithm performed especially well on the challenge dataset C2DL-MSC,
which has low contrast and non-uniform cell shapes. This type of image is most similar to
the bright-field images with which we compared, and the most difficult to segment of the
2-dimensional datasets provided by the competition.

There are certain areas which might be investigated for future work. The algorithm in
general tends to slightly over-segment which causes problems on images such as the N2DL-
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HeLa dataset from the cell tracking challenge. This dataset has a very high cell density
and the over-segmentation here leads to poor results. Another area of investigation would
be in the segmentation of 3-dimensional videos. In this setting the algorithm would be
segmenting time-series of 3-dimensional frames. The cell tracking challenge offers datasets
of this nature and these types of videos are becoming more common in cellular imaging.
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