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Abstract

Blowing snow is an often overlooked phenomenon with potentially large applications for

climate and weather modelling. When snow begins to blow, it can clump together into

snow drifts, and the increased surface area can cause snow to sublimate, especially in drier

conditions. An accurate model of blowing snow could be useful for climate models as the

amount and distribution of snow on the ground can change the albedo and the energy

balance at the Earth’s surface. Blowing snow can also impair visibility. The purpose

of this study was to analyze Piektuk-D, a blowing snow model. Piektuk-D is a two-

dimensional (time and height) column-based model that treats blowing snow behaviour

as the sum of turbulent diffusion under the influence of wind, settling under the effect

of gravity, and sublimation. Three input parameters were identified, the particle size

distribution’s shape parameter, a linear scaling factor determining the impact of wind

speed on the turbulent diffusivity of blowing snow, and the exponent determining the

order of the relationship between wind speed and the turbulent diffusivity of blowing

snow. The sensitivity of Piektuk-D’s output to those input parameters was tested and it

was found that Piektuk-D was sensitive to every tested parameter, as well as to interactions

between them. It was notably more sensitive to changes in the exponent though. Piektuk-

D was also tested against some blowing snow data from Wyoming. It was found that

the MSE in predicting how many particles there were at certain heights above the ground

could be improved from 0.87 in the default state of the model to 0.0787 by altering the

model’s parameters. The generalizability of these results could not be tested as only one

data set was available, however parameter combinations were found with similar MSE

that generated similar values of sublimation and vertical transport to the model’s default

settings.
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Chapter 1

Introduction

1.1 Motivation for Study

Blowing snow is a common phenomenon in areas with snow. In the Arctic and the Antarc-

tic, blowing snow occurs about 6.5% of the time [2]. Once snow is suspended in the air, the

increased surface area and mixing with dry air can accelerate sublimation [3]. Observations

from NASA researchers have shown that 393 ± 196 Gt of snow sublimates per year over

Antarctica due to blowing snow [4]. It has been estimated that somewhere between 10%

to 50% of the snow cover in these areas that is returned to the atmosphere is returned by

sublimation due to blowing snow events [5]. This large range of uncertainty can partially

be attributed to how difficult it is to study blowing snow sublimation as making direct

observations of sublimation is very difficult. Also, since snow depth can affect the colour of

the surface of the Earth (and therefore surface albedo), an accurate representation of blow-

ing snow transport and sublimation could be helpful in accurately predicting the energy

balance at the Earth’s surface. Additionally, blowing snow has implications for visibility
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as, during a blowing snow event, visibility can be impaired.

1.2 Modelling Blowing Snow

Many blowing snow models have been produced over the years, some of which will be

discussed here. In the late 1990s to early 2000s, the state-of-the-art blowing snow models

were column-based models that treated blowing snow as a one-dimensional, time-evolving

column using time, t, and height, z, as independent variables. Some of these models

are WINDBLAST, SNOWSTORM, and Piektuk [6] [7] [3]. Piektuk, in particular, has

undergone a few revisions. The first version, referred to as Piektuk-S, was a spectral

model. Spectral models directly compute how many blowing snow particles are at each

height and have time-evolving, discrete size distributions for particles at these heights.

WINDBLAST and SNOWSTORM are also spectral models. Later versions of Piektuk

(Piektuk-B, Piektuk-D, Piektuk-T) are bulk models. Bulk blowing snow models work with

bulk properties like the blowing snow mixing ratio and rely on averaged quantities meant

to be representative of each property at each height. They can still calculate the number

of particles at each height, though they make stronger assumptions about the radii of the

particles. The blowing snow mixing ratio is the mass of snow in a grid cell divided by the

mass of air in the cell, measured in kg/kg.

A commonality amongst blowing snow models is the assumption that blowing snow

particle radius is gamma distributed in the saltation layer [8]. The saltation layer is the

area right above the ground where particles are moving but are not quite suspended yet.

In terms of the models, the saltation layer is the first grid box above the ground with the

suspension layer being every box above that. While in the saltation layer, particles can

be thought of as “hopping” around on the surface. Past that point, spectral models have
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a size bin for each height and use discrete, time-evolving particle size distributions. Each

bin represents the particles at a range of radii, e.g. 0.5-0.7 mm for one bin, 0.7-0.9 mm

for the next. Bulk models assume that blowing snow particle radii are gamma distributed

everywhere and recalculate at least one of the distribution’s parameters at each height.

The assumption that blowing snow particles are gamma distributed in the saltation layer

is commonly found in scientific literature and has been tested against observations several

times [9] [10]. The gamma distribution has two parameters which will be called α and β

in this paper. Here, the particle size distribution, f(r), is defined to be:

f(r) =
1

Γ(α)βα
rα−1e

−r
β (1.1)

where r is the radius of the particle, Γ is the gamma function, β is the scale parameter

and α is the shape parameter of the distribution. From Figure (1.1) it should be clear that

increasing α increases both the mean and deviation of the distribution.

In assuming that blowing snow particles are gamma distributed everywhere, bulk mod-

els allow the β parameter to vary with height. The equation below shows how β is calcu-

lated:

β =
1

2

(
ρqb

4πρiceN

) 1
3

(1.2)

where ρ is the density of the air-snow mixture at a certain height, qb is the blowing snow

mixing ratio (the mass of suspended snow divided by the mass of air), ρice is the density

of ice, N is the total number of suspended particles at that height.

The interpretation of Equation (1.1) is that it takes a radius, r, as input and outputs the

proportion of blowing snow particles that are at that radius. The output of the distribution

multiplied by the total number of suspended particles would be the number of suspended

particles with radius r.
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Figure 1.1: Four separate gamma distributions with β = 1 and α varying. [1]
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Every spectral model mentioned uses the same formula for calculating sublimation.

Here, the spectral models’ method of calculating sublimation, Qsubl, is defined:

Qsubl =

∫ ∞
0

∫ ∞
0

N(z)f(r, z)
dm

dt
drdz (1.3)

where Qsubl is the total amount of snow that has sublimated, N(z) is the number of particles

at height z, f(r, z) is the particle size distribution at height z evaluated at radius r, and

dm
dt

is the change in mass of one particle due to sublimation, which is shown in Equation

(1.4).

The rate of change of mass of a single blowing snow particle, dm
dt

, is given by:

dm

dt
=

2πr(Rh − 1)

Ls
KNNuTa

(
Ls
RvTa

)
+ RvTa

NShDei

(1.4)

where r is the radius of the particle, Rh is the relative humidity with respect to ice, Ls is

the latent heat of sublimation of snow, K is the thermal conductivity of air, NNu is the

Nusselt number, calculated as a parametrization of the Reynolds number, Ta is the ambient

air temperature, Rv is the gas constant for water vapour, NSh is the Sherwood number

(taken to be equal to the Nusselt number in this case), D is the molecular diffusivity of

water vapour in air (a constant), ei is the saturation water vapour pressure with respect to

ice at the ambient temperature Ta (it is a function of Ta). Each model may use a different

parametrization for the Nusselt or Sherwood numbers, but otherwise the spectral models

calculate sublimation using Equations (1.3) and (1.4). Equation (1.4) was derived in 1966

by Thorpe and Mason [11].

Bulk models like newer versions of Piektuk do not use Equation (1.3) to calculate

sublimation. The bulk models use a similar equation, also derived from Thorpe and Mason,

which defines the sublimation, Sb, as follows:

Sb =
1

ρ

∫ ∞
0

f(r)
dm

dt
dr (1.5)
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where Sb is the mass of snow that has sublimated, f(r) is the gamma distribution, dm
dt

is the change in mass over time due to sublimation, and ρ is the density of ice. The dm
dt

in Equation (1.3) is different from the one that the spectral models use. It is given by

Equation (1.6):

dm

dt
=

2πNu(
qv
qis
− 1)

Fk + Fd
(1.6)

where Nu is the Nusselt number, qv is the water vapour mixing ratio, qis is the saturation

water vapour mixing ratio with respect to ice (the water vapour mixing ratio at which

sublimation would stop occurring), Fk and Fd represent respectively conduction and diffu-

sion involved in phase changes between snow and water vapour. From here, sublimation is

taken as a single integral in accordance with Equation (1.5).

The key difference between the methods utilized by spectral and bulk models to calcu-

late sublimation is that the spectral models use a unique, discrete particle size distribution

for each height and a double integral as shown in Equations (1.3) and (1.4). The bulk

models use a gamma distribution at every height and a single integral as per Equations

(1.5) and (1.6). This leads to sublimation being calculated much faster for bulk models.

Piektuk, WINDBLAST, and SNOWSTORM all model the effect of wind upon snow

as turbulent diffusion, though their ways of modelling turbulent diffusion vary. Piektuk-S

and WINDBLAST model turbulent diffusion in the same way [3] [7]. The number density

for particles in grid cell i, Fi, is defined here:

∂Fi
∂t

=
∂

∂z

[
Ks

∂Fi
∂z

]
(1.7)

where Fi is the is the number density of particles in grid cell i, i represents index of the

grid cell, t is time, z is height, and Ks is the eddy diffusivity, a constant derived differently

for Piektuk-S and WINDBLAST. Equation (1.7) was derived from a result by Shiotani and

Arai [12]. Equation (1.7) is very similar to the one-dimensional heat equation.
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SNOWSTORM handles turbulent diffusion differently from the other models because

it uses different prognostic equations with a different origin. SNOWSTORM’s prognostic

equations were derived from the Navier-Stokes equations rather than the Shiotani and Arai

result [6]. Instead of explicitly calculating the particle number density like WINDBLAST

and Piektuk-S, SNOWSTORM works with particle drift density and uses particle mass

instead of number [6]. Below is SNOWSTORM’s equivalent to Equation (1.7), which is

one of SNOWSTORM’s four prognostic equations. It defines ηr, the mass concentration

of blowing snow particles of radius r:

ρ
∂ηr
∂t

= − ∂

∂z
(ρω′η′r) + ρ

(
∂ηr
∂t

)
sub

(1.8)

where ηr is the mass concentration of particles of radius r, ρ is the total density of the grid

cell (accounting for air and snow), ω′ is an operator that gets the vertical turbulent flux

of the quantity next to it, ω′ = Kx
∂
∂z

, where Kx is the eddy diffusivity for the quantity

following ω′, and η′r is ηr where the prime is used to designate that first order closure has

been applied, the product ρω′η′r represents the vertical turbulent flux of suspended snow

particles, and
(
∂ηr
∂t

)
sub

is the change in mass due to sublimation.

1.3 Piektuk

Piektuk-D was chosen as the subject of this study. Piektuk-D is the double-moment, bulk

variant of Piektuk. Being a double-moment model, it explicitly calculates two moments of

the particle size distribution, as opposed to the first bulk variant, Piektuk-B, which only

calculates one. Part of the reason for choosing Piektuk-D is that Piektuk has seen greater

development than other blowing snow models, having undergone three major revisions [13]

[14] [15]. Piektuk-D being a bulk model was also a factor. While all of the spectral models
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have similar runtimes [8], moving from a spectral model to a bulk model made Piektuk

roughly 100 times faster [13]. With a typical 48-hour simulation taking around five seconds

on the bulk version of Piektuk, a comparable simulation on a spectral model would take

about eight minutes. Considering the short time frame of this Masters Research Paper

(MRP) of about three months, the shortened runtime of the bulk model was a substantial

asset. Had a spectral model been used instead, statistical emulation of the model may have

been required to get an adequate sample of the parameter space. Likewise, any problems

that may have arisen requiring simulations to be rerun would have been a more substantial

set back, especially considering the time allotted for the project.
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Chapter 2

Data and Methods

2.1 Piektuk-D

Piektuk-D is a one-dimensional, time-evolving, column-based blowing snow model [14]. Its

independent variables are time, t, and height, z. Piektuk-D has four prognostic equations

that it uses to model blowing snow. These equations model blowing snow as a combination

of turbulent diffusion, settling, and sublimation. The equations are shown below. The

blowing snow mixing ratio, qb, (from [13]) is shown:

∂qb
∂t

=
∂

∂z

(
Kb

∂qb
∂z

+ vbqb

)
+ Sb (2.1)

where qb represents the blowing snow mixing ratio, Kb is the eddy diffusivity for blowing

snow, vb represents the average terminal velocity of blowing snow particles with a given

size distribution, and Sb represents sublimation. It is worth noting that Sb will be negative

if sublimation is occurring since sublimation will be decreasing the blowing snow mixing

ratio.
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The water vapour mixing ratio, qv, (from [13]) is shown:

∂qv
∂t

=
∂

∂z

(
Kv

∂qv
∂z

)
− Sb (2.2)

where qv is the water vapour mixing ratio, Kv is the eddy diffusivity of water vapour, and

Sb is the same sublimation term as in Equation (2.1). In this case, the sublimation term

is “−Sb” because if sublimation is occurring, Sb itself will be negative and sublimation is

a source for water vapour. There is no vvqv term because water vapour is assumed not to

settle under the effect of gravity.

The prognostic equation for air temperature, Ta, (from [13]) is shown:

∂Ta
∂t

=
∂

∂z

(
Kh

∂Ta
∂z

)
+
SbLs
cp

(2.3)

where Ta is the ambient air temperature, Kh is the eddy diffusivity for heat, Sb is the

same sublimation term from Equation (2.1) and Equation (2.2), Ls is the latent heat of

sublimation of snow and cp is the heat capacity for air. Ls and cp are constants that convert

the amount of sublimation to the temperature change caused by sublimation.

Finally, the prognostic equation for particle number, N , (from [14]) is shown:

∂N

∂t
=

∂

∂z

(
KN

∂N

∂z
+ vNN

)
+ SN (2.4)

where N is the particle number, KN is the eddy diffusivity for particle number, vN is the

terminal velocity for blowing snow particles, SN is the rate of change of particle number

due to sublimation. The method of calculating SN is skipped here for brevity, though note

that SN depends upon Sb from the previous equations [14].

In more detail, the four prognostic variables are the blowing snow mixing ratio, the

water vapour mixing ratio, the ambient air temperature and the particle number. The

blowing snow mixing ratio is the amount of snow divided by the amount of air in a grid
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cell, both measured in kg. The water vapour mixing ratio is the amount of water vapour

divided by the amount of air in a grid cell, both of which are also measured in kg. Ta is

the ambient air temperature measured in Kelvin. The particle number is a count of the

number of blowing snow particles in the grid cell.

The interconnection between Equations (2.1) - (2.4) lies in the sublimation and settling

terms. Sublimation, Sb appears in all four prognostic equations for Piektuk-D, excluding

the equation for particle number which uses SN which depends on Sb. Sb, in turn, depends

upon the water vapour mixing ratio, qv, which is represented in Equation (2.2). qv is

used to determine whether sublimation can occur as no sublimation can occur if the air is

already saturated with water vapour. It is also used to determine the rate of sublimation.

Likewise, the particle size distribution, f(r), appears in both the settling and sublimation

terms of the prognostic equations and the β parameter of f(r) depends upon qb and N as

per Equation (1.2).

In addition to the prognostic equations, there are emergent quantities that the prog-

nostic equations do not directly calculate. This includes vertical transport (measured in

kg/m), visibility (how far somebody should be able to see given the blowing snow condi-

tions, measured in m), radar reflectivity, and the particle size distribution. As previously

mentioned, the particle sizes are assumed to be gamma distributed. Out of the two pa-

rameters, α and β, β is recalculated at each height as the model runs whereas α is held

fixed at every height throughout the entire run.

To solve the prognostic equations, Fortran 77 code supplied by Piektuk-D’s creator,

Stephen Déry, was employed [16]. The code is documented on his website and avail-

able upon request for non-commercial purposes. In this Fortran 77 code, the prognostic

equations are solved using a finite difference scheme with the height variable, z, spaced

logarithmically to provide higher resolution near the surface. As input, the code takes tem-
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perature, wind speed, humidity, and atmospheric pressure as its meteorological forcings.

It outputs visibility, sublimation, and vertical transport. Since particle number was used

for validation later on in this study, the code had to be modified to output the particle

number at each height. It also needed to be modified to read in more parameters as input.

Additionally, for this study, a bash script was written to call the Fortran code multiple

times and send it new parameters each time. This bash script is available in Appendix

A.4. It reads parameters from a data file holding a list of parameters. It iterates over the

length of this list. At each iteration, it modifies the file that the Fortran code reads its

parameters from and calls the Fortran code.

In summary, Piektuk-D consists of four main prognostic equations that calculate the

blowing snow mixing ratio, qb, the water vapour mixing ratio, qv, the particle number,

N , and the ambient temperature Ta. These equations depend upon the bulk method of

calculating sublimation shown in Equation (1.5) which in turn depends upon the bulk

method of calculating the change in mass of a blowing snow particle due to sublimation

shown in Equation (1.6). The prognostic equations also depend upon the particle size

distribution shown in Equation (1.1) which uses a fixed shape parameter, α, and a varying

scale parameter β. β evolves in time at each height according to equation (1.2).

2.2 Parameter Selection

For validation and parameter sensitivity testing, three parameters were selected. These

parameters were α, a, and b, where α is the previously mentioned shape parameter of

the particle size distribution. α primarily affects how particles settle under the effects of

gravity. a and b will be introduced later in this section. a and b impact the relationship

between wind speed and the rate of turbulent diffusion.
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2.2.1 The Gamma Distribution Shape Parameter, α

The first of the selected parameters is α, which is the shape parameter of the particle size

distribution, as shown in Equation (1.1). The particle size distribution factors into the

settling velocity, VB in Equation (2.1). VB is calculated as follows:

VB =

∫∞
0
v(r)r5f(r)dr∫∞
0
r5f(r)dr

(2.5)

where v(r) is the terminal velocity for a snow particle of radius r and f(r) is the particle

size distribution (gamma distribution) evaluated at radius r. The gamma distribution,

f(r) is given by:

f(r) =
1

Γ(α)βα
rα−1e

−r
β (2.6)

which is a gamma distribution with shape parameter α and scale parameter β. Some

information about α is known. α is typically between 2 and 20 [15]. α should increase with

height, however, the formulation of Piektuk-D requires that α is given one value that is held

fixed for every height [14]. In choosing which parameter values to test, the available data,

as well as the properties of the gamma distribution, were taken into consideration. The

range of alpha from 1.1 to 20 was tested, though it was found that values of alpha above

9 caused numerical issues that could not be resolved. The α values tested ended up being

in the range of 1.1 to 9. 1.1 was chosen as the minimum because the gamma distribution

undergoes a radical change at α = 1 where it shifts from predicting no particles of radius

0 to predicting that the majority of particles have radius 0, which is unphysical. α can

be calculated directly from validation data. However, since Piektuk-D requires a fixed α,

there is uncertainty in which value to use. What has been commonly done in the past is

to use the α value calculated for the saltation layer as a representative value for the entire

column [8] [15]. No justification for this could be found in the available literature, so α

was tuned as a parameter in this study.
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α, being a shape parameter, has a large effect on the mean and deviation of the gamma

distribution. Increasing it will increase both the average particle radius and the spread of

particle radii.

2.2.2 Turbulent Diffusion Parameters

The other two parameters tested appear in the part of the system that handles turbulent

diffusion. They are embedded within the eddy diffusivities (K in the equations). The

general structure of all four eddy diffusivities that appear in each prognostic equation is

very similar. For the below example, allow “G” to represent the particle number, blowing

snow mixing ratio, water vapour mixing ratio, or air temperature interchangeably. The

general form of an eddy diffusivity, denoted KG here, is given by:

KG = ζGKM (2.7)

where ζG is a constant specific to each prognostic equation (though it is always taken to

be 1 in the current Piektuk-D program), and KM is the eddy diffusivity for momentum,

which is the same for all four prognostic equations. This is the same momentum eddy

diffusivity from Rouault et al.’s 1991 article on modelling ocean spray droplet dispersion

[17]. From here, the eddy diffusivities of all four prognostic equations are identical, since

KM is identical in all four cases. KM is defined as follows:

KM = lu∗ (2.8)

where l is the mixing length and u∗ is the friction velocity. The mixing length represents

how far a clump of snow particles will move under the influence of wind before being broken

up. It contains one tunable parameter. This parameter controls mixing length to prevent

it from getting too large at high altitudes and therefore does not have a large impact until
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the mixing length starts to become large. A previous study found that Piektuk is not very

sensitive to this parameter [8]. The friction velocity, u∗, contains two tunable parameters

as shown below:

u∗ = aU b
10 (2.9)

where a and b are the tunable parameters and U10 is the wind speed at 10 m above the

ground. The a and b parameters are not named quantities. They can both be interpreted

as the sensitivity of diffusion to wind speed, where a is a linear scaling factor, and b

determines the power of the relationship. Since the dependence on a is purely linear,

halving a will halve the amount of diffusion that occurs and doubling a will double the

amount of diffusion that occurs. If b is large, then the model becomes more sensitive to

small changes in wind speed when the wind speed is large. If b is small, then the model

becomes more sensitive to small changes in wind speed when the wind speed is small.

The tested values of a were 0.001 to 0.05. This range was selected because the default

value was 0.02264 and the range of 0.001 to 0.05 covers a reasonably wide space around

it without requiring the increment on a to be too large. The range of b tested was from

0.3 to 1.75. The default value of b is 1.295. Initially, it was thought that larger values

of b could be tested, though that was not possible. The upper end of 1.75 was selected

because numerical issues arose with calculating sublimation with higher values of b and

cases would arise where there would be substantial blowing snow transport, the air would

be subsaturated with humidity, and the model would predict precisely zero millimetres of

sublimation. This is clearly wrong, so b was capped at 1.75. 0.3 was chosen as the bottom

end of the range to try to cover a large range of parameter values without changing the

model’s behaviour too substantially. Going below 0 would not make any sense as it would

cause smaller wind speeds to bring about more diffusion, with a windless day leading to an

undefined level of blowing snow diffusion. Values above one would preserve the superlinear,
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Parameter Description Min Max Default Units

α Shape parameter of

gamma distribution

1.1 9.0 2 unitless

a Converts wind speed

to diffusivity

0.001 0.05 0.02264 m

b Order of relationship

between wind speed

and diffusivity

0.3 1.75 1.295 unitless

Table 2.1: Summary of the three tested parameters

subquadratic dependence that diffusion has on wind speed in the default model, while

values below one would change it to a sublinear dependence. Table (2.1) summarizes the

selected parameters, gives a short description, the tested range, the default values, and the

units.

2.3 Model Validation

The validation data used in this study was gathered in Southeastern Wyoming by R.A.

Schmidt [1]. It was collected using a snow catcher that had five snow traps set up at five

different heights which caught blowing snow particles as they blew around. This produced

a particle flux which could be integrated to determine how many individual blowing snow

particles there were at each height. This integrated flux was reported in their paper [1]. A

photo of the apparatus used is shown in Figure (2.1).

There are two other blowing snow experiments frequently referenced in the literature
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Figure 2.1: The blowing snow particle catcher employed by R.A. Schmidt for their blowing

snow study [1]

.
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that produced quantitative data that could have been useful here. These are from the Byrd

Snow Drift Project [9] and an experiment from the Halley station in Antarctica [18]. While

some data is available in these papers, nothing that could be used to validate Piektuk was

found there. Unfortunately, in the short timeframe of an MRP, useful data could not be

procured from these studies.

The validation data used was run 2 in the Schmidt paper [1]. The other runs could

not be used due to either lack of meteorological forcing data or other problems that the

author reported in the study. The model was set up with the forcings prescribed in that

run and allowed to run for ten minutes, then particle number, sublimation, and total

vertical transport were output. This is very similar to how Piektuk-T and Piektuk-D were

compared in the original Piektuk-T validation paper [15]. It is worth noting that, in that

study, no parameter tuning or sensitivity testing was conducted on either model.

Two metrics were used for validation, mean squared error (MSE) and mean absolute

deviation (MAD). These metrics are shown in Equation (2.10), which is the MSE and

Equation (2.11), which is the MAD.

MSE =
1

n

n∑
i=1

(
Ni − N̂i

)2
(2.10)

where n is the number of data points, Ni is the observed particle number at height i, and

N̂i is the model’s predicted particle number at height i.

MAD =
1

n

n∑
i=1

∣∣∣Ni − N̂i

∣∣∣ (2.11)

where n is the number of data points, Ni is the observed particle number at height i, and

N̂i is the model’s predicted particle number at height i.

The practical difference between MSE and MAD is in how much they value having the

model output at every height be close to the observed value. MSE will penalize one result
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being very far from the observed value more than MAD will. For example, a model with

four accurate values and one highly inaccurate value will have a much lower MAD than

MSE. As such, both will be reported here, though the sensitivity of MSE to cases with one

or two highly inaccurate values will likely make it a more useful validation metric.

19



2.4 Parameter Sensitivity

Parameter sensitivity testing was conducted using the Fourier Amplitude Sensitivity Test-

ing (FAST) method of Saltelli et al. [19]. For this analysis, Iooss et al.’s R package

“Sensitivity” was employed [20]. The sampling for the parameter space of the model used

for sensitivity testing was uniform as defined by the Sensitivity package using 4000 samples

per parameter (12 000 samples total). The FAST method is based around the conditional

variance for each of the parameters. The conditional variance of a variable is the amount

of variance left once all of the other variables are accounted for. The FAST method pro-

duces estimates of how important each parameter is. Embedded within this estimate is

how much of the importance is due to the parameter itself and how much is due to its

interactions with other parameters.
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Chapter 3

Results

Figure (3.1) is a scatterplot matrix showing how the input parameters interact with each

other and each output variable. Along the diagonal are the input parameters and output

variables. When looking at any plot in Figure (3.1), looking to the right at the diagonal

shows which variable is on the y-axis, looking up to the diagonal shows which variable is

on the x-axis. In creating Figure (3.1), some values had to be removed. Roughly 2.7% of

the data showed extreme sublimation values of greater than 44 000 mm. For a ten minute

period, 44 000 mm of sublimation is not physically plausible. The rest of the output was be-

tween 0 and 1.15 mm which seemed more reasonable. The parameter combinations leading

to these extreme values of sublimation are contained in certain pockets of high α combined

with specific values of a. These extreme values represent a small part of the output data

and their inclusion would obscure many of the results seen in this section by altering the

scales of plots severely. As such, these results have been excluded. In Figure (3.1) the

correlation between sublimation and vertical transport is noticeable. Sublimation and ver-

tical transport have a Pearson correlation coefficient of 0.473. However, the relationship
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does not appear linear and neither sublimation nor transport is normally distributed (this

is shown below in Figure (3.3)), which are both assumptions of the Pearson correlation co-

efficient. The Spearman correlation coefficient between sublimation and transport is 0.797.

It is likely more appropriate as it makes no assumptions about the distribution of the data

or linearity of the relationship. This correlation is to be expected as higher amounts of

vertical transport should be indicative of more blowing snow, which should lead to more

sublimation.

The key purpose of Figure (3.1) is to display how the parameters interact with output

variables. Both a and b are required to be relatively high, with the threshold for b being

notably higher, to output high values of sublimation and transport. However, a high value

of one parameter alone is not sufficient to cause high output values. Increasing α can

increase sublimation up to a certain point, after which it begins to drop off rapidly. α is

also required to be somewhat high (though not too high) to get high values of transport.

These effects could be due to α’s effect on particle size. In general, α will cause blowing

snow particles to become larger and weigh more. Since larger particles can have a longer

lifetime when sublimating, sublimation can increase. Likewise, since transport is measured

in kg/m, larger particles should lead to more mass being transported and increase vertical

transport. After a certain point, the particles should become large enough that the settling

effect of gravity is too great for them to move around much, preventing there from being

much blowing snow. It is worth noting that this effect would be exclusively due to the

settling and sublimation terms in the prognostic equations as the eddy diffusivities (K

values) have no dependence on the particle size distribution. The scaling on MSE (with

values upwards of 15 000) makes this graph all but useless for finding accurate areas of

the model. The “tendril-like” structures that seem to appear in Figure (3.1) where MSE

is plotted against sublimation or transport could be due to those being somewhat rare,
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Figure 3.1: How the parameters and response variables interact with each other
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extreme values and most of the sample being pushed mostly into one small region on that

scale.

3.1 Sensitivity

For sensitivity testing, the extreme sublimation values (> 40 000 mm) were also left out.

This is because the amount of sublimation for these runs was so very different from the

others, which were all under 1.15 mm. Since the difference in sublimation between these

runs is so extreme (with a gap of four orders of magnitude), including them in the sensitivity

tests leads to every variable appearing equally important with the vast majority of the

impact of each parameter’s influence being in the interaction component. Excluding these

values leads to results that somebody would be more likely to encounter when running the

model in a way that provides reasonable output. In constructing Figure (3.2), the runs

with extreme sublimation were removed.

Figure (3.2) shows that sublimation is most sensitive to b and similarly sensitive to a

and α. This could make sense comparing to Figure (3.1) as b appears to have a stronger

relationship to sublimation than the other two parameters. All three parameters have a

substantial interaction component as well. It would make sense to see a large interaction

component referring to Figure (3.1) as there seems to be a large spread in which parameter

values can output each sublimation value. Figure (3.2) also shows b as the most important

parameter for vertical transport, though a seems to be more important than α. Transport

does seem less sensitive to b than sublimation is.

The sensitivity of b may depend upon the actual value of U10 in the data set. Recall

that KM ∝ aU b
10. In the data set used, the value of U10 was 14.8. Due to the nonlinear
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Figure 3.2: Sensitivity of sublimation to the input parameters

nature of b, smaller values of U10 may lead to the model becoming less sensitive to b. This

was not tested empirically due to the time frame of this MRP.

3.2 Distributions of Outputs

Figure (3.3) shows a kernel density estimate of the distributions of MSE, MAD, sublima-

tion, and vertical transport. In order to display the distributions in a meaningful way,

the x-axes had to be truncated. For sublimation, 2.7% of the data had to be removed
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Figure 3.3: The distributions of the outputs of the model as well as the MSE and MAD. The

red line in the MSE plot is at 0.15 which is the cut-off point for data to appear in the plots of

the previous section. The blue line represents where the model’s default parameters lie
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since sublimation can go as high as 2 311 090. For MSE, 37% of the data was removed.

For MAD, 44% had to be removed. For vertical transport, 40% of the data was removed.

While a lot of data was removed, there were no discernible trends in any of it and including

it made the plots difficult to read.

The MSE, sublimation, and MAD distributions have a long tail going off to the right,

somewhat resembling a log-normal distribution. Vertical transport appears to have a peak

around the 120 - 140 range which is notably sharper on the right. The MAD distribution

is also noticeably wider than the MSE distribution with a much shallower decline.

3.3 Validation

The top 5% most accurate model runs had an MSE of 0.15 or less, with the lowest MSE

being 0.0758. Since 15 625 simulations were used for validation, the top 5% ended up being

781 runs. For MAD, the top 5% model runs had an error of 0.28 or less with the lowest

being 0.151.

From Figure (3.4), it is clear that certain parameter combinations have lower MSE than

others on the data set used here. To achieve MSE < 0.15 on this data, it is necessary to

restrict α < 5.84. Since increasing α increases the mean and spread of the particle size

distribution, increasing α will cause the mean terminal velocity of blowing snow particles to

go up. If α is set too high, it should cause blowing snow particles to be unable to travel very

high in the air as they are falling too quickly. This is demonstrated in Figure (3.1) where,

once α gets past around 6, the amount of sublimation and transport drops off very fast. As

stated in the introduction, values of α are known to change with meteorological conditions

as well as height [15]. Since α for this data set was calculated as 3.5 in the saltation layer,
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Figure 3.4: The density of cases with MSE < 0.15. Areas shaded with a darker blue have a

greater density of accurate cases. Areas that are white have no model runs with MSE < 0.15. In

this plot, all of the parameters are scaled to belong to [0,1].
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and values of 3.5 or lower appear to have a high density of low MSE outputs, compensating

for α’s increase with height appears to be unnecessary for this data set.

Nearly all tested values of a and b are capable of achieving MSE< 0.15, though there

appears to be a non-linear relationship between them where high values of one parameter

require low values of the other. Examining the plot in Figure (3.4) that shows α and b

together shows clearly that there are more parameter combinations with low MSE and low

values of b than there are with low MSE and high values of b. This sort of relationship

between a and b can potentially be explained by the way that the eddy diffusivities depend

on them.

One way of interpreting these results is that a and b must compensate for each other

to produce accurate outputs. For all four eddy diffusivities, K, K ∝ aU b
10. This term was

examined in greater detail. It was found that for every parameter combination tested, aU b
10

varied between 0.00224 and 4.589. However, for the MSE < 0.15 cases, aU b
10 only varied

between 0.0702 and 0.179. Based on this, it appears that, for the data set used, there is

a narrow range of good values for the eddy diffusivities and that choices of a and b must

somewhat compensate with each other to produce an overall reasonable eddy diffusivity.

Since there was only one set of data available for validation of the model, two other

outputs from the model were examined, sublimation and quantity of vertical transport of

blowing snow. Since there was no observational data on sublimation or vertical transport

available, the outputs could not be directly validated, though they were compared to the

default model. Table (3.1) shows the five runs with the lowest MSE, their parameter values,

their MSE (calculated from particle number), and how they compare to the default model.

Table (3.1) shows that the five model runs with the lowest MSE have similar values of

α and a variety of a and b values. The sublimation values of the top five model runs are
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Run Number α a b Sublimation (mm) Transport (kg/m) MSE MAD

Default 3.5 0.0255 1.295 0.000738 122 0.83 1.06

1 3.312 0.00492 1.228 0.000747 131 0.0758 0.162

2 3.312 0.0147 0.764 0.000751 132 0.0758 0.231

3 3.312 0.0108 0.880 0.000756 132 0.0758 0.227

4 3.312 0.0441 0.358 0.000758 131 0.0759 0.161

5 3.628 0.0304 0.474 0.000730 132 0.076 0.157

Table 3.1: The results of the top 5 most accurate (by MSE) model runs and how their param-

eters, sublimation, and vertical transport estimates compare to the default model

close both to each other and the default model. The values of vertical transport of the

top five model runs are very close to each other but somewhat different from the default

model. For reference, throughout all of the parameter combinations tested, the model’s

lowest predicted value of sublimation was on the order of 10−11 and the highest was 2 311

090 mm. The lowest predicted value of vertical transport was 56 kg/m and the highest was

135 113 824 kg/m. Therefore, the difference in vertical transport between the low MSE

runs and the default model is not necessarily negligible, though it is quite small compared

to what the model is capable of outputting. The difference is still around 9% though, so

it could be indicative of the default model underestimating transport somewhat for this

data.

Figure (3.5) shows how every variable, both input and output, relate to each other in

the space of low MSE. It is worth noting that the values of vertical transport are quite

restricted here. When MSE < 0.15, transport only ranges between 125 kg/m and 133 kg/m.

For reference, in the space of MSE < 1, vertical transport can range from 56 kg/m to 3715

kg/m. As such, the plots involving vertical transport here may not be representative of
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how the model responds in the greater space of outputs that the model is capable of.

Interestingly, in Figure (3.5) sublimation and transport appear negatively correlated. This

may be transient behaviour in the space of low MSE in general, or just in the space of low

MSE for this particular data set. Another thing to note is that a and MSE appear to have

little relationship with each other, whereas the plot comparing b to MSE becomes much

sparser as b grows. This could be due to eddy diffusivity growing too quickly with large

values of b.
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Chapter 4

Discussion

4.1 Generalizing the Results

The decrease in MSE from 0.83 in the default model to 0.0758 for the tuned case with

the lowest MSE is quite substantial though it does come with some limitations. A notable

factor is that only one data set was available for validation. Taking that into account, there

was no way to check how well these low MSE parameter combinations would generalize to

other cases so there may be substantial overfitting to this data set. One good sign is that

the amount of sublimation and vertical transport predicted by low MSE model runs are

close to those predicted by the default model, and the default model has been shown to

be reasonably accurate with respect to sublimation and overall vertical transport in a few

different locations [8] [15]. However, this is far from definitive proof that these low MSE

parameter combinations would have low MSE on different data sets.

One potential issue with the generalizability of these results is that each of the chosen

parameters may change depending on the data set used. For example, the amount of
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turbulent diffusion that occurs should depend upon how wet or dense the snow is, which

could, in turn, depend on the temperature. However, in the current formulation of the

model, the amount of turbulent diffusion of the model only depends upon aU b
10 with a and

b being the tuned parameters and U10 being the wind speed at 10 m above the ground.

As such, different data sets could have different optimal a and b values depending on the

properties of the snow in that area at that time.

Something that may be worthy of further study is the relationship between wind speed

and eddy diffusivity. The model’s default parameters gave eddy diffusivity a superlinear

dependence upon wind speed, KM ∝ U1.295
10 . However, many of the low MSE model runs

used a linear or sublinear relationship between the eddy diffusivity and b. The fourth lowest

MSE run used a b value of 0.358. These sublinear values were quite common. Referring

back to Figure (3.4), it appears that there was a greater density of low MSE outputs near

small values of b than near large values of b. No reference could be found in the available

literature on Piektuk as to why b was initially selected to be 1.295. That choice may be

worth revisiting.

A potential next step for validating Piektuk would be to redo similar analysis and tuning

with different data. Hopefully, there would be some non-empty intersection between the

areas in the parameter space that are accurate for many different data sets.

4.2 Potential Applications of Piektuk

One potential area of application for Piektuk would be for climate models. As mentioned

previously, it has been estimated that somewhere between 10% to 50% of the snow cover

in the Arctic and Antarctic is returned to the atmosphere by sublimation due to blowing

snow [5]. This is potentially such a substantial effect that if climate models are not treating
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this directly, they are could be compensating for it in some way through a parametrization,

by underestimating snowfall, or through some other mechanism. Especially when there is

little snow on the ground, a 10% to 50% change in snow depth could substantially alter

albedo.

While it was not mentioned much in this paper, Piektuk-D also provides estimates

of visibility and radar reflectivity. Visibility estimates are provided in metres and are

supposed to represent how far somebody should be able to see given the blowing snow

conditions. Piektuk-D does not account for precipitation when calculating radar reflectivity

or visibility. Piektuk-D can be fed meteorological data and get an estimate as to how far

somebody should be able to see during a snow storm. Visibility is mostly predicted from

radar reflectivity which, due to the prevalence of ground radar, would provide another way

to validate the model in general as well as a way to validate the mechanism providing

the visibility estimates. A key advantage of Piektuk-D over ground radar is that Piektuk-

D could be fed data from a numerical weather prediction model and get an estimate of

visibility for the future.
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Chapter 5

Conclusion

In this masters research paper, Piektuk-D was evaluated and validated against observa-

tional data. It was found that Piektuk-D’s assumption that α can be held fixed throughout

the column of blowing snow at a value calculated in the saltation layer was fine in the data

used. It was also found that Piektuk-D’s prediction of particle number could be improved

through parameter tuning, though there are notable reasons to believe that these results

may not generalize to other cases or may require more tuning for different areas. Through

sensitivity testing, the outputs of Piektuk-D were found to be very sensitive to the power

of the dependence that eddy diffusivity has on wind speed and less sensitive to α and the

linear scaling coefficient of the dependence that eddy diffusivity has on wind speed. There

may be the potential for improvement to Piektuk-D by tuning parameters, but the results

here are not necessarily robust and more testing with more data sets would be necessary

to draw any conclusions with reasonable certainty.
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[14] S.J. Déry and M.K. Yau. Simulation of blowing snow in the Canadian arctic using a

double-moment model. Boundary Layer Meteorology, 99:296–316, 2001.

[15] J. Yang and Yau M.K. A new triple-moment blowing snow model. Boundary Layer

Meteorology, 126:137–155, 2008.
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Appendix A

Plotting and Analysis Code

A.1 Introduction

The appendix is mostly just to show the code that was used to do analysis or make plots.

A.2 Sensitivity Testing Code

This code was used for sensitivity testing. It generates the parameters using the sensitivity

package in R [20]. From there, the parameters need to be output and loaded into Piektuk-

D. Then, the code loads the output in and analyzes/plots it.

require(sensitivity)

require(fields)

require(BBmisc)

require(RColorBrewer)
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require(spatstat)

require(stringr)

require(pracma)

#This gets the parameter space

x = fast99(model=NULL,factors=c(’alpha’,’a’,’b’),q=c(’qunif’,’qunif’,’qunif’),q.arg = list(list(min=1.1,max=9),

list(min=0.001,max=0.05),list(min=0.3,max=1.75)),n=4000)

#If alpha goes above 9, the code bugs out and predicts 0 sublimation

#If b goes above 1.75, it can start introducing NAs with certain

#parameter combinations

#This is the number of runs kept

kept_runs = 12000

#transport and sublimation are preallocated here

transport = matrix(0,kept_runs,1)

sublimation = matrix(0,kept_runs,1)

#This reads in sublimation and transport in the format that

#Piektuk-D creates them

for (i in c(1:kept_runs-1)){

name = paste(’total’,i,sep=’’)

name = paste(name,’.dat’,sep=’’)

tmp = read.table(paste(’C:\\Users\\Jasn\\Desktop\\Oct30Sims.new\\piektuk2\\’,name,sep=’’))

transport[i+1] = tmp[4][[1]]

#This handles scientific notation. Since R will read the "-" as a "." for some reason

if (str_detect(substring(colnames(tmp[4])[1],2,500),’E.’)){

sublimation[i+1] = as.double(str_replace(substring(colnames(tmp[4])[1],2,500),’E.’,’E-’))
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}

else{

sublimation[i+1] = as.double(substring(colnames(tmp[4])[1],2,500))

}

}

A.3 Plotting Code

This is the R code used to generate the plots

require(stringr)

#kept_runs is the number of model runs that are read in

kept_runs = 15625

#transport and sublimation are preallocated here

transport = matrix(0,kept_runs,1)

sublimation = matrix(0,kept_runs,1)

#This reads in the transport and sublimation from the raw outputs from Piektuk

for (i in c(1:kept_runs)){

name = paste(’total’,i,sep=’’)

name = paste(name,’.dat’,sep=’’)

#This points to the directory

tmp = read.table(paste(’C:\\Users\\Jasn\\Desktop\\Full_Sampling\\piektuk2\\’,name,sep=’’))
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transport[i+1] = tmp[4][[1]]

#This handles scientific notation. Since R will read the "-" as a "." for some reason

if (str_detect(substring(colnames(tmp[4])[1],2,500),’E.’)){

sublimation[i+1] = as.double(str_replace(substring(colnames(tmp[4])[1],2,500),’E.’,’E-’))

}

else{

sublimation[i+1] = as.double(substring(colnames(tmp[4])[1],2,500))

}

}

#MADev is the Mean Absolute Deviations, read in from the path below

MADev = read.csv(’C:\\Users\\Jasn\\Desktop\\Full_Sampling\\EL1.csv’,sep=’,’)

colnames(MADev) = ’error’

MADev = MADev$error

#This reads in the parameters used to run the model

parms = read.csv(’C:\\Users\\Jasn\\Desktop\\Full_Sampling\\piektuk2\\parm_holder.dat’,sep=’,’,header=F)

parmsand = parms

parmsand$sub = sublimation

parmsand$tra = transport

#This reads in the errors since I calculated that in Python

Error = read.csv(’C:\\Users\\Jasn\\Desktop\\Full_Sampling\\Error.csv’,header=FALSE,sep=’,’)

colnames(Error) = c(’error’)

Error = Error$error
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colnames(parms) = c(’alpha’,’a’,’b’)

#This produces the density plot with whatever condition is used in the line below

#By default, I have it set to Error<0.15, though sublimation or transport can also

#be used

parmsubset = parms[Error<0.15,]

parmsubset2 = parmsubset

parmsubset2$alpha = parmsubset2$alpha-min(parms$alpha)

parmsubset2$alpha = parmsubset2$alpha/max(parms$alpha-min(parms$alpha))

parmsubset2$a = parmsubset2$a-min(parms$a)

parmsubset2$a = parmsubset2$a/max(parms$a-min(parms$a))

parmsubset2$b = parmsubset2$b-min(parms$b)

parmsubset2$b = parmsubset2$b/max(parms$b-min(parms$b))

pairs(parmsubset2,panel=function(x,y,...){smoothScatter(x,y,add=T,nrpoints=0,

colramp=colorRampPalette(c(rep(’white’,5),blues9)))},

upper.panel = NULL,xlim=c(0,1),ylim=c(0,1),main=’’)

#This creates a similar density plot to the above except it shows where

#sublimation values are reasonable

#In this case defined to be between 0.2 mm and 0.002 mm

parmsubset = parms[(sublimation<0.2 & sublimation > 0.002),]
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parmsubset2 = parmsubset

parmsubset2$alpha = parmsubset2$alpha-min(parms$alpha)

parmsubset2$alpha = parmsubset2$alpha/max(parms$alpha-min(parms$alpha))

parmsubset2$a = parmsubset2$a-min(parms$a)

parmsubset2$a = parmsubset2$a/max(parms$a-min(parms$a))

parmsubset2$b = parmsubset2$b-min(parms$b)

parmsubset2$b = parmsubset2$b/max(parms$b-min(parms$b))

pairs(parmsubset2,panel=function(x,y,...){smoothScatter(x,y,add=T)},upper.panel = NULL,xlim=c(0,1),ylim=c(0,1))

title(’Density of Reasonable Sublimation’)

#This creates a similar density plot except for vertical transport

#In this case, between 80 kg/m and 150 kg/m

parmsubset = parms[(transport>80 & transport < 150),]

parmsubset2 = parmsubset

parmsubset2$alpha = parmsubset2$alpha-min(parms$alpha)

parmsubset2$alpha = parmsubset2$alpha/max(parms$alpha-min(parms$alpha))

parmsubset2$a = parmsubset2$a-min(parms$a)

parmsubset2$a = parmsubset2$a/max(parms$a-min(parms$a))

parmsubset2$b = parmsubset2$b-min(parms$b)

parmsubset2$b = parmsubset2$b/max(parms$b-min(parms$b))

pairs(parmsubset2,panel=function(x,y,...){smoothScatter(x,y,add=T)},upper.panel = NULL,xlim=c(0,1),ylim=c(0,1))

title(’Density of Reasonable Transport’)
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#This plot combines low error, reasonable sublimation, and reasonable transport

parmsubset = parms[(transport>80 & transport < 150 & sublimation < 0.2 & sublimation > 0.0002 & Error<0.1),]

parmsubset2 = parmsubset

parmsubset2$alpha = parmsubset2$alpha-min(parms$alpha)

parmsubset2$alpha = parmsubset2$alpha/max(parms$alpha-min(parms$alpha))

parmsubset2$a = parmsubset2$a-min(parms$a)

parmsubset2$a = parmsubset2$a/max(parms$a-min(parms$a))

parmsubset2$b = parmsubset2$b-min(parms$b)

parmsubset2$b = parmsubset2$b/max(parms$b-min(parms$b))

pairs(parmsubset2,panel=function(x,y,...){smoothScatter(x,y,add=T)},upper.panel = NULL,xlim=c(0,1),ylim=c(0,1))

title(’Density of Reasonable Transport, Sublimation and Error’)

#This is the other type of plot, not based on density and compares inputs to outputs

#The condition for this one is on the variable "Low_MSE" and how that gets subset

total_plot = parms

total_plot$sublimation = sublimation

total_plot$transport = transport

total_plot$MSE = Error

#pairs(total_plot[total_plot$MSE<1,],panel=function(x,y,...){smoothScatter(x,y,add=T)},upper.panel=NULL,pch=19)

Low_MSE <- total_plot[total_plot$MSE<0.15,]

Low_MSE2 = Low_MSE

Low_MSE$alpha = Low_MSE$alpha - min(total_plot$alpha)
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Low_MSE$alpha = Low_MSE$alpha/(max(total_plot$alpha)-min(total_plot$alpha))

Low_MSE$a = Low_MSE$a - min(total_plot$a)

Low_MSE$a = Low_MSE$a/(max(total_plot$a)-min(total_plot$a))

Low_MSE$b = Low_MSE$b - min(total_plot$b)

Low_MSE$b = Low_MSE$b/(max(total_plot$b)-min(total_plot$b))

Low_MSE$sublimation = Low_MSE$sublimation - min(Low_MSE2$sublimation)

Low_MSE$sublimation = Low_MSE$sublimation/(max(Low_MSE2$sublimation)-min(Low_MSE2$sublimation))

Low_MSE$transport = Low_MSE$transport - min(Low_MSE2$transport)

Low_MSE$transport = Low_MSE$transport/(max(Low_MSE2$transport)-min(Low_MSE2$transport))

Low_MSE$MSE = Low_MSE$MSE - min(Low_MSE2$MSE)

Low_MSE$MSE = Low_MSE$MSE/(max(Low_MSE2$MSE) - min(Low_MSE2$MSE))

pairs(Low_MSE,upper.panel=NULL,pch=19,cex=0.1,xlim=c(0,1),ylim=c(0,1))

title(’Sublimation < 1.15 mm’)

#Top 10% is MSE<0.23

#Top 5% is MSE<0.15

#This shows the distributions of MSE, MAD, sublimation, and transport

par(mfrow=c(2,2))

plot(density(total_plot$MSE[total_plot$MSE<10]),lwd=2,xlab=’MSE’,main=’’)

abline(v=0.23,col=’red’)

abline(v=0.8,col=’blue’)

plot(density(total_plot$sublimation[total_plot$sublimation<100]),xlab=’Sublimation (mm)’,lwd=2,

main=’’)

48



abline(v=0.0073,col=’blue’)

plot(density(total_plot$transport[total_plot$transport<200 & total_plot$transport>0]),lwd=2

,xlab=’Vertical Transport (kg/m)’,main=’’)

abline(v=122,col=’blue’)

plot(density(MADev[MADev<10]),xlab=’MAD’,lwd=2,main=’’)

abline(v=1.06,col=’blue’)

A.4 Call Piektuk-D Script

#!/bin/bash

#Path to the file holding the list of parameter values to test

input="/path/to/parameterholder.dat"

i=0

#While loop to scan through the parameterholder file

while IFS= read -r line

do

#This prints which iteration the script is on

echo $i

#This removes the parameters from the current parms.dat file

#that the Fortran code reads

sed -i ’1d’ parms.dat

#This adds the new parameters to the parms.dat so that

#the fortran code can read it

echo "$line" >> parms.dat

#Calls the Piektuk-D code
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#the "$i" part is to tell the code which iteration it

#is on so it knows what to call the output files

./piektuk.out $i

#increments i

i=$((i+1))

done < "$input"
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