The Sieve Re-Imagined:
Integer Factorization Methods

by

Jennifer Smith

A research paper
presented to the University of Waterloo
in partial fulfillment of the
requirement for the degree of
Master of Mathematics
in
Computational Mathematics

Supervisor: Prof. Kevin Hare

Waterloo, Ontario, Canada, 2012

(© Jennifer Smith 2012

I hereby declare that I am the sole author of this report. This is a true copy of the report,
including any required final revisions, as accepted by my examiners.

[understand that my report may be made electronically available to the public.

il

Abstract

In this paper, I explain the Quadratic Sieve, its Multiple Polynomial variation, the
Number Field Sieve, and give some worked examples of the afore-mentioned algorithms.
Using my own Maple implementation of the Quadratic Sieve, I explore the effect of altering
one of the parameters of the Quadratic Sieve algorithm, with respect to both time and
success rate.

iii

Acknowledgements

Many people have contributed to my success this year. First of all, I would like to thank
my family for all of their support. My mother was always willing to lend an ear and tell
me to treat myself to a glass of wine. My father’s sympathy was less frequent, but he was
always encouraging me to do my best. My brother’s good advice was never-ending, but it
was always comforting. Their constant faith in my abilities has meant a lot to me this year.

I would like to thank my supervisor for being so generous with his time and knowledge.
I also appreciate his willingness to accommodate my constant need for schedules. I feel
that I accomplished a lot with this project, and I definitely would not have liked to do it
alone.

I want to thank Anthea Dunne for all that she does. Handling administrative matters
in a new place can be tricky, but she was always so helpful!

Many thanks to Alfred Menezes for letting me sit in on his Applied Cryptography class,
even though it was full. With a waiting list. His lectures were always very engaging, and
I very much enjoyed the course.

iv

Dedication

This is dedicated to my parents. Without their love and support I would not be able
to factor integers.

Table of Contents

List of Tables vii
List of Figures viii
1 Introduction 1
2 The Quadratic Sieve 3
2.1 The Algorithm 3
2.2 A Nice Example 5
2.2.1 Hensel Lifting 7

2.3 SUMMATY . . . o o e 11

3 Extending to Multiple Polynomials 13
3.1 The Algorithm 13
3.2 Example 15
3.3 SUMMATY o e e e e 17

4 The Number Field Sieve 18
4.1 The Algorithm 18
4.2 The Second “Mini”-Vector 21
4.3 The Third “Mini”-Vector 24
4.4 SUMMATY o vt s e e 28

5 The Experiment 29
6 Conclusion 32
References 34

vi

List of Tables

2.1 Potential B-Smooth Numbers 5
2.2 Sileving by 2. . ..o 9
2.3 Sieving by powers of 3. L 9
2.4 Sieving by powers of 7. 10
2.5 Sieving by 13. 10
2.6 Sieving ..o 12
3.1 Potential B-Smooth Numbers 16
3.2 Smooth Numbers 16
4.1 Make Third Mini- Vectors: Part 1. 26
4.2 “Mini”-Vector Corresponding toa—bo 27

vil

List of Figures

5.1 Experimental Results. o

viil

Chapter 1

Introduction

In 1903, F. Cole successfully factored the Mersenne number n = 257 — 1 using the naive
factoring method [I1]. Mersenne conjectured that this number was prime, but no one had
been able to factor it until Cole [1]. It took Cole three years of Sundays to find all seven
prime factors and was a great achievement at the time; he received a standing ovation after
presenting his findings to his colleagues [8]. Today, Maple’s ifactor function can do this in
0.047 seconds (July 27, 2012).

Since 1903, we have had two major developments that have pushed integer factoring
capabilities to where they stand today. First is the success of the computer, which allows
for quick efficient factoring for many numbers. Next, is the introduction of the RSA En-
cryption Scheme by Rivest, Shamir, & Adleman in 1977, which bases its whole security on
the assumption that factoring larger integers is a difficult problem. This generated signifi-
cant interest in factoring integers and has led to the development of many new algorithms.
Thus, mathematicians have studied integer factoring methods as an interesting problem in
its own right, as well as to test security for the RSA scheme.

In 1982, Pomerance introduced the Quadratic Sieve (QS), a highly successful method
for factoring large numbers [12]. It uses the idea that for any odd prime p, there are two
square roots of 1 in Z,, namely £1. A composite number, n, with k distinct prime factors,
can be written as a product of primes, say n = pi---py. Then Z, = Z, X -+ X Zy,
and there are two choices for the square root of 1 in every Z,,. The Chinese Remainder
Theorem tells us that there are 2F square roots of 1 in Z,. For example, the square roots
of 1 in Zy5 are 1, —1, 4, and —4 = 11. Note that these correspond to the pairs (1,1),
(—=1,-1), (1,-1), and (—1,1) in Z3 X Zs, respectively.

We notice from the example that two of the square roots of 1 in Z;5 are still £1. This
is true for all composite numbers n. More interestingly, the other square roots of 1 can
be used to factor n [3]. Indeed, finding an integer x with 2> = 1 (mod n) and » # +1

1

(mod n) is the same as finding x such that 0 = 2> — 1= (x — 1) (x + 1) (mod n). Equiv-
alently, the greatest common divisor (GCD) of 2 — 1 or 4+ 1 with n is non-trivial. Since
r+1 < n, we have that n cannot divide either x+1 or x — 1, so part of n must divide x — 1
and part must divide z + 1. Continuing the example from before, we have 4> = 112 = 1
(mod 15). Further, we find that ged (4 +1,15) = 5 and ged (4 — 1,15) = 3. Similarly,
ged (11 4+ 1,15) = 3 and ged (11 — 1,15) = 5.

This would work just as well by replacing 1 with any other square. If we find z, y such
that 2> = y? (mod n) and x # +y (mod n), then we can factor n. In this case, n divides
(x —y) (z +y), but n divides neither (z 4+ y) nor (z — y) [14]. If we look at Z;5 again, we
find that 22 = 7% (mod 15) with 2 # +7 (mod 15). We see that ged (7 — 2,15) = 5 and
ged (7 + 2,15) = 3, and we have factored 15.

The QS is a method to find z and y with the property that z? = y* (mod n) and
x # +y (mod n) by sieving for smooth numbers over evaluations of quadratic polynomi-
als. The Number Field Sieve (NFS) uses this same idea, but goes about finding z and y
a bit differently from the Quadratic Sieve. An early version of the NFS was introduced
by Pollard in 1988 as a method for factoring numbers which are close to prime powers.
For example, Mersenne numbers like n = 267 — 1. It was Lenstra who made it applica-
ble for general composites in 1990, when the name was changed to the Number Field Sieve.

We present a description and example of the Quadratic Sieve in Chapter 2. We extend
the Quadratic Sieve method by using Multiple Polynomials in Chapter 3. In Chapter 4,
we give an overview of the Number Field Sieve and in Chapter 5, we discuss experiments
performed with a Maple implementation of the Quadratic Sieve to explore the optimal
length of values to sieve in order to perform the algorithm quickly and correctly. Our last
chapter contains some concluding remarks.

Chapter 2

The Quadratic Sieve

2.1 The Algorithm

To factor n, we need to find z and y such that 22 = y* (mod n) and z # +y (mod n).
The following procedure outlines how the Quadratic Sieve goes about doing this [3, 7].

1. Generate B-Smooth Numbers

Choose an integer B and let B = {p; : p; prime, p; < B, } where we have indexed
the primes and p; is the 5 element in B. We call B a factor base. Note that there is
another criterion for a prime p; to be in B, but that will be explained shortly. The
recommended value for B is exp(3(InnInlnn)'/2), but a smaller value usually works.

Find a sequence of integers z; such that z? —n is a product of primes in B. If 22 —n
factors in such a way, we call it B-smooth. Disregard any pairs (z;, 27 — n) where
z? — n does not factor over B. If z2 — n factors is B-smooth, write 22 = H§=1 P
(mod n), where each p; € B, the number of primes in the factor base is ¢, and «; ; € Z.

The technique used to find such a sequence of z; is by way of a sieve, which will be
discussed later.

2. Linear Algebra

Write the exponents of each z; as vectors, v; = (@1, ..., ®;¢), where the j-th compo-
nent corresponds the j-th prime in B, and take each vector modulo 2. That is to say,
make an exponent vector for each z; and then take each coordinate modulo 2. Find
a linear dependency in these vectors and form a set I of the indices of these linearly
dependent vectors.

3. Construct x and y such that 2% = y* (mod n)

Let = [],c; 2 (mod n) and let y = H§:1 pjl-/zz’“ai’j (mod n). Note that 22 = y?
(mod n) and that y is B-smooth.

4. GCD

Compute ged (x — y,n). If n is a product of k distinct prime factors, the probability
that ged (x — y,n) results in a factor of n is one minus the probability that the GCD
is £1:

1—2/2" = (21 —1) /251,

If z is near a multiple of \/n, then 22 will be small modulo n, and is more likely to be
B-smooth [7]. Therefore, we can use a variation of the Sieve of Eratosthenes to sieve the
sequence of z2 for z in an interval near \/n [11]. If, instead of crossing the numbers off, as
usual in the Sieve of Eratosthenes, one divides 2% by each prime in B and its powers, then
all B-smooth numbers in the interval are reduced to 1. Sieving is very quick, so this is an
efficient method of producing B-smooth numbers.

Let Q(2) = (2 + [v/n])? — n. Sieving Q(z) for smooth values relies on the fact that for
a prime p with p|Q (), we also have p|Q (zo + kp) for all integers k. Finding zy simply
requires solving the congruence Q (z) = (24 [v/n])> —n = 0 (mod p), or equivalently

n

(z+ L\/ﬁj)z = n (mod p). Note that solving this congruence requires (;) = 1, where

n

(;) is the Legendre Symbol. Therefore, we make the adjustment to the above procedure

n

that all primes p in the factor base B must have <5) =1

We see that Q(z) is a square modulo n for every value of z. We are actually looking for
a sequence {z;}ier such that J,.; Q(z) is a square. In other words, we want a sequence
{zi}ier such that y* = [],.; Q(z) for some y. Then, we let & = [[,; (2 + [v/n]) and we
have found z and y such that 22 = y? (mod n). There is a good chance that x # +y
(mod n), in which case we can use x and y to factor n.

To further speed up the process, we include —1 in the factor base. If we use an interval
centred at z = 0, instead of just looking at numbers starting there, then we generate many
more possible B-smooth numbers [3]. To accommodate this, we label —1 as the “zero-th
item” in the factor base and include a “zero-th coordinate” in the exponent vector.

z | (24 25) — 667 Factoring Exponent Vector | Exponent Vector Modulo 2
-7 —343 —1-7 (1,0,0,3,0) (1,0,0,1,0)
—6 —306 —1-2-3%-17 | Not Applicable Not Applicable
-5 —267 —1-3-89 Not Applicable Not Applicable
—4 —226 —-1-2-113 Not Applicable Not Applicable
-3 —183 —1-3-61 Not Applicable Not Applicable
-2 —138 —1-2-3-23 | Not Applicable Not Applicable
—1 —91 —1-7-13 (1,0,0,1,1) (1,0,0,1,1)

0) —1-2-3-7 (1,1,1,1,0) (1,1,1,1,0)

1 9 3? (0,0,2,0,0) (0,0,0,0,0)

2 62 2-31 Not Applicable Not Applicable

3 117 3213 (0,0,2,0,1) (0,0,0,0,1)

4 174 2-3-29 Not Applicable Not Applicable

5 233 233 Not Applicable Not Applicable

6 294 2.-3-7° (0,1,1,2,0) (0,1,1,0,0)

7 357 3-7-17 Not Applicable Not Applicable

Table 2.1: Potential B-Smooth Numbers
2.2 A Nice Example

Let n = 667, and let us choose B = 13. Then the factor base is B = {—1,2,3,7,13}, since
(g) # 1 and (1—”1) # 1. According to the procedure above, the first step is to generate
relations, or pairs (z,Q(z)), where Q(z) = (z+ [v/n])’ —n = (z+25)> — 667. Table
2.1 shows a list of some potential B-smooth numbers. The factorizations listed in the
third column of the table are for illumination of the next step. In practice we do not
factor these numbers directly; we use a sieve to identify B-smooth numbers. Columns 4
and 5 give the exponent vectors, when applicable. In many cases, there is a prime fac-
tor > 13. These values will not be considered. We will return to the sieving process shortly.

Now that we have identified our B-smooth numbers, we can go to the Linear Algebra
step. For each value z;, we find exponents g, -+, a;4 such that (z; + 925)° — 667 =
(=1)™0 (2)1 (3)*2 (7)™ (13)™*. We make each sequence of exponents, a;g, «--, @4,
into a vector where the “zero-th” element corresponds to —1, the first exponent corresponds
to 2, etc. These vectors are shown in column 4 of Table 2.1. Taking the list of exponent
vectors modulo 2, as shown in column 5 of Table 2.1, we make each vector a column in a
matrix and we get the following matrix:

z=—7 -1 0 1 3 6

e 1 1 1000
2 0 0 1001
A= 3 0 0 1001
: 1 11000

13 0 1 0010

Note that the columns of A correspond to the exponent vectors listed in Table 2.1,
column 5. The column labels on the top are actually the corresponding z value and the
row labels along the left are the corresponding element of the factor base B. We include
both for easy referencing. One particular solution to Aw = 0is w = (0,1,1,1,1, 1)T. If
we look at @ = (0,1,1, 1,1, l)T, the non-zero entries correspond to exponent vectors which
are linearly dependent; in this case, the corresponding z values are z = —1, 0, 1, 3, and 6.
We will to use these B-smooth numbers to try to factor n.

Our goal now is to construct o and y such that 22 = y? (mod n) and x # £y (mod n).
From the Linear Algebra stage, our z values of interest are zo = —1, 23 =0, 24, = 1, 25 = 3,
and 25 = 6, so we make our index set I = {2,3,4,5,6}. Let x = [[,.; (z + 25) and let
v =TI p =™, Then

r(z) = 24-25-26-28-31
= 33 (mod 667), and

22/2 . 36/2 . 74/2 . 132/2
= 21.3%.72.13!
= 381 (mod 667).

Note that to calculate y, we simply add up the exponent vectors in Table 2.1, column 4
that correspond to our z; for ¢ € I, and raise each prime in B to its corresponding exponent
vector. After this, we take the square root. In practice, we make a slight alteration to
speed this process up. The exponents), ; o;; are always even by construction. In par-
ticular, the exponent on —1 is even, and hence we may drop this term when constructing
y. Therefore, we can add up the original exponent vectors, divide each element by 2, and
then raise each prime to its corresponding vector component.

We find that 2% = y* = 422 (mod 667) and 33 = r # +y = +381 (mod 667).

Our last step is the GCD stage. Taking the greatest common divisor gives ged (z — y,n) =
ged (33 — 381,667) = 23. Finally, 667/23 = 29 and we have completely factored
667 = 23 - 29.

2.2.1 Hensel Lifting

Now, let us go back and look at sieving the sequence (z + 25)2 — 667 in more detail. Look-
ing back at Table 2.1, we can see that —1 divides (z + 25)2 — 667 for z < 0. Therefore,
if z <0, we divide (z + 25)2 — 667 by —1. We start the sieving process by performing
modular arithmetic with the primes in the factor base. Then we sieve with the prime
powers via Hensel Lifting.

We will begin with 2, as it is the first prime in our factor base. First, we expand
Q (2) = (2 +25)* — 667 = 22 + 50z — 42, and then simplify modulo 2.

Q(z) = 0 (mod 2)
(2425667 = 0 (mod ?2)
22 +502-42 = 0 (mod 2)
22 = 0 (mod 2)

From this, we get a polynomial f such that f(z) =0 (mod 2). In this case, f(z) = 2*
and its only root modulo 2 is 0. Then (z 4+ 25)° — 667 is divisible by 2 only when z = 0
(mod 2). We are not able to lift this to higher powers of 2 because f’(0) =0 (mod 2) [0].

Next, we do the same thing with 3:

22 4+502—-42 = 0 (mod 3)
224+2z = 0 (mod 3)
2(z+2) = 0 (mod 3)

Then (z + 25)% — 667 is divisible by 3 when z = 0 or 1 (mod 3). Now, f(z) = 2z (2 + 2), so
the roots are 0 and 1 and f'(z) = 2z + 2. Since f'(0) =2# 0 (mod 3) and f'(1)=1#0
(mod 3), we can lift both solutions to solutions modulo 9 [6].

To lift our solution modulo 9, let z; = 0 + 3k; and w; = 1 + 3¢; (hence, z; and w; are
our solutions modulo 9). We will attempt to solve for integers k; and ¢; by substituting z;
and w; into our polynomial z? 4+ 50z — 42 = 0 (mod 9). This gives:

(0+3ky)* +50(043k;) —42 = 0 (mod 9)
6k —6 = 0 (mod?9)

ky = 1
(14+30)°+50(1430,)—42 = 0 (mod9)
12, = 0 (mod?9)

6= 0.

Therefore, if z =0 or 1 (mod 3), then 3|Q(z) and if z =3 or 1 (mod 9), then 9|Q(2).
The roots are equivalent to z = 3 + 9ky (mod 27) and z = 1 + 9¢5 (mod 27) and we can
repeat the process.

(34 9ky)> +50(349ky) —42 = 0 (mod 27)
18k — 18 = 0 (mod 27)
ks 1

(1490,)> +50(1+96,)—42 = 0 (mod 27)
9 +9 0 (mod 27)
0, = —1.

We find that 27|Q(z) when z = 12 or 19 (mod 27), but our interval is too small to
allow this so we will only sieve our sequence with 3 and 32, and we stop lifting.

We interpret the Hensel Lifting as follows:

o If =12 or 19 (mod 27), then 27 divides (z + 25)* — 667.

o If 2% 12 or 19 (mod 27), but we have that z = 1 or 3 (mod 9), then 9 is the highest
power of 3 that divides (z + 25)% — 667.

o If 2£ 12 0r 19 (mod 27) and z # 1 or 3 (mod 9), but 2 =0 or 1 (mod 3), then 3 is
highest power of 3 that divides (z + 25)* — 667.

When sieving, we divide (z + 25)2 — 667 by the highest power of 3 that we are able to.

Similarly, we find that 7|Q(z) when z = 0 or 6 (mod 7), 49|Q(z) when z = 6 or 4
(mod 49), and 343|Q(z) when z = 300 or 336 (mod 343). Looking at powers of 13, we
find that 13|Q(z) for z = 12 or 3 (mod 13) and we cannot lift any higher.

We are now ready to sieve our sequence. Tables 2.2 - 2.5 show the process of sieving.
First, we sieve by —1. Recall that earlier we found that (z + 25)* — 667 < 0 when z < 0,
so we divide these values by —1. Next, Table 2.2 shows the process of sieving Q(z) by
powers of 2 after factors of —1 have been divided out. We use the results in column 4 to
sieve by powers of 3 in Table 2.3. Table 2.4 shows sieving the results of Table 2.3 being
sieved by powers of 7. Finally, Table 2.5 shows sieving the results of sieving Table 2.4 by
13. Throughout this process we see that by the time we sieve by a prime p € B, we have
already sieved by all elements ¢ € B with ¢ < p.

z | z (mod 2) | Before Sieving by 2 | After Sieving

-7 1 343 343

-6 0 306 153

-5 1 267 267

-4 0 226 113

-3 1 183 183

-2 0 138 69

-1 1 91 91

0 0 42 21

1 1 9 9

2 0 62 31

3 1 117 117

4 0 174 87

) 1 223 223

6 0 294 147

7 1 357 357

Table 2.2: Sieving by 2.

z | z (mod 3) | z (mod 9) | z (mod 27) || Before Sieving by 3 | After Sieving
-7 2 2 20 343 343
-6 0 3 21 153 17
-5 1 4 22 267 89
-4 2) 23 113 113
-3 0 6 24 183 61
-2 1 7 25 69 23
-1 2 8 26 91 91
0 0 0 0 21 7
1 1 1 1 9 1
2 2 2 2 31 31
3 0 3 3 117 13
4 1 4 4 87 29
) 2)) 223 223
6 0 6 6 147 49
7 1 7 7 357 119

Table 2.3: Sieving by powers of 3.

z | z (mod 7) | z (mod 49) | z (mod 343) || Before Sieving by 7 | After Sieving
-7 0 42 336 343 1
-6 1 43 337 17 17
) 2 44 338 89 89
-4 3 45 339 113 113
-3 4 46 340 61 61
-2 5 47 341 69 23
-1 6 48 342 91 13
0 0 0 0 7 1
1 1 1 1 1 1
2 2 2 2 31 31
3 3 3 3 13 13
4 4 4 4 29 29
5 5) 5 223 223
6 6 6 6 49 1
7 0 7 7 119 17

Table 2.4: Sieving by powers of 7.

z | z (mod 13) | Before Sieving by 13 | After Sieving
-7 6 1 1
-6 7 17 17
-5 8 89 89
-4 9 113 113
-3 10 61 61
-2 11 23 23
-1 12 13 1
0 0 1 1
1 1 1 1
2 2 31 31
3 3 13 1
4 4 29 29
5) 223 223
6 6 1 1
7 7 17 17

Table 2.5: Sieving by 13.

10

At the end of the sieving process, we find that the B-smooth values have indeed been
reduced to 1, and we can easily identify B-smooth numbers.

The entire sieving process is summarized Table 2.6. The elements of our factor base
and their prime powers are listed in the first column. The first row is values of z and
the second row is values of Q(z). A dash indicates when Q(z) is not divisible by the
corresponding element listed in the first column. Therefore, a dash signals that the value
of Q(z) remains unchanged. If Q(z) is divisible by the corresponding number in the first
column, then we divide that number out and continue sieving with the number in brackets.
For example, working our way down the column corresponding to z = 7, we find that 357
is not divisible by -1 or 2. It is divisible by 3, so we divide 3 out and use 119 to sieve
further. At the end, we scan each column and if a 1 appears in the brackets, then we know
the corresponding @(z) values is smooth.

2.3 Summary

Factoring n = 667 = 23 - 29 was a lot of work, so let’s go over what we did. We chose an
integer B which was smaller than the recommended value. Then, we built our factor base
consisting of —1 and all prime number < B with (%) =1. Welet Q(2) = (24 |v/n])/2—n
and we used Hensel Lifting to identify B-smooth numbers and create our exponent vectors.
Then, we found a linear dependency among all of our exponent vectors. We multiplied all
of the quadratic residues, (z 4+ |y/n]), from this linear dependence together modulo n to
create x and used the original exponent vectors to create y. This gave us x and y such
that

22 = [Ty (5 + [VA))? (mod n) and y? = [T,c, Q=) (mod n),

where 22 = y? (mod n). Finally, we took ged (z — y,n) as our factor of n.

11

JuTAd1g 19°g AqRL

- - |- - Jme| - | -] - [(Mer| - - - - - - |
— i e — - | =1 = - - - - - — | (peve | eve
- v | - | = | - | = | -] - - = - - = - - | 6r
Woe| = = = | = | = | =] M |@EDL] = - - - - - |4
- - -] - JEne| - (6] - - - - - - e | = |6
6roe | (6he | — |(6e)e| — | = | — | (e | — | (gge | (19)e | — | (68)e | ~— - | ¢
- | We| - || — |(ge| — | (e)e | — | (692 | — | (€1e| — [(€De| — | ¢
= - = = = = = @) | (1)1 | (8811 | (68D1- | (982)1- | (292)1- | (90€)1- | €V€ - 1| 1-
166 | ¥6e | €ge | PAT | LTT | 29 | 6 | @b | T6- | Sel- | €81- | 9ze- | L9%- | 90&- | &P
L o sl v | ¢ a [1] 0 I- & e i G- 9- L

12

Chapter 3

Extending to Multiple Polynomials

3.1 The Algorithm

Using the polynomial Q(z) = (z — [v/n])° —n to generate B-smooth numbers gives us the
desired result. However, as z moves away from 0, the values (z) grow quickly as z grows
[3]. The larger z gets, the less likely ()(z) is to have only small prime factors. This can be
troublesome if many B-smooth numbers are needed. To get around this problem, Davis
and Holdrige [1] and Montgomery, via a personal correspondence, see Pomerance [13], ex-
tended the quadratic sieve to use multiple polynomials to generate B-smooth numbers.

Ideally, we want to find other polynomials P(z) that have the same properties as Q(z).
Recall that Q(z) = (2 — L\/ﬁj)2 — n. The first important property of Q(z) is that the
right-hand side is a square modulo n. We would like the right-hand side of P(z) to also
be a square modulo n. Furthermore, by sieving for B-smooth values of Q)(z), we can find
some values of @(z) that multiply together to produce a square. We want to be able to do
the same with P(z) and sieve for B-smooth values.

The following is adapted from Crandall and Pomerance [3].

Let a, b, and ¢ be integers with b* — ac = n and let f(2) = az® + 2bz + ¢. Then
af(z) = a*2*+ 2abz + ac
(az +b)* — (b* — ac)
= (az+b)’—n
(az+b)* (mod n).
Taking P(z) = af(z) gives us that the right-hand side of P(z) is a square modulo n. If

we choose a to be a square times a B-smooth number and z such that f(z) is B-smooth,

13

then we can find a sequence {z;};cs such that J]._; P(z) is a square. Then we can let
y? =Ilic; P(z) and « =[], ; (az; + b) and we will have 2% = y* (mod n). We check that
x # +y (mod n) and carry on as before.

The point of this is to keep values of P(z) small so they’re more likely to be B-smooth.
If we look at P(z) on the interval [—n, n], we see that P(z) = (az + b)* — n is a parabola.
We want to minimize the parabola on our interval to keep the values as small as possible.
Moreover, it would be nice to bound the parabola on the interval so that we can be assured
of having small values of P(z).

We are not going to look at the whole interval [—n,n|; it is too large. Instead, we
will look at values of z on some sub-interval, say [—M, M| for M < n, and we want
to minimize and bound P(z) on this interval. Since a is positive, our parabola opens
upwards on [—n,n], with the minimum occuring at z = —b/a. If we take [b] < %a, then

—n < (az + b)2 —n< (az + %a)z—n = q? (z + %)2 —n, and we have bounded our parabola.

Since —n < P(z) < a” (2 + %)2 —n for z € [-M, M] and f(z) = P(z)/a, we can bound
f(2): we have —n/a < f(z) < a(M + £)* — n/a with the maximum of f(z) occuring at
z = M. Since a is a fixed value, it suffices to minimize f(z) when trying to minimize P(z).
Furthermore, it will be easier to minimize f(z) now that we have bounded it. We set the
absolute values of the bounds to be approximately equal, n/a ~ |a(M + 3)* — n/al. We

find that we require a ~ v/2n/M for f(z) to be bounded by (M+/n) /v/2.

The easiest choice of a is p? for some p =~ v/2n/M. However, if we look at
af(z) = (az+b)*> — n and take it modulo p, we have 0 = (az+b)> —n (mod p), or

n

n = (az+b)* (mod p). Therefore, we require <5> = 1 for our choice of p.

After we have our M and our a, we can get our b. Using the equation > — ac = n, we
can solve the congruence b = n (mod a). There are two solutions for b, so we take the
one with [b| < a. Then we can solve ¢ = (b — n) /a to obtain all three coefficients of our
polynomial f(z).

To summarize, we have the following procedure:

1. Construct f(z)

Choose an integer M such that [—M, M] is the interval to be sieved and find a prime
p ~ v2n/M with <%> = 1. Take a = p* and solve b*> = n (mod a) for [b] < 3a.
Then let ¢ = (0> — n) /a. The polynomial is f(z) = az? + bz + c.

14

2.

3.2

Generate B-Smooth Numbers

Find a sequence of integers z; such that f(z;) = az?+bz;+c is is B-smooth. Disregard

any pairs (2;, f(2;)) where f(z;) does not factor over B and write f(z;) = H§:1 p?i’j

(mod n), where each p; € B, the number of primes in the factor base is ¢, and
Q4 e 7.

Linear Algebra

Write the exponents of each z; as vectors, v; = (81, ..., Be:), where the j-th com-
ponent corresponds the j-th prime in B, and take each vector modulo 2. Make each
vector a column in a matrix and append this matrix onto A, the matrix from the ba-
sic Quadratic Sieve. Find a linear dependency in all the vectors and form index sets
I and J, where I holds all the indices of the linearly dependent vectors which corre-

spond to the polynomial Q(z), and J holds all the indices of the linearly dependent
vectors corresponding to the polynomial f(z).

Construct z and y such that 22 = y* (mod n)

Let

T = (Hiel (zi + [v/n])) (HiEJ (az; + b)) (mod n) and
y = (pzie,i) (H§:1 p;/2(2ielo‘id+2ieJ ,Bi,j)) (mod n).

Note that 22 is a new square that factors over B.

GCD

Compute ged (x — y,n).

Example

Let us pretend that we were unlucky in our factoring of n = 667 and try to generate
more B-smooth numbers. If we let M = 2, then we can take p = 17 ~ v/2-667/2 and
a = 289. Then b* = 667 = 89 (mod 289), so b = +49 (mod 289) and we can take
b=49. Let ¢ = (49?2 — 667) /289 = 6. Our polynomial is f(z) = 28922 + 49z + 6 and

P(z)

= af(z) = (2892 +49)° — 667 = 1462> 4+ 154z — 267 . We obtain the potential

B-smooth numbers listed in Table 3.1. Of these, we obtain the smooth number in Table
3.2. Notice that we did not include the potential B-smooth number corresponding to z = 2
since our original factor base does not include the prime number 5.

15

z | f(z) | Factoring
-2 11064 | 2%-7-19
-1 | 246 2-3-41
0 6 2-3

1| 344 23 .43
211260 (22-32-5-7

Table 3.1: Potential B-Smooth Numbers

z | af (z) (mod n) | Factoring | Exponent Vector | Exponent Vector Modulo 2
0 6 2.3 (0,1,1,0,0) (0,1,1,0,0)

Table 3.2: Smooth Numbers

We can add this vector to our matrix A and obtain the matrix:

Q(z): z==-7 -1

0 1 3 6 f(2):2=0
p=—1 1 1 1000 0
2 0 0 1001 1
C= 3 0 01 001 1
7 1 1 1000 0
13 0 1. 001O0 0

Note that the column indices reference the corresponding z value and the row indices
reference the corresponding element in B. The first six columns are from our matrix A,
which correspond to our original z values of 2y = =7, 20 = —1, 23 =0, 24 = 1, 25 = 3,
& zg = 6, and the polynomial Q(z), and the last column of C' corresponds to our new
B-smooth number from the polynomial f(z), which has z; = 0. To find a linear depen-
dency, we solve Cw = 0. One solution is @ = (0,0,0,0,0,1, 1)T. The non-zero entries
correspond to zg = 6 from our old polynomial Q(z), and z; = 0 from our new polynomial,
f(2). This gives two new index sets, I = {6} from the polynomial Q(z) and J = {7} from
the polynomial f(z). We will try and use these B-smooth numbers to factor n.

Let

v = TG+ vah [Tt +0)

iel jeJ
=[]z +25) [[(2892 + 49)
iel jeJ
31 - 49

= 185 (mod 667)

16

y — a1/2 . 20@?1/2 . 30%2/2 . 7041‘_’3/2 . 1304,',4/2
_ 1722 . 92/2 322 72/2 30/2

= 17-2-3-7

47 (mod 667).

Then 22 = y*> = 52 (mod 667) but x # +y (mod 667). Then ged (185 — 47,667) =
ged (138,667) = 23, and we have split n.

3.3 Summary

Using all of the work we did in the basic Quadratic Sieve (except the actual factors of n),
we chose a new interval we wanted to sieve, [—M, M]. We let p &~ v/2n/M be a prime with
(&) =1, and let @ = p*. Solving b* =n (mod a) for [b] < ja and letting ¢ = (b> —n)/a, we
constructed the polynomial f(z) = az? + bz + c. Then, we sieved our interval [—M, M] for
values of f(z) that were B-smooth and created our new exponent vectors. After adding
the new exponent vectors to our matrix A, we had a new linear dependency in our new
matrix. We multiplied all the roots of our quadratic residues, (z + [/n]) and (az + b),
from our linear dependence together modulo n to form x, and used the original exponent
vectors to create y. Finally, we had that ged (x — y,n) was a proper divisor of n.

17

Chapter 4

The Number Field Sieve

4.1 The Algorithm

Currently, the Number Field Sieve is the fastest factoring algorithm available for integers
over 130 digits, while the Quadratic Sieve works well for integers with fewer than 100 digits
[13]. This is due to the fact that the Quadratic Sieve algorithm is conjectured to have a
complexity of L(n) = exp((1+ o(1))VInnlInlnn) where as the Number Field Sieve is con-

jectured to have a complexity of exp (((64/9)1/3 +0(1))(Inn)3(InIn n)2/3) [3]. Even with

the alterations to speed up the basic Quadratic Sieve, the Number Field Sieve is faster in
the worst-case.

The following is adapted from Crandall and Pomerance [3].

In the Quadratic Sieve, we noticed that the right-hand side of Q(z2) = (z — |/n])* —n
is always a square modulo n. More specifically, it is a small quadratic residue modulo
n when we have a sequence centred at |v/n|, and we can use Hensel Lifting to quickly
identify smooth values on the left-hand side. The Number Field Sieve uses this general
idea, but instead of using small quadratic residues, we will simply use small numbers and
perform the linear algebra stage with each side of the congruence.

Let m be an integer, o be an algebraic number, and ¢ be a homomorphism such that
¢ : Llo] — Ly, with ¢(37"! a;0%) = S0 a;m? (mod n) for any integers a; and a positive
integer d. We will show how to construct m, o, and ¢ later.

We are searching for a set S C {(a,b) € Z x Z| ged (a,b) = 1} such that

18

V2 = H (a — bo), for some v € Z[o] and
(a,b)eS

r? = H (a — bm), for some = € 7Z,.
(a,b)esS

Then we will have

22 = [5(a — bm) = [1s 6la — bo) = o(Ts(a — bo)) = 0(7?)

and we can try and factor n by taking the ged (z — y,n).

¢(7)* =y* (mod n),

We start by generating an irreducible polynomial. First, we choose a small integer d,

1
usually d ~ (3 nn

1/3
> , and let m = [n'/?|. Then we write n as follows:
Inlnn

n=mé+cem®t+- +co

with ¢; € [0,m — 1]. We have just generated a polynomial f(z) = 2%+ c4 12971 + -+ + ¢
that has the property that f(m) =0 (mod n). We can already see that f is monic. If f
is not irreducible, then f(z) = g(z)h(z) for some non-trivial polynomials g, h € Z|z] and
n = f(m) = g(m)h(m). Thus, if f is not irreducible, we can find a non-trivial factorization
of n. If f is irreducible, then we proceed with the Number Field Sieve.

Let o be some root of f. Then, Z[o] is equivalent to the ring Z[z]/(f(2)), which is indeed
a ring since f is irreducible. Elements of the ring are of the form ag + a10+ -+ - 4+ ag_10%7!
where ag, ..., ag_1 € Z. Then, our homomorphism is ¢ : Z[o] — Z, which sends an
element ag + @10 + -+ + ad_lad*1 toag +aym—+ -+ ad_1md*1 in Z,.

Note that ¢ is indeed a homomorphism. Let x : Z[z] — Z, be a group homomorphism
such that any element in Z[z] gets evaluated at m and reduced modulo n. Now, we know
that there is a natural, surjective homomorphism ¢ where ¢ : Z[z] — Z[z]/(f(2)). Since
f(m)=n =0 (mod n), we have that (f(z)) is in ker(x). Then, the Fundamental Theorem
of Homomorphisms tells us that there exists a unique homomorphism ¢ : Z[z]/(f(2)) — Z,
such that x = ¢ - ¢ [].

Looking back at our polynomial f, we want to put it in a more useful form, the reason
for which is explained in the next section. We do the following:

fz) = (z=01)-- (2= 0a)
flaft) = (a/b—0a1)---(a/b—0a)
b=a —boy) - (a — boy).

19

Let F(a,b) = bf(a/b) = (a — boy)--- (a — boy) and let G(a,b) = a — bm. This gives us

two new polynomials of two variables, a and b.

What we really want, is to find a set S of co-prime pairs (a, b) such that:

L. H(a,b)eg G(a,b) is a square in Z,,
2. TTiapyes Fla,b) is a square in Z,

3. [iapes(a —bo) is a square in Z[o].

Note that z? = [(up)es Gla,b) (mod n) and V2 = [T(up)es(a — bo). We further require
that [], pes £'(a,b) is a square in Z; otherwise, [], ; cs(a — bo) would not be square in
Z[o]. This will be explained in the next section.

In the Quadratic Sieve method, we used the notion of smooth values to find potential
relations (a,b). We will use the same idea here. We require that all of G(a,b), F(a,b), and
(a — bo) are B-smooth. As we’ll see in the next section, (a — bo) is B-smooth if F(a,b) is
B-smooth. Therefore, it suffices to sieve F'(a,b) and G(a,b) for smooth values.

Although we only need to sieve F'(a,b) and G(a, b) for B-smooth values, we still require
that all three products are squares. Therefore, it makes sense to have three separate parts
to the exponent vector for (a,b) that we are making. We will make three “mini”-exponent
vectors, relating to each of G(a,b), F(a,b), and (a — bo), and then concatenate them to-
gether before finding our linear dependency modulo 2 in the Linear Algebra stage. This
will ensure that all three products will be squares simultancously.

Leaving off some of the details for right now, the general idea of the Number Field
Sieve can be summarized by the following procedure:

1. Generate Relations

Let B = exp (8/9)2Inn)/3(Inlnn)?3 be an integer and let

B = {p, : p; prime, p; < B}, where we have indexed the primes with p; being the
4 prime starting from 2. Include —1 € B as the “zero-th” element. This B is our
factor base. Note that like in the Quadratic Sieve, a smaller value of B usually works.

3lnn

1/3
) and let m = [n'/4]. Write
Inlnn

n =m+cqg_ym? 1+ 4y, where ¢; € [0,m—1], and let f(2) = 294-c4_127 4 - ~+cp.
Let F(a,b) = b%f(a/b) and G(a,b) = a — bm. Make &', a set of co-prime, integer

Choose a small, positive integer d =~ (

20

pairs (a;, b;) such that F(a;, b;) and G(a;,b;) are each products of primes in B. If
F(a;,b;) or G(a;,b;) factors in such a way, we call it B-smooth and we call the pairs
(a;,b;) € 8 relations. Disregard any pairs (a;, b;) where both F(a;,b;) and G(a;,b;)
do not factor over B.

2. Linear Algebra

Make three “mini”-exponent vectors corresponding to G(a,b), F(a,b), and (a — bo).
We will call the first mini-vector 7(;(@) = (Plap),05" > Plap)k) Where there are k
primes in B. This is the exponent vector that corresponds to G(a,b). Constructing
the exponent vectors corresponding to F(a,b) and (a — bo) will be explained in the
next section. Take each vector modulo 2 and concatenate the vectors in order. Find
a linear dependency amongst these “mega”-vectors and make a set S consisting of
the corresponding relations (a, b).

3. Construct x and y such that 2? = y? (mod n)

Let x € Z be such that z =[], ycs p]l./2 2tanes Pt (mod n). Let

7? = [apes(@ — bo), and find . Take y = ¢(y) and note that 2* and y* are new
square integers that factors over B.

4. GCD

Compute ged (n, x — y).

4.2 The Second “Mini”-Vector

Define a norm function so that if 3 = sg + s10 + -+ + s4_10%! € Q[o], then we have

N(p) = H?:1(50 + 510+ -+ sd_la;l_l). Since the expression is symmetric in the roots

o1, -+, 04, we see that N(f5) € Q. Similarly, if sg, - -+, s4—1 € Z, then N(5) € Z.

As a result of the definition of our norm, we have that N(83") = N(B)N(f') for
any 3 € Z[o]. This means that if 3 is a square, say 3 = ~*, then N(f) is a square:
N(B) = N(+*) = N(v)% Equivalently, if N(3) is not a square then §3 is not a square. If
we turn our attention from 5 to a — bo, we find that in order for the product of a — bo to
be a square, we require the product of N(a — bo) to be a square:

N(a—bo) = (a—boy)---(a—boy)
= ba/b—0cy)--(a/b—0q)
b f(a/b)
F(a,b),

21

which is where we get our F(a,b). It follows that if [],; F'(a,b) is not a square, then
H(a’b) (a—bo) is not a square. Thus, we require H(a,b) F(a,b) to be a square. Furthermore,
we call an element § € Z[o] B-smooth if it’s norm N(f) is B-smooth.

Although we know that 3 being a square implies that N (/) is also a square, it is not true
that N(3) being a square implies that 3 is a square in Z[o]. For example, let f(z) = 2% +4
and let f have root 0. Then N(a + bo) = a? + b*. Similarly, if we take b = 0, we have
N(a) = a*. However, if a > 0 is not a square in Z, then we have that a is not a square in
Z|o].

Now that we understand why we need H(a’b)e s F(a,b) to be a square, we need to make
the corresponding exponent vectors so that we can achieve this. We can sieve G(a, b) using
modular arithmetic and Hensel Lifting, but we have a slightly different sieve that we use
for F'(a,b) because we may not have that Z[o] is a Unique Factorization Domain.

The general idea here is that for each prime, p, in our factor base, we check that pla—br
for some integer, r. If p f a — br, then p { F(a,b) and if pla — br, then p|F(a,b). This
only works with certain values of r, but that will be explained shortly. Then, for each
prime, we consider several different values of r. That way, if we're unlucky and we have
that pt F(a,b) but p t a — br for one particular r, we may have that p|a — br for another r
and we can sieve with that r. This is possible because a and b are not necessarily co-prime
with each p. This gives us the best chance of accurately sieving F'(a,b).

We will now explain more about the r values. Let
R(p) ={re[0,p—1]|r € Z, f(r) =0 (mod p)} where p € B. Since our integers a, b are
co-prime, we have that

F(a,b) =0 (mod p) if and only if a = br (mod p) for some r € R(p).

We sieve various relations (a, b) by fixing b and viewing F'(a,b) as a polynomial in the vari-
able a, and vice versa for a “double” sieve. While we sieve a particular F'(a,b) for prime
factors, we can also sieve our residue classes a = br (mod p) for multiples of p. We can
modify our exponent vectors to keep track of which residue classes are in fact multiples of p.

If a # br (mod p), then we can set our element v, ,(F(a,b)) = 0. Otherwise, if a = br
(mod p), then we define our exponent v, ,.(F(a,b)) in the usual way. Thus, for each pair
(a,b) and for each pair (p,r), we have a separate coordinate, v, (F(a,b)), in our exponent
vector.

For example, let n = 667, d = 2, m = 25, and f(z) = 2* + 2z + 17 and take B = 19.
Then our factor base is B={—1,2,3,5,7,11,13,17,19}. We first need to make our sets,

22

R(p) ={r € [0,p—1]|r € Z, f(r) = 0 (mod p)}, for each prime in our factor base. We
can see that f(0)—17_15_'50 (mod 2) and f(1) =19=1% 0 (mod 2), so we have
R(2) = {}. Similarly, R(3) = R(5) = R(7) = R(11) = R(13) = {}. However, f(0) =17 =
0 (mod 17) and f(16) =289 =0 (mod 17), but f(r) # 0 (mod 17) for any other

€ [0,16]. Therefore, we have that R(17) = {0,16}. Similarly, we have R(19) = {1,17}.

Our mini-exponent vectors look like

&

(v170(F'(a,b)), v1716(F(a,D)), v19.1(F(a, b)), v19,17(F (a,b))).

We will make the mini-vectors for F(—2,1), F(—1,1), F(1,1), F(0,1), and F(17,1).
In the case of F(—2,1), we have:

(p,r)=(17,0): —2 % 0=1-0 (mod 17)
(17,16): -2 # 16=1-16 (mod 17)
(19,1): -2 # 1=1-1 (mod 19)
(19,17): -2 = 17=1-17 (mod 19).

From this, we know that 19| (—2,1). The only thing we need to keep in mind is that we
still don’t know what power of 19 divides F'(—2,1).

Similar to building our mini-vector for G(a, b), we want to be able to keep track of prime
powers. We have that a = br (mod p), so then we know that we also have a = b(r + pk)
(mod p?). We can plug this new a into F(a,b) =0 (mod p?) to solve for k, similar to the
Hensel Lifting we did with the Quadratic Sieve. Then, our coordinate is v, (F(a,b)) if we
have that a = b(r+p"'k;—1) (mod p'), but a # b(r+p'k,) (mod p'*') for t = v, ,.(F(a,b)).

Let’s try to lift our solution, a = b - 17 (mod 19), to a higher power of 19. Now that
we are working modulo 192, our solution looks like a = b (17 + 19k) (mod 361). We plug
this into 0 = F'(a,b) (mod 19) and find:

0 = a*+ab+17v* (mod 361)
= (17b+ 19kb)* + (17b + 19kb)b + 17b* (mod 361)
= 289b° + 285b%k + 17b* + 196k + 170" (mod 361)
= 323+ 304k (mod 361)

17+ 16k (mod 361)

k= 202 (mod 361).

We put k£ = 202 back into our equation for a, and we find that 361|F(a,b) when a = b-245
(mod 361). In the case of FI(—2,1), we find that —2 # 245 (mod 361), so we do not have

19%|F(—2,1). Therefore, our coordinate is v1g17(F (-2, —1)) = 1 and we have our exponent
vector for F'(—2,1), which is (0,0,0,1). Note that if we did have —2 = 245 (mod 361),

23

then our fourth coordinate would be 2, not 1.

—_ =

Similarly, we make the exponent vectors for F(1), F(1,1), F(0,1), and F(17,1),
which are (0,1,0,0), (0,0,1,0), (1,0,0,0), and (1,0,0,1), respectively. We can see that
the vectors corresponding to F(—2,1), F(0,1), and F(17,1) are linearly dependent, so
we know that the product of F(—2,1), F(0,1), and F(17,1) should be a square. Indeed,
F(=2,1) =17, F(0,1) = 19, and F(17,1) = 17 - 19, and when we multiply all of these
together we find that the result is a square, 172 - 192,

To summarize this point, we have our p;’s labelled for primes < B. For each prime p;,
we have 71, - -+, 7., values in R(p;). For each pair (pj,7j.,), we can run through our
pairs (a,b) € §', generally by fixing b and running through various a values. If we find that
a # brjw, (mod p;) then we set our exponent v, Ty (F(a,b)) = 0. Otherwise, we find
the maximum exponent of p; which divides F'(a, b) and label it Upjr0, (F(a,b)). Thus, the
second mini-exponent vector for the Linear Algebra stage is

7F (a,b) (1)11177‘1,1 (F(CL, b))? o 7v;!11,'r‘1‘,w1 (F(CL, b))? * o Upgri s (F(av b))

Let Z = {0 € Q[o]| o is an algebraic integer} be an ideal. Then Z[o] is a subset of Z.
We will be using the following Theorem (although Crandall and Pomerance [3] present it
as a Lemma):

Theorem 1. Let S = {(a,b) € Z x Z|a — bo is B — smooth} and let
7T = {0 € Q[o]|o is an algebraic mteger} If [T(apyes(a = bo) is the square of an element

in L, then Y-, es v(F(a, b)) = f (mod 2).

This theorem tells us that in order for J], ; cs(a — bo) to be a square in Z[o], we need
the second mini-vectors corresponding to the pairs (a,b) € S to be linearly dependent.

4.3 The Third “Mini”-Vector

Recall from our discussion of the Norm that it is necessary and not sufficient that
[T(ap)es £'(a, b) be a square in Z. Similarly, to ensure], cs(a —bo) is a square, it is not
enough to find a linear dependency modulo 2 among our second mini-vectors. Observe:
from our example, we found that F'(—2,1)- F(0,1) - F(17,1) = 17% - 192. However, when
we look at the product in Z[o|, we find that it is not a square. In fact, the product in Z[o]
is —0?® + 1502 + 340, which has degree 3 could not possibly be a square.

To ensure that [], ;cs(a —bo) is a square in Z[o], we use the following fact: if we are
given an integer v and we want to determine whether or not u is a square, we can look

24

at u modulo a series of prime numbers ¢q, -+, q,. If (qi) = 1, where (ql) is the Legendre
J J
Symbol, for a sequence of primes ¢;, then there is a very good probability that u is a square.

As before, we have a — bo € Z[o]. We want to find a set of pairs of (a,b), S, with
[Tiapesla —bo) = v? € Z|o]. Consider the homomorphisms

(91 : Z[O’] — ZP]?
Oy : Zlo] = Zy,,

Y

Qk : Z[O’] — me

where 6;(g(0)) = g(s;) (mod g;) for integers s; and primes ¢;. We need that ¢;|f(s;), where
f is the minimal polynomial of o, to be sure that these 6;’s are homomorphisms.

For each element a; — b;o, we associate a vector (£1,+1,---,41) where the first
91 (CL, — bZO')

term is the Legendre Symbol (
0

(92(@1‘ — bZO')
a2

in each component. This works because if 6;(g;(c)) and 6;(g;(c)) are both quadratic

non-residues with respect to g1, then 61(g;(0)) - 61(g;(0)) is a quadratic residue since

<M) = —1 and <M> = —1 imply that

), the second term is the Legendre Symbol

), etc. To ensure [], ;cs(a—bo) = 72, we require an even number of —1’s

q1 q1

(emgi(a)) -91<gj<o>>> _ (M) . (M) S (1) (-1 =1,

q1 q1 q1

As a result, we change all of our vector entries which are +1 to 0. Then, there is no
confusion when we take all three of our mini-vectors modulo 2.

We return to our example where n = 667, d = 2, m = 25, f(z) = 22 + 2 + 17, and
B={-1,2,3,57,11,13,17,19}. We made the second mini-exponent vectors for the pairs
(—=2,1), (-1,1), (0,1), (1,1), and (17,1). We will carry on with these relations and illus-
trate how to construct the third mini-vectors.

Let the functions g;(0), g2(0), g3(0), g4(o), and g5(o) correspond to the pairs (—2,1),
(—1,1), (0,1), (1,1), and (17,1), respectively. In other words, let ¢;(0c) = —2 — o,
go(0) = —1 — 0, etc. We will take s; = 2, s = 3, s3 = 4, and s4 = 5. We see that
f(s1) =23, f(s2) =29, f(s3) = 37, and f(s4) = 47, and we have that ¢, = 23, g2 = 29,
g3 = 37, and q4 = 47, where ¢; is prime and ¢;|f(s;). Now, let the function 6; be such that
0:(gj(0)) = g;(si) (mod g;). We construct Table 4.1.

25

T 4R 1810300/ ~TUIN AL, ORIN TF Oq¥L

qo UNO O UNO UNO
(Ly pour) (Ly pour) (Ly pour) (Ly pow) (Ly pour)
(80F) = op = (81F) =cp = v = 0F = (Ly pow)
1 =6— L1 p—=G—1 G—=¢c—0 9—=6—1— | L—=6—¢— | (9 =((9)")"
UNO o O UNO UNO
(L& pour) (Lg pour) (L& pour) (Lg poux) (Lg pou)
[0IF) =7 = | (C1F) =¢e = e = e = (Lg pow)
C1=%— L1 c—=7—1 F—=7-0 c—=F—1— | 9—=F—2¢— | (1) = ((9)")%p
UNO UNO UNO O O
(6z pour) (6g pour) (6T pour) (6¢ pour) (6g pou)
LT = 9z = (CF)=6c= | JC1F)=¥¢c= (6¢ pou)
FTI=¢— L1 —=¢-1 c—=¢—0 p—=¢—1— | c—=¢—g— |(9)=((0)h)%
UNO UNO UNO UNO UNO
(¢g pour) (¢g pour) (¢g pour) (¢g pour) (¢g pow)
7Cc = 2= 0z = 61 = (¢g pow)
T =5— L1 I—-=¢—1 t—=2-0 ¢—=¢—1—- | v—=2c—c¢— | (@F= (o))
0—)1=(0)b | o—T1=(0)6 | 0—0=(0)6 |0—T—=(0)% | 0—g— = (0)W

26

Legendre Symbol Vector | “Mini”-Vector for a — bo
B, — (—1,1,—1,—1) (—1,0,—1,—1)
B p— (—1,1,—1,—1) (—1,0,—1,—1)
0— 20 (—1,—-1,1,1) (—1,-1,0,0)
-0 (—1,—-1,1,-1) (—1,-1,0,—1)
17—0o (—1,—-1,—-1,1) (—1,—-1,—1,0)

Table 4.2: “Mini”-Vector Corresponding to a — bo

Based on Table 4.1, we can make vectors (+1,+£1,--- ,£1) for each pair (a,b) where
each corresponding Legendre Symbol. To make this clear, we have included in Table 4.1
whether or not the evaluation of §;(g;(c)) corresponds to a quadratic residue or a quadratic
non-residue with respect to ¢;. We write QR for Quadratic Residue, in which case its Leg-
endre Symbol is 1, or QNR for Quadratic Non-Residue, when its Legendre Symbol is —1.
Each column of the table corresponds to the third mini-vector for its respective a — bo,
and we have the listed the final mini-exponent vector in Table 4.2.

Notice that the second column of Table 4.2 is the vectors with the Legendre Symbols.
In the third column, we have adjusted these vectors so that all of the values of +1 have
been changed to 0. This will enable us to find a linear dependency among the quadratic
non-residues.

After making all sets of our mini-exponent vectors, we concatenate them together to
form one exponent vector that looks like ¥ (a — bo) = <7g(a,b)||7F(a7b)||7a_bo>. Then
we take the vectors modulo 2 and find our linear dependency among the concatenated
vectors. If no such linear dependency exists, we can increase our bound M and search for
more relations. In total, we should have V' = #B + > _p #R(p) + £ smooth relations in
order to successfully find a proper divisor of n.

After we have our linear dependency, we need to find z, y, and 7 from our z?%, 12,
and 2. Finding x is easy since we know its prime factorization. This is done similar to
the computation of y in the Quadratic Sieve. Once we have a set & which includes all
of our linearly dependent, B-smooth relations (a, b), then we can add up the appropriate
coordinates of the first mini-exponent vectors, divide each sum by two, and multiply the
resulting prime powers together to determine .

To find « from 72, we can solve for 7 (mod p) for some prime p. Then we can use
Hensel Lifting to lift our solution modulo p?, p3, etc. until our solution stabilizes. Once
we have v, we use our homomorphism to compute y = ¢(y) (mod n).

27

Finally, we compute ged (x — y,n) as our factor of n and we hope to have successfully
factored n.

4.4 Summary

First, choose a factor base B consisting of all prime numbers < B, using a different B than
for the Quadratic Sieve. Next, choose a small integer d and let m = |n/¢]. Write n as
n=m?+cg_ym?t + -+ ¢y where ¢; € [0,m — 1]. Let f(2) = 24+ 4127+ + ¢,
using the same ¢;’s that we have just generated above and let o be some root of f. Let
F(a,b) = b%f(a/b) and G(a,b) = a — bm for integers a, b.

Pick some reasonble bound M such that —M < z < M, and sieve F(a,b) and G(a,b)
for B-smooth values. In general, we take M ~ B. If both F'(a,b) and G(a, b) arc B-smooth,
let

S ={(a,b) € ZxZ| 0 < |a|,b < M, ged(a,b) =1, and F(a,b), G(a,b) B-smooth}.

Keep track of the exponents when sieving G(a, b) and form the first mini-exponent vectors
in the same manner as was used in the Quadratic Sieve. Then, create the set R(p) for
each p € B. Fix 0 < |a] < M, let b vary such that (a,b) € &', and for each p € B, look
for values of b such that a = br (mod p) for some r € R(p). If for a particular b value, no
such r exists, then designate the appropriate coordinate in the exponent vector for F(a,b)
as 0. Otherwise, find the exponent as usual. Next, fix 0 < b < M and let a vary. Sieve
until sufficiently many relations have been generated.

Choose a sequence of integers s, - -+, sg and find primes py, -+, pg such that p;|f(s;).
For each (a,b) € &', evaluate a — bo at ¢ = s; and take the result modulo p;. If the

Legendre Symbol <(a — bsi_mod pi)
Di

= 1, then we set the i-th component of our last

(a — bs; mod pz))
Di

= —1, then we set the i-th component

mini-vector to 0. However, if (

to —1.

We concatenate all three mini-exponent vectors and find a linear dependency modulo
2. We make a new set S of all the pairs (a, b) in our linear dependency. We us the original
first mini-vector to create x and find v via modular arithmetic and Hensel Lifting. Finally,
we use our homomorphism ¢ to find y = ¢(7), and take ged (z — y,n) as our factor of n.

28

Chapter 5

The Experiment

Crandall and Pomerance [3] tell us that the optimal bound for our factor base is

B = exp(i(Inninlnn)'/?). They further tell us that we require at least #8 -+ 1 smooth
relations to ensure our success. They assume that the probability that a quadratic residue
in Z, is B-smooth is approximately u~*, where u = Inn/In B. This means that we expect
to go through u* values of z to find one Q(z) which is B-smooth.

From this, we find that if we want to sieve a sequence of z values where z € [—M, M|
for some integer M, we need

2M+1 = (u")- (#B+1)
M = (1/2)- (u*) - (#B+1) —1/2, where u = Inn/In B.

This value of M is for the worst case scenario: we go through all u* values of z in order to
find each smooth relation, we require all #8 + 1 smooth relations to factor n successfully,
and we do not take B to be smaller than the value given above.

Crandall and Pomerance [3] also tell us that a smaller value of B usually does work.
Would a smaller value of M work in most cases, too? This is the question that we ex-
perimented with. We endeavoured to find the best possible M to quickly and successfully
factor n.

In our experiment, we tested 12 different values of M: 1/10M, 2/10M, ---, 10/10M,
11/10M, 12/10M. We used our own Maple implementation of the Quadratic Sieve with
75 different values of n, performing each run three times and averaging the time taken by
the algorithm. We also recorded whether or not each run was successful and whether or
not we had the number of smooth relations necessary to successfully factor n, i.e. whether
or not the number of smooth relations exceeded #B + 1. The results of the experiments
are summarized in Figure 5.1.

29

Time & Success Rates for Various Fractions of M

100

=]
=]

30 Average Time

2]
[=]

25

=l
(=]

Percentage

(=]
(=]

20 N % Successess

L
[=]

I % (# Smooth Relations) =

15
40 (#B+1)

mm Average Time (Seconds)

30 10

Average Time Regression
Line
5 y=2.653x-4.1618

20

10

T T T e .
OIS N R I I G GO SN S o
Fraction of M

Figure 5.1: Experimental Results.

The incidences where the number of smooth values exceeds (#B + 1) indicate when
the algorithm should have worked in factoring n. This is just to monitor our expectations
for each fraction of M. We see that for some fractions of M, like 2/10M, we have very
few instances with (# Smooth Relations) > (#B + 1), but we have a much larger success
rate. In this case, we were lucky and found a linear dependency among a smaller then
expected number of vectors. On the other hand, for some fractions of M, say 7/10M, we
have more instances where we should be able to factor n than we have instances where we
are actually able to factor n. In this case, the linear dependencies found resulted in trivial
factorizations of n. Together, these two cases show us that although (#B + 1) is generous
in many cases, it is fairly well chosen.

We can see from the figure that the Average Time, measured in seconds, taken to run
the algorithm grows linearly with M and the number of successes and number of incidences
where we should have enough smooth relations grows rapidly for small fractions of M and
stabilizes for larger fractions of M. However, we have exactly the same success rates for
9/10M to 12/10M. As M grows, we are getting less value for the extra time spent. This
confirms that as z grows, it is less likely that Q(z) is going to be B-smooth.

In the end, we find that one is able to customize the Quadratic Sieve depending on their
requirements. If one has one number to factor and time is not a constraint, than 10/10M
may be the best possible choice for M for his/her purpose. If one has several numbers
to factor and not a lot of time to do it, than taking smaller fraction of M, say 7/10M or

30

8/10M, might be a better choice. For example, by choosing 8/10M, the algorithm is sped
up by a whopping 24.94% compared with 10/10M, while the accuracy is reduced by less
than 1.5% when compared with 10/10M. Additionally, we conjecture that one could use an
even smaller fraction of M if one used the Multiple Polynomial extension. One could also
take a fraction smaller than 10/10M and, if the algorithm is unsuccessful, expand M and
generate a few new relations, and find a new linear dependency. This is nice because one
can still use all of the B-smooth numbers that the algorithm finds the first time around.

31

Chapter 6

Conclusion

Factoring large integers still remains a challenging problem. As recently as 2007, RSA Lab-
oratories held a Factoring Challenge and asked the public to factor a collection of numbers
which they believed to hold the greatest challenge for modern factoring capabilities. The
project inspired major successes and in 2009 when RSA-768, a 768-bit or 232-digit num-
ber, was factored successfully after almost 3 years of effort [9]. The challenge was closed
in 2007, but the RSA Laboratories has several un-factored numbers remaining on their
website, and next in line is RSA-896, a 270-digit number. We did not have the time or
resources to attempt to factor this, having only 4 months, a sturdy Toshiba, a 4-year-old
IMac, and a broken Sony laptop. However, it remains a possibility for the long winter
months ahead.

Further research includes implementing the Multiple Polynomial extension to find out
what the success rates of various fractions of M are when the extension is involved and
how much the extension is able to speed up the algorithm. The value is most likely be
much smaller than 10/10M, since the Q(z) values are just getting larger and larger. At
the moment this is just conjecture, though.

The Quadratic Sieve and Number Field Sieve algorithms are both conjectured to be
sub-exponential time algorithms. Although we only looked at sub-exponential time factor-
ing methods that involved sieving in some fashion in this paper, it would be interesting to
explore other sub-exponential time algorithms. Among these is Lenstra’s Elliptic Curve
Factoring Method. This apparently works quite well if one of the prime factors of n is
small, say 30-digits or less [14]. As a result, the primes used in RSA in practice are ap-
proximately the same size, around /n. However, they can’t be too close to y/n because
Pollard’s original factoring method can be used if n is close to a prime power [11]. It would
be interesting to see exactly how both of these algorithms work, though.

Factoring integers has never been more exciting than it is now, and we have never before

32

had so many methods to choose from when factoring a single integer. These methods have
come a long way since 1903, and they are only likely to get faster. In standard RSA
schemes, we are now dealing with integers where it is simply infeasible to attempt to factor
by trial division, no matter how many Sundays one dedicates to it. RSA Laboratories’
Factoring Challenge was a call to improve existing factoring methods and generate new
ones. People rose to the challenge. RSA Laboratories still keeps an archive of the challenge
on their website, including several numbers which have yet to be factored. Hopefully, this
will continue to engage people and push forward the evolution of integer factoring.

33

References

1

2]

W. S. Anglin. Mathematics, a Concise History and Philosophy. Springer-Verlag, New
York, 1994.

Atkins. The magic words are squeamish ossifrage. In Advances in Cryptology, Lecture
Notes in Computer Science, volume 209, pages 169-182, Asiacrypt, 1994. Springer-
Verlag.

Richard Crandall and Carl Pomerance. Prime numbers. Springer, New York, second
edition, 2005. A computational perspective.

J. A. Davis and D. B. Holdridge. Factorization using the quadratic sieve algorithm.
In Sandia Report Sand, Report, pages 83-1346. Sandia National Laboratories, Albu-
querque, New Mexico, 1983.

Minking Eie and Shou-Te Chang. A Course on Abstract Algebra. World Scientific,
Toh Tuck Link, Singapore, 2010.

Steven D. Galbraith. Mathematics of Public Key Cryptography. Cambridge University
Press, New York, 2012.

Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. An introduction to math-
ematical cryptography. Undergraduate Texts in Mathematics. Springer, New York,
2008.

Edna E. Kramer. The Nature and Growth of Modern Mathematics. Princeton Uni-
versity Press, Princeton, NJ, 1981.

RSA Laboratories. Online RSA-768 is factored!, August 2009.

Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, 1997.

School of Mathematics and University of St Andrews Statistics. Online Frank Nelson
Cole, August 2005.

34

[12] C. Pomerance. Analysis and comparison of some integer factoring algorithms. In
Computational methods in number theory, Part I, volume 154 of Math. Centre Tracts,
pages 89-139. Math. Centrum, Amsterdam, 1982.

[13] Carl Pomerance. The quadratic sieve factoring algorithm. In T. Beth, N. Cot, and
I. Ingemarrson, editors, Advances in Cryptology, volume 209 of Lecture Notes in Com-
puter Science, pages 169-182, Eurocrypt ‘84, 1985. Springer-Verlag.

[14] Carl Pomerance. A tale of two sieves. Notices Amer. Math. Soc., 43(12):1473-1485,
1996.

[15] Carl Pomerance, J. W. Smith, and Randy Tuler. A pipeline architecture for factoring
large integers with the quadratic sieve algorithm. SIAM J. Comput., 17:387-403, 1988.

[16] Robert D. Silverman. The multiple polynomial quadratic sieve. Math. Comp.,
48(177):329-339, 1987.

35

