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Abstract

In this essay, modeling of natural gas price forward curves is discussed. A
two-factor, regime switching model is proposed to model forward price dynamics.
The model is a Markov Switching model: the parameters, found in the respective
volatility functions take different values for different states of the world. Further,
the state transitions are driven by a finite state Markov Chain. A Markov Chain
Monte Carlo (MCMC) technique is used for estimation of the parameter set and the
transition probability matrix. A study is performed for a number of 2 states using
data from NBP. Compared to a previous study it is found that, while the volatility
and attenuation parameters are similar, the Markov Chain stays in regime 2 more
often. That is, over the span of the data period, more time is spent in a high-
volatility regime. Although, for the better part of the time horizon the Markov
Chain still settles in regime 1. A higher volatile environment for natural gas could
be explained by the global financial crisis which unfolded during the period of
observation.
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Chapter 1

Introduction

This paper considers the problem of modeling and estimating the forward price
curve in natural gas markets. A common modeling framework is provided that
is consistent not only with the forward curve prices observed in the market but
also the volatilities and correlations of forward price returns. The model discussed
and implemented is a two-factor regime switching model suggested by Chiarella et
al. [4] where the parameters of the volatility functions are allowed to take different
values in different states of the world. The respective states are then governed by
a Markov Chain. The dynamics of the two volatility functions are thus driven by
shifts in the Markov Chain.

The paper is built as follows. First, in Chapter 1, the properties of energy
forward prices are discussed. Energy markets differ from non-physical, financial
markets. It is then important to incorporate those differences in the model to
better explain the forward price dynamics of energy assets. Also, a brief overview
of theoretical and practical work by other authors is provided. Next, in Chapter 2
the general multi-factor multi-commodity model by Breslin et al. [2] is introduced
after which a two-factor regime switching model for the natural gas forward price
curve is described. The model was initially proposed by Chiarella et al. [4].

The parameter estimation procedure is then explained in Chapter 3. A Bayesian
approach is taken by means of a Markov Chain Monte Carlo (MCMC) method
provided by Frithwirth-Schnatter [14] and Hahn et al. [18]. The algorithms imple-
mented are extensively discussed and code of the respective routines is supplied.
In a following chapter, Chapter 4, a number of numerical examples and calibration
results from simulated data are considered. Subsequently, the estimation proce-
dure is applied to real market data. Here, the analysis by Chiarella et al. [4] is
replicated with updated natural gas forward price data. Finally, in Chapter 5
conclusions are drawn and suggestions for further research are discussed.



1.1 Stylized facts of energy forward price dynamics

Energy markets, to which the market for natural gas belongs, differ from non-
physical markets such as the markets of interest rates and equities. Most of these
differences can be traced back to supply and demand fundamentals, dynamics
of production, consumption and storage. All drivers which are not found in the
traditional markets. A comprehensive overview of the various supply and demand
drivers of energy markets and their impacts on the prices and volatilities of the
respective markets can be found in Pilipovic [25]. Below, the main features of
energy forward price dynamics are presented. These market characteristics should
be captured to model efficiently the evolution of natural gas forward curves.

e Seasonality

One of the major fundamental price drivers in energy markets is weather.
On the demand side, there are considerable seasonality effects of residential
users. Natural gas is consumed mostly during the winter. Therefore, one
expects natural gas prices to peak during winter and drop to lows in summer
period. Further, the magnitude of these peaks and troughs, or the degree
of seasonality, will vary according to the region. The heating demand in
the state of Massachusetts is expected to surpass the heating demand for
Florida. These seasonality effects are recurring and, hence, incorporated in
observed forward prices (Pilipovic [25]).

e Mean reversion

Mean reversion is the process of a market returning to its equilibrium price
level. This is witnessed in most financial and physical markets where the
equilibrium level, called mean level, could be a return on equity, a commodity
price or a historical interest rate. In financial markets the actual rate of mean
reversion is rather weak and tied to economic cycles. On the other hand,
in energy markets mean reversion is much stronger and related to various,
different drivers. In the case of energy commodities mean-reversion depends
on how fast the market supply side responds to certain events. Or, also, how
fast events go away (Pilipovic [25]).

Events that produce supply-demand imbalances could be wars, hurricanes or
other headline-grabbing events. In 2005, for example, the hurricanes Katrina
and Rita damaged a number of natural gas processing facilities on the US
Gulf Coast. The loss has delayed the recovery of natural gas production
in the area. As a result, price spikes occurred in the spot and short-term
forward markets, but longer-term contracts did not move dramatically. The



mean reversion, as revealed by the forward prices, thus depended on how
fast the production side could restore the supply imbalance (Pilipovic [25]).

e High volatility

Production and storage are two supply drivers which are nonexistent in finan-
cial markets. Expectations of market production and costs in the long run
will be expressed in the levels and yields of long-term forward prices. Like-
wise, overcapacity in natural gas markets will result in distressed prices and
its impact will depend on how long the overcapacity is expected to last. This
so-called storage limitation problem is causing day-to-day volatility which is
high compared to financial markets. Especially spot and short forwards ex-
hibit high levels of volatility. For example, when there is no natural gas to
go around, prices will easily reach very elevated levels (Pilipovic [25]).

e Decreasing term structure of forward curve volatility Storage limita-
tion is thus a major volatility driver. Although spot prices show extremely
high volatility, the volatilities of forward prices decrease significantly with
increasing maturities. It can be expected that in the long run supply and
demand will be balanced and, hence, long-term forward prices reveal a rather
stable equilibrium price level. As a result, the short- and long-term portions
of the energy forward price curves tend to be driven by different market
factors with usually very little or no relationship (Pilipovic [25]).

The latter two characteristics demonstrate that the issue of storage causes
energy prices to display a split personality. Where short-term forward prices are the
result of energy in storage, and long-term forward prices reflect behavior of future
potential energy. So while energy markets share some properties with traditional
financial markets, they have unique and challenging workings. And these should be
taken into account when modeling natural gas forward dynamics (Pilipovic [25]).

The natural gas prices modeled are forward prices for the National Balanc-
ing Point (NBP), which is the British virtual trading location operated by TSO
National Grid, covering all entry and exit points in mainland Britain. It is the
most liquid gas trading point in Europe. Natural gas at NBP trades on a forward
month, forward quarter, forward season or year forward basis and prices are ex-
pressed in pence (GBp) per therm. For parameter estimation of the chosen model,
daily observations for the forward prices were obtained with maturities 7" ranging
from July 2009 to September 2012. The observations span over a year with prices
at times t from 23/10/2007 to 12/03/2009. This data is represented by F(t,T').
Further, in order to obtain the forward dynamics y, r for every maturity 7', the log
difference transform is applied to the original data F'(t,T"). Throughout the essay,
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the notation yr is used to represent the forward dynamics y;  for each maturity
T along all points in time ¢.



Figures 1.1 and 1.2 below show the behavior of F'(¢,T) and yr respectively.

Figure 1.1: Forward price curves from Oct-2007 to Mar-09, F'(¢t,T')
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Figure 1.2: Log differences of forward prices yr
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At every point in time ¢ a seasonal pattern can be distinguished with higher
prices for forward deliveries in Winter compared to deliveries in Summer. Also, the
forward curves spike during a certain period, after which things turn back to normal
and a more stable price pattern emerges. It is therefore easy to see that a regime
switching model could be suited to approximate this behavior. Finally, natural gas
for delivery further out in time is usually more expensive than delivery in the near
time. The difference is explained by the carry, that is expenses incurred for storage
and financing when the commodity is bought at the spot price and delivered at a
later point in time. Such an increasing price curve is called contango. Although
different shapes could occur such as a decreasing path for the forward curve which
is called backwardation. Or any combination of contango and backwardation could
occur along the forward price curve.



Figure 1.3 depicts some of the forward price curves observed.

Figure 1.3: Different forward price curves, F'(t,T')
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1.2 Literature review

In order to model the gas forward curve, a regime switching model is proposed.
It is considered a useful approach because many economic time series are known
to exhibit dramatic breaks in their behavior. Therefore, when modeling, different
behavior is assumed in one subsample or regime to another. Since the prevailing
regime is not directly observable, a process that governs the transition has to be
defined. For example, a process where the current state depends only on the state
before, is called a Markov process. A regime switching model where the transitions
are governed by a Markov process is called a Markov Switching model.

There has been an enormous amount of theoretical and practical work on regime
switching models. In a seminal paper, Goldfeld and Quandt [17] propose a regres-
sion system of demand and supply functions thought to be switching between the
two equations or regimes. An unobserved Markov process is assumed to govern the
regime. This set-up is applied to a model for a housing market in disequilibrium.
Two regimes are distinguished: if there is excess demand, the observed point lies
on the supply function and if there is an excess demand, it lies on the demand
function. Hamilton [19] and [20] extends the approach to asset prices.

In Hamilton [19] the approach by Goldfeld and Quandt [17] is used to de-
scribe exchange rate dynamics. Episodes of dollar appreciation relative to other
currencies are followed by episodes of dollar depreciation. Therefore, in a regime
switching model the dollar rate is allowed to switch, with a certain probability, be-
tween an appreciation and depreciation regime. Changes in asset prices are driven
by specific identifiable events. Further, major exogenous economic events such as
OPEC oil shocks affect financial time series. They also could be regarded as events
of a certain duration in which the dynamics of financial time series might behave
differently from what is seen outside these periods.

In Hamilton [20] a vector autoregression model is put forward subject to occa-
sional discrete shifts, where a discrete-valued Markov process governs the shifts.
Next, one has to find out when the shifts occurred and estimate parameters char-
acterizing the different regimes and the probabilities for the transition between
regimes. For maximum likelihood estimates of the respective parameters, an EM
algorithm is applied. Applications of Markov regime switching processes to asset
price volatility modeling can be found in contributions by Naik [24] and Di Masi
et al. [11].



The volatility of risky assets is affected by random and discontinuous shifts
over time. Those jumps are driven by various unsystematic and systematic events.
Examples are mergers and acquisitions, shifts in corporate strategy and changes
in economic policy. In order to hedge claims contingent on risky assets, a volatil-
ity model that captures the outcomes of such events is proposed. For example,
Di Masi et al. [11] consider the problem of hedging an European call option for
a diffusion model where drift and volatility are functions of a Markov jump process.

Fixed income models have been an important source for applications to en-
ergy price modeling. The energy forward price curve exhibit features similar to
forward interest rate dynamics, especially the Heath-Jarrow-Morton (HJM) model
by Heath et al. [22]. One could take two approaches for stochastic modeling of
fixed income markets. First, one starts out with a stochastic model for the spot
interest rate and derives bond prices from this short rate based on no-arbitrage
principles. Alternatively, one could specify the complete yield curve dynamics di-
rectly which is suggested by the HJM approach. It means that forward rates are
modeled directly. Since commodities trade both in spot and forward markets, these
modeling approaches for fixed income markets could be applied to energy markets.

Markov Chain models for the instantaneous short-term interest rate were in-
troduced by, amongst others, Hansen and Poulsen [21] and Elliott and Wilson [13].
In the first paper, only the drift rate of the short rate was modeled by a contin-
uous Markov chain. Whereas Elliott and Wilson [13] extended this approach to
the case when both the drift rate and the volatility of the short rate are driven
by a common Markov Chain. The work of Valchev [29] builds on that of Elliott
and Wilson [13], but a Markov Chain stochastic volatility HJM model is intro-
duced. Also, the evolution of the whole term structure of volatilities is explored,
not merely the volatility of the short rate, which is only one point of the volatility
curve.

The Markov Chain specification allows for jump discontinuities and captures
the various shapes of the term structure of volatilities as well. The model is an
extension of the class of deterministic volatility HJM models to the wider class
of HIM models with piecewise-deterministic volatility. The class of piecewise-
deterministic processes, introduced by Davis [8], provides a suitable framework
for modeling the dynamics of the volatility term structure. In between jumps the
volatility follows an almost deterministic process, that is the volatility function is
non-stochastic. The volatility modeled is stochastic only through its dependence
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on the Markov Chain. A process in the class of piecewise-deterministic processes
is the continuous-time homogeneous Markov Chain with a finite number of jump
times. This process only approaches the actual jumps with jumps over a finite set
of values but permits the use of stochastic calculus for continuous Markov chains
Elliot et al. [12].

In energy markets modeling, most of existing literature focuses on developing
realistic spot price markets. Based on a stochastic model for the time evolution of
the spot price, forward dynamics are derived calling arbitrage theory. Therefore,
various regime-switching models are calibrated to electricity spot prices (see, for
example, Deng [10] and de Jong & Huisman [9]). The approach taken in this
essay, based on the framework provided by Chiarella et al. [4], is in the spirit
of Davis [8], Elliot et al. [12] and Valchev [29]. The result is a stochastic model
that specifies directly the dynamics of the forward contracts traded in the natu-
ral gas markets. The class of piecewise deterministic processes is retained where
the volatility functions are specified explicitly and the coefficients switch values
dependent on the Markov Chain. Both the volatility functional form and Markov
switching were introduced for electricity markets by Benth & Koekebakker [1]
where various different volatility dynamics of forward curve models were specified
based on the HJM approach.

Finally, for the estimation of the parameters of the proposed volatility functions
a Bayesian solution is proposed. The Bayesian way to tackle the inference problem
is to come up with the distribution of parameters and latent variables conditional
on observed data. Next, MCMC techniques are used to explore these distributions.
There has been a fair amount of theoretical and practical work on regime-switching
models using MCMC methods. There were early contributions by Carlin and
Polson [3] and Chib [5] & [6]. Johannes & Polson [23] provide a general algorithm
based on the work by Scott [27]. A forward filtering backward sampling (FFBS)
algorithm is applied to the case of regime-switching models. Friithwirth-Schnatter
[14] and Frithwirth-Schnatter & Sass [18] further extend the approach and found
that the MCMC framework outperformed the corresponding EM algorithm.

An application to energy markets was first found in Rambharat et al. [26]
which estimates a discrete time model for electricity prices using a Markov Chain
Monte Carlo (MCMC) approach. Also Seifert & Uhrig-Homburg [28] follow a sim-
ilar approach to model European electricity spot prices. In this essay, the MCMC
set-up and respective algorithms suggested by Frithwirth-Schnatter [14] and Hahn,
Frithwirth-Schnatter & Sass [18] are implemented to estimate the parameters of the
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model including the transition probabilities of the Markov Chain from all available
forward curves on the market. This is also the framework adopted by Chiarella
et al. [4] for the estimation of natural gas forward prices which is explained thor-
oughly and deployed in this essay.
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Chapter 2

Forward price curve model

In this chapter a general multi-factor, multi-commodity (MFMC) model is intro-
duced. Subsequently, in the next section the process of parameter estimation from
historical data is explained.

2.1 Multi-factor single-commodity model

From the stylized facts detailed above in Section 1.1 it is clear that forward prices
of different maturities are not perfectly correlated. Although the separate price
curves usually move up and down together, the front end of the curve displays
much more volatility than the end of the curve. Further, both parts of curve
change shape in different ways (see Breslin et al. [2]). Therefore, a single factor,
as incorporated in (2.1), is not sufficient to explain the behavior witnessed in the
markets.

% =o(t,T)dz(t) (2.1)
Here, the term F'(t,T) stands for the forward price at time ¢ with expiry 7. And,
z(t) is an independent Brownian motion. It is the sole source of uncertainty and
is associated with a volatility function o(¢,T). The volatility function could be
interpreted as the the time t volatility of the T maturity forward price return. It
determines the magnitude and direction of the single random shock that drives
changes in the forward curve. However, more than one single factor of uncertainty
needs to be introduced to capture forward curve changes other than parallel moves
along the curve. This can be done by adding independent Brownian motions
(Breslin et al. [2]).
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The stochastic differential equation (SDE) below represents a general multi-
factor model of the forward curve:

n

dF(t,T

ﬁ = ;a,-(t,T)dz,-(t) (2.2)
The evolution of the forward price is now driven by n independent Brownian
motions, dz;(t). For every source of risk there is a correspondent volatility function
oi(t,T). The respective volatility functions now define the magnitude and direction
of multiple shocks that trigger changes along all points on the forward curve. As
a result, (2.2) will represent changes in shapes where different parts of the forward
curve will move in different ways (Breslin et al. [2]).

A typical example of a multi-factor model is a model with three risk factors.
Three independent Brownians, dz;(t), dze(t) and dz3(t) correspond to the functions
o1(t,T),09(t, T) and o3(t,T) which respectively act to shift, tilt and bend the
forward curve. The first function is positive for all maturities which implies that
a positive shock to the system causes all prices to shift up. The second most
important factor is a tilt factor which causes the short and long ends of the curve
to move in opposite directions. Finally, the third factors is a bending factor which
causes the long and short ends to move opposite to the middle. In practice, it is
found that a number of three factors is usually adequate to capture the forward
price dynamics (Breslin et al. [2]).

In our data sample, represented by F'(¢,T'), 12 different contracts are included.
Therefore, there are 12 factors that can explain the variance of the evolution of the
curve. However, only a few of these will be significant for explaining the variation
in the forward curve. The respective volatility functions can easily be obtained
from time series analysis. One method that can be applied is principal components
analysis (PCA) or eigenvector decomposition of the covariance matrix of the for-
ward returns. Sample covariance values between pairs of forward price returns are
calculated. Then the eigenvectors of the covariance matrix yield approximate the
factors governing changes in the forward curve (Breslin et al. [2]).

In order to start estimating the volatility functions, Equation (2.2) for a single
commodity with n factors is rewritten. Ito’s lemma is applied to (2.2), which
renders the following forward curve dynamics:

1 n n
Alog F(t,t + 1) = . Z oi(t, L+ 7;)° At + Z oi(t,t +7;) Az (2.3)

i=1 i=1
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Therefore, the difference of the log of forward prices with respective maturities 7;
for j =1,...,m are jointly normally distributed with mean —3 >"" | o;(¢, t+7;)? At
and standard deviation /Y, | 0;(t, t + 7;)2AL.

Next, the annualized sample covariance matrix of these forward prices F'(t,T)
is calculated and the eigen-decomposition is computed:

Y =TAT? (2.4)
where
Vin Vizg ... Vin
F _ V21 V99 e UVop (25)
Unt Vn2 ... Vpn
and
A 0 0 0
10 X 0 0
A= 0O 0 ... 0 (2.6)
0O 0 0 X

n

. The eigenvectors are found in the columns of I'. Then the variances of the factors
that govern the points on the forward curve are the eigenvalues weighed by the
corresponding eigenvectors (Breslin et al. [2]). The discrete volatility functions
become thus,

O'i(?f,t—f—Tj) = Vji\/x (27)
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Figure 2.1 shows the covariance surface of the data F'(¢,T).

Figure 2.1: Annualized covariance surface for NBP data F'(¢,T)
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One observes that higher covariance values are found at the short end of the
forward curve. For longer-dated contracts the surface will decay. The surface is
not smooth due to illiquidity in longer-dated contracts and changes in market dy-
namics. However, another important source of noise is seasonality. It is therefore
advised to repeat the PCA analysis for the different seasons defined (Breslin et
al. [2]).
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Next, from the covariance matrix the form of the volatility functions is obtained
as described by (2.7). Figure 2.2 plots the first three volatility functions oy (t,7),
o9(t,T) and o3(t, T) which respectively shift, tilt and bend the forward curve.

Figure 2.2: First three volatility functions for NBP data F'(¢,T)
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2.2 Spot - forward price relationship

The dynamics of the forward curve are related to spot price dynamics. The spot
price is the price quoted at which a particular commodity can be bought or sold
for immediate delivery. In the case of natural gas the delivery will take place the
next day. This is called day-ahead delivery. Hence, the spot price is essentially the
front end of the forward curve. Since the forward curve and spot dynamics are
related, an equation for the evolution of the spot price can be written down which
is consistent with forward price dynamics.

At the front end of the curve the maturity date is equal to the current date ¢.
Further, (2.2) is integrated. Following a further differentiation, an SDE is obtained
which describes the spot price dynamics. The spot price is given by, F'(¢,t) = S(t)
(see Breslin et al. [2]).

ds(t)

S(t
8lnF 0,1) <« Jo;i(u,t) Y 0o (u,t)
1 (/ oi(u,t) Tdu+/0 szz(u) dt

1=

+ Z oi(t, t)dz(t) (2.8)

The drift term of (2.8) is found between square brackets. It contains integrals over
the Brownian motions from time zero to time ¢. That is, all random shocks from
the start of the process up till the current date are incorporated in the spot price.
The spot price process described is thus non-Markovian.

2.3 Seasonality adjustment

Further, as mentioned in Section 1.1, an important stylized fact of energy markets

is seasonality in the forward price volatilities. Therefore, seasonality should be
taken into account when modeling evolution of the forward curve. One could es-
timate a different volatility function for each season, where seasons are obtained by
splitting the data. Examples are summer/winter and summer/autumn/winter/spring.
Alternatively, the functions of (2.2) could be rewritten as a product of a time-
dependent spot volatility function and maturity-dependent volatility functions
(Breslin et al. [2]). (2.2) thus becomes:
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MWT
F0T) - Za, t)dzi(t) (2.9)

where the spot price volatility at time ¢ is described by o4(t) and o;(T — t), i =
1,...,n who respresent the n maturity-dependent volatility functions.

2.4 Multi-factor multi-commodity model

Equation (2.2) could be further generalized to incorporate multiple commodities.
Practitioners in energy risk management often have to deal with joint modeling of
different commodities. For example, the spark spread is the spread between the
power price and the price for natural gas used to produce the electricity. Spark
spread modeling is critical in order to value power plants. Then, (2.10) describes
the joint forward curve dynamics of multiple commodities as:

Ne

dF t, T
Zam (t, T)dze;(t) (2.10)

where ¢ = 1,...,m stands for the different commodities and i = 1,...,n, points
out the particular volatility function that corresponds to each commodity. The cor-
relation between the different commodities is fixed by a correlation matrix for the
Brownian motions. Obviously, the correlations between the Brownians governing a
commodity, dz;(t) for a given commodity ¢, are still zero. But now the correlations
between the Brownian motions driving different commodities ¢, dz.;(t), represent
the inter-commodity correlations (Breslin et al. [2]).

Equivalent to the approach taken for a single commodity, as described by equa-
tion (2.9), the discrete-time evolution of the forward curve can be written in terms
of the estimated volatility functions. This results in the following matrix repre-
sentation:

Z(t) = fi(t) + X& (2.11)

where

e 7(t) is the vector of changes in the natural logarithms of the forward prices
for each maturity at the specified time step;

e [i(t) is the vector of drift terms over the time step;
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e Y is the matrix of discrete volatility function terms;

e ¢ is the unknown vector of standard normally distributed random shocks.

2.5 Two-factor regime switching forward price curve model

Building on the general framework for commodity forward price curves introduced
in Section 2.1, the following two-factor regime switching model for the natural gas
forward curve is proposed (see Chiarella et al. [4]). As indicated in Section 1.2 it is
modeling a process in the class of piecewise-deterministic processes which provides
a suitable framework for modeling the dynamics of the volatility term structure.
In between two random jump times an almost deterministic process is followed by
the volatility. Further, Markov Switching of the coefficients is imposed. Therefore,
the model belongs to the class of Markov Switching models (Chiarella et al. [4]).
dF(t,T)

e~ (t, T)dz1(t) + o2(t, T)dzs(t) (2.12)

where

e the natural gas forward price at time ¢ with maturity 7" is denoted by F'(t,T').

e both volatility functions, that is for ¢« = 1,2, have different volatility and
attenuation parameters depending on the state of the Markov Chain X;.
That is,

0; = (07:1,07:27 e 7U1ZN)70571 = (047:1,047:2, e 7067:N),

e further, the notation (-,-) is introduced and stands for the scalar product in
RN if u = (uy,...,uy) then

N
<u7 Xt> = Z uZI(Xf:C.,)
i=1

where the indicator function is represented by I(x,—,):

I . 1 Zth =€
(X:=ei)) = Y 0 otherwise.
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O'l(t,T) = (O’l,Xt> C(t) (e_<a17Xt>(T—t)(1 — 0'51) + 0'11)

o3(t, T) = (09, X;) c(t) (012 — ef<a2,xt>(:r7t>)
J

c(t) = c+ Y _(d;(1+sin(f; + 2mjt)))

J=1

(2.13)

where

e switching between parameter values is governed by a finite state Markov
Chain X;, with the state space defined by X = {e1,es,...,en},

with e; a vector of length N that has a value of 1 at the i-th position and 0
elsewhere, that is

e; =(0,...,0,1,0,...,00" ¢ RV,

e the transition probability matrix of the Markov Chain X; is defined by & =
(&j)Nan. Where & is the conditional probability that the Markov Chain
X, switches from state e; at time ¢ to state e; at time ¢ + 1, for all ¢ =
1,...,N,7=1,...,N, that is

§ij = (X1 = €| Xy = &)
e ¢(t) represents the seasonal part which is modeled as a truncated Fourier
series

Therefore seasonality is introduced into the model by making the parameters
periodic functions of time, with a periodicity of one year. For the application
below, the Fourier series will consist of only one series, that is J = 1. The
parameters ¢, d; and f; are then estimated.

e 2(t) and z5(t) are independent Brownian motions.

e since the long term volatility behaves differently from short term behavior,
parameters o;; and o, are defined to describe long run volatility.
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Chapter 3

Estimation

In this chapter a Bayesian approach is presented to estimate the parameters of the
forward curve model described by (2.12) and (2.13). The model is a Markov
Switching model: the parameters, found in the respective volatility functions
o1(t,T) and o5(t,T), take different values for different states of the world. Fur-
ther, the state transitions are driven by a finite state Markov Chain, X. The set
of parameters is defined as 6:

0 = {O'Z‘,Oéi,O'li(i = 1,2),0, dj,fj, (] = 1,2, ey J)} (31)

The elements of the transition probability matrix £ are also unknown and have to
be inferred from the historical data as well.

For the econometric estimation of the states for drift and volatility, #, and the
transition probability matrix of the underlying Markov Chain, £, a Markov Chain
Monte Carlo (MCMC) method is suggested and implemented. In particular, a
discrete-time Gibbs sampler is developed to estimate # and £ given the forward
prices at fixed observation times At,2At, ..., MAt = t, where t is the present
time. It is thus assumed that the state process can jump only at the discrete
observation times (Chiarella et al. [4]).

3.1 Data transformation

So, for the different maturities the forward prices F(kAt,T),k = 1,..., M are
observed. Then in discrete-time the forward dynamics of (2.12) can be rewritten
as
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Yy = log F(tAt,T) —log F'(t,T)

1 2 2

=5 Z oi(t, T)* At + Z oi(t, T)Az(t). (3.2)

i=1

One can see that difference of the log of forward price, ;1 is normally distributed
with mean

w(t, T) = —%Zai(t,T)zAt (3.3)

and standard deviation

22: 0i(t, T)2At. (3.4)

The notation for the forward dynamics y; 7 is abbreviated to y—.

3.2 Bayesian estimation for a Markov switching model

In the Bayesian estimation for a Markov switching model, the latent Markov Chain
X is introduced as missing data and samples for 6§ and X are generated given yr
for parameter estimation. The technique of constructing sampling algorithms via
the introduction of latent variables is called data augmentation. The sampling
distribution is the posterior distribution, 7(X;,6|yT), and the sampler applied
here is a Gibbs sampler (Frithwirth-Schnatter [14]).

The posterior distribution 7 (X, 8|yr) is proportional to the complete-data like-
lihood distribution 7(yr|X, ) which expresses the forward dynamics yr given the
states of the Markov Chain X and parameter values 6. Further, the conditional
distribution 7(X|#) indicates that realizations of X are dependent on the param-
eter values #, and initial knowledge about the model parameters is expressed by
defining a prior distribution for 6, pr(6).

7(X, 0lyr) x w(yr| X, 0)7(X|0)pr(6) (3.5)

Before drawing from this augmented complete-data likelihood distribution the
prior distributions have to be chosen (Chiarella et al. [4]).
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3.3 Prior distributions

Prior distributions are chosen for # and X, the state of the Markov Chain at ¢t = 0.
Under the assumption that the set of parameters 6 given by (3.1), £ and X, are
independent, the priors can be written as follows

<

2
w(0,&, Xo) = H pr(o;) - pr(c;) - pr(oy)) H Dor(f;)pr(Xo).
i=1

=1
Where the following distributions are assumed for the priors:

e The priors of volatility and attenuation parameters are o;; ~ U(a$,b3), and
ay ~ Ul(ag, b5) where af, and af) are discrete values which define the param-
eters of the uniform distribution. As a result, the volatility and attenuation
parameters are bounded which eases convergence.

e The priors of the long run volatility parameters, o;;, are uniformly distributed
as well, o;; ~ U(0, 1)

e The rows & of the transition probability matrix &, are assumed to be inde-
pendent and to follow a Dirichlet distribution & ~ D(g1, ..., gin)

where the vector g; equals the prior expectation of xi; times a constant that
determines the variance. If & denotes our prior expectation of £, we may
set g = &c,. Then ¢, can be interpreted as the number of observations of
jumps out of state [ in the prior distribution. If the number of states, N, is
restricted to 2, the Dirichlet distribution simplifies to a Beta distribution.

e The priors for the parameters of the seasonal part, c,d, f, are uniformly
distributed ¢, d, f ~ U(a‘, b)

e The prior of the initial state of the Markov Chain is following a discrete
uniform distribution, X ~ U({1,..., N}) where N is equal to the number
of states defined for the Markov Chain.

All parameters g1, . .., qin, af, b3, a3, b5, a©, b¢ in the prior distributions are de-
fined before running the Gibbs sampler (Chiarella et al. [4]).
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3.4 Gibbs sampler

Starting from the prior distributions specified in Section 3.2, the unknowns are
partitioned into three blocks 6, ¢ and X. Next, a three-step MCMC sampler is
used to sample from the augmented posterior distribution 7 (6, &, X |yr) given the
observed data yr where each part is drawn from the proper conditional density
(Chiarella et al. [4]).

The particular scheme is explained in Algorithm 1 below. Conditional on
knowing the state of the finite Markov Chain X, 6 is sampled and X is sampled
conditional on knowing 6 (Frithwirth-Schnatter [14]).

Algorithm 1: Unconstrained MCMC for a Markov Switching Model

Start with some state process X and repeat the following steps for k =
1,...,Koy,..., K+ Ky. The notation K represents the number of iterations for
the burn-in. These samples are thrown away for the calculation of the estimators.
Clearly, the length of burn-in depends on the initial state of the Markov Chain
state, Xy, and the rate of convergence.

1. Parameter simulation conditional on the states X (=1

(a) Sample the transition matrix £ (%) from the complete-data posterior dis-
tribution (| X*=1).

(b) Sample the model parameters #*) from the complete-data posterior
7(0lyr, Xk~Y). Store the actual values of all parameters §%*) and ¢®.

2. State simulation conditional on knowing %) by sampling a path X of
the hidden Markov Chain from the conditional posterior 7(X |6, y1) using
Algorithm 3, which will be discussed below.

3.4.1 Full conditional posterior distributions

Next, the full conditional posteriors required for the three sampling steps are
derived. The complete-data likelihood function is a product of normal densities,
described by ¢(y, i, o) with the with mean pipa¢ 7 and standard deviation o7,
given by the moments of ( 3.5 ) (Chiarella et al. [4]).

M
m(yr|0,§, X) = H A(YrALT, HkALT, OkALT) (3.6)

k=1
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Further the full conditional of 8, the conditional joint distribution of the parameters
associated with drift and volatility is given by

m(0lyr, & X) o< w(yx|d, X)pr(0) (3.7)

Finally, the full conditional posterior of the state process
XlAty [l = 1,2,...,M, is

m(Xlyr,0,8) o< w(yr|d, X)m(X[S) (3.8)

where the prior distribution 7(X|¢) is not dependent on € but rather specified by
the distribution of Xy and the transition matrix £. The conditional probability
7(X|€) in ( 3.8 ) is provided by

M
(X[€) = m(Xolé) [] w(Xul Xso1,€) = w(Xo[€) H £ (3.9)
k=1

l,g=1

where the notation IV, stands for the number of transitions from state [ to ¢, that
is Nig = Som, Iix,_,—1.x,=¢) (Chiarella et al. [4]).

3.4.2 Sample the transition matrix

The MCMC routine Algorithm 1 was introduced in Section 3.4 to infer the param-
eters of the volatility functions. In the next sections the several steps involved will
be explained in more detail. First, from the complete-data posterior distribution
m(€]X* 1) the transition matrix £*) is sampled (Friihwirth-Schnatter [14]).

Given the transition matrix £*) of the hidden Markov Chain, each row is an un-
known probability distribution that has to be estimated from the data. Therefore,
complete-data estimation is carried out for a given path X.

The complete-data likelihood m(X|) is given by,

T(X|€) = H H P (3.10)

j=1k=1

where 2 states are defined for the Markov Chain and Nj, counts the number of
transitions from j to k (Frithwirth-Schnatter [14]).

In order to determine the particular algorithm, assumptions regarding the dis-
tribution my of the initial value Xy have to be made. In this essay the initial
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distribution 7y is assumed to be independent of £&. Now a classical Bayesian in-
ference problem, Gibbs sampling from the conditional posterior 7(£|X) can be
applied. The rows §;. of £, independent a posteriori, are drawn from the following
Dirichlet distribution (Frithwirth-Schnatter [14]).

é-j- ~ D(le + le(X), . ,GjK(X) -+ N]K(X))j = 1, cey N (311)
where N (X) = #{X;—1 = 7, X; = k} counts the numbers of transitions from j
to k for the actual draw of X.

Since only two distinct states are defined for the transition matrix &, that
is N = 2, the persistence probabilities &;; and &35, both independent, are each
following a Beta distribution.

§11 ~ 8(611 + NH(X>, €12 + N12<X)>£22 ~ 8(621 + NQl(X), €99 + NQQ(X)) (312)

These densities generalize to the Dirichlet distribution for the case N > 2 (Frithwirth-
Schnatter [14]).

3.4.3 Sample the model parameters

A single-component Metropolis-Hastings algorithm is set up in order to update the
parameter set 6. The candidate 6* is generated by a so-called candidate generating
density q(0,6%). Here, a normal random walk is used to draw 6*.

0 =0+ r'y (3.13)

where ¢ is a vector of independent standard normal random variables and 7% is a
scalar which represents a fixed value for the step width.

Further, instead of updating the elements of # all at once, it is more straightfor-
ward and computationally efficient to split 0 into its components {6;,0s,...,6,},
with d the number of parameters, and update one by one, that is sequentially.

27



Algorithm 2: single-component Metropolis-Hastings

1. Initialize vector 6 at some values for its components.

Different starting values could be chosen. One could, for example, look at
parameter values found in previous research.

2. Let Hz(k) denote the value of ¢; at end of iteration k. For step ¢ of iteration
k + 1, 0; is updated.
(k))

—1

The candidate is generated from proposal distribution qi(91|0§k), 0
where 9(_]? denotes the value of f_; after completing step 7 — 1 of iteration
k41 0% = {oHD gD gt gk gty

Vi1
where components 1,2, ...,7—1 have already been updated. So, only for the
i-th component of # a candidate is generated and this candidate is dependent
on the current values of the other elements of 6.

3. Next, the candidate is accepted with probability a(ei’?, ok, 0F) where

2

a(e_i, 02', 0:) — min |1 W(Qi |9—z)%(‘91|92 y 9_1)

) 3.14
~(0,16-0)0,(6: 6., 6 (3.1

where the full conditional distribution for 6; under 7(-) is denoted by 7 (6;|0_;).

4. Generate a random number ~ U(0, 1).

If this random number is less than «(0_;,0;,07) then the move is accepted.
Otherwise, the random number is greater than the acceptance probability,
thus the proposed move for component i of parameter set 6 is rejected. So,
if 07 is accepted, QEmH) = 07; otherwise 9§m+1) = ng). At this step 9(_7?) is

left untouched.

Notice that ¢;(6;|0F,0_;) = ¢;(07|0;,0_;) by the symmetry of the normal distri-
bution. Therefore, the factor

a:(6167,0%))

a:(6;16,".6%)
drops out of the Metropolis probability calculation (3.14). This greatly simplifies

the calculation of ov. This special case of the Metropolis-Hastings algorithm is often
referred to as the random-walk Metropolis-Hastings (Frithwirth-Schnatter [14]).

28



When the random-walk Metropolis algorithm is used as candidate generating
density q(+,-), the standard deviation of the normal random variable is the step
size r?. If that step size is too high, candidate draws 67 will be very far away from
the current draw, and in a region of the parameter space that has low probability.
This would lead to a high rejection rate, and a Markov Chain that doesn’t move
very often. Whereas, when r? is chosen to be too low, then candidate draws
will be very close to the current draw. Hence, the algorithm accepts frequently,
but the chain will move slowly around the parameter space. So, it is a good
idea to experiment with different values for step size. And, in general, it is wise
to run multiple chains from disperse starting values, to help assess convergence
(Frithwirth-Schnatter [14]).

Finally, the updating order for the elements of 6 in above Algorithm 2 is as-
sumed to be fixed. But random permutations of the updating order are acceptable
as well.

3.4.4 Markov Chain state simulation

In a final step of the Gibbs sampler, as described by Algorithm 1, a path X of
the hidden Markov Chain from the conditional posterior 7(X|[(6%®) ¢®) yq) is
sampled conditional on (8%, ¢®)). In this section this sampling method for the
hidden Markov Chain X = (X, ..., X7), is worked out in great detail.

Sampling Posterior Paths of the Hidden Markov Chain

A resourceful way to sample is called multi-move sampling where the states of
the whole path X are jointly sampled from the conditional posterior distribution
m(X|yr,0). First, the joint posterior 7(X |y, f) is written as follows

T—1

m(X|y,0) = |[[ 7(Xe| Xesr, ... Xz, 0, y1) | 7(Xr|yT, 0) (3.15)

t=0
where the filtered probability distribution at ¢ = 7" is denoted by 7(X7|yT,0).

Further,
Tr(Xt|Xt+la cee aXTv 67 yT) X €Xt,Xt+17T(XT|yPI" 0) (316)

where 7(Xr|y%,0) is the filtered probability distribution at time ¢. Here, the
assumption is taken that the Markov Chain X, is homogeneous. As a consequence,
7-‘-(4X'15-§-1|*Xv157 (97 ytT) is banhﬁed— to th,XtJrl'
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Given the above-mentioned distributions it is now possible to implement a
forward-filtering-backward-sampling algorithm.

Algorithm 3: Multi-Move Sampling of the States
Given fixed values for parameter set 0, execute the following steps to sample a
path X% of the hidden Markov Chain.

1. Obtain Filtered state probabilities

First, conditional on #, run the filter described in Algorithm 3.1. The re-
sulting filtered state probability distribution 7(X; = j|y*,0) j = 1,2 for
t=1,...,T is then stored.

For a state space model, the filtering problem implies statistical inference
about the state variable conditional on observations from the beginning up
till time ¢. The complete filtering distribution is obtained by the discreteness
of the support of the state variable X;,. m(X;, = l|yk,0) for all possible
realizations | € {1,2} of X,.

Algorithm 3.1: Filtering the States

Fort =1,2,...,T, the following steps are executed sequentially.

(a) One-step ahead prediction of X;:

2
w(X =1y, 0) =Y Gur(Xia = klyi . 0) (3.17)

k=1

for | = 1,2 where 7(X; = I|X;_, = k,y& ', 0) simplifies to the transition
probability &; for homogeneous Markov Chains.

(b) Filtering for X;:

(X = Lys L 0)m(X, = lys . 0)

X, = |y}, 0) =
&=y 6) T(yeys ™, 0)

(3.18)

where

2

T(yhlyt,0) = w(yh|X, = k.y L O)m(X, = klys ', 0)  (3.19)
k=1

At t =1, the filter is started with the initial distribution 7(Xy = k[¢).
So, m(X1 = l|y%,6) = >, &um(Xo = K[€).
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As is typical for any filter, the discrete filter described in Algorithm 3 is an
adaptive inference tool. At time ¢t — 1, the filtered probabilities 7(X;_; =
llys ™, 0) summarize, for a fixed value of 6, all information the observations
Yty - - - ,yfj_fl contain about X;_;. To obtain inference about X, at time ¢
in terms of the posterior distribution 7(X; = I|y%,#), knowledge of the
posterior distribution 7(X; ; = l|y% ™, 6) at time ¢ — 1 and only the actual

value of y& are sufficient.

. Sample X:(Fk) from the filtered state probability distribution 7(X,; =
Jlyr0)

. Fort=T-1,T-2,...,0 sample St(k) from the conditional distribution
(X, = jIX 0,y 0) given by

(X = JIXi3 v, 0) = =2 X = vy t)
> i1 Skl T( Xy = klyT, 0)

where [,,, is equal to the state of S, 1 and (X1 = 1,,| X, = J,0,y%) reduces
to &, since the Markov Chain X, is homogeneous.

For each ¢, m(X;| X[}, y%, 0) needs to be evaluated for all j = 1,..., K.. This
requires knowledge of the filtered state probabilities 7(X; = j|y%, 6), which
were stored in step 1 of Algorithm 3.
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Chapter 4

Implementation

In this chapter, the details of the implementation are laid out and the numerical
results for the routines are provided. Before applying the chosen methodology
to historical gas forward prices, the algorithms are tested with simulated data.
Further, estimators are given for both a one-factor model and the two-factor model
described in Section 2.5.

4.1 Data

The natural gas prices modeled are forward prices for the National Balancing Point
(NBP), which is the British virtual trading location operated by TSO National
Grid, covering all entry and exit points in mainland Britain. It is the most liquid
gas trading point in Europe. Natural gas at NBP trades on a forward month,
forward quarter, forward season or year forward basis and prices are expressed
in pence (GBp) per therm. For parameter estimation of the chosen model, daily
observations for the forward prices were obtained with maturities ranging from
July 2009 to September 2012. The observations span over a year with prices at
times ¢ from 23/10/2007 to 12/03/2009. This data is represented by F(t,T).
Further, in order to obtain the forward dynamics yt for every maturity 7', the log
difference transform is applied to the original data F'(¢,T).

4.2 Choosing the prior

The complete-data likelihood and the full conditionals introduced in Chapter 3
contain prior knowledge about the parameter set 6, and Xy. There is some degree
of freedom in the choice of prior distribution but the prior distribution should be
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independent of the data and the posterior distribution. The following priors are
used in the implementation (Chiarella et al. [4]):

e For the transition matrix & the vector g; equals the prior expectation of
x1;, times a constant that determines the variance. If & denotes the prior
expectation of &, one may set g, = &’c,. Then ¢, can be interpreted as
the number of observations of jumps out of state [ in the prior distribution.
Hence, the matrix of parameters for the Dirichlet distribution is set to

(4.1)

0.64 0.36
771 016 0.4

e The priors of os and as, (i,l = 1,2) are o;; ~ U(0,1.5), and oy ~ U(0,5)
e The priors of oy, are o, ~ U(0,1), (i =1,2)
e The priors of ¢,d, f(J = 1) are ¢,dy, f1 ~ U(0,1)

e The prior of the initial state of the Markov chain is Xy ~ U({1,2})

4.3 Running the Gibbs sampler

A randomized algorithm is used to calculate the complete-date likelihood function.
This way, all observations along the forward price curve at each time ¢ are taken
into account. Before estimation a string A is selected, A = (Ay, A, ..., Ay) with
M ~ U({1,2,...,12}), k = 1,..., N where )\, ranges from 1 to 12 to label 12
different maturities. At each time k- At in the data series, the data y,p corre-
sponding to the maturity 7j is picked if Ay = j. The complete-data likelihood
function thus becomes

N

m(yr 10,6, X) = [ [ ¢Wraers, - tearrs, - oraery,) (4.2)
k=1

where ¢, p and o defined as in Section 3.1 (Chiarella et al. [4]).

Finally, to implement the Metropolis-Hastings algorithm, the scaling factors r?

have to be chosen. Fixing ¢ around 2% to 5% seemed to work well (Chiarella et

al. [4]).
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4.3.1 One-factor model

First, the second volatility function, o9(t,T') is omitted in (2.12) such that one is
left with a one-factor model. Then the parameters for the first volatility function
o1(t,T) are defined as in Section 2.5.

dF(t,T)
F(t,T)
Next, the implementation of the Gibbs sampler is verified by means of simulated
forward data. The code in Appendix A (p.) generates forward price dynamics, yr

following formula (3.2). After which the model parameters are inferred with the
Gibbs sampler.

= o1 (t,T)dz (1) (4.3)

Figure 4.1 below shows the forward price dynamics yr of a one-factor regime
switching model. The transition probabilities & were equal to

- [09 01
= 0.7 0.3

0= {0'11 = 0.5,0‘12 = 1, 11 = 2,0&12 = 1.75,0’11 = 0.6,6 = 08,d = 008,f = 031}

and, the paramecter sct 6

Figure 4.1: Generated forward price dynamics, yr
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Next, parameter estimation is carried out with the Gibbs sampler. For this
very first stage of the implementation, the parameters for the seasonality function
c(t) are not estimated. The respective parameters ¢, d and f are fixed at their true
values 0.8,0.08 and 0.31.

In Appendix B (p.) one can find the routine for the Gibbs sampler which is
applied to the generated forward price dynamics, yr.

4.3.2 Two-factor model

Forward price dynamics are simulated to check the implementation of the Gibbs
sampler for the two-factor model as expressed by (2.12). The dynamics yr are
generated calling the routine nbp_2fac.m, which is found in Appendix C (p.)

Also in the case of the two-factor model, the parameters of the seasonality
function, c(t) are initially fixed. Below one can find the routine for the Gibbs
sampler which is applied to the generated forward price dynamics, yr. The code
for this discrete-time sampler is provided in Appendix D (p.)
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4.4 Numerical Results

4.4.1 One-factor model

For a two-state regime, one-factor model, about 100,000 steps were run with sim-
ulated data. A rate of 20% is chosen for the burnin which means that the first
20% of the output is thrown away and does not contribute to the estimated values.

At this stage of the implementation, the values for the seasonality function
c(t) are kept fixed. That is, the parameters ¢,d and f are not included in the
parameter set 6. Parameters are respectively ¢ = 0.81, d = 0.08, f = 0.31,
which are seasonality parameters obtained from previous estimations by Chiarella
et al. [4].

Below one can find the estimates of the transition probability matrix & and the
parameter set 6.

e Number of states = 2

e Transition probability matrix £

Simulated data
Actual Estimated
1 2 1 2
1109 0.1 0.88 0.12
0.7 0.3 ]| 0.72 0.28

e Regime-switching parameters oy; and aq;, (j = 1,2)

Simulated data
Actual Estimated
i1 2 1 2
o | 0.9 1 0.47 1.01
agj | 2 1.75 || 2.06 1.78
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Figure 4.2 below shows the parameter estimates throughout the runs. Con-
vergence is reached fast for the volatility parameters oy;, (j = 1,2), but also
the values for the attenuation parameters ay; reach the actual values of the
underlying forward dynamics yr.

Figure 4.2: Path of parameter estimates for o1; and ay;, (j = 1,2)
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e estimator for o;1, o7 = 0.62, with an actual value of 0.6
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4.42 Two-factor model

For a two-state regime, two-factor model, about 100,000 steps were run with sim-
ulated data. Any parameters that lie within the boundaries set by the prior dis-
tributions could be chosen for the simulated forward dynamics. Here the following
parameter values were used to generate yr.

The transition probabilities & were equal to
¢ 0.8 0.2
|06 04
and, the parameter set

0 =
{0'11 = 0.3,0’12 = 0.8,&11 = ]..5,0[12 == 2,0’[1 = 05,
091 = 0.6,09 = 1.2, 0001 = 1,90 = 3,012 = 0.9,¢ = 0.8,d = 0.08, f = 0-31}

Figure 4.3 below shows the forward price dynamics y of a two-factor regime
switching model.

Figure 4.3: Generated forward price dynamics, yr
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Next, the Gibbs sampler implemented for the two-factor regime should be able
to retrieve those values. As previously stated, a rate of 20% is chosen for the
burnin which means that the first 20% of the output is thrown away and does not
contribute to the estimated values.

Below one can find the estimates of the transition probability matrix & and the
parameter set 6.

1. With fixed seasonality function c¢(t) Parameters are respectively ¢ = 0.81,
d = 0.08, f = 0.31 Those seasonality parameters were obtained from previous
estimations by Chiarella et al. [4].

e Number of states = 2

e Transition probability matrix &

Simulated data
Actual Estimated
1 2 1 2
1108 0.2 || 0.83 0.17
0.6 0.4 || 0.63 0.37

e Regime-switching parameters o1; and aq;, (j = 1,2)

Simulated data
Actual Estimated
71 2 1 P
o1; | 0.3 0.8 || 0.37 0.78
oy | 0.6 1.2 | 0.67 1.31
ayj | 1.5 2 1.67 2.69
ag; | 1 3 1.01 3.59
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Figures 4.4 and 4.5 below show the paramecter estimates throughout
the runs. Convergence is reached fast for the volatility parameters o;;,
(2,7 = 1,2). The values for the attenuation parameters q;; are near
the actual values of the underlying forward dynamics yr. One could
increase the number of runs.

Figure 4.4: Path of parameter estimates for oy; , (7,7 = 1,2)
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Figure 4.5: Path of parameter estimates for «;; , (¢,j = 1,2)
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e estimator for o1, o1 = 0.66, with an actual value of 0.6 estimator for
012, 0o = 0.83, with an actual value of 0.9

The same exercise is repeated, but now the parameters for the seasonality
function ¢(t) are inferred as well from the simulated forward data. The
number of runs is increased to 200,000.

2. With varying seasonality function c¢(¢)
Now, the seasonality parameters ¢, d and f are included in the parameter
set 6

e Number of states = 2
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e Transition probability matrix &

Simulated data

Actual Estimated

1 2 1 2
1108 0.2 || 0.79 0.21
210.6 0.4 || 0.62 0.38

e Regime-switching parameters oy, and ay;, (j =

Simulated data
Actual Estimated
j 1 2 1 2
o1; | 0.3 0.8 || 0.26 0.73
o, | 0.6 1.2 || 0.53 1.19
ag; | 1.5 2 1.83 1.61
ag |1 3 0.94 3.30
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Figures 4.4 and 4.5 below show the paramecter estimates throughout
the runs. Convergence is reached fast for the volatility parameters o;;,
(2,7 = 1,2). The values for the attenuation parameters q;; are near
the actual values of the underlying forward dynamics yr. One could
increase the number of runs.

Figure 4.6: Path of parameter estimates for o;; , (7,7 = 1,2)
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Figure 4.7: Path of parameter estimates for o;; , (¢,j = 1,2)
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e estimator for o1, o1 = 0.53, with an actual value of 0.6 estimator for
012, 02 = 0.93, with an actual value of 0.9

e estimators for seasonality function are respectively, ¢ = 0.92, d = 0.04
and f = 0.35 with actual values of ¢ = 0.8, d = 0.08 and f = 0.31
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4.4.3 Historical NBP forward data

Now all pieces have been put together and tested. Finally, the Gibbs sampler for
the two-factor regime switching model is applied to historical forward NBP data.
The data sample was introduced in Section 4.1. In Appendix E (p.) one can find
the routine for the Gibbs sampler which is applied to the sample.

A number of MCMC estimation procedures were run with different initial values
for the respective parameters, with rather similar results.
20%. About 200,000 steps were run and the following are the estimates of the
parameters. The estimates for the transition probability matrix £ show that with
high probability the Markov Chain will stay in regime 1 for the better part of the
time horizon. Sporadically, a jump from regime 1 to regime 2 is witnessed.

e Number of states = 2

e Transition probability matrix &

Historical data
Estimated
1 2
1| 0.8185 0.185
21 0.4327 0.5673

e Regime-switching parameters oy; and ay;, (j =

Historical data
Estimated
Ji 1 2
oy | 0.3777 0.6207
oq; | 0.5020 1.0885
ap; | 1.2080 2.0948
ag; | 1.4115 2.9067

e estimator for o;; is 0.3654 estimator for oo, is 0.7833
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e cstimators for seasonality function are respectively, ¢ = 0.6922, d = 0.3362
and f = 0.2791

These estimates can be compared to the estimates provided by Chiarella et
al. [4] for NBP forward price data that spanned from 29/09/2006 to 19/02/2008.
One could see that less time is spent in regime 2 here, which indicates that the
environment is less volatile. It could be argued that volatility levels for natural
gas have exceeded normal levels in 2008 as a result of the global financial crisis.

e Number of states = 2

e Transition probability matrix &

Historical data
Estimated
1 2

11 0.8516 0.1484
0.7080 0.2920

e Regime-switching parameters oy; and aq;, (j = 1,2)

Historical data
Estimated
Ji 1 2
o1 | 0.3057 0.8429
aq; | 2.0464 1.8932

e estimator for oy is 0.4869 estimator for oy, is 0.6203

e estimators for seasonality function are respectively, ¢ = 0.8121, d = 0.0781

and f = 0.3070
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Chapter 5

Conclusion

In this essay a two-factor regime switching model for the forward price curve in
the natural gas market suggested by Chiarella et al. [4] was presented. For pa-
rameter estimation a Markov Chain Monte Carlo (MCMC) technique was applied,
introduced first by Frithwirth-Schnatter (Frithwirth-Schnatter [14]) and Hahn et
al. [18]. Episodes of higher volatility are followed by episodes of lower volatility
driven by market structure changes or supply-demand imbalances. The respective
changes in regime affect the whole forward curve structure.

Both the transition probabilities of these switches and the model parameters
were inferred from natural gas forward price data, which included 12 forward
curve series. The use of MCMC techniques makes the calibration of more complex
volatility functions possible. The parameter estimates for the NBP sample were
found considerably higher than the estimators found by Chiarella et al. [4]. The
data in this essay spans from 23/10/2007 to 12/03/2009, whereas Chiarella et al. [4]
presented data from 29/09/2006 to 19/02/2008. The highly volatile remainder of
2008 and also the beginning of 2009 was thus not included.

Finally, as mentioned by Chiarella et al. [4] the Gibbs sampler presented is
an off line approach. When new data becomes available, the routine is slow to
update the estimates. It is thus not suited in a live setting. Therefore, it would
be recommended to implement an on line approach, like a particle filter, such that
the volatility functions can be updated quickly from high-frequency data.

47



Appendix A

nbp_lfac.m

one-factor volatility model, nbp_1fac.m

Generates forward dynamics of a one-factor regime switching model

h
b

b
b

parameters

dt=1/365;
tT=(3:-dt:0)’;
t=flipud(tT);

po=[.9 .1 .7 .3];
tho=[.5 1 1.5 1 .5];

c=.8; d=.08; f=.31,;
ct=c+d* (1+sin(f+2*pi.*t));

sample state vector x0

len=size(tT,1);
x0=ones(len,1);
x0(1)=unidrnd(2) ;
for it=2:1en;

% daily time-stepping
% time-to-maturity
% time

% transition probability matrix

% initial values for both states 1,2
% volatility parameters:
% \sigma_11, \sigma_12
% attenuation parameters:
% \alpha_11, \alpha_12
% long-term volatility parameter
% \sigma_1_1

% seasonality parameters
% seasonality function

% state 1
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b
b

b
b

b
b

if rand>p0(1,2*x0(it-1)-1)
x0(it)=2;
end
end
x=x0;

volatility function

x0=[x0==1 x0==2];

sig=sum(x0.*thO(ones(1,len),1:2),2) .%*...
(exp(-sum(x0.*thO(ones(1,len),3:4),2) .*tT)*(1-th0(5))+th0(5));

sig=ct.*sig;

simulate path of forward returns

y=-0.5*%dt*(sig.*sig)+sig.*randn(len, 1) *sqrt(dt);

plot

figure, plot(y)

title(’forward data sample, one-factor model’)
xlabel(’time t’), ylabel(’y(t,T)’)
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Appendix B

mcCcme.1im

Gibbs sampler, mcmc.m

Par

h
b

b
b

b
b

ameter estimation of Markov switching model with MCMC

clc, clear all
initialize

iter=1e4;
burnin=iter/5;

p=zeros(iter,4);
th=zeros(iter,5);

generate simulated data
nbp_1fac;

priors

p(1,:)=[.64 .36 .16 .84];
g=p(1,:)*15;

th(1,:)=[.51 1.5 1 .5];
rg=[zeros(1,5);1.5 1.5 55 1 ];

rth=0.05;

20

T

T

b
h

A
b

b

allocate

call nbp_1fac.m for data

% guess transition probabilities
prior expectation of
probability matrix

initial parameter values
bounds for parameter values

step size parameter updates



b
b

b
b

sample initial state vector x

x=ones(len,1); % state 1
x(1)=unidrnd(2) ;
for it=2:1en;
if rand>p(1,2*x(it-1)-1)
x(it)=2;
end
end

algorithm

thi=th(1,:);

for k=2:iter
sp=zeros(len,2); % allocate
sf=zeros(len,2);
sc=zeros(len,2);

% sample transition probability matrix p

yA
nl12=sum(diff (x)==1); % count transitions between states
n21=sum(diff (x)==-1);
nll=sum((x(1:end-1)==1)+(x(2:end)==1)==2);
n22=sum((x(1l:end-1)==2)+(x(2:end)==2)==2) ;

% sample from Beta distribution
pl=betarnd([g(1,1)+n1l g(1,3)+n21], [g(1,2)+n12 g(1,4)+n22]);
pi=[p1(1) 1-p1(1) p1(2) 1-p1(2)];
p(k,:)=pl; % update

% Metropolis-Hastings algorithm
h
idx=unidrnd(5); % random parameter choice

% generate

th1l(idx)=th(k-1,idx) + rth*randn;
st=[x==1 x==2];

% complete-data likelihood

o1



% call mclh.m
1lh=sum(log(mclh(y,st,thl,tT,dt,t,len))...
-log(mclh(y,st,th(k-1,:),tT,dt,t,len)));

% prior densities
pr=unifpdf ([th1(idx) th(k-1,idx)],rg(1,idx),rg(2,idx));

% acceptance probability
alpha=min(1,1lh*pr(1)/pr(2));
if rand<=alpha,th(k,:)=thi;
else th(k,:)=th(k-1,:);
end

% filtering, FFBS algorithm
yA
% forward filtering
yA
sp(1,:)=0.5%(p1(1:2)+p1(3:end));
sf(1,:)=sp(1,:);
sf(2:end,1)=mclh(y(2:end), [ones(len-1,1) zeros(len-1,1)],...
th(k,:),tT(2:end),dt,t(2:end),len-1);
sf(2:end,2)=mclh(y(2:end), [zeros(len-1,1) ones(len-1,1)],...
th(k,:),tT(2:end),dt,t(2:end),len-1);

for it=2:1en
sf(it,:)=sf(it,:).*sp(it-1,:);
sf(it,:)=sf(it,:)/(sf(it,1)+sf(it,2));
sp(it,:)=sf(it,1)*p1(1:2)+sf(it,2)*p1(3:end);
end

% backward sampling
yA
x=ones(len,1); % state 1
if rand>sf(end,1)
x(len)=2;
end

for it=len-1:-1:1

sc(it,:)=pl([x(it+1) x(it+1)+2]) .*sf(it,:);
sc(it, :)=sc(it,:)/(sc(it,1)+sc(it,2));
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if rand>sc(it,1)

x(it)=2;
end
end
thi=th(k, :); % update
end
% output

h
mu_th=mean (th(burnin+l:end,:))
mu_p=mean (p(burnin+l:end, :))

In the routine for the Gibbs sampler, the function mclh.m is called to evaluate
the complete-data likelihood for various values of the parameters. This function
is given below.

function [lh,sig]=mclh(y,x,th,tT,dt,t,T), mclh.m

Returns components of complete-data likelihood function

sig=zeros(T,2);

ct=.8+.08*(1+sin(.31+2*pi.*t));

sig(:,1)=sum(x.*th(ones(1,T),1:2),2) .*x(th(5)+
exp(-sum(x.*th(ones(1,T),3:4),2) .*tT)*(1-th(5)));

sig=ct(:,ones(2,1)) .*sig;

mu=dt*sum(sig.*sig,2);

lh=exp(-0.5%((y+0.5%mu)."2)./mu) ;
1h=1h./sqrt (mu) ;
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Appendix C

nbp_2fac.m

two-factor volatility model, nbp_2fac.m

Generates forward dynamics of a two-factor regime switching model

% parameters

b
dt=1/365;
tT=(3:-dt:0)’;
t=flipud(tT);

pO0=[.75 .25 .85 .15];

tho=[.5 1 1.51 .6 ...

.75 1.3 2 3 .8];

h
b
th
b

h

daily
time-to-maturity

time

transition probability matrix

initial values for 2 factors &
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both states 1,2

volatility parameters:
\sigma_11, \sigma_12
attenuation parameters:
\alpha_11, \alpha_12

long-term volatility parameter
\sigma_1_1

volatility parameters:
\sigma_21, \sigma_22
attenuation parameters:
\alpha_21, \alpha_22

long-term volatility parameter
\sigma_1_2



b
b

b
b

b
b

b
b

c=.8; d=.08; f=.31; % seasonality parameters
ct=c+d*(1+sin(f+2*pi.*t)); 7% seasonality function

sample state vector x0

len=size(tT,1);
x0=ones(len,1); % state 1
x0(1)=unidrnd(2);
for it=2:1en;
if rand>p0(1,2#x0(it-1)-1)
x0(it)=2;
end
end
x=x0;

volatility function

x0=[x0==1 x0==2];
sig(:,1)=sum(x0.*thO(ones(1,len),1:2),2) . .%...

(exp(-sum(x0.*thO(ones(1,1len),3:4),2) .*tT)*(1-th0(5))+th0(5));

sig(:,2)=sum(x0.*thO(ones(1,len),6:7),2) .%...
(th0(10) -exp(-sum(x0.*thO(ones(1,len),8:9),2) .*tT));
sig=ct(:,ones(2,1)) .*sig;

simulate path of forward returns

y=-0.5*dt*sum(sig.*sig,2)+sum(sig.*randn(len,2)*sqrt(dt),2);

plot
figure, plot(y)

title(’forward data sample, two-factor model’)
xlabel(’time t’), ylabel(’y(t,T)’)
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Appendix D

mcCcme.1im

Gibbs sampler, mcmc.m

Par

h
b

b
b

h
h

ameter estimation of Markov switching model with MCMC

clc, clear all
initialize

iter=1eb;
burnin=iter/5;

p=zeros(iter,4); h
th=zeros(iter,10);

generate simulated data

nbp_2fac; yA

priors

p(1,:)=[.64 .36 .16 .84]; b

g=p(1,:)*15; %
h

th(1,:)=[.25 .76 2 2 .5 ..

512 21]; % initial
rg=[zeros(1,10);1.5 1.6 55 1 ...
1.51.555 1]; yA

26

allocate

call nbp_2fac.m for data

guess transition probabilities
prior expectation of
probability matrix

parameter values

bounds for parameter values



b
b

b
b

rth=0.025; % step size parameter updates
sample initial state vector x

x=ones(len,1); % state 1
x(1)=unidrnd(2) ;
for it=2:1en;
if rand>p(1,2*x(it-1)-1)
x(it)=2;
end
end

algorithm

thi=th(1,:);

for k=2:iter
sp=zeros(len,2); % allocate
sf=zeros(len,?2);
sc=zeros(len,?2);

% sample transition probability matrix p

yA
ni12=sum(diff (x)==1); % count transitions between states
n21=sum(diff (x)==-1);
nll=sum((x(1l:end-1)==1)+(x(2:end)==1)==2);
n22=sum((x(1:end-1)==2)+(x(2:end)==2)==2) ;

% sample from Beta distribution
pl=betarnd([g(1,1)+n11 g(1,3)+n21], [g(1,2)+n12 g(1,4)+n22]);
p1=[p1(1) 1-p1(1) p1(2) 1-p1()];

p(k, :)=p1; % update

% Metropolis-Hastings algorithm
A
idx=unidrnd(10) ; % random parameter choice
% generate

thl(idx)=th(k-1,idx) + rth*randn;
st=[x==1 x==2];
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% complete-data likelihood
% call mclh.m
1lh=sum(log(mclh(y,st,thl,tT,dt,t,len))...
-log(mclh(y,st,th(k-1,:),tT,dt,t,len)));

% prior densities
pr=unifpdf ([thl(idx) th(k-1,idx)],rg(1,idx),rg(2,idx));

% acceptance probability
alpha=min(1,11h*pr(1)/pr(2));
if rand<=alpha,th(k,:)=thil;
else th(k,:)=th(k-1,:);
end

% filtering, FFBS algorithm
yA
% forward filtering
yA
sp(1,:)=0.5%(p1(1:2)+p1(3:end));
sf(1,:)=sp(1,:);
sf(2:end,1)=mclh(y(2:end), [ones(len-1,1) zeros(len-1,1)],...
th(k,:),tT(2:end),dt,t(2:end),len-1);
sf(2:end,2)=mclh(y(2:end), [zeros(len-1,1) ones(len-1,1)],...
th(k,:),tT(2:end),dt,t(2:end),len-1);

for it=2:1en
sf(it,:)=sf(it,:) .*sp(it-1,:);
sf(it,:)=sf(it,:)/(sf(it,1)+sf(it,2));
sp(it,:)=sf(it,1)*pl(1:2)+sf(it,2)*pl1(3:end);
end

% backward sampling
yA
x=ones(len,1); % state 1
if rand>sf(end,1)
x(len)=2;
end

for it=len-1:-1:1
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sc(it,:)=pl([x(it+1) x(it+1)+2]) .*sf(it,:);
sc(it,:)=sc(it,:)/(sc(it,1)+sc(it,2));
if rand>sc(it,1)
x(it)=2;
end
end
thi=th(k, :); % update
end

% output

h
mu_th=mean (th(burnin+l:end,:))
mu_p=mean (p(burnin+l:end,:))

In the routine for the Gibbs sampler, the function mclh.m is called to evaluate
the complete-data likelihood for various values of the parameters. This function
is given below.

function [lh,sig]=mclh(y,x,th,tT,dt,t,T), mclh.m

Returns components of complete-data likelihood function

sig=zeros(T,2);

ct=.8+.08*(1+sin(.31+2%pi.*t));

sig(:,1)=sum(x.*th(ones(1,T),1:2),2) .x(th(5)+
exp(-sum(x.*th(ones(1,T),3:4),2) .*tT)*x(1-th(5)));

sig(:,2)=sum(x.*th(ones(1,T),6:7),2) .*x(th(10)-
exp(-sum(x.*th(ones(1,T),8:9),2) .*tT));

sig=ct(:,ones(2,1)) .*sig;

mu=dt*sum(sig.*sig,2);

lh=exp(-0.5%((y+0.5%mu)."2)./mu) ;
1h=1h./sqrt(mu);
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Appendix E

mcCcme.1im

Gibbs sampler, mcmc.m

Parameter estimation of Markov switching model with MCMC
clc, clear all
% initialize
b
iter=2%*1e2;

burnin=iter/5;

p=zeros(iter,4); % allocate
th=zeros(iter,13);

% generate simulated data

b
load f, load tT
y=log(f(2:end,1:12))-log(f(1:end-1,1:12));
tT=tT(1:end-1,1:12);
dt=1/252;% daily
% priors
h
p(1,:)=[.64 .36 .16 .84]; % guess transition probabilities
g=p(1,:)*15; % prior expectation of

% probability matrix

60



th(1,:)=[.3 .8 2 2 .5 ...
611 3.7 .8 .08 .3]; % initial parameter values

rg=[zeros(1,13);1.5 1.6 551 1.6 1.555 111 1]; % bounds for parameter v:

rth=0.03; % step size parameter updates

% implement ’randomized’ algorithm

T

dim=size(y);
lam=unidrnd (dim(2),dim(1),1);
sample = sub2ind(dim, 1:dim(1), lam’);% use linear indexing

/» construct return & maturity vectors with
% corresponding data points

y=y (sample)’;

tT=tT(sample)’;

t=flipud(tT);% time

% draw x
len=size(tT,1);
x=ones(len,1);
x(1)=unidrnd(2);
for it=2:1en;
if rand>p(1,2*x(it-1)-1),x(it)=2;end
end

% algorithm
yA
thi=th(1,:);
for k=2:iter
sp=zeros(len,2); % allocate
sf=zeros(len,?2);
sc=zeros(len,?2);

% sample transition probability matrix p

T
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n12=sum(diff (x)==1); % count transitions between states
n21=sum(diff (x)==-1);
nll=sum((x(1:end-1)==1)+(x(2:end)==1)==2);
n22=sum((x(1:end-1)==2)+(x(2:end)==2)==2) ;

% sample from Beta distribution
pl=betarnd([g(1,1)+n11 g(1,3)+n21], [g(1,2)+n12 g(1,4)+n22]);
pl=[p1(1) 1-p1(1) p1(2) 1-p1(2)];
p(k,:)=pi; % update

% Metropolis-Hastings algorithm
b
idx=unidrnd(13); % random parameter choice
% generate

th1(idx)=th(k-1,idx) + rth*randn;
St=[ ==1 X==2];

% complete-data likelihood
% call mclh.m
1lh=sum(log(mclh2(y,st,thl,tT,dt,t,len))...
-log(mclh2(y,st,th(k-1,:),tT,dt,t,len)));

% prior densities
pr=unifpdf ([thl(idx) th(k-1,idx)],rg(1,idx),rg(2,idx));

% acceptance probability
alpha=min(1,11lh*pr(1)/pr(2));
if rand<=alpha,th(k,:)=thl;
else th(k,:)=th(k-1,:);
end

% filtering, FFBS algorithm
b
% forward filtering
yA
sp(1,:)=0.5%(p1(1:2)+p1(3:end));
sf(1,:)=sp(l,:);

sf(2:end,1)=mclh2(y(2:end), [ones(len-1,1) zeros(len-1,1)],...

th(k,:),tT(2:end),dt,t(2:end),len-1);
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sf(2:end,2)=mclh2(y(2:end), [zeros(len-1,1) ones(len-1,1)],...
th(k,:),tT(2:end),dt,t(2:end),len-1);

for it=2:1len
sf(it,:)=sf(it,:).*sp(it-1,:);
sf(it,:)=sf(it,:)/(sf(it,1)+sf(it,2));
sp(it, :)=sf(it,1)*pl(1:2)+sf(it,2)*pl1(3:end);
end

% backward sampling
yA
x=ones(len,1); % state 1
if rand>sf(end,1)
x(len)=2;
end

for it=len-1:-1:1
sc(it,:)=pl([x(it+1) x(it+1)+2]) .*sf(it,:);
sc(it,:)=sc(it,:)/(sc(it,1)+sc(it,2));
if rand>sc(it,1)

x(it)=2;

end

end

thi=th(k, :); % update

% debug
hth(k,6)
end

% output

b
mu_th=mean (th(burnin+l:end,:))
mu_p=mean (p (burnin+l:end, :))

% plot
h

% volatility parameters
subplot(2,2,1), plot(th(:,1))
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subplot(2,2,2), plot(th(:,2))
subplot(2,2,3), plot(th(:,6))
subplot(2,2,4), plot(th(:,7))

% attenuation parameters
figure

subplot(2,2,1), plot(th(:,3))
subplot(2,2,2), plot(th(:,4))
subplot(2,2,3), plot(th(:,8))
subplot(2,2,4), plot(th(:,9))

In the routine for the Gibbs sampler, the function mclh2.m is called to evaluate
the complete-data likelihood for various values of the parameters. This function
is given below.

function [Ih,sig]=mclh2(y,x,th,tT,dt,t,T)

Returns components of complete-data likelihood function

sig=zeros(T,2);
hct=.8+.08*(1+sin(.31+2*pi.*t));

ct=th(11)+th(12)*(1+sin(th(13)+2xpi.*t));

sig(:,1)=sum(x.*th(ones(1,T),1:2),2) .*x(th(5)+exp(-sum(x.*th(ones(1,T),3:4),2) .*t"
sig(:,2)=sum(x.*th(ones(1,T),6:7),2) .*(th(10)-exp(-sum(x.*th(ones(1,T),8:9),2) .*
sig=ct(:,ones(2,1)) .*sig;

mu=dt*sum(sig.*sig,2);

lh=exp(-0.5%((y+0.5*mu) ."2) ./mu) ;
1h=1h./sqrt (mu) ;
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