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Abstract

We propose a new numerical scheme to solve the elliptic Monge Ampere Equation (MAE)
with Dirichlet boundary condition. The problem is motivated from applications of the
MAE to image registration modelling. The MAE is challenging to solve, it is fully nonlinear
and has non-unique solutions and a general and efficient numerical scheme is difficult to
construct. Our numerical algorithm solves the MAE by transforming it to a Hamilton-
Jacobi-Bellman (HJB) equation, which has the form of a linear PDE coupled nonlinearly
with two control parameters. The HJB equation is further discretized by a wide stencil
method. We prove the Barles-Souganidis convergence of the numerical scheme to the
viscosity solution by showing consistency, stability and monotonicity. The performance of
the numerical method will be shown by examples of smooth and singular MAE problems.
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Chapter 1

Introduction

The Monge Ampere equation belongs to the category of fully nonlinear second order PDEs.
It was first studied by Gaspard Monge in 1784 and later by Andre-Marie Ampere in 1820.
It has wide applications in differential geometry problems such as the Minkowski problem
and optimization problems such as the Monge-Kantorovich minimization problem. Areas
such as astrophysics, medical image analysis and reflector design apply models using the
MAE [!1]. In this chapter, we will motivate our study of the MAE and review some of the
existing methods.

1.1 Image Registration and the MAE

Our interest of the MAE stems from the image registration problem. Figure 1.1a and
Figure 1.1b shows two images, the reference (R) and the template (7), of an MR scan of
the human knee. They are to be aligned or registered for clinical purposes. However R is
bent to an angle while 7" is not bent. One cannot apply simple linear transformations to
align them so we need to find a good transformation y : R — T, in such a way that their
difference T'(y) — R in the resulting image is minimized.

To mathematically tackle the problem, we consider the model provided by the optimal
transport problem [13].

The optimal transport problem seeks to find an optimal mapping y between two density
functions R, T defined on ) C R? with the constraint that mass is preserved, i.e.

/QR(.’L’) dx:/QT(y(x))det(Dy(x))dx (1.1)

1



-t

\ B

(b) template T' (c) difference T— R

(a) reference R

A
, oY
(d) transformed  (e) transformed  (f) difference
template & grid template T(y) T(y)- R

Figure 1.1: Registration of human knee. (a)-(c) : registration without transformation. (d)-(f):
registration with transformation y. (Image courtesy of IOP Publishing, [9])

so that their Monge-Kantorovich distance metric,

ﬂRJﬁzmmKﬂx—M@WRuﬁm

is minimized.

In particular, when p = 2, we can write the optimal map, 7, as:

y=Vo, (1.2)

¢ convex on {2,

where ¢ satisfies the Monge Ampere Equation (MAE):

det(D%0(a) = 7

=: f.

This is the mass preserving requirement and can be easily observed when subsituting (1.2)
into (1.1) above.
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(a) 9 point stencil  (b) 17 point stencil (¢) 33 point stencil

Figure 1.2: Reproduction of figures for the wide stencil scheme proposed by Oberman et al
[11]. The number of stencil points (represented by circles) increases with decreasing mesh
size.

1.2 Numerical methods

Due to the high non-linearity and non-uniqueness of the MAE, it poses a number of nu-
merical challenges to set up with the right numerical scheme.

Fortunately, the frame work provided by Barles and Souganidis [3] allows one to study
numerical schemes to overcome the aforementioned difficulties. It basically states that if
the numerical scheme is consistent, stable and monotone in an appropriate sense, then it
would converge to the viscosity solution of the MAE.

In reference to this framework, Oberman et al [I1] has developed a monotone wide
stencil finite difference scheme to approximate the fully nonlinear PDE. Note that a mono-
tone finite difference scheme even for a linear elliptic PDE, using a narrow stencil does not
in general exist [7]. However, Oberman’s method may be computationally expensive since
the number of stencil points quadruples as each dimension of the 2D domain increases
two-folds; see Figure 1.2

Galerkin type methods based on approximating infinite spaces with finite ones such as
the augmented Lagragian and least squares methods were developed by Dean and Glowinski
[6]. Their method involves formulating the MAE into a constrained minimization problem
and solving the non-linear systems numerically. However, when the solution is not smooth,
convergence may not always be guaranteed.

Finite element methods such as the vanishing moment method was studied by Feng
and Neilan [8]. The method involves approximating a fully non-linear second order PDE
by a sequence of higher order quasi-linear PDEs. However, highly non-linear systems need
to be computed and the boundary conditions are hard to approximate well [7].



1.3 Overview of The Essay

In this essay, we will study the degenerate elliptic fully nonlinear second order Monge
Ampere equation on the square domain with a positive source term f and Dirichlet bound-
ary conditions. This essay first applies a transformation to the MAE in Chapter 2 to a
nonlinear HJB PDE with a linear objective function. Then it adopts a monotone wide
stencil scheme [10] in Chapter 3 to approximate the numerical solution. In Chapter 4, we
prove that the numerical scheme converges to the unique viscosity solution. Finally, in
Chapter 5, we will present examples of numerical experiments and convergence results.



Chapter 2

The Monge Ampere Equations

2.1 The Monge-Ampere Equation

The Monge Ampere equation (MAE) belongs to the class of fully non-linear second order
partial differential equations. Fully non-linear PDESs are the class of non-linear PDEs which
are non-linear in the highest order derivatives. Formally the operator is of the form:

Flu|(z) =F (D2u(x), Vu(x),u(zx), x) =0,

where F € C (R™? xR x R x ) and © C R? is a bounded domain. Here, D?u(x)
denotes the hessian matrix of u at x. Moreover, it is degenerate elliptic if

‘F(B7p'z7m> S ‘F(A7p'z7 ‘/E)

for all x € Q,2 € R,p € Réand A, B are symmetric d x d matrices with A > B which
means that A — B needs to be positive semi-definite. In this paper, we will consider the
non-homogeneous Dirichlet Monge Ampere equations, i.e.

Fu = Upyllyy — u%y = f(z,y) in €, (2.1)
u=g on OS.

The MAE is a (degenerate) elliptic operator only if we impose the additional requirement
that

1. w is strictly convex,



2. f>0.

Interested readers can refer to [5] for the reference. The domain €2 will be any convex
bounded region in the two dimensional Euclidean space R2. In this paper, we will consider
the square domain given by

Q=1[0,1]x[0,1].

2.2 Viscosity Solutions of the Monge-Ampere Equa-
tion

In general, classical solutions of the MAE do not exist. We need weaker versions of the
concept of ‘solutions’.

Definition 2.1 (Viscosity solution). Let F[p] = det(D*p) — f.The function v € C(£2)
is a viscosity subsolution (supersolution) of F if whenever ¢ € C*(Q) and zo € Q
mazximizes (minimizes) u — ¢ for all x in a neighborhood of xq, then we must have

Flp)(wo) > (X)O0.

The function u 1s a viscosity solution if it is both a viscosity subsolution and supersolution.

Geometrically, v is a viscosity subsolution if for every test function ¢ € C? that touches
the graph of u from above at zy in Figure 2.1a, there holds F[¢](z¢) < 0 and if ¢ touches
the graph from below at z( in Figure 2.1b, there holds F[¢|(xy) > 0.

For the existence and uniqueness of the viscosity solution of problem (2.1), we need the
following theorem.

Theorem 2.1. [12] Let 2 C RY be bounded and strictly convex, g € C(9), f € C(Q) with
f > 0. Then there ezists a unique convex viscosity solution u € C'(Q2) of problem (2.1).

In Chapter 4, we will see a general framework provided by Barles and Souganidis [3]
allows one to show that their approximation schemes achieve convergence to the viscosity
solutions.
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Figure 2.1: Hlustrations for viscosity solutions. (Image courtesy of SIAM Review, [7])

2.3 From the Monge-Ampere Equation to Hamilton-
Jacobi-Bellman Equation

MAE has derivative terms which are quadratic and it is difficult to construct a numerical
scheme without having to compute complex non-linear systems. If we can transform the
MAE to HJB, which has a linear PDE objective function, then it would be much easier to
discretize. In fact, we shall see that the Monge-Ampere equation can be formulated in the
following form:

mi%l L% — f] =0, L% is a linear operator,
ac

where « € Z is the set of admissible controls. The equivalent formulation above was first
proved in [15] but we will present the version from [18] here. First we need the following
lemma.

Lemma 2.1. Let H be symmetric, g > 0 and S;" be defined as above. Then H satisfies

max [TT(AH) + g\/M] =0

Aesf

if and only if
H is negative definite,

2\/det(—H) = g.

Interested readers may refer to [15], [18] for the proof. In fact it follows from a variant
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of the AM-GM inequality:
A, B >0, 2y/det(AB) < Tr(AB),
and the properties of the set S .

Theorem 2.2. Let u = u(x,y) and Q2 be convex in R?. Then u solves the elliptic MAE:

det(D*u(x)) = f2, (2.2)
D?u(x) positive definite onQ, (2.3)
if and only if it solves the HJB:
min |Tr(AD?u(x)) - 2 f\/det(A)] —0, (2.4)
AeST

where S = {A € R™>4: A >0,Tr(A) =1}.

Proof. = Let g =2f, w = —u and H = D*w. Applying Lemma 2.1, we have,
{ det(D*u) = f? — { 2¢/det(—D*w(z)) = g

D?u(x) positive definite on €, D*w(x) negative definite on ,

<= max [TT(ADQIU($)> + g\/M] =0,

Aesyt
<= min [TT(ADQU($)) — Qf\/det(A)] =0
Aesyt
O

Hence the MAE with a convex solution u is equivalent to the HJB equation (2.4). In
order to compute (2.4) numerically in R? we need an explicit form of S;". For example,
S; in R? can be parametrized by the set below:

cosf sin@ a 0 cosf) —sinf
{{—sin@ C089:| {O 1—a} [sin@ cos 6 ]'OSQSLOSQSQW}' (2.5)

Finally, if we let Z = [0, 1] x [0, 27] be the set of all admissible controls and @ = (a,0) € Z,
then (2.4) can be written as:



min{ﬁgu—2 a(l—a)f}:(),

Qez

where
£§u = d11Ugy + 2d12Uzy + dooUy,.

Here f is given in (2.1) and

diy = acosf + (1 —a)sin?6,
dyy = asin® + (1 — a) cos? 0,
di2 = (1 —2a) cos@siné.

Remark 2.1. It is not hard to verify that

di1  di2
D =
( diy  dy )

is a semi-positive definite matriz.

(2.6)

(2.7)



Chapter 3

Discretization of the Monge-Ampere
Equation

In this chapter, we will describe our discretization of the transformed Monge-Ampere
Equation (2.6). As mentioned, we need the discretization to ensure a monotone scheme
which guarantees the convergence to the desired viscosity solution. The discretization that
we will adopt is a wide stencil method based on the rotation of the local grid. Additional
problems are further addressed due to this method, such as the shrinking of stencil points
that fall outside 2.

3.1 Basic Set Up and Notations

The solution of the HJB equation (2.6) is a function defined in Q C R?, it will be solved
on a set of n x n grid points. Let U;; be the approximate solution of u(x;,y;) where
i,7 =0,1,...,n+ 1. Note that since the Dirichlet boundary condition is imposed (2.1),
U, ; are given by the corresponding values of g(x;,y;) when i,j = 0 or n + 1. We will also
be using a uniform grid, so the size of our grid at each dimension is

1
S on+1

For the purpose of implementing the approximation on a computer, we will compute (2.6)
via constructing the linear system:

LU =F¢, (3.1)

10



where

U - (u1,17u1,27 L) 7un,17 L JZ/{l,nJ v 7un,n)

is the solution vector. L€ is the n? xn? matrix consisting of the coefficients of the discretized
HJB and Q* = (a*, 6%) is the optimal control in the set of discrete admissible controls Zj,.
For computational purposes, we have to use a single index to reference an entry of U above:

Ul:Um, l:Z+(j—1)n i,jzl,...,n.

We also let Lfk be the (I, k) — th entry of the matrix where k = 1,...,n% We give details
on how L% and F€ are constructed below.

3.2 The E% Operator Discretization

Observe that E%, we see that it consists of second derivatives of u: gy, Ugy, Uyy. The
standard approach is to approximate them by central differencing;:

Ui—1j —2U; j + Uit

u:!}:l}<xi7 yJ) ~

h? ’
Ui j—1 —2U; ; +U; i1
Uyy (T4, ) ~ ’ hzj —,
Wi A Ui H Uiy Uiy F Uiy + Ui + Ui
umy(x'ia y]) ~ 2h2 o 2h2 ’

or

Wi+ Uipr o+ Ui . Uiprj + U1y +Uijor + Ui

2h? 2h? (3:2)

uxy<xi7 y]) ~
Substituting (3.2) into (2.6) and collecting terms, we will see that the coeflicients of
Up.q, p#ior g2 are positive but the coefficient of Uf; ; is given by the term

2d11 + 2dag — 2d49
h? ’

which may be positive or negative. As a result, the scheme may not be monotone. This
is due to the presence of the crossed derivative, creating a non-zero dio term in the above
discretization. If we can eliminate the ug, term from 52, we can guarantee a positive
coefficient discretization and hence a monotone scheme.

11
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Figure 3.1: Local grid rotation of angle ¢ about (z;,y;). P%,om = 1,...4 are the new

stencil points. r1,ry are the new axes, h’ is the new stencil length.

We can eliminate the u,, term by a change of variables at each grid point. This is
equivalent to an appropriate rotation ¢ about each (z;, y;)( Figure 3.1) such that when the

corresponding transformation X (¢) is applied to Eg, only the terms u,,, u,, remain, i.e.
find ¢ such that
— 2 2
X(¢)'LEX(0) = dyy oz + dp 3z, (33)

where d, d,, are the corresponding coefficients of the transformed equation. Solving the

above, we find that
1 2d12 )
= —arctan | ————— |,
¢ 2 ( dyp — dyo

X(¢) = ( cos¢p —sing >

sing  cos¢

and

d}, = dy1 cos*(¢)dyg sin®(¢) + 2dy5 cos(¢) sin(),
d/22 = dn Sin2(¢)d22 COS2(¢) — 2dy3 cos(9) sin(o). (3.4)

Consider Figure 3.1. Denote the new axes by r; and ry, where

cos ¢ —sin ¢
Tl_(sin¢>’ T2_<—cos¢)'

12



The new stencil points are P/}, m = 1,...4, where

Pi%j = (aji?yj) + hlrla
‘Pv?j = (xwy]) + hl?ﬁ?a

P3 = (Iuy]) - hlrla

]
P4 = (Iiayj) — h/TQ.

i,
Here A’ is the new stencil length. A suitable value will be assigned to it in Chapter 4. As it
will be made more clear in Chapter 4, the stencil length A’ needs to be greater than h and
hence the name wide stencil method. In contrast, the wide stencil method by Oberman et
al [1], [L1], [17] refers to the use of many neighbours, not all of which are the nearest ones.

Solving (2.6) is then equivalent to solving
. Q. — _
min { Lrv—2+/a(l—a)f } 0, (3.5)

where v = v(w, z) is the representation of w in its new coordinates (w, z).
Let (w;, z;) be the grid points of the new coordinate plane. Note that since (z;,y;) is
the rotation center, we have (z;,y;) = (w;, 2;). We discretize L% by central differencing;
U(le) + U(Pfg) —2U,
(h/)Z

u(PE) + w(Py) — Ui, } (3.6)

E%U(U)Z',Zj) ~ dlll |: (h/)2

o]

3.3 Bilinear Interpolation of points from the Wide
Stencil Method

As shown in Figure 3.1, the stencil points P/}, m = 1,...4 do not in general lie on the
original grid points. Let us zoom into the point P; in Figure 3.2. P lies in the grid square
of its neighbours (ps +s,q4+1), s,t = 0,1. The value of u at P4 can be interpolated from
the values at the four points. Let jh be a bilinear interpolation operator on a domain with

grid size h. To approximate u(P};), we have the following form

Tl Z Wl TSIy (py + 5, qa 1), (3.7)

s=0
t=0.

13
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Figure 3.2: Location of P4 and its 4 nearest neighbours.

Combining the above, we have:

u(P;) = Jwu(F;)
— Z wP4+S aatt, w(ps + 8, qu +1)

s=0,1
t=0,1
- Z WZ4+S’q4+tup4+s,Q4+t-
s=0,1
t=0,1
(3.8)
From (3.6), we have
! Jhu(‘P’iz”) + jhU(.P:l) - 21/{1, , jhu(al) + jhU(PLg) — 22/{1’
ﬁgv(wi,zj) R dy [ : (h')? : - } + dy [ : (h')2 . :
_dy dy, 3 dy 2y, o "
STWu(PL) + s Tnu(PY) + 5 Twu(PE) + 5 Jwu(P)
() (") 20 (h) (0 , 39

dy, + d-

BERCIEN

22
u 6

3.4 Points near the Boundary

The previous section has covered the case where P} is inside the computational domain.
When it falls outside, we would need to shrink the point back to the boundary by an
appropriate distance h*, i.e. find h* such that (x;,y;) & h*ry € 0.

14



Figure 3.3: Shrinking of stencil point PZIJ

For k = 1,2, define (2, y;); = (2:,y;) + hjiri to be the updated stencil point positions
in the direction of 7 and (x;,v;), = (%i,y;) — h; 7%, in the negative direction. Here
hf, k = 1,2 are the values assigned to h*.

Consider Figure 3.3. Let k =1, Pfj lies in the computational grid, so (z;,y;); = Pf,’]
However P}, falls outside. We will shrink the stencil distance from the default A’ to
h* = h3 such that the new stencil point (z;,y;)] lies on the boundary. Other cases are

treated similarly, see Algorithm 1.

After obtaining h;, h; from Algorithm 1, we use central differencing to approximate
the second derivatives % or % of £ to get (3.10). It is easy to see that (3.10) reduces
to (3.9) when

hif=h, =n

is satisfied. If we let L% be the discretized form of the operator £, it can be written
compactly as

15



Algorithm 1 Shrink points to boundary for grid point (x;,y;),k =1 or 2
Let (z,v;)} = (zi,y;) + 'ry and b = I
if (z;,y;){ ¢ Q then
solve (x;,y;) + h*ry = (@, yp) for h*, such that (z,,y,) € 00

W =R
(:Euy])li— = (xlnyb)
end if

Let (z;,9;), = (z5,y;) — W'y and h, =K
if (r,.5,), ¢ Q then
solve (z4,y;) — h*ri = (z},y;) for h*, such that (z},y;) € 00

hy = h*
(i, yi)e = (T3, U3)
end if

. . 2 2 .
The second derivative terms gwg or % are approximated as

Tnu((xi,y5) ) Ui, i Jhu«xivyi);:)_ui,j
hy hy
TR (3.10)
2

16
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e i, 27) = e = S U7 S S Gy T
(g + iy R G g g TR

d, d!
9 u_y % )Uz:‘,
< (hihy)  (h3hy) 7
foralli,j=1,...n.

In addition, it is worth noting that if (z;,y;) is a point near the corners of the square
domain, then more than one stencil point will fall outside the domain. This creates prob-
lems in the consistency of Lg/ approximation. However, in Chapter 4, we will see that by
choosing an appropriate A’ and together with Algorithm 1, we can still retain consistency.

3.5 The Matrix form of the Discretized Equations

From(3.5) and (3.11), (3.5) has the following discretized form for all grid points (z;, y;)€ €

QEZy

min { LU — 2\ /a1 - a)f (z.) } —0, (3.12)

where Zj, is the set of controls discretized to order h to retain consistency. From this
equation, we will compute numerically the values of Uf; ; through assembling a matrix
where each row represents one grid point. This is shown in detail below.

Let us fix the grid point (z;,y;), observing from (3.11), we see that its corresponding
entry, LZQJ,Z =i+ (j — 1)n is the coefficient of the term Uf; ; above, i.e.,

L= = = |-
’ (hhy)  (hahy)
From the previous two sections, stencil points of point (z;,y;) is either inside €2 or outside

it. It falls into the two cases below and for simplicity, let us consider the stencil point P{fj.
Recall that its updated position is (z;,9;); . The other cases are treated similarly.

Case 1: (x;,y;); € L

17



From (3.8) and (3.9), we have

d/
(hgzwgﬁquﬁﬁ l=i+(G—1n, k=pi+s+(u+t—1n, st=0,1.

Q _
Ll,k =

In general, we have

(Z/};?wgﬁ_s’%—i_t if k= Dm + 5+ (Qm +1t— 1)71, s, t = O; 1a m =1, 37

Ll(a?k = (Z%§2W34+87q4+t if b =pp+s+ (Qm +1— l)n, s, t=0,1, m=24, (313)
0 otherwise.

To handle cases where we have to use a boundary value (instead of the computational
domain) from the Dirichlet condition, we need to define the vector B?. First, let

m 1 AP ZQ,
X5 =30 otherwise.
be the indicator function of whether the stencil points P} fall outside (2. Define

Q_ 1 ___dy 1 2 dy _p2. 3 ___dm _.(p3.
B = Xiswrm ) + X treny ) + X Gensm, ) (3.14)

4 dyo 4
+ X (h3 +hy )hy u(P;)-

Only when P/} falls outside {2 will its corresponding term be added to B?.
Case 2: (z;,y;); € 052

In this case, we have xfj = 1in (3.14) above. Other instances of m are treated similarly
and B? is updated.

Finally we are now in the position to describe our matrix system explicitly. Let

; Q Q
€ arggleuzl{[L U+B?,}.

Then, the matrix entries on the [-th row, [L? U], where [ =i+ (j — 1)n, i,j = 1,...,n is

18



given by the terms of Lg/*ui,j, i.e. (3.13) above. The right hand side of (3.1) is given by

F? = B?* + 2\/a*(1 —a*) f(xi,y5), (3.15)

which is the sum of vector BY and the constant term in (3.5).

Hence we have constructed the linear system (3.1) as desired at the beginning of this
chapter.
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Chapter 4

Convergence to the Viscosity

Solution

As mentioned in previous chapters, we are interested in computing the viscosity solution to
(2.1). In [3], a sufficient condition which guarantees convergence to the viscosity solution
is provided. We give a proof that our numerical scheme given in chapter 3 satisfies all of

the requirements.

For clarity, let us first define the following notations.

x = (z,y),
Pu u
2 _ dz2  Oz0y
D ’U,(X) - 5%u 8%u .
Ozdy  Oy?

Then the value function (3.5) is denoted by
Fu = F(x,u(x), D*u(x)) = 0,

where

— mi Q. _ _
fufglelrzl{ETu 2v/a(1 a)f}.

The discrete value function (3.12) will be denoted by

K (h’ (Ii’ yj)’uivj7 {up,q}p#iorq;éj) =0,
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for all 4,5 = 1,...n, where

K(h, (zi,95), Ui 3, {Up,q}p;«éiorq#j) = gélzri { LU ; — 2y/a(l —a)fi; } : (4.4)

Here f; ; = f(z;,y;) and h is the mesh size.

The convergence theorem in [3] that allows us to guarantee convergence to the viscosity
solutions is given below. Interested readers can refer to [3].

Theorem 4.1. Consider a degenerate elliptic equation for which there exist unique viscosity
solutions. A consistent (in the viscosity sense), lo. stable and monotone approrimation
scheme converges on compact subsets to the viscosity solution.

4.1 Consistency

To be able to state our analysis in a rigorous way, we need the following definition of the
supremum and infimum of a function f which may not always be a continuous function.

Definition 4.1. Let f be a real-valued function on Q C R%. The upper semi-continuous
envelope of f, f*, is

f* =limsup { f(y) |y € Blz,r) NQ},
where B(x,r) denotes the open ball centered at x with radius .

The lower semi-continuous envelope of f, denoted by f,, can be defined simi-
larly. Based on the meaning of a viscosity solution in Definition 2.1, we give below the
corresponding definition of consistency:

Definition 4.2. [2] A numerical scheme is consistent in the viscosity sense if for
any function ¢ € C* with ¢; ; = ¢((z;,y;)) and for all x € Q, (z;,y;) € 2, we have

limsup K(h, (2 95): b5 + € {0p +§}p¢mq#) < F(x,6(x), D°6(x))  (45)

h—0
£—0

(wi,y5)—x

21



and

h—0
£—0

(@iy;)—x

liminf K (h, (xi, yj), gbi,j + é, {QZsp,q + g}p#iorq#j> Z f*<x7 ¢(X)= D2¢<X))7 (46)

where h and & are arbitrary small constants independent of x.

It has similar meanings to the standard consistency definition, that is, the discretization
error will be negligible as mesh size h decreases.

To prove that our numerical scheme is consistent, we first prove that it is so locally.

Lemma 4.1. (local consistency conditions) Suppose the mesh size is h, and the control
discretization is of order O(h), and if we take the stencil length h' (defined in section 3.2),
to be \/'h, then for any function ¢ € C™ and using the notations above, we have that

[ Foi;+0(h)+0(§), PreQV¥m=1,....4.
K<h’ (i, ;) dij+E,s {¢p,q+§}p¢i0rq¢j> - { Foi;+ O(\/E) + 0O(¢), otéerwise.
(4.7)

Proof. Case 1: B[} € Q for all m.

In this case, we have hj = hy = hy = h; = V/h. For all (z;,y;) belonging to Q, we
will show:

LY ¢y = L9 + O(h).
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Li¢ij — L30i; = di [ Tl ) + V) ¢ \7};:/’((7% o, ]

+ djy

Tn®ii((wi, z5) + Vhry ) + Tn®i;((wi, zj) — Vhry) — 20 ]
h

, 0%, J *9i,;

11 awg

—d

22922

. [ B(ay) + Vher) + (1) + 6{(ws5) = Vher) + O(H?) = 261, ]
11 h

ny O((z:,5) + Vhes) + O(h?) + (1, y;) — Vhes) + O(h?) — 26 ]
22 h

, 020 7 i

- d”W ~ g
= O(h) +O(h)
= O(h),

where e, ey are the canonical axes in the new coordinate grid. Note that the second
equality follows from the O(h?) accuracy of the bilinear interpolation and the second last
equality follows from the error when central differencing with stencil length vh was used
to approximate the second derivatives. It remains to show that (4.7) is true. For all (z;,y;)
such that P € Q,

K(h, (@i, Y)s Pig + & {Ppg + f}p;«éiorq;éj) = min {ﬁg%j —2y/a(l —a)fi; } + O(h) + O(§)

QeZy

Qez

— min { LYbi; —21/a(l —a)fi; } + O(h) + O(h) + O(&)

= Fo¢i; +O(h) + O(8). (4.8)
The first equality follows from the above analysis and the second, from the discretization
of Z.
Case 2: 3P ¢ Q.

5]
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For all (z;,y;) belonging to €2, we will show:

Ly 6ij = L35+ O(Vh).
C . . . 82¢i,j - 62¢i,j .
onsider the approximation for = 5> and suppose m = 1 (or 3), (5.2 is just the same
but m = 2 or 4 replaced). With an abuse of notation here, write ¢(w;) as ¢(w;, z;) and
similarly for ¢(x;). Let us first consider the following analysis based on the Taylor series
expansion:

O —hie) —d() _ 0\ ke () (hy)?
= = —0'(@) + 50 (@) = g0 () + 2o (@),
o(xi + hier) — o(x:) = ¢/(z:) + f;_i'rgb”(xi) + wgb(?’)(x,,;) + (h%')3¢(4)<xi)'

5 3]

If we sum the above, the term on the left hand side is in fact the discretization of the
second order derivatives from Algorithm 1, i.e. (3.10) which is the local truncation error:

d(zi—he)—d(zi) | ¢lzi+h]er)—o(x;) -~
hy - hi —¢" (z:) = u¢(3)(x.)+
hy +h} ¢ L) = 3 v
2

(hf)? — hyhi + (hy)?
12

¢(4) (z;).

There are several cases to consider. Firstly, suppose that h = h], then from the above
equation, the local truncation error is O((hy)?), but since h; is order h, we have the error
to be O(h?). The second case is when hy™ # hy, b (or hy) = v/h. In this case, hy = O(h),
so the local error is O(h — v/h), which is just O(v/A). Finally, suppose hy # hi,h; #
Vh,hi # v/h, then by = O(h) and h{ = O(h) which makes the local error to be order
O(h). Combining the three cases, we have:

d(zi—hy e1)—¢(z;) + (zi+hier1)—d(x;)
hi hT " \/_
— — ¢ () = O(VR).
2

The intermediate steps above can all be verified if one works out the details of Algorithm
1. From the above analysis, we have the following:
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L%¢(wi) — L99(w) = d, | Tnd(w; + hir) + Tnp(w; — hira) — 2¢(w;) ] o 2 p(w;)

hy +hi o gw?
L 2

(h) + O(Vh)
(Vh).

To show that (4.7) is true, we follow similar steps as in (4.8) above. Hence, our lemma is
proved. O

O
)

Proposition 4.1. Suppose the numerical scheme 4.3 satisfies the conditions in Lemma
4.1, then it is consistent in the viscosity sense.

Proof. One may follow similar steps in [14] . O

4.2 Stability

Stability of a numerical scheme is when it produces an approximiate solution that is
bounded independent of the mesh size h. It turns out here in this case that stability has
large relations with the M-matrix property of the matrix L constructed in the previous
chapter.

Definition 4.3. Let A be an n X n matriz. It is an M-matriz if

1. ay; > 0 for all 1,
. a;; <0 for all i # j,
i1 A is nonsingular,

. A7t > 0.

A sufficient condition will be given below, let us first define the following;:
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Definition 4.4. An n x n matriz A is irreducible if there exists an n X n permutation
matrix P such that
Ap A12>

O Ay

where Ayy is an X1 submatriz and Asy is an (n—r) X (n—1) submatriz, where 1 <r < n.
If no such permutation matrix exists, then A is irreducible.

PAPT = <

Proposition 4.2. (Azelsson, 1996) [1] If A is a real n X n matriz and satisfies

1. a; > 0 for all i,
2. a;; <0 for all i # j,
3. A s irreducible,

4. diagonally dominant with at least one i strictly diagonally dominant.

then A is an M-matriz.

Lemma 4.2. If LSV is defined as in (3.11) and if a linear interpolation operator [Jy, is used
in (3.7), such that

ngm"!‘squ—i_t Z O Vm: 1,-~‘,4 ,S,t:0717 (49)
m+S,qm+t
S gt
s=0,1
t=0,1

then L? in (3.15) is an M-matriz for all Q € Z.

Proof. We prove that L% is an M-matrix by verifying the four conditions in the proposition
above. From (3.13) and (3.5), properties 1, 2 can be verified if we can show that LZQJ never
vanishes for all [. This is a bit technical and we shall outline the idea here instead. Notice
that if the optimal control parameter a* (c.f. 2.5) is neither 0 nor 1, then the matrix D
in 2.1 is strictly positive definite, hence d}; # 0 and d,, # 0 by definition of positive defi-
. / ,
niteness (for example, to verify the case for d),, note that d}; = ( 2:;((2)) ) D( :g;((z)) ))
However, when a = 0, we claim that if d}; = 0 then d5, # 0 and vice versa. For a = 1, it
is similar. If what we have just claimed is true, then by (3.5), Ll% never vanishes. So when
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a = 0, it is not hard to verify that di; = sin(6)?, dgy = cos(#)? and di5 = cos(f)sin(d). If
it occurs that d}; = 0, then by (3.4), we have

—2cos(6) sin(6) cos(¢) sin(¢) = sin()? cos(4)? + cos(#)? sin(p)?,
then also by (3.4),
dby = sin(0)? sin(¢)* + cos(8)? cos(¢)* + sin(0)? cos(4)* + cos(#)? sin(p)* = 1 # 0.

We will concentrate on problems such that the resulting matrix L% satisfies property 3.
Let [ =i+ (j — 1)n, now we prove property 4. We have the following two cases:

Case 1: P} € Q) for all m.

From (3.13),
Q }: Q dyy | diy dy veqtt A1 +5,q2+t
— P1T35,91 p2Ts8,q2T1l
’[L ]l,l‘_ |[L ]z,klfz(f"’_T)_TE:wij _TE Wij
k#l s=0,1 s=0,1
t=0,1 t=0,1
ds toaqtt oo +5,q4+t
P3+5,q3 Pa-ts,qa
— T 2T
s=0,1 s=0,1
t=0,1 t=0,1
= 0.

Case 2: JP ¢ Q.

7.7
In general, we have

d dt ; '
Q] |- Q1 | = 1 2y _ 2y N2 2
| [L L,z| Z| [L Lk‘ - 2(hfh1_ T h;hQ_) Xij (h1++hlf)h; Xij (h1++hlli)h1+

k£l
3 2d} 4 2d,
- Xij (h2++l1223)h; - Xij (h2++h2§)h§
dln d/22 dlll d/22
> + —
B (hfhf h?h;) (hfhf h?h;)

= 0.

However, note that in the boundary points (e.g. when [ = 1,n?), there must be a stencil
point falling outside the computational domain and hence xj? = 0 for some m = 1,...,4,
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e.g. let m = 1:

d d: ,
Q — Q _ 11 2 \ N2 2
[[L ]l»l| kzﬂl [ ]lk’ n Q(hfhl’ * h;rh;) X (h1++hlf)h1+

3 2d! 4 2d;
o Xij (h2++h2§)h; o Xij (hQ“rhz;)hQ+
! U ! U
> 2( 11_ + 22_) o 2( 11_ + 22_)
hfh1 h;th h;rh1 h;“ hs

= 0.

So in cases like that , we have strict diagonal dominance on that row. Combining the two
cases, property 4 is verified. Ol

From the proposition below we see that our scheme is a stable scheme. For the proof,
interested readers may refer to [16].

Proposition 4.3. If the conditions for Lemma 4.2 are satisfied then the discretization
scheme (4.3) is lo stable. And as mesh size h — 0, we have

10l < max ([U°)], llgll ) »

where g is the given Dirichlet boundary condition of (2.1).

4.3 Monotonicity

Monotonicity is an essential requirement for our scheme to converge to the viscosity solution
as mentioned earlier. We give the definition based on [10].

Definition 4.5. The discrete scheme is monotone iof V; ; > U, ; for all i, j, we have

K <h, (4, yj)a Vijs {Vp,q}p#i or q#]’) > K (h, (4, yj)vui,jv {up,q}p#ior q;ﬁj) .

Proposition 4.4. If the scheme (4.3) satisfies the condition of Lemma 4.2, then our
discretization consists of positive coefficients only and thus results in a monotone scheme.

Proof. From (3.13), all the coefficients involved in the discretization are positive for all
Q) € Z, since linear interpolation satisfying (4.9) was used and the coefficients d}; and
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dy, are positive for all Q € Z, ¢ € [, 5] (remark 2.1). Hence monotonicity follows from
similar derivations in [10]. O
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Chapter 5

Numerical Results

In this chapter, we apply the proposed discretization method for the MAE on three ex-
amples with smooth to mildly singular solutions. The computations were performed on a
Mac desktop with 2.8GHz Intel Core Duo processor and 4GB memory, using MATLAB
running in Mac OS X.6.

All the examples were used by [1] and [6]. The method used in [6] converged for the
first two but not for the last one. We will follow [] and use the approximate solution to

Uy + uyy = \/ﬁv

as the initial estimation for all the examples. This is to minimize the time needed to obtain
the final convergence result. In each iteration, we use policy iteration to numerically solve
the HJB equation (3.5). Tt is an iterative process and at each iteration, the value function
from the previous policy is updated and then an improved policy is found via the new value
function. In theory, if enough iterations are evaluated, the optimal policy should converge
to the optimal control of the HJB and the value function should converge towards its
solution. In our numerical experiments, we will just fix the number of iterations due to
the computational time using MATLAB.

Error is measured as the L, norm of the difference between the computed and the exact
solutions. Formally, let U” be the approximate solution and e” be the error at the grid
level h, then

en=h HUh - UHQ :

The loglog plot of the graph of error versus mesh size h is plotted to analysis the convergence
rate and the slope of the best fitted line is computed which represents this rate. In nearly
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all the examples, we observed convergence rates of linear convergence O(h) or near linear
convergence.

5.1 Smooth Examples

5.1.1 Example 1

Consider the problem

Lu=(1+2>+y*)exp(z® +9°) in €, (5.1)
u=exp (3(z>+¢°) on 0Q,
(5.2)
where (2 is the square domain [—1/2,1/2] x [—1/2,1/2].
An exact solution is
u(z,y) =exp (3(z> +¢)) . (5.3)

Our method converges to the same numerical solution (5.3). A plot of the computed and
exact solutions is given in Figures 5.1a and 5.1b respectively.

Figure 5.1c is a loglog plot of mesh size h versus the Ly error and the slope of the best
fitted line was found to be 1.02 which implies that the convergence rate is linear.

5.1.2 Example 2

Consider the problem

Lu=2 in Q, (5.4)
u=az*+y* on 09,

where €2 is the square domain [0, 1] x [0, 1].

An exact solution is
ulz,y) = 2 + o (5.5)

A plot of the computed and exact solutions is given in Figures 5.2a and 5.2b respectively.
The computed solution closely approximates the exact solution (5.5). Figure 5.2¢ is a loglog
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(a) Surface plot of computed solution on (b) Surface plot of exact solution on 32 x 32
32 x 32 grid. grid.

Logarithmic Plot of L2 Error vs Mesh Size h

i3

log(error)

45 -4 -35 -3 -25 -2 -15 -1
log(h)

(c) Best fit line in the loglog plot of mesh
size h vs error, slope of line is 1.02.

Figure 5.1: Plots of example 1

plot of the mesh size h versus the L, error and the slope of the line was found to be 1.51.
Although the convergence was oscillatory, the overall trend implies that the convergence
is approximately linear.
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(a) Surface plot of computed solution on (b) Surface plot of exact solution on 32 x 32
32 x 32 grid. grid.

Logarithmic Plot of L2 Error vs Mesh Size h
-45 T T T T T T

-5t b

-5.51 x 1

245 -4 -35 -3 -25 -2 -15 -1

(c) Best fit line in the loglog plot of mesh
size h vs error, slope of line is 1.51.

Figure 5.2: Plots of example 2
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5.2 Non-smooth Solutions

5.2.1 Example 3

Consider the problem

2 .
,CU = m m Q,

u=—2—-x2—9y> on 09,

where (2 is the square domain [0, 1] x [0, 1].

u(z,y) = —/2 — 22 — 2. (5.6)

From Figure 5.3a, the gradient of f is unbounded at (1, 1), making the equation moderately
singular. This example was also used by [0] and their method was known to diverge. A
solution plot on grid 32 x 32 is plotted in Figure 5.3b. Figure 5.3d is a loglog plot of
the mesh size h versus the Lo error and the slope of the best fitted line was found to be
approximately 0.82 which implies that the convergence is near linear. The error is mainly
located at the region of blow up, see Figure 5.3¢ and does not affect the overall convergence
of our solution as much as the method used in [0].

An exact solution is
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(b) Surface plot of computed solution on (c) Surface plot of pointwise error on 32 x 32
32 x 32 grid. grid.

Logarithmic Plot of L2 Error vs Mesh Size h

5k 4

log(error)
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log(h)

(d) Best fit line in the loglog plot of mesh
size h vs error, slope of line is 0.82.

Figure 5.3: Plggs of example 3



Chapter 6

Conclusions

In this paper, we proposed a numerical scheme to compute the unique viscosity solution
of the elliptic MAE with Dirichlet boundary condition. We first transformed the MAE to
a Hamilton-Jacobian-Bellman equation whose objective function is a linear second order
PDE coupled with non-linear control parameters. This allows ease of discretization. To
obtain a monotone scheme, further work was done to transform it by a local grid rotation to
eliminate the crossed derivatives terms, thus resulting in a wide stencil discretization. This
caused new challenges such as the stencil points lying outside the computational domain,
however we modified the algorithm in [16] to shrink the points back to its boundary and
at the same time retained consistency of the discretization.

Our numerical method is also stable and monotone in addition to being consistent with
the original MAE, hence by the Barles Souganidis convergence theorem, we proved that it
converged to the unique viscosity solutions. In the analysis of consistency, we showed that
the convergence rate was either linear or order O(v/h).

The numerical experiments performed had solutions ranging from smooth to moderately
singular. They all showed convergence and at a linear or near linear rate (O(h)) and the
worser case of convergence at the boundary had minimal effect.

Directions for further work will be to design more efficient algorithms to solve the
nonlinear HJB as policy iteration alone took too long for practical applications. To apply
our numerical scheme to real life image registration problems especially medical imaging
is also one direction of pursuit.

36



References

1]
2]

3]

[7]

[9]

Owe Axelsson. [terative solution methods. Cambridge University Press, 1996. 26

G. Barles. Convergence of numerical schemes for degenerate parabolic equations aris-
ing in finance. Cambridge University Press, Cambridge, 1997. 21

G. Barles and P.E. Souganidis. Convergence of approximation schemes for fully non-
linear second order equations. Asymptotic Anal., 4:271-283, 1991. 3, 6, 20, 21

Jean-David Benamou, Brittany D Froese, and Adam M Oberman. Two numerical
methods for the elliptic monge-ampere equation. ESAIM: Mathematical Modelling
and Numerical Analysis, 44(04):737-758, 2010. 13, 30

Shiu-Yuen Cheng and Shing-Tung Yau. On the regularity of the monge-ampere equa-
tion det ( 2 u/ xi xj)= f (x, u). Communications on Pure and Applied Mathematics,
30(1):41-68, 1977. 6

E.J. Dean and R. Glowinski. Numerical methods for fully nonlinear elliptic equations
of the monge-ampere type. Computer Methods in Applied Mechanics and Engineering,
195:1344-1386, 2006. 3, 30, 34

Glowinski R. Feng, X. and M. Neilan. Recent developments in numerical methods for
fully nonlinear second order partial differential equations. SIAM Review, 55:205-267,
2013. ix, 3, 7

X. Feng and M. Neilan. Mixed finite element methods for the fully nonlinear mongeam-
pre equation based on the vanishing moment method. SIAM Journal on Numerical
Analysis, 47(2):1226-1250, 2009. 3

Bernd Fischer and Jan Modersitzki. Ill-posed medicinean introduction to image reg-
istration. Inverse Problems, 24(3):034008, 2008. ix, 2

37



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

P. A. Forsyth and G. Labahn. Numerical methods for controlled Hamilton-Jacobi-
Bellman partial differential equations in finance. Journal of Computational Finance,
11(2):1, 2007. 29

Brittany D Froese and Adam M Oberman. Convergent finite difference solvers for
viscosity solutions of the elliptic monge-ampere equation in dimensions two and higher.
SIAM Journal on Numerical Analysis, 49(4):1692-1714, 2011. ix, 1, 3, 13

C. E. Gutierrez. The Monge Ampere Equation. Birkhuser Mathematics, Basel, 2001.
6

Steven Haker, Lei Zhu, Allen Tannenbaum, and Sigurd Angenent. Optimal mass
transport for registration and warping. International Journal of Computer Vision,
60(3):225-240, 2004. 1

Y. Huang and P. A. Forsyth. Analysis of a penalty method for pricing a guaranteed
minimum withdrawal benefit (GMWB). Journal of Numerical Analysis, 32(1):320—
351, 2012. 25

N. V. Krylov. On control of the solution of a stochastic integral equation with degen-
eration. Math. USSR Izv., 6(1):249, 1972. 7

K. Ma and P.A. Forsyth. An unconditionally monotone numerical scheme for the two
factor uncertain volatility model. 2014. 4, 28, 36

A. M. Oberman. Wide stencil finite difference schemes for the elliptic monge-ampere

equation and functions of the eigenvalues of the hessian. Discrete Contin. Dyn. Syst.
Ser. B, 10(1):221-238, 2008. 13

I. Smears. Hamilton-Jacobi-Bellman Equations. Analysis and Numerical Analysis. 7

38



