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Abstract

This report explores an algorithm to perform Power method iterations in the cloud
via Hadoop Map-Reduce. With the inclusion of a preprocessing procedure, only a single
Map-Reduce stage is required per iteration. Several Optimizations were considered that
improved the speed of the algorithm. The proposed approach can also be altered such that
under certain conditions, the preprocessing is incorporated into the first multiplication
step. It can also be extended to perform Jacobi method iterations.
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Chapter 1

Introduction

The use of cloud computing to tackle computations on very large datasets provides inter-
esting possibilities, especially since it can be scalable and cost-effective through the use of
commodity machines. A popular open source cloud management framework is Hadoop.
Through the use of the Hadoop File System (HDFS) and the Map-Reduce programming
model this framework offers a reliable shared storage and analysis system [J] that can
easily be deployed. A computation that can be performed in Hadoop is the repeated
matrix-vector multiplication also known as the Power method, where the matrix is fixed,
and the vector is updated each step until convergence is achieved. For example, the graph
mining method Page-Rank performs such actions to determine the ranking of web pages.

The Generalized Iterative Matrix-Vector Multiplication (GIM-V) is a Map-Reduce
method that is part of the Graph Mining Library PeGaSus [7]. This method requires
two Map-Reduce stages chained together in order to perform one matrix-vector multipli-
cation. In the case of Power methods where the base matrix remains unaltered for all
iterations, a question can be asked whether it is possible to perform one multiplication in
one Map-Reduce stage. With an initial fixed cost in a preprocessing step that couples the
matrix and vector information together in a specific manner, such calculations can indeed
be achieved. We will discuss the trade-off cost and performance when compared to the
GIM-V approach. Initial tests indicate that we can observe good results. However, there
are potential issues that should be considered before utilizing this approach.

Several forms of optimization were considered for both methods; by leveraging existing
functionality in the Hadoop framework we can obtain faster speeds and potential reduction
in data transfer between nodes in the cloud. We will also discuss how to build upon these
algorithms in order to perform Jacobi iterations for solving matrix systems.



Chapter 2

Background and Related Work

2.1 Hadoop

Hadoop is a software framework developed under the Apache Project. Published papers on
Google’s File System (GFS) [6] and Map-Reduce framework [5] were the main inspiration
to the development of Hadoop, and it was initially used to address the scaling issues of
the WebCrawler engine Nutch. The main components of this framework are the Hadoop
Distributed File System (HDFS) and Map-Reduce model. Scalability, data localization
and fault tolerance are achieved in tandem.

e Scalability, when a Hadoop program is written, little if any change is required if
the input data sizes or the available cluster resources are scaled up, and the program
remains efficient for large problem sizes.

e Data Locality, the strategy of moving computation to the data, alleviating strain
on network bandwidth []

e Fault Tolerance, any failed tasks is automatically reassigned to a free node

2.1.1 HDFS

HDF'S is designed to reliably store and support very large amounts of information [2]. Data
blocks are replicated and distributed among the cloud nodes. If an individual node in the
cluster malfunctions, the data is still available (see Fig 2.1). HDFS is especially designed
to sequentially read large data files.



HDFS

/Input/Matrix.txt
. blk_1,blk_2,blk_3

/Input/Vector.txt
= blk_4,blk 5
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blk_2 blk_5 blk_4 |blk_5

Figure 2.1: HDFS Data Blocks and Replication.

2.1.2 Map-Reduce

Map-Reduce is a scalable programming model [9]. It is abstracted such that only two main
functions are written, Map and Reduce, where input and output are expressed in key-value
object pairs. This model allows the programmer to simply focus on the logic through these
two functions, and not worry about intra-node communication, task monitoring, or task-
failure handling [9]. As well, both the map and reduce functions do not have to account
for the size of data or even the underlying cluster that they are operating on.

Mapper (Map Phase) - The Hadoop framework reads input data from large files and
split it into smaller portions (data blocks) which are then assigned to a mapper task. The
data portions are read and wrapped into a key-value object pair and assigned to the map
function. For an input of a key and a value, the function outputs (key, value) pair(s) which
are then forwarded to the Reducers [3]. To enable fault tolerance, Mappers are deprived
of any mechanisms to communicate with one another. Since data is replicated over nodes,
many map tasks are activated in parallel, each processing different portions of the data
that are stored locally on each node (Fig 2.2).

Reducer (Reduce Phase) - The output from the map functions is then sorted such
that object values with the same key are grouped, assigned and transmitted to a reduce
function. These grouped values are then processed by the Reduce functions and written
back into the file system. (Fig 2.3, 2.4).
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Figure 2.4: Map-Reduce Framework (from Yahoo Map-Reduce Tutorial).

Combiner - The combiner is an optional process that can be utilized after the Map and
before the Reduce Phase. It is run on every node that has active map tasks. The outputs
produced by the map functions on each node can first be sent to a local combine function.
This function acts as a localized /mini reduce where local map outputs are grouped by
their keys and assigned to it for processing. The combiner outputs is then sorted and
transmitted to reducers. This is used to simplify map outputs, which can potentially
decrease the transmission size or minimize the amount of calculations done by the reducer.

Map or Reduce tasks are executed in a fault-tolerant manner. Since there is no depen-
dence between each activated map task or each activated reduce task, when one or many
nodes fail during computation, the task is simply re-assigned to the remaining free healthy
nodes.

2.2 Matrix-Vector Multiplication And Data Structures

When a matrix-vector multiplication is performed v™* = M % v?? where v%¢ " ¢
Reand M e R*“and 1 <i<cand 1< j < cwe can express VI as:



o = Z g, (2.1)
j=1

q,, =m,; * v’ (2.2)

We can view the component values g, ; as elements of a matrix, with the sum of the
matrix values with the same row index ¢ being the vector value v*. During the process
of multiplication, a vector element v, will only be multiplied by matrix elements in column
k. For example, vfld will only be multiplied by the matrix elements in the first column,
resulting in component values ¢, ,,q,,,...,q,,. This association of a vector element with
matrix column elements is important as it is the foundation of a method for performing
matrix vector multiplication in Map-Reduce (Fig 2.5).

+ + U]
... + + ,UELE’LU
+ + :
o e + + ,UTLG'LU

Figure 2.5: Association between vector values and matrix column elements.

2.3 Data Structures

A way to represent and store both Matrix and Vector data for the use of Map-Reduce is
to associate each nonzero matrix or vector elements with its coordinate. For a matrix,
the coordinates are the row and column. Since a vector is a matrix of one column we can
represent its element with the row as its coordinate. This structure helps the program to
distinguish the element types by checking to see if a column coordinate is provided.

e Matrix element m, , = m(row i, column j,value)

e Vector element v, = v(row k,value)



Treating the vector and matrix elements in such a way will have the added advantage
of allowing map functions to process the two types of data at the same time.

Each matrix or vector element with its coordinate is a one line entry in the input file.
A Record Reader function utilized by map tasks reads each line and transforms it to a key-
value object. These objects are assigned as input to Map functions. Likewise, a Record
Writer function is used by the reduce task to write output objects by the reduce functions
as a line entry in the output file.

More elaborate structures are going to be utilized throughout this paper. However,
they will essentially be containers that groups both matrix and vector elements together.
These structures will also have corresponding Record Reader and Record Writer functions
used by tasks to read and write to and from HDFS.

2.4 GIM-V Algorithm

GIM-V is a key algorithm for the Graph Mining Library PeGaSus that is implemented
on the Hadoop platform. It is intended to scale for very large datasets [7]. This library
performs many of the common graph mining operations ranging from diameter estimation
to Page-Rank. Many of these operations can be composed by repeated matrix-vector
multiplication where GIM-V is used.

The GIM-V approach uses two Map-Reduce stages to obtain the resulting vector v™*".
Each stage has the following objective:

e Stage-1 Read matrix and vector elements and calculate all nonzero components g, ;.

e Stage-2 Group and sum components q,,,q,,,.--,q,. together based on their row
index, 7, to obtain the new vector value v for all i.

In Stage-1, the input data is a collection of matrix and vector elements. These elements
are assigned to the Stage-1-Map function (Fig 2.6). The Stage-1-Map function directs the
elements to the correct reducer through the output key. When a map function receives
a vector value, it simply outputs the element with its row as the key (v(row),v) and
when it receives a matrix element, it outputs the element with the column as the key
(m(column), m).

When all map tasks have been completed, the outputs are grouped according to their
key value. Outputs with the same key are then assigned to a reduce function. The Stage-
1-Reduce function (Fig 2.7) receives a key k and a list of elements consisting of one vector

7
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Figure 2.6: GIM-V Stage-1-Map function.
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Figure 2.7: GIM-V Stage-1-Reduce function.

value v, and all the nonzero matrix elements from column %. It then takes the vector value
v, from the element list and multiplies it with each of the matrix elements m_,,...,m_,,
obtaining the component values ¢, ,,...,q.,. The result of each product is then written
back to the file system in the key-value pair form (m(row), v, x m(value)). To be optimal
when outputting g, ., there is no point in storing the k index as we only need to know the
row in order to calculate the new vector values.

There are cases where the reduce function does not return any output. These cases
involve the fact that only nonzero elements are considered. When a reducer does not receive
a vector element and-or matrix elements as input, then we know that all component values
are 0 and there is no point to store them.

In Stage-2 (Fig 2.8), the component elements ¢(row,value) are read back as input
and are assigned to the Stage-2-Map function. This function does not perform any action
except for simply outputting the assigned data with the row value as the key. The Stage-
2-Reduce function will then receive row value k as key and a list of component values that
it nceds to sum over to obtain v;”.

Pseudocode for the two stages of GIM-V is given in Algorithms 1 and 2.



Algorithm 1 GIM-V Stage-1

Function Stage-1-Map(Key, Value)
Value is either an element from a Matrix — m(row,column,value)
or from a Vector — v(row,value)

if Value is a matrix element then
m < Value
output(m(column), m)
else if Value is a vector element then
v < Value
output(v(row), v)
end if

Function Stage-1-Reduce(Key, Values]])

Values contains Matriz elements — m(row,column,value)
and a Vector element — v(row,value)

Note: m(column) = v(row) = Key

v+ 0
matrizColumnElements < ||
for each eclement e in Values
if e is a vector element then
v« e(value)
else
matrizColumnElements|end] < e
end if
end for
if v is not equal to 0 then
for each matrix element m in matrizColumnFElements
q < m(value) x v
output(m(row), q)
end for
end if
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Figure 2.8: GIM-V Stage-2-Map, Stage-2-Reduce functions.

Algorithm 2 GIM-V Stage-2
Function Stage-2-Map(Key, Value)
Value is a component element — q(row,value)

output(Value(row), Value(value))

Function Stage-2-Reduce(Key, Values]])
Values contains component elements — q(row,value)
Note: The output will return the new vector value at row key

vNew < 0

for each element e in Values
vNew < vNew + e(value)

end for

if v New not equal to 0 then
output(Key,vNew)

end if

Let M be the total number of nonzero elements in the matrix, Vi and V5 be the total
number of non zero elements in v?? and v™*, respectively, and @ be the total number of

non zero components g, .. Note that if all vector elements are nonzero, then @ is the same
as M. We have

Cc

Q= > IMy= > >oL (2.3)

j:l,’l};‘)ld#o j:l,v;.’ld;éo 1217m2537£0

Therefore the total amount of data read from HDFS as input is M + V; + @), where
(M + V) is for Stage-1 and @ is for Stage-2. The total amount of data written to HDF'S is

10



Stage-1 | Stage-2 | Total
Reads M+V | Q M+Q+V
Transfer | M +V; | @ M+Q+V;
Writes Q Vs Q+ Vs

Table 2.1: GIM-V Data Read, Transfer and Write for one multiplication.

Q + V5, where for Stage-1, () components are produced by Stage-1-Reduce and V5 elements
are produced by Stage-2-Reduce. The maximum amount of data transferred between the
map and reduce parts of each iteration is M + Q) +V; where (M + V) elements are passed
in Stage-1 and @ elements are passed in Stage-2. (See Table 2.1)

11



Chapter 3

Single Stage Matrix Vector
Multiplication (SSM-V)

When matrix vector multiplication is repeated many times with the same matrix, the
GIM-V approach still reads the same matrix data and groups column elements with the
associated vector value in each iteration. The knowledge that the matrix is constant can be
used so that repeating Stage-1 for subsequent multiplications can be avoided. By removing
Stage-1, we can then perform the multiplication in one stage.

In order to perform a multiplication in one stage, the ideal scenario would be to achieve
the objective of GIM-V Stage-1 in the Map phase, and the objective of GIM-V Stage-2 in
the Reduce phase. In other words, the map function should compute the g, , component
elements for each column of the matrix and the reduce adds the component values per
row. This can be accomplished if the map function receives as input a vector value vy
and the corresponding matrix column elements m, ,,...,m_, at the same time, and the
Reduce function receives the components g, ,...,q, . along with matrix column elements

m,,,...,m_, for the next iteration.

We believe that similar strategies may already be used to compute Page-Rank (see,
e.g., [8]), but did not find descriptions in the published literature. In this algorithm the
rank of an individual web page, represented as a vector value, is accompanied by all of
its in-links, represented by matrix column elements. By grouping these values together, a
single iteration of the Page-Rank algorithm can be performed in one Map-Reduce stage.

12



3.1 SSM-V Preprocessing

In SSM-V, a preprocessing step is first needed to structure the data, such that for every row
k., a vector element vy, is paired with the k™ column elements of the matrix. This is very
similar to GIM-V Stage-1 except that the Reducer simply structures and outputs the data
to the file system rather than calculating the component elements ¢, ,,q,,,.--,¢.x The
format of the output is [k, vy, (1,m,, (value)), ... (c,m_, (value))] and is a one line entry in
the output file (note that only nonzero matrix elements m_ , are included in the list). This
structure is the expected input by the map function for each subsequent multiplication.

Uy M1 ky -y My —

Miky- oy Mek ?

reestens — AT R
S PR
Figure 3.1: SSM-V Preprocessing Reduce function.

Recall that GIM-V Stage-1-Reduce does not output data when the vector value v; is 0.
If the current v; is 0, then matrix column elements are not needed in the upcoming iteration.
However, future values of v; may be nonzero at which point the j* column elements will
be needed. Therefore the reduce function in the preprocessing and multiplication stage
will always output data records as long as there are column elements in the matrix (Fig
3.1).

See Algorithm 3 for pseudocode of the SSM-V preprocessing stage.

3.2 SSM-V Multiplication Stage

Given the input [k, vg, (1,m,, (value)), ... (c,m,, (value))], the SSMVMap function mul-
tiplies the vector value, v, , with each matrix element, outputting (i, g, ). The function also

outputs the list of column elements, [(1,m,, (value)), ... ,(c,m_, (value))], with column &
as the key (Fig 3.2).

The SSMVReduce function will receive a row value k as key, a list of component values
Qo1>Gynr -+ >4, needed to obtain vy and the associated column k elements of the ma-

trix. It proceeds to calculate the new vector value and outputs [k, v, (1,m,, (value)),

13



Algorithm 3 SSM-V Preprocessing Stage

Function Preprocess-Map(Key, Value)
Value is either an element from a Matriz — m(row,column,value)
or a Vector — v(row,value)

if Value is a matrix element then
m < Value
output(m(column), m)
else if Value is a vector element then
v < Value
output(v(row), v)

end if

Function Preprocess-Reduce(Key, Values|])
Values contains Matriz elements — m(row,column,value)
and Vector element — v(row,value)

Note: m(column) = v(row) = Key

v <0
r <+ Key
matrizColumnElements < ||
for each element e in Values
if e is a vector element then
v« e(value)
else
matrizColumnElements|end] < (e(row), e(value))
end if
end for
output(Key, [r, v, matrizColumnElements])

14
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Figure 3.2: SSMVMap function.

...,(e;m_, (value))]. This allows the new vector value to be paired with the list of column
elements that is needed for the next iteration (Fig 3.3). The pseudocode for the SSM-V
multiplication stage is given in Algorithm 4.

D199 pc _>_—>_
[ml,lm 000 amT,k]
Figure 3.3: SSMVReduce function.

Since the preprocessing step is only executed once, the fixed cost is M + V; data reads,
M + Vi data transfers and M + V; data writes. For the multiplication stage the total
amount of data read is M + V. The total data written in the file system is M + V5. The
total amount of data transferred between nodes is M + ) where ) components and M
matrix elements are passed by the Map function. (See Table 3.1)

Preprocessing | Multiplication
Reads M+ WV M+ W
Transfer | M + V; M+@Q
Writes M+ M+ Vs,

Table 3.1: SSM-V Data Read, Transfer and Write for one multiplication

From the initial analysis we can see that for one multiplication the amount of data being
read, transferred and written by this algorithm is comparable to the GIM-V method.

15



Algorithm 4 SSM-V Multiplication

Function SSMVMap(Key, Value)

Value is composed of [row j, vector value v;, nonzero j™

matriz column elements/

v < Value(vector value)
if v is not 0 then
for each matrix clement m in Value(Matrix Elements)
q < m(value) * v
output(m(row), q)
end for
end if

output(Value(row), Value(matrix Elements))

Function SSMVReduce(Key, Values||)
Values is a list of components e(row, value) and a set of Matriz Column Elements

vNew + 0
r < Key
matrizColumnElements < [|
for each element x in Values
if x is a component element then
vNew + vNew + x(value)
else
matrixColumnElements < x
end if
end for
output(Key, [r, vNew, matrizColumnElements])

16



Chapter 4

SSM-V Optimal

The SSM-V algorithm discussed above, though it can be performed in one stage, is not an
optimal algorithm to perform multiplication in Map-Reduce. Two improvements can be
made resulting in faster performance and efficient transfer of data between nodes. These
improvements utilize and exploit existing functionality offered by the Hadoop framework.

4.1 SSM-V Optimization by splitting

One of the major disadvantages that the initial SSM-V algorithm has is not taking full
advantage of the Map-Reduce concept. By grouping vector and column elements together
as input to the map function it essentially forces one map function to handle one v, and
m,,,...,m_,. This does not scale very well on large matrix data, or, more specifically,
on matrix columns with dense elements. If there exists one dense column in an otherwise
sparse matrix, the whole map phase would not complete until this column is fully processed,
which may unnecessarily slow down the whole multiplication step. In this case, it may be
more suitable to have many map functions each performing part of the work.

To resolve this problem we can split the columns into smaller manageable chunks and
give each chunk a copy of the vector value. This way many map functions can be used
at once. This also has the added advantage of ensuring that map functions throughout
the map phase are assigned a consistent input size. To make this change, both the reduce
functions in the preprocessing and multiplication steps need to be altered (see Figures,
4.1 and 4.2). At the cost of replicating vector values, this modification may significantly
improve the speed of the algorithm since it is using the full potential of the framework.

17
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Figure 4.1: SSM-V Preprocessing Reduce function (where § is the split size).
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Figure 4.2: SSMVReduce function (where ¢ is the split size).

Due to replicating vector values, the SSM-V method would then write more data than
the GIM-V method. Where it would have initially written M + V values it will now write
M + oV with a > 1, and

axV= > ("]‘?’”1, (4.1)

i=1,v;7#0

where § is the user-defined chunk size and |m.;| is the total nonzero elements in the i
column of the matrix. See Table 4.1 for a comparison.

SSM-V Multiplication | GIM-V Stage-1 | GIM-V Stage-2
Write | M + oV, Q Va

Table 4.1: Data Write Comparison between SSM-V and GIM-V.

In the case of a sparse matrix and a full element vector, the difference would not be
significant.

See Algorithms 5 and 6 for pseudocode with this optimization.

18



Algorithm 5 Optimized SSM-V (Preprocessing) Reduce function

Function Preprocess-Reduce(Key, Values|])
Values contains Matriz Elements — m(row,column,value)
and Vector Element — v(row,value)
Note: m(column) = v(row) = Key, and chunkSize is a fixed size defined by the user
v+ 0
r < Key
0 + chunkSize
matrizColumnElements < ||
for each element e in Values
if e is a vector element then
v <+ e(value)
else
matrizColumnElements[end] < (e(row), e(value))
end if
end for
while matrixColumnElements is not empty do
list < remove § elements from matrizColumnElements
output(Key, [r, v, list])
end while

Algorithm 6 Optimized SSM-V (Multiplication) Reduce function

Function SSMVReduce(Key, Values]])
Values is a list of components e(row, value) and a set of Matriz Column Elements
Note: The output will return the new vector value at row key

vNew < 0
r < Key
matrizColumnElements|| < ||
for each element x in Values
if = is a component element then
vNew < vNew + z(value)
else
matrizColumnElements[end] «+ x
end if
end for
for each matrix Column Elements L in matrizColumnElements
output(Key, [r,vNew, L])
end for
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4.2 Optimization through Combiner Function

Recall that a combiner function is essentially a localized reducer activated on all nodes
that have executed map functions. As the intermediate step that sits between map and
reduce, this function can be used to optimize both SSM-V and GIM-V methods.

Using combine functions we can potentially decrease the amount of data transfer be-
tween nodes and decrease the number of operations performed by the reducer. In particular
the addition of component values 3%_,q,, done by the Reducer to obtain v7“ can partially
be done on the combiner. This will then reduce the amount of component values sent over
the network, and decrease the number of addition operations performed by the reducer.
For example if a node with active map functions, for one input data block with multiple
input records that are fed to the same map node, collectively outputs x component values
where there are y unique keys then a combiner can do partial sums on values with the
same key. This in effect decreases the data transfer from what would have been x values
to y values.

For the GIM-V approach a combiner function can be applied in the second stage. In
fact the combiner function will be the same as the Stage-2-Reduce function. A Combiner
function can also be placed after the map phase of the multiplication step of SSM-V, see
Fig 4.3 and Algorithm 7.

Qyre s Sem _ — key=k value=qk,l + ...+ Do

Figure 4.3: SSMVCombine function.

4.3 Absorbed Preprocessing

The preprocessing step is a fixed cost in the SSM-V algorithm. However there is a condition
where the cost can be nullified. This condition is dependent entirely on the values of the
initial vector. If this condition is satisfied, not only can we decrease the amount of data read
by the map tasks of the first multiplication step, but we can also absorb the preprocessing
step. This may not be a common scenario, however if does apply, the following optimization
may be used. The condition is:
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Algorithm 7 SSM-V Combiner Function

Function SSMYVCombine(Key, Values|])

Values is a list of components e(row, value) and a set of Matriz Column Elements with
a common key, generated by a shuffling process on the local node

vPartial New < 0
r < Key
for each element x in Values
if z is a component element then
vPartial New < vPartial New + x(value)
else
output(r, x)
end if
end for
output(r,vPartial New)

e Values of the initial vector can be determined by a function, in such a way that,
given any matrix element m, , and its coordinate (i, k), the function can produce the
appropriate vector value v, .

If this condition in satisfied, only matrix elements are needed as input for the first
multiplication. Since a Map function, in itself, can produce the appropriate vector value v,
the function can calculate the component values ¢, , right away. So given a matrix element
m, ., the map function will output two data items, the component value with the row
index as key, and the matrix value with the column index as key. Then the reduce function
will receive component values g, ,,q, ,,- -, g, . and matrix column elements m_,,...,m_,.
With these data the reducer then calculates v and pairs it with the column elements for
the next iteration, see Figures 4.4 and 4.5 and Algorithm 8. The general SSM-V method
is then applied for subsequent multiplications.

Since we do not need to read the initial vector value, the total data that is read is M
with M + () data transfer and M + V5 data writes for the first multiplication.
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Algorithm 8 SSM-V Incorporated Preprocessing Stage

Function SSMVFirstMap(Key, Value)
Value is an element from a Matriz — m(row,column,value)
Note: fis a function used to derive the initial vector value

v+ f(m(row))
output(m(row), v * m(value))
output(m(column), m)

Function SSMVFirstCombine(Key, Values][|)
Values contains Matriz — m(row,column,value) and Component — q(row,value) elements
vPartial New < 0
for each element x in Values
if = is a component element then
vPartial New < vPartial New + x(value)
else
output(r, x)
end if
end for
output(r,vPartial New)

Function SSMVFirstReduce(Key, Values]])
Values contains Matriz — m(row,column,value) and Component — q(row,value) elements
Note: m(column) = v(row) = Key
vNew + 0
r < Key
0 < chunkSize
matrizColumnElements < ||
for each element e in Values
if e is a component element then
vNew < vNew + e(value)
else
matrizColumnElements|end] < (e(row), e(value))
end if
end for
while matrixColumnFElements is not empty do
list < remove § elements from matrizColumnFElements
output(Key, [r,vNew,list])
end while
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i > SSMVERSEMERN - key=i, value=g.,

N, key=k, value=my

Figure 4.4: SSMVFirstMap function in the first Multiplication step, absorbing the Prepro-
cessing stage.

/!
Guss-- o+ — [(SSMVFirstReduce] —
My -5 Mek N\

Figure 4.5: SSMVFirstReduce function in the first Multiplication step, absorbing the Pre-
processing stage. Here, d is the chunk size.

4.4 SSM-V with Direct Reads and Writes to HDF'S

All of the algorithms discussed so far have relied on the Hadoop framework to efficiently
divide and assign the input data through Map Tasks and to write output data through
Reduce Tasks. As a result, both map and reduce functions do not directly interact with
the data in HDFS. However, these functions can directly read and write data in the file
system. This ability combined with the framework can be used to modify the SSM-V
algorithm to minimize the total data reads and writes. In particular the matrix data m,
always remains the same, and does not necessarily have to be sent along with the other
data in all steps of the iterations.

Direct interaction with HDFS can be used to make the framework process the matrix
data and to rely on the map and the reduce function to retrieve and write vector values to
and from the file system. First consider a preprocessing stage in which matrix elements with
the same column index are grouped in chunks, and each chunk is a line entry in a new large
input file. This file will be used as input for each subsequent multiplication stage. Vector
values are stored in individual files with the row index as their name. In the multiplication
iterations, the framework assigns a set of matrix column elements, m,,,...,m ., to a
map function. The map function with the knowledge of the column index k retrieves the

15} d . .
value vkl from HDFS and outputs the component values g, ..., q,,,, with the row index
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as key (Fig 4.6). A reducer will be assigned all of the component values, ¢, ,,...,q, ., with

same row index k, which is then used to obtain the new vector value, v. The reduce

function then overwrites the value in the file with the row index as the name (Fig 4.7).

s key=i, value=q;
Mg misx | SSMVMap

Vk

N key=i+ 0, value=gi sk
Figure 4.6: SSMVMap function with v, read directly from HDFS.

PRI P — _
1

U]’I;le’w

Figure 4.7: SSMVReduce function with v written directly to HDF'S.

With this approach a single multiplication only requires M Hadoop reads, ) data
transfers and no Hadoop data writes, which is an improvement over the original M + oV
Hadoop reads M + @ data transfers and M + oV, data writes, see Table 3.1. Note, however
that this strategy adds aV; HDFS reads and oV, HDFS writes, with each read and write
accessing a single small file.

Note that this modification does not compromise the fault tolerance offered by the
framework. There are no dependency issues in the map phase since all of the vector values,
vzld, are already written in files before the phase begins. Also, since each row of a vector is
only assigned to one reduce function, there will never be a case where two or more functions

are writing to the same file.

Unfortunately, in implementation, we do not observe faster performance. In fact, perfor-
mance becomes very slow as the matrix dimension increases. This problem occurs because
HDFS is not designed to efficiently store and access small files. It is primarily designed for
streaming access of large files [10, 2]. Every file in HDFS, no matter the size, consumes a
fixed amount of memory that is used by the file system to manage it [10]. As we increase
the dimensions, more memory is required to maintain all of these small files. Also, reading
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through small files usually results in many seeks and jumping from one node to another to
retrieve each small file, all of which results in an inefficient data access pattern [10].

If future improvements can be made to HDF'S such that it can efficiently handle storing
and accessing small files, this modified SSM-V would offer interesting options. An alter-
native is to store v, values in HBase (Hadoop Database), which should have better read
and write performance.
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Chapter 5

Performance Experiments

For testing, Hadoop was set up on a loosely coupled cluster of three servers connected
together with Gigabit Ethernet. Large sparse matrix data was generated ranging from 2.5
to 80 million nonzero elements and vectors with dense elements. Random sparse matrices
with dimensions 1000 x 1000 and varied densities was initially generated in Matlab. These
matrices were then used to create large test matrices by replicating them as blocks over
larger dimensions. Several tests were performed initially comparing how the suggested
optimizations affect the overall performance of SSM-V, followed by a comparison to GIM-
V.

To ensure that there are enough resources, each server is configured to have a maximum
of 4 active map tasks and 4 active reduce tasks (each server has 4 or more cores). In the
file system, a data block is defined to be 64 megabytes. The largest test data used is larger
than 550 megabytes. Since a single data block is assigned to a single map task, there are
sufficient resources to process all the test data in parallel and map tasks don’t wait in the
Hadoop queue.

5.1 Effects of Optimization

Two optimizations were applied to the initial SSM-V method. A matrix with dimension
100000 x 100000 composed of roughly 80 million nonzero floating point elements was used
to test the alterations. In total more than 550 megabytes of data was used as input.

As expected, both optimizations, when applied, improved the performance. The one
that caused a significant improvement in speed was the chunking of matrix column ele-
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Num | Optimization Run Time
1 NULL 25 Minutes
Chunk Column elements to a fixed size | 2 Minutes
Use Combiner Functions

Table 5.1: Effect of Optimization on a problem with more than 80 Million nonzero Records.

ments. This allowed many map functions to participate in processing a vector and its
corresponding matrix column elements. Also, map functions in general will always be as-
signed inputs whose size is consistent. Without chunking, map functions can have varied
input sizes and if one function is assigned a large input it can slow down the map phase.
The use of combiner functions only improved the timing by a few seconds. However, it’s
still a desirable approach as it tries to minimize the data transfer between nodes. By
making full use of the Map, Combine and Reduce functions provided by the framework a
10 fold speed reduction was observed. (See Table 5.1)

5.2 Results of SSM-V with direct interaction to HDF'S

The modified SSM-V algorithm which directly reads and writes data in HDF'S in theory
should offer good results. A matrix with dimension 50000 x 50000 composing of roughly
2.5 million nonzero floating point elements was used to compare this algorithm with the
optimized SSM-V. Though the Hadoop data transfers and writes are smaller, it does not
translate in faster speeds. By shifting part of the reading and writing of data originally
performed by the framework to the functions, a significant deterioration was observed.

(See Table 5.2)

NNZ elements | SSM-V Optimal | SSM-V with direct interaction to HDFS
2.5x10° 35 Seconds 19 Minutes

Table 5.2: Comparison between optimized SSM-V and direct interaction to HDFS. A
dataset of more than 2.5 Million nonzero Records was used.

5.3 Comparison between GIM-V and SSM-V

The SSM-V method offers a single stage matrix-vector multiplication unlike the 2 stage
GIM-V. However there are 2 tradeoffs to consider:
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e The fixed preprocessing cost

e Increase of data writes (See Tables 2.1, 3.1 and 4.1)

We now investigate these tradeoffs. Several different matrix and vector test data were
tried and compared. The SSM-V method generally performed better per iteration. Over
multiple iterations and with the addition of the preprocessing, the SSM-V still performs

well. (See Tables 5.3, 5.4 and 5.5)

Num | NNZ elements | Run Time
1 2.5%x10° 33 seconds
2 5.0x10° 42 seconds
3 1.0x107 1:09 minutes
4 4.0x10" 1:23 minutes
5 8.0x10° 1:43 minutes

Table 5.3: Preprocessing Cost for SSM-V.

Num | NNZ elements | GIM-V (for both stages) | SSM-V (without preprocessing)
1 2.5x10° 1:07 minutes 35 seconds

2 5.0x10° 1:16 minutes 44 seconds

3 1.0x107 1:43 minutes 54 seconds

4 4.0x10° 2:02 minutes 1:21 minutes

5! 8.0x 10" 2:37 minutes 2:03 minutes

Table 5.5: Comparison between GIM-V and SSM-V, for 5 multiplication iterations.

For one multiplication the GIM-V method would read and transfer more data. On the
other hand, the SSM-V method performs more data writes. In HDFS, writing to the file

Table 5.4: Comparison for 1 multiplication between GIM-V and SSM-V.

Num

NNZ elements

GIM-V

SSM-V (with preprocessing)

2.5x10°

5:36 minutes

3:48 minutes

5.0x10°

6:20 minutes

4:40 minutes

1.0x107

8:59 minutes

5:43 minutes

4.0x107

10:21 minutes

8:05 minutes

G | W DN ==

8.0x107

13:05 minutes

11:59 minutes
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system requires replicating information among nodes that is handled by the file system.
There are 2 reasons why the SSM-V method writes more data (see Tables 5.6 and 5.7) :

e The replication of vector values to accommodate chunking

e The writing of column elements, even if the current associated vector value is 0

GIM-V SSM-V GIM-V - SSM-V
Reads M+ V; +Q; M + oV Qi — (a—1)V;
Transfer | M + V; + Q" | M + Q" Vi
Writes | Q; + Vi1 M+ axViy | Qi —M—(a— 1)V

Table 5.6: Comparing Data Read, Transfer and Write between GIM-V and SSM-V.

Per iteration, the SSM-V writes an extra (o — 1)V;;1, due to replication, and M — @Q;,
due to column elements and its usage in future iterations. If we anticipate the majority of
values in the vector to be nonzero, then ); is close to M, and the difference is small. In
fact, if in each iteration the vector elements are all nonzero, ); is equal to M and the extra
writes are attributed only to replication. On the other hand, if there are many zero entries
in the vector the SSM-V method may not be an efficient method: for every row k in the
vector whose value is zero, there are |M. .| less component values, g, ,,...,q,, , written by

GIM-V (see Table 5.7).

Tables 5.8 and 5.9 give a detailed comparison of number of bytes read and written.

GIM-V SSM-V GIM-V - SSM-V
Reads 2M +V; M + oV M —(a—1)V;
Transfer | M + V; + M | M + M Vi
Writes | M + Vi M+axVig | (1—a)Viy

Table 5.7: Comparing Data Read, Transfer and Write between GIM-V and SSM-V with
the assumption that the vector is dense.
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Time | Map Task | Reduce Task | Bytes Read | Bytes Write
GIM-V | Stage-1 1:40 9 10 515548046 509839300
Stage-2 0:57 9 9 509839300 1429966
Total 2:37 18 19 1025387346 | 511269266
SSM-V | Preprocess 1:43 | 9 10 515548046 588733160
Multiplication | 2:03 9 10 588733160 626040780

Table 5.8: Comparing Data Read, Transfer and Write between GIM-V and SSM-V on a
test problem with 80 Million nonzero matrix elements, and all vector elements are nonzero.

Time | Bytes Write

GIM-V | Stage-1 1:35 452839300
Stage-2 0:47 1251855
Total 2:22 | 454091155

SSM-V | Multiplication | 1:98 | 623976380

Table 5.9: Comparing Data Read, Transfer and Write between GIM-V and SSM-V on a
test problem with 80 Million nonzero matrix elements and a vector which has 20 percent
zero entries.
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Chapter 6

Extension to Jacobi Method

The Jacobi method is a well known iterative algorithm for matrix systems Mz = b that can
easily be parallelized. In fact, both the GIM-V and the SSM-V can naturally be extended
to perform this calculation.

For a square system of n linear equations Mz = b, we can decompose the matrix M as
M = D + R, with

mia 0 0 0 miz2 mic
ma1 0 ma.c

Me—11 0 Me—1,c

L 0 0 Me,c | L Meca Mme; 0 ]

We can then rewrite the equation as Dx + Rx = b and obtain an iterative method as
follows:

o*t = Db — Ra®), (6.2)
1
rth = (b — %M Ty ) (6.3)
new 1
Ty = . _(bz - Zj;éi%‘,j)- (6.4)
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6.1 General Approach

The main objectives used to derive Matrix-Vector multiplication can slightly be adjusted
to accommodate the Jacobi method. These new objectives arc:

e Compute all components ¢; ; where i # j

along with the associated diago-

new
i .

e Group Component elements g, ,, .., q,,_,,q; ;.15 ;.
nal element m,, and an element b; from the b vector to calculate =

6.2 Jacobi via GIM-V

Once again, Stage-1 is used to read and group vector and column elements together. How-
ever, in this case, it will only calculate non diagonal components. The component values
and the diagonal elements are written to the file system. There is very little change needed
for Stage-1, in fact we can reuse the Stage-1-Map function and make slight adjustments to
Stage-1-Reduce.

In Stage-2 (see Figures 6.1 and 6.2), the map functions are assigned data that was
generated from the previous stage as well as the vector b elements. If the Stage-2-Map
function receives a component value g, ., it will output —g, ;, while if it receives an element
b; or m, ,, it will simply output the value. In all cases, the row value ¢ will be the output
key. By reversing component values in the map stage, we allow the reducer to simply
sum over these values. Stage-2-Reduce will then receive all the necessary values it needs,
Qs oy~ Girs —Qigirs s —Gor biym,,, to obtain v, We can also apply a combine
function in this stage to perform partial sums of non-diagonal components and vector b
elements (see Algorithms 9 - 12).

| NCIVEVIRGBINGDY vy, valuo= - g,
e GINEVIUREOBINGRY —+ vey=i, valuo=m,
b DCINEVIRGOBINGRY ey, value-h

Figure 6.1: Stage-2, GIM-V Stage-2-Map function extended for Jacobi.
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b;, mi;

iy —dsi-1 — [(GINEV Jacobi Reduce! — [ey=is valuesoje]

—Giit+1,- -5 —Qic

Figure 6.2: GIM-V Stage-2-Reduce function extended for Jacobi.

Algorithm 9 Jacobi via GIM-V Stage-1

Note: the Stage-1-Map function does not change

Function Stage-1-Reduce(Key, Values]])
Values contains Matriz Elements — m(row,column,value)
and a Vector Element — v(row,value)

v 40
matrizColumnElements < ||
for each eclement e in Values
if e is a vector element then
v < e(value)
else
matrizColumnElements|end] < e
end if
end for
if v is not equal to 0 then
for each matrix element m in matrixColumnFElements
if m(row) = m(column) then
output(m(row), m)
else
q < m(value) x v
output(m(row), q)
end if
end for
end if
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Algorithm 10 Jacobi via GIM-V Stage-2 (Map Phase)

Function Stage-2-Map(Key, Value)
Value is either a Component Element — e(row,value) or
Diagonal Element — d(row,column,value) or element from vector — b(row,value)

if Value is either a diagonal element or element of b vector then
output(Value(row), Value)

else
output(Value(row), —1 x Value)

end if

Algorithm 11 Jacobi via GIM-V Stage-2 Combiner

Function Combine(Key, Values|])
Value is either a Component Element — e(row,value) or
Diagonal Element — d(row,column,value) or element from vector — b(row,value)

vPartial New < 0
for each element e in Values
if e is a diagonal element then
output(key, e)
else
vPartial New < vNew + e(value)
end if
end for
if vPartial New not equal to 0 then
output(key,vPartial New)
end if
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Algorithm 12 Jacobi via GIM-V Stage-2 (Reduce Phase)

Function Stage-2-Reduce(Key, Values]|)
Values contains component Elements — e(row,value),
Diagonal Element — d(row,column,value) and an element from vector — b(row,value)

vNew <0
diagV alue < 0
for each element e in Values
if e is a diagonal element then
diagValue < e(value)
else
vNew « vNew + e(value)
end if
end for
vNew < vNew/diagV alue
if v New not equal to 0 then
output(key, vNew)
end if

6.3 Jacobi via SSM-V

Similarly, SSM-V can be altered to calculate the Jacobi method by following many of the
same changes done for GIM-V Stage-2. Only the Multiplication stage needs to be altered.
The SSMVMap function will receive two types of data structures as input. One type is the
chunked vector-matrix column elements list [j, v;, (i, m;;(value)), (i + 8, miys;(value))],
which is used to calculate the non-diagonal components ¢, ; and outputs the reverse —g, ,
and the matrix column list. The other type is an element b; from the b vector, in which
case it simply outputs the value. Again, in all cases, the row index is used as the output
key.

Then each SSMVReduce function in general receives the element by, component values
~Qurs sG> —Gosgrs - — 4. and column elements m ,,...,m_,. The function then
extracts the diagonal element, m, ,, from the column list and evaluates the v;®”. The
new vector value is then written to output accompanied with the column list for the next

iteration. (See Figures 6.3 and 6.4, and Algorithms 13, 14 and 15).

Comparison tests were not executed, but performance is expected to be similar to
matrix-vector product performance.
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ey, value g
v
o SSMV Jacobi Map

b — [[SSMEVIJacobiMapT —  key=i, valuesh,

Figure 6.3: SSMVMap function extended for Jacobi.

- /-
- SSMEV Jacobi Reduce
pY

Figure 6.4: SSMVReduce function extended for Jacobi (where ¢ is the split size).
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Algorithm 13 Jacobi via SSM-V Multiplication (Map Phase)

Function SSMV-Jacobi-Map(Key, Value)

Value is either [row j, vector value v;, j matriz column elements]
or element from vector b(row,value)

if Value is an element of b vector then
output(Value(row), Value)
else
r < Value(row)
v < Value(vector value)
for each matrix element m in Value(MatrizElements)
if m(column) # r then
q < m(value) x v
output(m(row), —1 * q)
end if
end for

output(Value(row), Value(matriz Elements))
end if

Algorithm 14 Jacobi via SSM-V Combiner

Function SSMV-Jacobi-Combine(Key, Values|])

Values is a list of components q(row, value), an element of b b(row, value)
and Matriz Column Elements

vPartialNew < 0
r <+ Key
for each element x in Values
if z is a component element or vector b element then

vPartial New < vPartial New + x(value)
else

output(r, x)
end if
end for
output(r,vPartial N ew)
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Algorithm 15 Jacobi via SSM-V Multiplication (Reduce Phase)

Function SSMYV-Jacobi-Reduce(Key, Values]])

Values is a list of components q(row, value), an element of b b(row, value)
and Matrix Column Elements

Note: The output will return the new vector value at row key

vNew < 0
bV alue < 0
diagV alue < 0
r < Key
matrizColumnElements < [|
for each eclement x in Values
if z is a component element or vector b element then
vNew + vNew + z(value)
else
matrizColumnElements|end) < x
if x has a diagonal element then
diagV alue < x(diagonalV alue)
end if
end if
end for
vNew < vNew/diagV alue
for each matrix Column Elements L in matrizColumnFElements
output(Key, [r,vNew, L])
end for
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Chapter 7

Conclusions

The SSM-V approach offers an alternative to the two stage GIM-V method for calculating
Matrix-Vector multiplication over many iterations. Even though it can be performed in
a single Map-Reduce phase, and the overall data read and transfer rates are attractive,
it does require writing more data, and a fixed preprocessing cost. The SSM-V algorithm
with its optimization provides an interesting alternative that can be applied not only to
Matrix-Vector multiplication but also to the Jacobi Method.
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