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Abstract

Conditional value at risk (CVaR) is an attractive alternative risk measure to value
at risk (VaR) because of its coherence property and ability to capture tail risk. In data-
driven CVaR optimization where only a small number of scenarios are available, the optimal
solutions are prone to estimation errors which make them unreliable. Smoothing technique
is a method to approximate the loss exceeding a target function and when used in the CVaR
optimization it speeds up the computation dramatically, with a small relative difference. In
this paper, we compare the results from the original CVaR optimization with the smoothed
version and investigate whether the results from the latter are also prone to estimation
errors and become unreliable solutions.
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1 Introduction

Value-at-risk (VaR) is a risk measure of the loss of a portfolio over a specific time horizon
with a confidence level 5. It is an appealing risk measure because of its ability to aggre-
gate risks of instruments of different asset classes into a single number. It has become
an industry standard for risk managers to assess the potential risk of portfolios and for
regulators to impose capital requirement on financial institutions. Basel II permits banks
to use VaR models as internal market risk models [10]. Despite its popularity, VaR has
properties that make it undesirable. Because of its lack of sub-additivity, VaR does not
reflect the diversification effect of portfolios, in which the VaR of the diversified portfolio
may be greater than the total VaR of each instruments [7]. It is also non-convex which
makes VaR optimization very difficult as it contains multiple local minima.

As an extension of VaR, Conditional value-at-risk (CVaR), also known as Expected
Shortfall, is a risk measure of the conditional expectation of losses exceeding VaR over
a specific time horizon with a confidence level . VaR is a quantile measure which only
tells us to expect a loss not greater than a certain value, while CVaR tells us what is the
expected value of the tail loss. Because it can capture the tail risk better, CVaR is proposed
to replace VaR for use in internal risk models by the Basel Committee in the consultative
document published in 2012 [I1]. Unlike VaR, CVaR is a coherent risk measure and has
useful properties such as convexity [13]. Thus the CVaR optimization problem is a convex
optimization in which the local minimum is in fact global.

Rockafellar and Uryasev [14] formulated portfolio optimization using CVaR as the risk
measure. The key of their work was to define a convex auxiliary function as the objective
function. The auxiliary function involves an integral which can be approximated by Monte
Carlo simulation. The minimization of the function was proved to be equivalent to mini-
mizing CVaR. In addition, their approach does not require solving for VaR first, but it is
a by-product of the minimization.

The minimization problem can be translated into a linear programming problem as
shown by Rockafellar and Uryasev. But the computation is inefficient for a large number
of scenarios even with commercial LP solvers. Alexander, Coleman and Li demonstrated
that by using the smoothing technique, such optimization is not only feasible but also
significantly faster, at a cost of a small relative difference from the LP problem [10].

The distributions of returns of the underlying assets arc often not known in practice.
Therefore, historical data is typically a practical choice as input scenarios for the CVaR
optimization. However, since the number of relevant historical markets is limited, the
optimization is prone to estimation errors and becomes unreliable as shown by Lim, Shan-



thikumar and Vahn [9].

Lim, Shthikumar and Vahn demonstrated that the estimation errors of mean returns in
both mean-variance and mean-CVaR optimization contribute significantly to the variation
of the efficient frontiers. Robust optimization can be used to address the uncertainty of the
mean returns. Min-max robust optimization generates an optimal portfolio which produces
the best worst-case performance. An alternative robust model proposed by Zhu, Coleman
and Li [18] is CVaR robust portfolio optimization. Its return performance is measured by
CVaR and the optimal portfolio is generated based on the (1 — §)-tail of the mean returns
distribution. When £ is high, the CVaR robust optimization produces a more robust and
more diversified portfolio than the min-max robust optimization, because it takes a set of
worst-case scenarios into account, instead of a single one.

These studies offer effective techniques to address the estimation errors of mean re-
turns. Therefore, in this paper, we focus on the study of estimation errors of CVaR in
data-driven CVaR optimization, without any estimation errors of the mean returns. The
results of the original CVaR formulation by Rockafellar and Uryasev are compared with
the smoothed version by Alexander, Coleman and Li, under the same distributions used
by Lim, Shanthikumar and Vahn. We show that the smoothing technique helps reducing
the variation of mean-CVaR frontiers and global minimum CVaR in all the distributions
and it is more effective with higher smoothing resolution.

2 Mathematical Formulation

2.1 Formulation of VaR and CVaR

Let f(x,S) be the loss function of a portfolio with decision variable € R™ and random
variable § € R? . Let @ be interpreted as the composition of the portfolio and S as
the underlying risk factors. Let p(S) denote the probability distribution function for the
random variable S. For each given @, the loss of the portfolio, f(x,S), is also a random
variable with a distribution induced by S. The cumulative distribution function of f(x,.S)
not exceeding a threshold «, for a fixed @, is then given by

O(x,a) = / p(S)dS

f(®,8)<a

In general, ®(x,«) is not necessarily continuous because of the possibility of jumps.
However, in this paper, we assume ®(x, a) to be continuous everywhere with respect to «.
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The VaR of the loss random variable associated with a portfolio & and a confidence
level 3, is given by

ag(x) =min{a € R: &(x,a) > [}

For ®(x, ) is smooth, CVaR is the conditional expectation of all the loss exceeding
ag(x). It is given by [13]

¢s(x) = E(f (2, 9)|f (2, §) > ag(x))

Alternatively, it can be represented by

@ =1 [ f@Sps)s (1)

f(@,8)2ap(x)

as shown by [13] and [11].

Rockafellar and Uryasev proposed an augmented function to characterize both ¢z(x)
and ag(x) as follows [11].

Flw.a)=at = [ [f(@.8) - a'p(S)ds 2)
where
Ly )z oiz> 0
2" = {0 L 2<0

The augmented function is convex and continuously differentiable. Rockafellar and
Uryasev proved that minimizing the augmented function in terms of « is equivalent to
solving for CVaR. Hence,

dp(x) = min  Fs(x, a) (3)

aeR

Unlike equation (1), the optimization formulation does not require VaR to be pre-
determined, but calculated as part of the solution. The integral in equation (2) can be
numerically approximated by Monte Carlo simulation as
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> (@ 8 —alt (4)

=1

_ 1
Fﬂ(il)',Oé) :a—l_q(l——ﬁ)

Artzner, Delbaen, Eber and Heath [!] call a risk measure p(.) defined on G € R*
coherent, if it satisfies the following four axioms.

Axiom 1 Translation invariance. For all x € G,a € R, p(x + a) = p(x) + a.
Axiom 2 Subadditivity. For all 1,22 € G, p(x1 + x2) < p(x1) + p(T2).
Axiom 3 Positive homogeneity. For all x € G, > 0, p(Ax) = A\p(x).
Axiom 4 Monotonicity. For all 1,22 € G, if 1 < @2, then p(x1) < p(x2).

VaR is not a coherent risk measure because it does not satisfy the subadditivity axiom.
CVaR is coherent as proved by Pflug in [13].

Kou, Peng and Heyde [%] call a risk measure p(.) robust if it can adapt to model
uncertainty or misspecification, and is not sensitive to small changes in the data. They
suggested that a risk measure used in regulatory purposes, such as capital requirement,
has to be robust so that it can be enforced consistently among financial institutions. Each
institution is allowed to use its own internal model and private data; however, given the
exact same portfolio, each should hold at least the same amount of capital requirement.
If the risk measure is not robust, the institutions can find a model or manipulate the
data such that they only need to hold the least amount of capital. Kou, Peng and Heyde
showed that coherent risk measures, including CVaR, are not robust with respect to small
changes in the data. CVaR, in particular, is highly model-dependent that its computation
relies on the assumptions on the extreme tails of the loss distributions. They proposed a
more robust risk measure, Tail Conditional Median (TCM) as a better risk measure for
regulatory purpose. The study of TCM is beyond the scope of this paper.

2.2 Formulation of CVaR optimization

The formulation (3) can be extended to formulate the portfolio optimization problem with
regard to CVaR. Rockafellar and Uryasev proved that minimizing CVaR is equivalent to
minimizing the augmented function Fs(x, a) with regard to (x, ). That is [11],
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min  ag(x) = min Fs(x, a)

TER™ (z,0) ER™ xR

It is important to note that the VaR, a*, which is resolved as part of the solution of
the CVaR-optimized portfolio, *, may not be the optimized VaR. However, the optimized
CVaR gives us an upper bound of the optimized VaR for, by definition, ¢z(x) > asz(x).

In this paper, we let y; be the uncertain return of instruments under the i*" scenario, z;
be the position of the j* instrument in the portfolio and n be the number of instruments in
the portfolio. Therefore, the loss function f(z, §%) under the i*" scenario can be represented
by

ch’ ijyuz— Yi

We also consider each z; as a weight of the portfolio, so that we have a budget constraint
of the CVaR optimization problem

Zn:l'j =1
j=1

Furthermore, it is reasonable to require an optimized portfolio to return an expected
amount . We impose a constraint on the expected return of the portfolio, with g; the
expected return of the j™ instrument

ijgj >R
j=1

Consider Y = [y1,¥a,...,Yq] a matrix of excess returns of all the instruments in all
scenarios. The complete formulation of the CVaR optimization can be written as

1 : T
min o+ ——— —x y; —a]”
(z,0) ER™ XR q(l - 5) 121[ Y ]

subject to ZZngj >R (5)

j=1

zn:l'j =1
j=1



By using a range of minimal expected return R, we can generate an efficient frontier of
mean-CVaR.

2.3 Linear Programming of CVaR optimization

In order to solve the optimization problem (5) using LP-solvers, it needs to be transformed
into a linear programming problem such as the following [13]:

1 q
min o+ —— Z;
(m,a)ER™ xR q(1—p5) Z

subject to z > 2’y — 1T

Z rig; = R (6)
j=1

j=1

3 Smoothing Approximation

As shown in the previous section, the plus function, [.]7, in (5) can be transformed into
linear programming form by introducing q slack variables and ¢ constraints. The resulting
linear programming (6), which consists of O(¢g+ n) variables and O(q+ n) constraints, can
then be solved by any LP-solvers. In the standard form of LP, min {cTa:|A:c <bx> 0},
the matrix A is a dense matrix with size determined by the number of variables and scenar-
ios. As the size of the portfolio or the number of scenarios increase, the computational cost
increases drastically and it becomes nearly impossible for a large scale CVaR optimization

[16].

Without introducing slack variables and new constraints, another technique for solving
minimization problems with a plus function is to apply smoothing approximation. It
is a technique to approximate the plus function with a high degree of accuracy. Chen
and Mangasarian have shown significant performance gain in solving linear, convex and
nonlinear complementarity problems by using the technique [1] [5].

With regard to the CVaR optimization problem, Alexander, Coleman and Li proposed
to apply smoothing approximation to address the inefficiency in solving large-scale prob-



lems [10]. The piecewise linear approximation in equation (4) is replaced by a continuously
differentiable piecewise quadratic approximation F(x,«),

IR~ ;
Fy(z, a) _@+M;Pe(f($as)—a) (7)

where p.(z) is a smoothing approximation to maz(z,0), with a resolution parameter e.
The proposed formulation is

Z 122 €
pe(z) = Z—z+%z+%6 c—e<z<e (8)
0 : otherwise

The effect of the smoothing technique is illustrated in Figure 1. The function f(«) =
E([S — a]*) is approximated by

— Y lsi—af*

in which S follows a Normal distribution. As the number of samples increases, the
smoothing functions show smaller difference from the piecewise linear function.

With the smoothing approximation, the alternative CVaR optimization is a continuous
piccewise quadratic convex programming problem

1< -
min o+ —— (—x y; —
(YE,CY)ER"”’XR q<1 _ 6) ; p ( yZ )

subject to Zx]»gj >R (9)

=1
n

E ZL’]' =1
j=1

The choice of € is problem dependent. In the CVaR optimization problem, Alexander,
Coleman and Li suggested a typical range between 0.005 and 0.05. Using an interior point
method solver, they demonstrated that the smoothing approximation with ¢ = 0.005 is



Smooth Approximation with 3 samples

2 T T T
5
P15~ A
£ L
° e Piecewise linear
s Ir Approx. epsilon=1.00 -
‘;Z Approx. epsilon=0.50
o
§ 05 — B
0 ! ! ! I !
-1.5 -1 -0.5 0 0.5 1 1.5
alpha
Smooth Approximation with 10000 samples
3 T T T T
% 25 \"\‘\...\ 1
£ 2- — _
) T Piecewise linear
S 15 Approx. epsilon=1.00 B
= Approx. epsilon=0.50
5 1F B
I
Q
< 05 ]
0 I I I I I I I B B ————
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 15 2 2.5

alpha

Figure 1: Plus function and smooth approximation

several times faster than the linear programming approach and only has a small relative
difference (at most 1.5% in their experiments). For a large number of simulations, a smaller
e is recommended to take advantage of the efficiency gain yet with a negligible discrepancy.

4 Data-driven CVaR Optimization

One of the common schemes for scenario generation is by historical simulation. Historical
data of the instruments or their underlyings is gathered over a certain period of time,
such as the past one year or some stressed periods like the financial crisis in 2008 or the
dot-com bubble in 2001. For simple instruments such as common stocks, the historical
data is simply their prices. For derivatives, the contract values can either be re-priced
or approximated by sensitivities such as delta-gamma-theta approximation [3], although
sometimes the sensitivities cannot be easily obtained. In this paper, we will focus on the
simple instruments for simplicity, since this is sufficient for our investigation.

Since CVaR is a tail statistic and we are using Monte Carlo simulation to approximate



the integral in the CVaR formulation, a large number of observations or scenarios is required
for an accurate result. However, in historical simulation, the length of the observation
period is typically limited to one to two years, and rarely more than five years. The
data-driven CVaR optimization is prone to estimation errors due to insufficient amount of
data.

As described in the work of Black and Litterman, in the mean-variance portfolio opti-
mization problem, the optimal portfolio selection is highly sensitive to the expected mean
[2]. In the work later by Lim, Shanthikumar and Vahn, they also demonstrated that the
sampling errors of the mean have a significant impact on the mean-variance problem as
well as on the mean-CVaR problem [9]. In order to prevent the effect of sampling errors in
the mean from understanding the effect of the sampling errors on CVaR, we consider the
global minimum CVaR (GMC) and true mean-empirical CVaR (TMEC) problems posed
by their paper.

4.1 Global Minimum CVaR (GMC)

To avoid the sampling errors from the empirical mean, a natural method is to remove the
requirement of minimum return of the portfolio in formulation (5) and (9). The resulting
formulations will seek for the global minimum CVaR. In this formulation, if the portfolio
consists of a risk-free asset, the solution will become trivial that the optimal portfolio will
only consist of the risk-free asset because it has no loss in all scenarios.

4.2 True Mean-Empirical CVaR (TMEC)

Alternatively, to avoid the sampling errors from the mean in our analysis is to assume the
true mean is given. Let g be the true mean of the returns. The constraint on the expected
return of the portfolio in formulation (5) and (9) is replaced by

Dz =R
i=1

Since the same mean is used for all experiments, it eliminates the sampling errors of
the mean when we compare the results. The variation of the mean-CVaR frontiers can be
attributed to the sampling errors of the CVaR.



5 Approach

Lim, Shanthikumar and Vahn, from their experiments [9], observed significant variation in
the efficient mean-CVaR frontiers when the number of scenarios that is used to generate
each frontier is small, even though the true mean is known in the TMEC problem or the
mean is not taken into account in the GMC problem. The main effect of errors on CVaR
is the sampling errors from the limited data set, which are amplified by the optimization
process. The variation is reduced when the number of scenarios increases. This is a typical
situation in data-driven CVaR optimization where only a time span of one or two years
of real world market data is used. Due to the variation, they concluded that the CVaR-
optimal portfolio is not a reliable solution. It largely underestimates the CVaR and the
true risk exposure of the portfolio.

The smoothing approximation is a good estimate of the plus function when a large
number of scenarios is used. In this paper, we will investigate whether the same effect
of sampling errors will happen in the smoothing approximation. We will compare the
results between CVaR optimization under the smoothing approximation and the original
optimization. Therefore, the experiments are run under the same distributions of returns
by Lim, Shanthikumar and Vahn, and similar evaluation methodology is used.

The distributions in which we simulate the historical data are a multivariate normal
distribution, a mixture of multivariate normal and negative exponential distributions, and a
mixture of multivariate normal and one-sided power distributions. We use each distribution
to generate the excess returns of 5 instruments. The sample histogram of cach distribution
is shown in Figure 2.

5.1 Multivariate Normal

The excess returns of instruments, Y, in this case follow a multivariate normal distribution.
Under the assumption of a normal distribution both the VaR and CVaR can be solved by
analytical methods. It does not capture any tail event but will be a base case for the other
two distributions.

The data used by Lim, Shanthikumar and Vahn is real historical data of 5 stock indices
in North America: Dow Jones Industrial Average (DJI), NASDAQ Composite (IXIC),
NYSE Composite (NYA), S&P 100 (OEX) and S&P 500 (GSPC). The time period is from
August 3, 1984 to June 1, 2009. The time interval between each scenario is one month [J].

Y ~N(p,X)
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where

26.11 3.715 3.730 4.420 3.606 3.673
25.21 3.730 3.908 4.943 3.732 3.916

p= 2890 «10"* Y= |4.420 4.943 8.885 4.378 5.010 | x10*
28.68 3.606 3.732 4.378 3.930 3.789
24.18 3.673 3.916 5.010 3.799 4.027

5.2 Multivariate Normal + Negative Exponential Tail

The second case we consider is a mixture of a multivariate normal and a negative expo-
nential distributions. In most of the scenarios, the excess returns will follow a multivariate
normal distribution, but with a small probability a perfectly correlated exponential tail
loss will occur in all instruments. The tail loss probability follows a Bernoulli distribution.

Y~ (1—1I(p)N(,2) +1(p)(Ze+ f)

where

fz(z) =

AeM <0
0 x>0

The parameters we use in our experiments are p = 0.05, A = 10, e is 5x1 vector of ones

and f; = p; — /2.

5.3 Multivariate Normal + One-sided Power Tail

The last case we consider is a mixture of a multivariate normal and a one-sided power
distributions. The formulation is similar to the second case. The power distribution
considered by Lim, Shanthikumar and Vahn is a special case of a Pareto distribution. The
Pareto distribution is a heavy-tail distribution with a shape parameter «, a scale parameter
x,, and a probability density function [17]

0 T < Ty,

11
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Figure 2: Histogram of 10,000 samples of cach distribution

For the special case we set a« =y — 1, x,, = —1. That is,
L ir <1
I
) =
f2(@) {O x> —1

With a small probability, a perfectly correlated power tail loss will occur to all instru-
ments. The excess returns Y follows

Yoo (1= 1(p))N(p, 3) + 1(p)Z () f

The parameters in our experiments are p = 0.05, v = 3.5 and f; = p; — 5v/ 2.

5.4 Algorithms for Efficient Frontiers
In this section we describe the algorithms for generating efficient frontiers in the TMEC

and GMC cases with the original CVaR optimization problem and the smoothing approx-
imation.
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5.4.1 Algorithm for TMEC

This is the algorithm to generate an efficient frontier in the TMEC case. Repeat the process
for as many frontiers as necessary.

1. Generate Y = [y, .., Y4 samples from excess return distribution M
2. For R = [Ry, .., Ry], range of minimum expected return
(a) Solve for the optimal portfolio &* for R, using formulation (5) for the original
CVaR optimization, and formulation (9) for the smoothing approximation.

(b) Generate D = [dy, .., d,] samples from distribution M, for a large m.

(c) Solve for the true CVaR using Monte Carlo simulation with D and the formu-
lation (4).

(d) Compute for the expected mean by Fx = Z TjpL
j=1
(e) Plot the coordinate (CVaR, Ex) to construct the frontier.

5.4.2 Algorithm for GMC

The algorithm in the GMC case is very similar to the TMEC case, except that it does
not require specifying a minimum expected return. The result is not an efficient frontier
but a single point. Repeat the process to generate a scatter plot of minimum CVaR and
minimum mean of returns.

1. Generate Y = [y1, .., Y4] samples from excess return distribution M

2. Solve for the optimal portfolio *, using formulation (5) for the original CVaR opti-
mization, and formulation (9) for the smoothing approximation.

3. Generate D = [dy, .., d,,]| samples from distribution M, for a large m.

4. Solve for the true CVaR using Monte Carlo simulation with D and the formulation

(4).

5. Compute for the expected mean by Fx = Z Tl
j=1

6. Plot the coordinate (CVaR, Ex).

13



5.4.3 Software Package

CVX is an optimization modeling language implemented in Matlab. It can solve standard
optimization problems including linear programs (LP), quadratic programs (QP), second-
order cone programs (SOCP) and semidefinite programs (SDP) [6]. Problems can be
defined in CVX as close as how they are written. In addition, some of the common
functions such as max and min are directly supported. Hence, in our experiments, we will
use CVX to solve for the optimal portfolios in formulation (5). The smoothing technique
in formulation (9) is a piecewise function which is not supported in CVX. We will use the
fmincon’ function from the Optimization Toolbox in Matlab.

6 Experiments

In the following experiments, in order to keep the simulated data consistent, the scenario
generation for each distribution is started by the same random seed and they are generated
prior to the execution of the experiments. In computing the true CVaR with the optimal
portfolios, the same 10,000 simulated scenarios are used across all experiments, such that
there is not any variation in computing the true CVaR.

In Experiment 1 and 2 we will replicate the TMEC and GMC observations made by
Lim, Shanthikumar and Vahn in the original CVaR formulation, and compare them with
the results of the smoothing technique. In Experiment 3 and 4, we will investigate the
effect of the smoothing parameter ¢ on the results. In Experiment 5 and 6, we will vary
the shape of the distributions and examine how it affects the effectiveness of the smoothing
technique.

6.1 Experiment 1

In this experiment, we compare the impact on the efficient frontiers in the TMEC setting
between the original CVaR optimization problem and the smoothed version, with respect
to the number of simulated scenarios q. The smoothing parameter is fixed at ¢ = 0.005
and € = 0.05 to show any difference at different smoothness resolution. The experiment is
run under all three distributions.

The results in the Normal distribution are shown in Figure 3. We observe that the
mean-CVaR frontiers gencrated by the smoothing technique vary less as the parameter
¢ increases. The frontiers by ¢ = 0.05 are apparently more concentrated than those by

14



e = 0.005 and the original formulation. Table 1 that shows the standard deviation in the
upper, middle and lower sections of the frontiers confirms the observation in the plots.
With e = 0.005, the smoothed version reduces the standard deviation by about 5-6% with
50 scenarios and 8-18% with 400 over the original formulation. With ¢ = 0.05 the standard
deviation is significantly reduced by at least 30% with 50 scenarios and 53% with 400.

x107 q=50 x107 =200 x107 =400
z 8- 8r
7r 7r 7F
61 6 6l
€ € €
=] > =]
ko k5l ko]
o o o
@ 5F @ 5F @5
[0] [0] [0
(&) o Q
x x x
u w u
i w i
4r 4r 4r
non-smooth
£=0.005
¢=0.05
3r 3+ 3l
non-smooth| non-smooth|
£=0.005 £=0.005
¢=0.05 £¢=0.05
2 1 1 1 1 2 L 1 1 1 J 2 1 1 1 J
0 005 01 015 0.2 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
True CVaR True CVaR True CVaR

Figure 3: Experiment 1: Efficient frontiers in TMEC in Normal distribution.

In Figure 4 and Table 2 | the results in the mixture of the Normal and Exponential
distributions also indicate that the smoothing technique reduces the standard deviation
from the original formulation, although it is not as significant as in the Normal distribution.
The smoothed version with ¢ = 0.05 reduces 11-14% of variation with 50 scenarios and
21-40% with 400.

The results in the mixture of the Normal and one-sided Power distributions are illus-
trated in Figure 5. As in the other two distributions, we observe that as the smoothing
parameter increases, the variation of the frontiers is less. The detailed comparison is shown
in Table 3. The reduction in variation is similar to the case in the Normal distribution.
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Figure 4: Experiment 1: Efficient frontiers in TMEC in Normal+Exponential distribution.

The smoothed version with ¢ = 0.005 reduces 5-6% standard deviation with 50 scenarios,
while with € = 0.05 it reduces 32-43%. With 400 scenarios, the former reduces 1-18% and
the latter 44-54%.
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Figure 5: Experiment 1: Efficient frontiers in TMEC in Normal+Power distribution.

6.2 Experiment 2

This experiment is similar to the Experiment 1, but we measure the variation of minimum
CVaR in the GMC setting with various number of scenarios q. We only consider the CVaR
produced by both formulations because the expected mean is not the subject of our study.

The scatter plot of the minimum CVaR and the corresponding expected mean in Figure
6 shows that as the smoothing effect increases, the minimum CVaR generated by the
smoothed formulation is more stable than the original version. Results in Table 4 confirm
the same observation that even when more scenarios are available, the smoothed version
consistently produces less variation. The reduction in standard deviation is close to the
results of TMEC in Experiment 1.

The improvement of the smoothed version over the original is less obvious in the mixture
of the Normal and Exponential distributions as shown in Figure 7. In Table 5, we observe
that the results by the smoothed version with € = 0.005 contain only slightly lower standard
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Figure 6: Experiment 2: Scatter plot of true CVaRs and minimum expected means in
Normal distribution.

deviation than the original with 50 and 200 scenarios. However, with 400 scenarios, it
actually increases the deviation. The smoothed version with ¢ = 0.05 reduces the deviation
by 12-25%, which is similar to the observations in Experiment 1.

The deviation reduction in the mixture of Normal and the Power distributions is the
worst among the three distributions. From the results in Figure 8 and Table 6, the
smoothed version with ¢ = 0.005 reduces only 0.37% and 1.14% with 50 and 200 sce-
narios, respectively; however, it increases deviation with 400 scenarios. The smoothed
version with € = 0.05 only reduces 2-10%.
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6.3 Experiment 3

From this experiment on, we will focus on the situations where only few scenarios are
available because this is the case where the original CVaR formulation is fragile. For con-
sistency with the previous experiments we will run the experiments with only 50 scenarios.
In this experiment we will compare the performance of a range of smoothing parameter e
on the variation of the minimum CVaR results in the TMEC setting. We want to test if
the reduction in variation will be greater with a higher smoothing resolution.

From Table 7, 8 and 9, we observe a consistency among all three distributions that
as the smoothing resolution e increases, the standard deviation of the minimum CVaR
decreases. With € = 0.01, the smoothed version reduces about 10% of standard deviation
over the original formulation in the Normal and the mixture of the Normal and Power
distributions. However, in the mixture of the Normal and Exponential distributions, the
smoothing resolution has to be increased to € = 0.05 to produce a similar reduction.

6.4 Experiment 4

In this experiment we repeat the experiment 3 to compare the performance of different
smoothing parameters in the GMC setting. The results are shown in Table 10, 11 and 12.

In the GMC setting, we continue to observe that higher smoothing resolution helps
reducing standard deviation of the minimum CVaR. The results in the Normal and the
mixture of Normal and Exponential distributions are similar to the TMEC setting. How-
ever, in the mixture of Normal and Power distribution, the reduction is much less than in
the TMEC, although it still reduces the deviation consistently. Similar observation is made
in Experiment 2 where even with high smoothing resolution, the reduction in deviation is
not significant.

6.5 Experiment 5

The rate of the exponential tail loss is controlled by the A parameter in the mixture of
Normal and Exponential distributions. As A\ increases, the exponential loss occurs more
frequently, as illustrated in Figure 9. In this experiment we will compare the performance
of variation reduction by the smoothing technique in various A setting. The results are
shown in Table 13.

The reduction of the standard deviation of minimum CVaR by the smoothing technique
is more significant as exponential loss happens more frequently (as A increases). With
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Figure 9: Histogram of 10,000 samples of the Normal+Exponential distribution with vari-
ous A.

A = 2.0, the rate of event occurrence is lower. As observed in Figure 9, most of the
occurrences are concentrated in the center, around 0. In this distribution the excess returns
are likely to happen within the center. In this situation, we observe that the smoothing
technique does not reduce the variation by much. However, on the other extreme, when
A = 20.0, the excess returns are more likely to happen further from the center. In this
case, the smoothing technique reduces much more variation.

6.6 Experiment 6

For the mixture of the Normal and one-sided Power distributions, as illustrated in Figure
10, there is a jump in the frequency of the tail loss that results in a hump in the histogram,
as the parameter ~ increases. In this experiment we will compare the performance of
variation reduction by the smoothing technique in various 7y setting. The results are shown
in Table 14.

22



Normal+Power gamma=3.0 Normal+Power gamma=4.0 Normal+Power gamma=6.0

8000 T T 4000 T T T 900 T
7000 4 8500} . 800
700
6000 1 3000 i
600
5000 B 2500 4
500
4000 1 2000 i
400
3000 B 1500 4
300
2000 B 1000 4
200
1000 | 1 500 1 100}
. _d L Ji . ‘
-10 -5 0 5 -6 -4 -2 0 2 -1 -0.5 0 0.5
Excess Return Excess Return Excess Return

Figure 10: Histogram of 10,000 samples of the Normal+Power distribution with various .

The reduction in the standard deviation of minimum CVaR by the smoothing technique
is more effective as the v parameter of the Power distribution increases. When - is as low
as 3.0, most of the excess returns are concentrated in the center, which is 0. In this case,
the smoothing technique is not very effective in reducing the standard deviation. However,
when v is increased to 6.0, the excess returns are no longer concentrated around 0 but
a good portion are negative returns further away from 0. In this case, the smoothing
technique is effective at reducing the standard deviation.

7 Conclusion

In this paper, we compare the minimum CVaR computed for the optimal portfolios which
are solved by the original CVaR optimization formulation proposed by Rockafellar and
Uryasev and by the smoothed version by Alexander, Coleman and Li. The experiments
are run in both the TMEC setting where the true mean of the underlying distribution
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is known and a minimum expected return is guaranteed, and the GMC where the global
minimum CVaR is sought. In the experiments where only 50 scenarios are available, the
smoothed version always produces minimum CVaR with a lower standard deviation among
the samples than the original formulation. In the paper by Lim, Shanthikumar and Vahn,
the optimal portfolios solved by the original formulation were shown to be unreliable. In
this paper, we observe that the smoothing technique can improve the reliability of the
optimal portfolios.
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Table 1: Experiment 1. Comparison of variation reduction of different values of smoothing
parameter € (0.0, 0.005, 0.05). ¢ = 0.0 means no smoothing. q (50, 200, 400) mean-CVaR
frontiers are generated with range of expected means [2.5 : 7.5] * 1073, Portfolio losses are
simulated under Normal distribution. Comparison is shown by the minimum, maximum
and standard deviations of CVaRs at different level of expected means.

| e=0.0 | e = 0.005 | e =0.05

mean=0.0030

min: 0.050379 min: 0.050523 min: 0.050540

max: 0.081689 max: 0.078693 max: 0.064479

std: 0.005937 std: 0.005577 std: 0.003982

q=50 (-6.08 %) (-32.93 %)

min: 0.050294 min: 0.050393 min: 0.050249

max: 0.062970 max: 0.063121 max: 0.055630

std: 0.002749 std: 0.002437 std: 0.001166

q=200 (-11.33 %) (-57.56 %)

min: 0.050076 min: 0.050061 min: 0.050117

max: 0.058771 max: 0.056835 max: 0.053348

std: 0.001771 std: 0.001442 std: 0.000696

q=400 (-18.59 %) (-60.73 %)
mean=0.0050

min: 0.079099 min: 0.078400 min: 0.078564

max: 0.130318 max: 0.127671 max: 0.109421

std: 0.009690 std: 0.009127 std: 0.005994

q=50 (-5.81 %) (-38.14 %)

min: 0.078071 min: 0.078148 min: 0.078300

max: 0.103711 max: 0.103454 max: 0.093084

std: 0.005265 std: 0.005040 std: 0.002879

q=200 (-4.26 %) (-45.32 %)

min: 0.078433 min: 0.078141 min: 0.077987

max: 0.094300 max: 0.092386 max: 0.083424

std: 0.002951 std: 0.002706 std: 0.001227

q=400 (-8.30 %) (-58.43 %)
mean=0.0070

min: 0.118340 min: 0.118166 min: 0.118491

max: 0.185188 max: 0.183027 max: 0.170168

std: 0.015255 std: 0.014459 std: 0.010606

q=50 (-5.21 %) (-30.47 %)

min: 0.118332 min: 0.118431 min: 0.118421

max: 0.163814 max: 0.154259 max: 0.140171

std: 0.008799 std: 0.007943 std: 0.004704

q=200 (-9.73 %) (-46.55 %)

min: 0.118443 min: 0.117990 min: 0.1I8258

max: 0.138215 max: 0.136426 max: 0.128975

std: 0.004822 std: 0.004346 std: 0.002227

q=400 (-9.86 %) (-53.81 %)
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Table 2: Experiment 1. Comparison of variation reduction of different values of smoothing
parameter € (0.0, 0.005, 0.05). ¢ = 0.0 means no smoothing. q (50, 200, 400) mean-CVaR
frontiers are generated with range of expected means [2.5 : 7.5] * 1073, Portfolio losses are
simulated under Normal+Exponential distribution. Comparison is shown by the minimum,

maximum and standard deviations of CVaRs at different level of expected means.

| e=0.0 | e = 0.005 | e =0.05

mean=0.0030

min: 0.290935 min: 0.290924 min: 0.291236

max: 0.569548 max: 0.567099 max: 0.544886

std: 0.062397 std: 0.061425 std: 0.053392

q=50 (-1.56 %) (-14.43 %)

min: 0.291010 min: 0.290898 min: 0.290962

max: 0.551235 max: 0.546080 max: 0.501605

std: 0.048730 std: 0.047628 std: 0.038447

q=200 (-2.26 %) (-21.10 %)

min: 0.290766 min: 0.290720 min: 0.291625

max: 0.340432 max: 0.337131 max: 0.320204

std: 0.012726 std: 0.011968 std: 0.007584

q=400 (-5.96 %) (-40.40 %)
mean=0.0050

min: 0.314748 min: 0.314730 min: 0.315441

max: 0.598246 max: 0.595365 max: 0.570174

std: 0.065743 std: 0.064890 std: 0.057438

q=50 (-1.30 %) (-12.63 %)

min: 0.315173 min: 0.315139 min: 0.315255

max: 0.584825 max: 0.580367 max: 0.540768

std: 0.046576 std: 0.045770 std: 0.038417

q=200 (-1.73 %) (-17.52 %)

min: 0.315231 min: 0.315047 min: 0.315243

max: 0.370463 max: 0.368413 max: 0.346632

std: 0.013692 std: 0.012892 std: 0.009010

q=400 (-5.84 %) (-34.20 %)
mean=0.0070

min: 0.347001 min: 0.346987 min: 0.347033

max: 0.746492 max: 0.744864 max: 0.695279

std: 0.082613 std: 0.081940 std: 0.073013

q=50 (-0.81 %) (-11.62 %)

min: 0.347274 min: 0.346830 min: 0.348362

max: 0.617886 max: 0.613657 max: 0.558782

std: 0.043564 std: 0.042809 std: 0.034512

q=200 (-1.73 %) (-20.78 %)

min: 0.346862 min: 0.346978 min: 0.347691

max: 0.401421 max: 0.405863 max: 0.391903

std: 0.013464 std: 0.013383 std: 0.010507

q=400 (-0.61 %) (-21.96 %)
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Table 3: Experiment 1. Comparison of variation reduction of different values of smoothing
parameter € (0.0, 0.005, 0.05). ¢ = 0.0 means no smoothing. q (50, 200, 400) mean-CVaR
frontiers are generated with range of expected means [2.5 : 7.5] * 1073. Portfolio losses
are simulated under Normal+Power distribution. Comparison is shown by the minimum,

maximum and standard deviations of CVaRs at different level of expected means.

| e=0.0 | e =0.005 | e =0.05

mean—0.0030

min: 0.095627 min: 0.095369 min: 0.094800

max: 0.193767 max: 0.186906 max: 0.130766

std: 0.017950 std: 0.016805 std: 0.010095

q=50 (-6.38 %) (—43.76 %)

min: 0.094132 min: 0.093813 min: 0.093007

max: 0.116334 max: 0.112235 max: 0.105978

std: 0.005071 std: 0.004880 std: 0.003119

q=200 (-3.77 %) (-38.50 %)

min: 0.093116 min: 0.093013 min: 0.093103

max: 0.112565 max: 0.112559 max: 0.105366

std: 0.004416 std: 0.003603 std: 0.002020

q=400 (-18.40 %) (—54.26 %)
mean=0.0050

min: 0.115257 min: 0.115394 min: 0.114351

max: 0.211919 max: 0.205191 max: 0.159090

std: 0.018210 std: 0.017270 std: 0.011399

q=50 (—5.16 %) (—37.40 %)

min: 0.113585 min: 0.113263 min: 0.112452

max: 0.135498 max: 0.135705 max: 0.129885

std: 0.006151 std: 0.005619 std: 0.003864

q=200 (-8.64 %) (-37.19 %)

min: 0.112489 min: 0.112355 min: 0.112596

max: 0.134715 max: 0.136442 max: 0.127714

std: 0.004893 std: 0.004557 std: 0.002569

q=400 (-6.88 %) (—47.50 %)
mean=0.0070

min: 0.133948 min: 0.133865 min: 0.135386

max: 0.230796 max: 0.224270 max: 0.189839

std: 0.020309 std: 0.019119 std: 0.013650

q=50 (-5.86 %) (-32.79 %)

min: 0.133818 min: 0.133044 min: 0.132399

max: 0.161453 max: 0.163203 max: 0.154623

std: 0.006984 std: 0.006633 std: 0.004764

q=200 (-5.02 %) (-31.79 %)

min: 0.132371 min: 0.132385 min: 0.132655

max: 0.157507 max: 0.160408 max: 0.150413

std: 0.005770 std: 0.005673 std: 0.003207

q=400 (-1.66 %) (-44.42 %)
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Experiment 2

Table 4: Experiment 2. Comparison of variation reduction of different values of smoothing
parameter € (0.0, 0.005, 0.05). € = 0.0 means no smoothing. q (50, 200, 400) mean-CVaR
frontiers are generated. Each frontier is the global minimum CVaR and its corresponding
mean. Portfolio losses are simulated under Normal distribution. Comparison is shown by

the minimum, maximum and standard deviations of CVaRs.

e=20.0 e = 0.005 e =0.05
min: 0.046555 min: 0.046561 min: 0.046718
max: 0.098756 max: 0.094785 max: 0.087207
std: 0.008730 std: 0.008100 std: 0.005676
q=50 (-7.22 %) (-34.99 %)
min: 0.046710 min: 0.046603 min: 0.046470
max: 0.069287 max: 0.063710 max: 0.057349
std: 0.004150 std: 0.003269 std: 0.001424
q=200 (-21.24 %) (-65.68 %)
min: 0.046498 min: 0.046530 min: 0.046483
max: 0.062158 max: 0.058613 max: 0.050916
std: 0.002471 std: 0.001988 std: 0.000814
q=400 (-19.54 %) (-67.06 %)

Table 5: Experiment 2. Comparison of variation reduction of different values of smoothing
parameter € (0.0, 0.005, 0.05). € = 0.0 means no smoothing. q (50, 200, 400) mean-CVaR
frontiers are generated. Each frontier is the global minimum CVaR and its corresponding
mean. Portfolio losses are simulated under Normal+Exponential distribution. Comparison
is shown by the minimum, maximum and standard deviations of CVaRs.

e=20.0 e = 0.005 e =0.05
min: 0.249265 min: 0.249306 min: 0.249428
max: 1.252156 max: 1.245693 max: 1.187703
std: 0.114992 std: 0.113694 std: 0.100706
q=50 (-1.13 %) (-12.42 %)
min: 0.249321 min: 0.249342 min: 0.249122
max: 0.564790 max: 0.561450 max: 0.520145
std: 0.043689 std: 0.042587 std: 0.032587
q=200 (-2.52 %) (-25.41 %)
min: 0.249055 min: 0.249006 min: 0.248685
max: 0.398648 max: 0.397963 max: 0.386792
std: 0.016373 std: 0.016446 std: 0.012788
q=400 (0.45 %) (-21.89 %)
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Table 6: Experiment 2. Comparison of variation reduction of different values of smoothing
parameter € (0.0, 0.005, 0.05). ¢ = 0.0 means no smoothing. q (50, 200, 400) mean-CVaR
frontiers are generated. Each frontier is the global minimum CVaR and its corresponding
mean. Portfolio losses are simulated under Normal+Power distribution. Comparison is
shown by the minimum, maximum and standard deviations of CVaRs.

e =20.0 e = 0.005 e = 0.05
min: 0.081961 min: 0.081775 min: 0.083450
max: 0.628890 max: 0.618426 max: 0.547177
std: 0.073601 std: 0.073326 std: 0.072056
q=50 (-0.37 %) (-2.10 %)
min: 0.082165 min: 0.082640 min: 0.080936
max: 0.211775 max: 0.210037 max: 0.184371
std: 0.021527 std: 0.021281 std: 0.019375
q=200 (-1.14 %) (-10.00 %)
min: 0.082918 min: 0.082943 min: 0.080609
max: 0.185060 max: 0.185157 max: 0.156789
std: 0.015028 std: 0.015557 std: 0.014616
q=400 (3.52 %) (-2.74 %)

Experiment 3
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Table 7: Experiment 3. Extension of Experiement 1. Comparison of variation reduction
of different values of smoothing parameter e (0.0, 0.001, 0.005, 0.01, 0.05). 50 mean-CVaR
frontiers are generated with range of expected means [2.5 : 7.5] * 1073. Portfolio losses are
simulated under Normal distribution. Comparison is shown by the minimum, maximum

and standard deviations of CVaRs at different level of expected means.

(-1.44 %)

(-5.21 %)

(-9.47 %)

e=20.0 e = 0.001 e = 0.005 e =0.01 e = 0.05
mean=0.0030
min: 0.050379 min: 0.050408 min: 0.050523 min: 0.050692 min: 0.050540
max: 0.081689 | max: 0.081345 | max: 0.078693 | max: 0.074084 | max: 0.064479
std: 0.005937 std: 0.005914 std: 0.005577 std: 0.005120 std: 0.003982
(-0.40 %) (-6.08 %) (-13.77 %) (-32.93 %)
mean=0.0050
min: 0.079099 min: 0.079106 min: 0.078406 min: 0.078109 min: 0.078564
max: 0.130318 max: 0.129802 max: 0.127671 max: 0.125049 max: 0.109421
std: 0.009690 std: 0.009549 std: 0.009127 std: 0.008637 std: 0.005994
(-1.45 %) (-5.81 %) (-10.87 %) (-38.14 %)
mean=0.0070
min: 0.118340 min: 0.118290 min: 0.118166 min: 0.1I8191 min: 0.118491
max: 0.185188 | max: 0.184233 max: 0.183027 | max: 0.181561 max: 0.170168
std: 0.015255 std: 0.015035 std: 0.014459 std: 0.013810 std: 0.010606

(-30.47 %)
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Table 8: Experiment 3. Extension of Experiement 1. Comparison of variation reduction
of different values of smoothing parameter e (0.0, 0.001, 0.005, 0.01, 0.05). 50 mean-CVaR
frontiers are generated with range of expected means [2.5 : 7.5] * 1073, Portfolio losses are
simulated under Normal+Exponential distribution. Comparison is shown by the minimum,
maximum and standard deviations of CVaRs at different level of expected means.

e=20.0 e = 0.001 e = 0.005 e =0.01 e = 0.05

mean=0.0030
min: 0.290935 min: 0.290933 min: 0.290924 min: 0.290916 min: 0.291236
max: 0.569548 | max: 0.569055 | max: 0.567099 | max: 0.564650 | max: 0.544886
std: 0.062397 std: 0.062202 std: 0.061425 std: 0.060399 std: 0.053392
(-0.31 %) (-1.56 %) (-3.20 %) (-14.43 %)

mean=0.0050
min: 0.314748 min: 0.314751 min: 0.314730 min: 0.314775 min: 0.315441
max: 0.598246 max: 0.597672 max: 0.595365 max: 0.592486 max: 0.570174
std: 0.065743 std: 0.065571 std: 0.064890 std: 0.064051 std: 0.057438
(-0.26 %) (-1.30 %) (-2.57 %) (-12.63 %)

mean=0.0070
min: 0.347001 min: 0.346999 min: 0.346987 min: 0.346989 min: 0.347033
max: 0.746492 max: 0.746169 max: 0.744864 max: 0.743247 | max: 0.695279
std: 0.082613 std: 0.082476 std: 0.081940 std: 0.081277 std: 0.073013
(-0.17 %) (-0.81 %) (-1.62 %) (-11.62 %)
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Table 9: Experiment 3. Extension of Experiement 1. Comparison of variation reduction
of different values of smoothing parameter e (0.0, 0.001, 0.005, 0.01, 0.05). 50 mean-CVaR
frontiers are generated with range of expected means [2.5 : 7.5] * 1073. Portfolio losses
are simulated under Normal+Power distribution. Comparison is shown by the minimum,
maximum and standard deviations of CVaRs at different level of expected means.

e=0.0 | e = 0.001 | e = 0.005 | e =0.01 | e =0.05

mean=0.0030
min: 0.095627 min: 0.095577 min: 0.095369 min: 0.095117 min: 0.094800
max: 0.193767 max: 0.192396 max: 0.186906 max: 0.180133 max: 0.130766
std: 0.017950 std: 0.017716 std: 0.016805 std: 0.015775 std: 0.010095
(-1.31 %) (-6.38 %) (-12.12 %) (-43.76 %)

mean=0.0050
min: 0.115257 min: 0.115279 min: 0.115394 min: 0.115624 min: 0.114351
max: 0.211919 max: 0.210575 max: 0.205191 max: 0.198555 max: 0.159090
std: 0.018210 std: 0.018094 std: 0.017270 std: 0.016315 std: 0.011399
(-0.63 %) (-5.16 %) (-10.40 %) (-37.40 %)

mean=0.0070
min: 0.133948 min: 0.133920 min: 0.133865 min: 0.133892 min: 0.135386
max: 0.230796 | max: 0.229484 max: 0.224270 max: 0.217949 max: 0.189839
std: 0.020309 std: 0.020058 std: 0.019119 std: 0.018024 std: 0.013650
(-1.24 %) (-5.86 %) (-11.25 %) (-32.79 %)
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Experiment 4

Table 10: Experiment 4. Extension of Experiment 2. Comparison of variation reduction
of different values of smoothing parameter € (0.0, 0.001, 0.005, 0.01, 0.05). 50 mean-CVaR
frontiers are generated. Each frontier is the global minimum CVaR and its corresponding
mean. Portfolio losses are simulated under Normal distribution. Comparison is shown by

the minimum, maximum and standard deviations of CVaRs.
e=0.0 e =0.001 e = 0.005 e =0.01

e = 0.05

min: 0.046555
max: 0.098756
std: 0.008730

min: 0.046541
max: 0.097955
std: 0.008590

(-1.61 %)

min: 0.046561
max: 0.094785
std: 0.008100

(-7.22 %)

min: 0.046712
max: 0.090903
std: 0.007589

(-13.07 %)

min: 0.046718
max: 0.087207
std: 0.005676

(-34.99 %)

Table 11: Experiment 4. Extension of Experiment 2. Comparison of variation reduction
of different values of smoothing parameter € (0.0, 0.001, 0.005, 0.01, 0.05). 50 mean-CVaR
frontiers are generated. Each frontier is the global minimum CVaR and its corresponding
mean. Portfolio losses are simulated under Normal+Exponential distribution. Comparison

is shown by the minimum, maximum and standard deviations of CVaRs.
e=0.0 e = 0.001 e = 0.005 e =0.01

e = 0.05

min: 0.249265
max: 1.252156
std: 0.114992

min: 0.249261
max: 1.250862
std: 0.114881

min: 0.249306
max: 1.245693
std: 0.113694

min: 0.249329
max: 1.239234
std: 0.112222

min: 0.249428
max: 1.187703
std: 0.100706

(-0.10 %) (-1.13 %) (-2.41 %) (-12.42 %)

Table 12: Experiment 4. Extension of Experiment 2. Comparison of variation reduction
of different values of smoothing parameter € (0.0, 0.001, 0.005, 0.01, 0.05). 50 mean-CVaR
frontiers are generated. Each frontier is the global minimum CVaR and its corresponding
mean. Portfolio losses are simulated under Normal+Power distribution. Comparison is
shown by the minimum, maximum and standard deviations of CVaRs.
e=0.0 e = 0.001 e = 0.005 e =0.01

e = 0.05

min: 0.081961
max: 0.628890
std: 0.073601

min: 0.081866
max: 0.626797
std: 0.073539

(-0.08 %)

min: 0.081775
max: 0.618426
std: 0.073326

(-0.37 %)

min: 0.081916
max: 0.607961
std: 0.073000

(-0.82 %)

min: 0.083450
max: 0.547177
std: 0.072056

(-2.10 %)

Experiment 5
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Table 13: Experiment 5. Comparison of variation reduction of different values of smoothing
parameter € (0.0, 0.001, 0.005, 0.01, 0.05). 50 mean-CVaR frontiers are generated. Each
frontier is the global minimum CVaR and its corresponding mean. Portfolio losses are
simulated under Normal+Exponential distribution with various A. Comparison is shown
by the minimum, maximum and standard deviations of CVaRs.

e=00 | =000l | €=0.005 | e=001 | e =0.05

A=2.0000
min: 1.192987 min: 1.193002 min: 1.193078 min: 1.193173 min: 1.193234
max: 6.218746 | max: 6.049199 | max: 6.212247 | max: 6.205749 | max: 6.153777
std: 0.568375 std: 0.564152 std: 0.566893 std: 0.565412 std: 0.553605
(-0.74 %) (-0.26 %) (-0.52 %) (-2.60 %)

A=4.0000
min: 0.602995 min: 0.602988 min: 0.602974 min: 0.602885 min: 0.602290
max: 3.114036 | max: 3.112739 | max: 3.107551 max: 3.101066 | max: 3.049187
std: 0.284501 std: 0.284547 std: 0.283364 std: 0.281887 std: 0.270300
(0.02 %) (-0.40 %) (-0.92 %) (-4.99 %)

A=8.0000
min: 0.308058 min: 0.308065 min: 0.307923 min: 0.307762 min: 0.307963
max: 1.562323 | max: 1.561029 | max: 1.555856 | max: 1.549390 | max: 1.497660
std: 0.143229 std: 0.143158 std: 0.142007 std: 0.140499 std: 0.128973
(-0.05 %) (-0.85 %) (-1.91 %) (-9.95 %)

A=12.0000
min: 0.210193 min: 0.210178 min: 0.210186 min: 0.210224 min: 0.210160
max: 1.045680 | max: 1.044395 max: 1.039253 max: 1.032826 | max: 0.981408
std: 0.096150 std: 0.096020 std: 0.094852 std: 0.093365 std: 0.081989
(-0.14 %) (-1.35 %) (-2.90 %) (-14.73 %)

A=16.0000
min: 0.161665 min: 0.161628 min: 0.161548 min: 0.161549 min: 0.161581
max: 0.788010 | max: 0.786728 | max: 0.781600 | max: 0.775190 | max: 0.723931
std: 0.072551 std: 0.072439 std: 0.071279 std: 0.069837 std: 0.058528
(-0.15 %) (-1.75 %) (-3.74 %) (-19.33 %)

A=20.0000
min: 0.132692 min: 0.132669 min: 0.132682 min: 0.132814 min: 0.132892
max: 0.633805 max: 0.632527 | max: 0.627413 max: 0.621021 max: 0.569994
std: 0.058122 std: 0.057981 std: 0.056807 std: 0.055354 std: 0.044368
(-0.24 %) (-2.26 %) (-4.76 %) (-23.66 %)

Experiment 6
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Table 14: Experiment 6. Comparison of variation reduction of different values of smoothing
parameter € (0.0, 0.001, 0.005, 0.01, 0.05). 50 mean-CVaR frontiers are generated. Each
frontier is the global minimum CVaR and its corresponding mean. Portfolio losses are
simulated under Normal+Power distribution with various . Comparison is shown by the
minimum, maximum and standard deviations of CVaRs.

(-0.32 %)

(-1.41 %)

(-2.68 %)

e=20.0 e = 0.001 e = 0.005 e =0.01 e = 0.05

~=3.0000
min: 0.084543 min: 0.084419 min: 0.084178 min: 0.084246 min: 0.085450
max: 1.376237 | max: 1.371657 | max: 1.353337 | max: 1.330436 | max: 1.197420
std: 0.179863 std: 0.179755 std: 0.179407 std: 0.178879 std: 0.177764
(-0.06 %) (-0.25 %) (-0.55 %) (-1.17 %)

~v=3.5000
min: 0.081961 min: 0.081866 min: 0.081775 min: 0.081916 min: 0.083450
max: 0.628890 | max: 0.626797 | max: 0.618426 | max: 0.607961 max: 0.547177
std: 0.073601 std: 0.073539 std: 0.073326 std: 0.073000 std: 0.072056
(-0.08 %) (-0.37 %) (-0.82 %) (-2.10 %)

~=4.0000
min: 0.079868 min: 0.079969 min: 0.080183 min: 0.080268 min: 0.079662
max: 0.425216 | max: 0.423801 max: 0.418141 max: 0.411065 max: 0.369967
std: 0.045845 std: 0.045789 std: 0.045591 std: 0.045298 std: 0.044299
(-0.12 %) (-0.55 %) (-1.19 %) (-3.37 %)

~v=4.5000
min: 0.075782 min: 0.075779 min: 0.075778 min: 0.075771 min: 0.076008
max: 0.338837 | max: 0.337709 max: 0.333198 max: 0.327560 max: 0.294811
std: 0.034577 std: 0.034520 std: 0.034305 std: 0.034022 std: 0.032955
(-0.16 %) (-0.79 %) (-1.61 %) (-4.69 %)

~=5.0000
min: 0.072532 min: 0.072571 min: 0.072622 min: 0.072564 min: 0.072383
max: 0.202190 | max: 0.291218 | max: 0.287328 | max: 0.282466 | max: 0.254225
std: 0.028730 std: 0.028664 std: 0.028436 std: 0.028155 std: 0.027030
(-0.23 %) (-1.03 %) (-2.00 %) (-5.92 %)

~v=5.5000
min: 0.069516 min: 0.069528 min: 0.069485 min: 0.069687 min: 0.069331
max: 0.263120 max: 0.262245 max: 0.258742 max: 0.254364 | max: 0.228933
std: 0.025199 std: 0.025134 std: 0.024894 std: 0.024609 std: 0.023439
(-0.26 %) (-1.21 %) (-2.34 %) (-6.99 %)

~v=6.0000
min: 0.067398 min: 0.067416 min: 0.067436 min: 0.067541 min: 0.067365
max: 0.243266 | max: 0.242456 max: 0.239218 max: 0.235170 max: 0.211658
std: 0.022863 std: 0.022790 std: 0.022541 std: 0.022250 std: 0.021046

(-7.95 %)
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