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Abstract

The Cox-Ingersoll-Ross (CIR) interest rate model is used to model interest rates and
interest rate derivatives. We study the term structure equation for single-factor models
that predict non-negative interest rates. It is shown using finite difference techniques that if
the boundary is attainable, then this boundary behaviour serves as a boundary condition
and guarantees a uniqueness of solutions. However, if the boundary is non-attainable,
then the boundary condition is not needed to guarantee uniqueness. The finite difference
solution is verified by use of non-negative numerical approximations.
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Chapter 1

Introduction

The mean-reverting square-root process is a stochastic differential equation (SDE) that
has found considerable use as a model for volatility, interest rates, and other financial
quantities. The equation has no general, explicit solution, although its transition density
can be characterized. Some standard expectations can be analytically calculated which
can be useful for calibrating the parameters. These processes were initially introduced to
model the short interest rate by Cox, Ingersoll, and Ross [1], and are now widely used in
modeling because they present interesting features like non-negativity and mean reversion.
The equation for this process is

dR(t) = k(b — R(t))dt + o/R)AW (t), (1.1)

R(t) will denote a Cox-Ingersoll-Ross (CIR) process. The parameters k,b, and o arc all
non-negative and dW(¢) denotes the increments of a Brownian motion. Notice that the
drift term in equation (1.1) is positive if R(t) < b and negative if R(t) > b. Thus R(t)
is pulled toward the level b, a property generally referred to as mean reversion. We may
interpret b as the long-run interest rate level and k as the speed at which R(t) is pulled
toward b. In this paper, we assume that x, b, and o do not vary with time. Under the
above assumption on the parameters, that we will suppose valid through all the paper, it
is well known that this SDE has a non-negative solution, and this solution is path-wise
unique (see [2] and [3]). Also, under the conditions

2kb > o and R(0) > 0 (1.2)

the process is always positive.

It is well known that the increments of the CIR process are non-central chi-squared
random variables that can be simulated exactly. However, the exact simulation in general



requires more computational cost than a simulation with approximation schemes. It may
also be restrictive if one wishes to study a ‘generalized’ version of the mean reverting
process. For these reasons, studying approximation schemes are relevant.

The CIR process is frequently used for pricing of different interest rate derivatives such
as bonds and bond options. For valuing interest rate derivatives, stochastic methods seem
to be more commonly used than finite difference (FD) methods. When using FD methods
it is necessary to use the hyperbolic partial differential equation (PDE) called the term
structure equation, for valuing bond prices. The authors of [4] believe that stochastic
methods are preferred over FD methods because the pricing equation with appropriate
boundary conditions is not fully developed from a mathematical sense. Moreover, in [5],
the authors claim that there are multiple solutions to the term structure equation that
satisfy the same boundary conditions.

In this paper we compare stochastic and FD methods for pricing of bonds using the
CIR process. We will show using simulation that the unique solution to the term structure
equation is the one given using FD methods subject to the correct boundary conditions.
We verify these results by performing a Monte Carlo (MC) simulation using a non-negative
approximation of the CIR equation. We are interested in the solution of the term structure
equation for vanishing interest rates (i.e as r — 0) and the behavior of the solution at the
boundary using different boundary conditions. Our hypothesis is that if the boundary is
attainable, then this boundary behavior serves as a boundary condition and guarantees
uniqueness of solutions. However, if the boundary is non-attainable, then the boundary
condition is not needed to guarantee uniqueness, but it is nevertheless very useful from a
numerical perspective.

The project is structured as follows: Chapter 2 develops the methods for simulating
the stochastic interest rate model given by the CIR process. A discussion of boundary
conditions for the model is presented. Chapter 3 details the numerical schemes for the
CIR model. Discretization methods for stochastic integration schemes are discussed. A
Crank-Nicolson method is also developed for the CIR model. Chapter 4 presents simulation
results of the integration schemes developed previously. The theoretical results are verified
using the numerical tests. Finally, Chapter 5 concludes by pointing out the main results
of the paper.



Chapter 2

Problem Formulation

This chapter develops the methods for simulating the stochastic interest rate model given
by the CIR process in equation (1.1). The CIR process models the dynamics of an instan-
taneous continuously compounded interest rate R(t). As shown in [6], the interest rate for
the CIR model is given by

t t
R(t) = R(0) +/ k(b — R(s))ds +/ o/ R(s)W (s)ds
0 0
which is just an integral form of the differential equation in (1.1). An investment in a

money market account earning interest at a rate R(t) at time t grows from a value of one
at time zero to a value of

D(t) _ efol R(u)du

at time t. The price at time zero of a derivative security that pays X at time T is the
expectation of X/D(T), or

E el tnx]
In particular, we define:
Definition 1 (Zero coupon bond) A financial contract promising to pay a certain

“face” amount, which we take to be one, at a fired maturity date T is called a zero coupon
bond. Prior to the expiration date the bond makes no payments.



Given the stochastic process to the interest rate R(t) as shown in equation (1.1), the value
of the zero coupon bond V(r,t) is given by

V(r,t) = Bq e FO% | R(t) — 1] (2.1)

with Eg denoting the expectation operator under the risk-neutral probability measure )
and r is the interest rate for the chosen dynamics R(t) conditional on information available
at time ¢. This pricing formula is a martingale under the risk-neutral measure.

As shown in [6], by applying It6’s lemma to the expectation in equation (2.1), it is
possible to derive the term structure PDE satisfied by V(r,t) as given by

Vi(r, £) + (b — r)Vi(r, ) + %a%wr(r, B = rV(r8). (2.2)

2.1 Analytical positivity and boundedness

The SDE in equation (1.1) is defined on the domain [0, 00). An important concept in the
study of SDEs is the concept of positivity or non-negativity. We must therefore define the
following concept

Definition 2 Assuming the process X, is defined on the domain [L,o0) and Xy > L, then
e the process X; has a non-attainable boundary L, if

P(X; > L for allt > 0) = 1.
o The process X; has an attainable boundary L, if

P(X; > L forallt>0)=1 and P(3t">0:Xpn=1)=1.
For L =0, attainability is equivalent to positivity and non-negativity.

Throughout the rest of the paper we will make use of Definition 2.



2.2 Boundary Conditions

The boundary behavior for the SDE shown in equation (1.1) has been studied at great
detail by Feller in [7]. For the process in (1.1), Feller showed that the boundary at the
origin is instantaneously reflecting, regular, and attainable if 02 > 2xkb, and unattainable,
non-attracting, boundary otherwise. As can be seen in Appendix A, interesting properties
related to the boundary behavior for the SDE (1.1) can be uncovered by looking at the
probability distribution for the process.

The results of Feller can be used to derive appropriate boundary conditions for finite
differencing schemes of the term structure equation given in (2.2). For example, it is
possible that the case 02 < 2kb can be handled by simple Dirichlet boundary conditions
at r = 0, while the same cannot be done if o> > 2xb. This can be generalized with the
following definition.

Definition 3 (Feller Condition) Given a process X defined by a SDE of the form dX (t) =
B(X(t),t)dt + (X (t),t)dW. If the condition

19c?
li - > 2.
i (50 - 3500 20 23)
is true, then the boundary at the origin is non-attainable for the process X.

According to [4], the appropriate boundary condition for the term structure equation
in (2.2) can be obtained by plugging in r = 0 into the equation. The resulting condition is
then

Vi(0,t) + kbV,(0,2) = 0. (2.4)

This boundary condition will result in a unique solution to the term structure equation
when 0% > 2kb. However, when o2 < 2kb, the boundary condition (2.4) is not needed to
guarantee a unique solution and is thus redundant from a mathematical perspective [4].

At the upper boundary we must truncate the domain to [0, 7,,4,]. Consequently, it is
necessary to impose a boundary condition at r = r,,4,. The theoretical upper boundary
condition V' = 0 as r — oo is of critical use if we retain r as the coordinate. In [8] the
authors propose a boundary technique that does not require additional linearity assump-
tions. This FD method involves using one-sided derivatives for the spatial discretization
of the PDE.



In this paper we take the approach of extending the computational domain in order to
minimize any boundary errors at r,,,,. In this way the boundary condition at r,,,, can be
handled with a simple Dirichlet boundary condition with

V("maz, t) = 0. (2.5)



Chapter 3

Numerical Methods

It is well known that an analytical formula for the term structure equation (2.2) exists
(see Appendix B). However, recall from the introduction that it has been claimed by
previous studies, that multiple solutions to the term structure equation exist that satisfy
the same boundary conditions. All numerical methods seek to find a solution for the pricing
relationship given in equation (2.1). In this chapter we will examine the numerical methods
that will be used to price zero coupon bonds in the CIR model. Using these numerical
methods we will be able to examine the effects of different boundary conditions for the
term structure equation.

3.1 Finite Difference Discretization Methods

In this section we will derive the discretized equations using an approach to approximate
the PDE (2.2) using finite differencing techniques. The pricing equation as shown in [9],
is given by the following equation

Vo1, RV oV
E_iarw—l_ﬁl(b_r)g_ru 0<T<Tma:r7 t>07

(3.1)
where V(r, 7) is the bond price, r is the spot interest rate, 7 =T —t, T is the expiry time
of the bond, ¢ is the time (in the forward direction).

This is a first-order hyperbolic equation and it must be augmented with an initial
condition and boundary conditions in order to define a valid initial boundary value problem.
In this case we define them as

V("maz,t) =0 and V(r,T)=1. (3.2)



If we take the limit as » — 0, we get the following boundary condition at » =0

(3.3)

We can then implement a number of finite differencing discretization schemes. In
particular, we will use a forward-backward differencing scheme. Define a grid of points in
the (r,7) plane

705715 ey T 0<7ri<7Tma
" = nAT 0<1t"<NAT=T

and let
V(r, ") = V"

()

Let

A7"z'+1/2 =Tit1 — Ty and AT’z'—1/2 =T —Ti-1.

Equation (3.1) can be then approximated by

oV \" 2.2 n
(6—7)i = ("TV) + (kb= )W)} = (V) (3.4)
where the time derivative in equation (3.4) is approximated by

ov\" ynrtt _yn
(E) = A (3.5)

i

The second order derivative term is approximated by

VIV (Vv
n o, ArH—l/Q ATi—l/Q

Arip10tAr_1/0
2




with the discounting term in equation (3.4) as

(V)2 ~ Vi (3.7)

while the derivative term can be approximated by either central, forward, or backward
differencing.
A central difference is

= (gt ), 39

Arip1yo + Ari_yiyo

a forward difference is

ooy = (S, 39

A7”z‘+1/2

and a backward difference is

‘/7" Lo~ e — . 3‘10
( )l ( ATi_l/g ( )

It is well known that central differencing is preferred because it is second order, while
forward and backwards differencing are first order. Unfortunately central differencing can
result in problems if used in all cases.

Using any of (3.8), (3.9), or (3.10) gives

Vn+1 Vn(l _ (az +/82 + TZ)AT) + Vn ATOKZ —+ ‘/7+1A7'61 (311)

Then «o; and 3; are defined as

O[lgentral _ [ a’r} - k(b —1y) ]
( — Ti— 1) Tit1 — Tiz1)  Tigl — Ti—l)

ﬁcentml _ |: (727"22 + R(b - ri) }
(Tig1 — 1) (Tig1 — Ti1)  Tig1 — Tic1)

in the case of central differencing, or



forward _ [ a’r} }
‘ (1 = ric1)(Tig1 — 1i-1)
gforward _ [ o’r? k(b —1;) ]
(risr — 1) (Tigs —7i1) T —7)

in the case of forward differencing, or

l?ackward —

[ o’r? k(b —1;) }
a’L
(Ti - Ti—l) Ti41 — 7"i—1) ry — 7"i—1)
o
)

ﬁ{)ackward — |:
i

(riv1 — 7”@'1)]

in the case of backwards differencing.

For stability reasons it is vital that all a; and 3; values be always positive. We can
then decide between the central or upstream (i.e. forward or backward) discretization by:

Fori=0,...n—1
If Oé;:entral Z 0 and Bfentral Z 0
a; = agentrul
572 — ﬁiclent'ral
Elself g/ > 0

forward
_ pforward
Bi = 5;
Else
a; = agackward
__ Qbackward
Bi = 5;
EndIf
EndFor

The above algorithm guarantees that «; and (; are non-negative. As shown by [10],
requiring that all o;; and [3; be non-negative has important ramifications for the stability
of scheme (3.11).

10



Remark 1 (Unconditional stability) As shown by [10], the discretization method (3.11)
is unconditionally stable provided that o; and B; are non-negative.

Remark 2 (Convergence to the viscosity solution) As shown by [10], requiring that
all oa; and B; are non-negative has important ramifications for the convergence of scheme
(3.11). 1t is possible to show that the discretization (3.11) is monotone and consistent.
Since it is also unconditionally stable, then the discretized solution converges to the viscosity
solution.

3.1.1 Crank-Nicolson Discretization

In this section we consider a Crank-Nicolson time-stepping strategy for the FD discretiza-
tion in equation (3.11).

Ordinary explicit FD schemes are known to become unstable if certain time-step condi-
tions are not satisfied. For these reasons we will study the Crank-Nicolson method which
is known to be unconditionally stable. In [4] the authors proposed a backward differencing
formula of order two (BDF2), however we found that this method produced oscillations in
the solution when the boundary condition (2.4) was not explicitly defined.

The FD equation (3.11) can be written into the Crank-Nicolson time-stepping form as
follows

N AT At AT
v, L1+ (i + B + T')T] — 7@.{/;;{1 _ 7%‘/@‘_’{1
AT AT AT
= [ ) | A e

(3.12)

which is an implicit equation rather than explicit. Let M be a tridiagonal matrix with
entries
AT(a; + i + 1)

_ATozi B ATB;

[Mvn]z - ‘/zﬁl Vzn i+1 (3~13)
2 2
that is, M is defined by
[ 7 V2 0 ]
—g ot as+ By —[
- AT

—0p—1 Tm-—1 + Ay —1 + 6771—1 _Bm—l

i 0 0 0 |

11



where m is the number of grid points, 7, and v, are the boundary points at » = 0. Note
that the values 7; and v, depend on which boundary conditions we impose at » = 0. In
Section 3.1.2, we will show the discretization for 7, and v, using two different boundary
conditions. The last row of zeros in matrix M is due to the Dirichlet boundary condition
being imposed at r = 7,,4,, which is further discussed in section 3.1.2.

Then we can write equation (3.12) as

[+ MV™ = [I — MV" (3.15)

where V" is the value of the solution at the n-th time step.

Theorem 1 (Necessary conditions for stability) Let the Crank-Nicolson time-stepping
be defined as in equation (3.15), where M is of size (m + 1) x (m + 1), where there are
m + 1 nodes in the discretization, and M has the properties

1. The off-diagonal entries ofM are all strictly negative,
2. The diagonal entries ofM are non-negative,

3. Mis row diagonally dominant.

Then Crank-Nicolson time-stepping satisfies the necessary conditions for unconditional sta-
bility.

Proof 1 The proof follows similarly as in [11]. Assume that M has m + 1 linearly inde-
pendent eigenvectors. If Xy is the k' eigenvector of M, then

MX, = M Xy

where Ay, is the eigenvalue associated with Xy. Then, rewrite equation (3.15 as

Vvl =BV B=[I+ M| - M]. (3.16)
If VO is the initial condition, then after n time-steps we have
VT = B"V°. (3.17)
Assuming M has a complete set of eigenvectors, then

12



Vo= Xy, (3.18)
k

for some coefficients Cy. Substituting equation (3.18) into equation (3.17) then gives
V=Y CRX, L= M]” xo (3.19)
. Rk 14+ X ke ‘

The requirement of equation (3.19) to remain bound as n — oo, is

1— Mg
<1 Vk 2
= (3.20)
which will be true as long as
Re(\y) >0 Vk. (3.21)

From the Gershgorin circle theorem, we know that every eigenvalue A of M satisfies at
least one of the inequalities

M — A <)M
J#i

since M is diagonally dominant. Therefore, in the complex plane A\ = x ++/—1y, every A
lies in some disk with center x = |My| and radius strictly less then | M|, and therefore

Re(A\y) >0 Vk.
0

Theorem 1 states that the CN method satisfies the necessary conditions for stability,
however this does not prove that it satisfies the sufficient conditions for stability. The
precise definition of stability is

13



[|V"|| = bounded. (3.22)

However, it takes a bit of work to prove (3.22) for the CN method, so the idea of
algebraic stability has been introduced [10].

Definition 4 (Stability of Crank-Nicolson) Ifn is the number of time-steps, m is the
number of grid nodes, and B is defined as in equation (3.16), then given an arbitrary norm
| - ||, we say that B is algebraic stable if

|B™|| < Cn®m? ¥n,m. (3.23)

where C, a, B are independent of n,m. This is often referred to as bounding the power of
a matriz. We remark that algebraic stability is a weaker condition than strong stability or
strict stability.

It can be shown that for the CN method, algebraic stability is guaranteed and is sum-
marized in the following theorem.

Theorem 2 Algebraic Stability of Crank-Nicolson

The Crank-Nicolson discretization is algebraically stable in the sense that, the CN
method satisfies equation (3.23) with =0,a = 1/2.

Proof 2 The proof is the same as in [10]. All the Gershgorin disks of M are in the right
half of the complex plane.

3.1.2 Discretization of the Boundary condition

The spatial discretization given by matrix (3.14) depends on 7, and 7, the discretization
of the boundary condition imposed at » = 0. In a financial context, we would like to insure
convergence to the viscosity solution. Viscosity solutions have been discussed in [12]. Tt
is therefore important that the discretization of the boundary conditions are monotone in
order for the solution to converge to the viscosity solution.

Boundary condition at r = 0:

14



At the lower boundary point we solve the initial value problem using boundary condi-
tion from equation (2.4). In addition, we will alternatively use an arbitrary Neumann
boundary condition

oV _

or

We will now refer to equation (2.4) and equation (3.24) as BC1 and BC2 respectively.
BC1 is discretized using first order forward differencing as

(V) = (u) . (3.25)

A7‘0+1/2

0. (3.24)

Therefore v, and 7, of matrix (3.14) are

b 1
=K
n Ar 0+1/2
1
T2 = —rKb )
? A7‘0+1/2
and the discretization for BC2 is
71 Oa
Y2 =0

Boundary condition at r = r,,,,:

We can implement the Dirichlet boundary condition V("maz,t) = 0, by computing the
solution on the grid M (3.14) with the last row and last column removed. Therefore, the
matrix M becomes (m — 1) x (m — 1), where m is the number of grid points.

3.2 Discretization of stochastic numerical methods

In this section we discuss numerical schemes for the solution of the mean-reverting square
root process given by equation (1.1). We are examining stochastic numerical methods

15



because these methods are able to ‘naturally’ implement boundary conditions that are
imposed in stochastic differential equations. We therefore seek to compare the solution of
our FD approach to that of a Monte-Carlo simulation with stochastic numerical methods.

In the numerical solution of SDEs, the convergence and numerical stability proper-
ties of the schemes play a fundamental role as well as in a deterministic framework. As
discussed in [13], the region of absolute stability defines possible restrictions on the max-
imum allowed step size. However, based on the fact that the coefficients of (1.1) are
non-linear and non-Lipschitzian it is not possible to appeal to standard convergence the-
ory for numerical simulations to deduce the numerically computed paths are accurate for
small step-sizes. These issues were discussed by [14], where the authors showed that a
natural Euler-Maruyama discretization provides qualitatively correct approximations to
the first and second moments of the SDE (1.1).

3.2.1 Numerical positivity

It is well known that the domain for the SDE in equation (1.1) is [0,00). In order to
simulate this process using numerical approximation we must be assured of not getting
negative values. The concept of positivity or non-negativity for this process has been
discussed in [15] and [16].
Definition 5 Let R(t) be a stochastic process defined on a domain of [L, 00) with

P(R(t) > L for allt > 0) = 1.
Then the stochastic integration scheme possesses an eternal life time if

P(R,+1 > L|IR, > L) = 1.

Otherwise it has a finite life time.

Based on the above definition we are therefore interested in numerical methods that have
an eternal life time.

3.2.2 Numerical discretization

We will consider six numerical discretization schemes:

e Buler-Maruyama,

16



Milstein,

Second-order Milstein,

Implicit Milstein,

Balanced implicit method,

Exact transition distribution.

A natural way to simulate the process in (1.1) is with the explicit Euler-Maruyama
scheme

Definition 6 (Euler-Maruyama method)
Rn+1 = Rn + K(b — Rn)At + o/ RnAt(Zn+1), (326)

where the time-steps are discretized as t) < t; < ... < t, < T, R, is the interest rate
value at the n'* time-step, At = t,.1 — t,, and Zy, Zs, ... are independent, m-dimensional
standard normal random vectors. The Euler-Maruyama scheme can lead to negative values
since the Gaussian increment is not bounded from below. Therefore, the standard Euler-
Maruyanam scheme has a finite life time. A natural fix adopted in [14], is to replace the
method with the computationally safer method

Roi1 = R, + k(b — R,)At + o/|Ru|AL(Z11)- (3.27)

Theorem 3 For SDE (1.1) the first moment is

tlim E[R(t)] =10 (3.28)
and second moment s given by
lim E[R(t)*] = b* + sl (3.29)
Jim = 5 .

Proof 3 As shown in [14], the first moment results by taking expectations of equation
(1.1). The second moment result can be obtained by applying the Ito formula to R(t)* and
taking expectations, using the result for E[R(t)].

17



Corollary 1 We can use properties (3.28) and (3.29) to estimate the step-size needed to
obtain qualitatively correct solutions. We can rewrite (3.27) as

Rui1 = R, (1 — KAL) + kbAL + o/ | R | A (Z11). (3.30)

Using induction, the exception of (3.30) can be shown to be

E(R,) = (1 — kA)"(E(Ry) —b) +b

and hence

for At < 2/k, E(R,) —basn — oo,
for  At=2/k,  E(R,)=(—1)"E(Ry)+ ((=1)"*" 4+ 1)b,
for At >2/k, |E(R,)| — o0 as n — oo.

Proof 4 As shown in [14], the proof follows after taking expected values in (3.30).

O

Theorem 3 and Corollary 1 show that as ¢,, — oo the correct mean is produced if and only
if the step-size satisfies At < 2/k. This result will be used in step-size selection for the
following methods.

In addition to the Euler method, we will consider five other numerical schemes for the
solution of SDEs. First, we consider the Milstein method which offers an improvement
over the Euler scheme. The Euler scheme approximation expands the drift to O(At) but
the diffusion term only to O(v/At). In order to ease notation we define the following
a = k(b— R,) and ¢ = 01/|R,|, where a, c, and their derivatives are all evaluated at time
t.

Definition 7 (Milstein method)

1
Rpy1 = Ry +alAt + VAt Z, o + §Ccht(Z2+1 —1). (3.31)

The approximation method in (3.31) adds a term to the Euler scheme. It expands both
the drift and diffusion terms to O(At). The new term 3¢'cAt(Z2,; — 1), has mean zero
and is uncorrelated with the Euler terms because Z2,, — 1 and Z,,;; are uncorrelated.

Next, we consider a higher order version of the Milstein method. We consider a simpli-
fied version of the scheme as shown in [13].

18



Definition 8 (Second-order Milstein method)

1 1
R,i1 =R, +aAt +cVAtZ, 1 + 5 (a c+ad + c c ) AtVALZ,
(3.32)

1 1
+ écc'[ZzJrl — At] + (ad + 202a") Atg.

This method was introduced by Milstein and has a weak order convergence of 2 under the
conditions that a and ¢ be six times continuously differentiable with uniformly bounded
derivatives. This scheme should produce more accurate results than the Euler method,
but it is computationally more expensive.

Next, we consider an implicit Milstein method. As noted in [13], implicit Euler schemes
can reveal better stability properties. This implicit scheme is obtained by making implicit
only the purely deterministic term of the equation, while at each time step, the coefficients
of the random part of the equation are retained from the previous step. Note for the
implicit method we use a(R,11) = k(b — Ruq1).

Definition 9 (Implicit Milstein method) The implicit Milstein method is defined by

RnJrl R + G(Rn+1)At + C\/ Zn+1 + C CAt( n+1 1) (333)

Removing the implicitness and expanding a(R,y1) and c yields

Ry + kb + o/ R, At Z, i1 + 202 AH(Z2, — 1)

Rn =
1 N}

(3.34)

The Milstein methods discussed previously fall under the category of dominating meth-
ods. Another idea to guarantee non-negativity for an SDE is to use balancing methods.
The balancing method that we will examine was discussed in [16].

Definition 10 (Balanced implicit method (BIM)) The integration scheme for the BIM
s given as follows

Rn—i—l = Rn + CLAt —+ cV AtZH_l 7L (Rn — Rn—i—l)Qn(Rn)a (335)
QTL(R’IL) = QO(RH)A + ql(Rn)’ \% AtZ’H—l‘- (336>

Removing the implicitness yields
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R, + aAt + cVALZ; 1 + Ri(qo(Rn) At + q1(Ry) |V ALZ; 14|

(3.37)
1+ QO(Rn)At + QI(Rn)’ \% AtZiH‘

Rn+1 =

In this method the functions qu and g are called control functions. To guarantee conver-
gence of the method, the control functions must be bounded and have to satisfy

Finally, we consider a scheme of sampling the exact transition distribution (ETD) of
the CIR process as shown in [17]. The SDE (1.1) is not explicitly solvable, however the
transition density for the process is known. Based on work by Feller in [7], the distribution
of R(t) given R(u) for some t > wu is, up to a scale factor, a non-central chi-squared
distribution. This property can then be used to simulate the CIR process. The approach
to simulate the process is suggested in [17]. Further information on the CIR distribution
can be seen in Appendix A.

Definition 11 (Exact Transition Distribution (ETD)) Given R(u) and t > u, R(t)
is distributed as o (1 — e*’*(t*“)) /(4r) times a non-central chi-square random wvariable
X;lz()\) with d degrees of freedom and non-centrality parameter

4rert—u)
A= P (1 — e—n(t—u)) R(U)
Therefore,
0% (1 —et=w) 4rertu)
R(t) = Ak Xd <0_2 (1 e—n(t—u)>R(U)) ) > u,
where

g 4kb

o2
The algorithm that performs the ETD method is shown in Appendix C.
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Chapter 4
Experiments and Results

In this section, we will analyze numerically the convergence of the FD method and numer-
ical discretization schemes for different parameters of the CIR process. The parameters
used in the simulations are shown in Table 4.1. Note that we are simulating two cases: Case
1 when the boundary at the origin is attainable (i.e 2kb < ¢0?) and Case 2 the boundary
at the origin is non-attainable (i.e 2kb > 02).

Table 4.1: CIR model parameters for the Case 1: attainable boundary and Case 2: non-
attainable boundary

Case 1 Case 2
Initial interest rate | 2% 2%
K 0.55 1.8
b 0.035 0.035
o 0.3 0.3
Time to expiry 4.0 years | 4.0 years

The parameters in Table 4.1 model the behaviour of a zero coupon bond that expires
after 4 years. The interest rate starts at 2% and has a long term value or mean-reverting
value of 3.5%. The volatility for the interest rate process is 30%. In case 1 the interest
rate approaches the mean-reverting value at a slower rate than when in case 2.

We first consider pricing a zero coupon bond using the FD method. First, however
we mention a few notes regarding the Crank-Nicolson scheme. It was shown in Section
3.1.1 that the Crank-Nicolson scheme is unconditionally stable. However, this does not
prevent oscillations from forming in the solution. Modifying the boundary behavior of the
solution may create discontinuities in the solution. As noted in [18], one way to avoid

21



the oscillations is to use a fully implicit method for a small number of time-steps after
any discontinuities arise and Crank-Nicolson thereafter. This method called “Rannacher
smoothing” as described by Rannacher (1984) restores quadratic convergence. We will use
this method by applying two fully implicit time-steps and the remaining time steps will be
Crank-Nicolson.

We seek to carry out a convergence study of the FD method. Each grid has twice
as many nodes as the previous grid (new nodes inserted halfway between the coarse grid
nodes) and the timestep size is halved. The error for the FD method is then give by the

following
Error = O(max((At)?, (Ar)?)); Ar =max(riq — 7).

Let
h = max(Ci Ar, CoAt)

where C and Cy are constants. Then the solution on each grid (at a given point) has the
form

V(h) = Vegaet + AR?, (4.1)
V(h/2) = Vegaet + A(h/2)?,
V(h/4) = Vevact + A(h/4)27

where V.. is the exact analytical solution and we have assumed that the mesh size and
timestep are small enough that the coefficient A is approximately constant. This implies
that

V(h) = V(h/2)
V(h/2) =V (h/4)

We are therefore interested in a convergence rate of around four. This is called quadratic
convergence.

~ 4. (4.2)

As a comparison to the Crank-Nicolson scheme we compute the price of a bond using
the numerical methods with a Monte Carlo (MC) approach. In the MC approach there
are two sources of error: time-stepping error and sampling error. The error in MC is then
given by

1
Error =0 | max(At, —) |,
(mastar 720
At = timestep,
M = number of Monte Carlo paths.
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We seek to balance the time-stepping error and sampling error. In order to make these
two errors the same order we choose M = O @ . In this way we increase the number

of paths by four and divide the timestep by two for each simulation.

4.1 Weak Convergence Criterion

Usually we do not know the solution of a stochastic differential equation explicitly, so we
will use simulation to try to discover the solution. It was shown by [4] that the solution
to the bond pricing problem is given exactly by the solution to the FD method with the
appropriate boundary condition. To this end we shall repeat M different simulations of
sample paths of the CIR process using the numerical approximations. We shall estimate
the weak error as

M
Weak error = Z VT V(T) (4.3)

where step-size h = T/N, with N being the number of time-steps, and V"(T),, is the
solution obtained by the Monte Carlo time-stepping along the m! Brownian path, and
V(T) is the solution from the FD method.
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Table 4.2: Finite difference simulation of bond price using the CIR model where the

boundary at the origin is attainable. Grid fixed at » = 0.02. Parameters are given

in Table (4.1).

Method | Nodes | Time-steps | Value Change Ratio
102 5 0.89646 - -
203 10 0.896184 | —2.75544 x 10~* -
BC1 405 20 0.896116 | —6.83711 x 10> | 4.03012
809 40 0.896099 | —1.66775 x 10~ | 4.09959
1617 80 0.896095 | —4.08764 x 1076 | 4.08000
3233 160 0.896094 | —1.00939 x 107° | 4.04960
6465 320 0.896094 | —2.50617 x 107 | 4.02763
102 5 0.937245 - -
203 10 0.936078 | —1.16676 x 1073 -
B2 405 20 0.935761 | —3.16871 x 10~ | 3.68214
809 40 0.93567 | —9.08804 x 1075 | 3.48668
1617 80 0.935641 | —2.92177 x 107 | 3.11046
3233 160 0.935629 | —1.14844 x 107> | 2.54412
6465 320 0.935624 | —5.66127 x 107% | 2.02860

Table 4.3: Finite difference simulation of bond price using the CIR model when the bound-
ary at the origin is non-attainable. Grid fixed at » = 0.02. Parameters are given in Table

(4.1).
Method | Nodes | Time-steps | Value Change Ratio
102 5 0.878503 - -
203 10 0.878015 | —4.88367 x 10~* -
BC1 405 20 0.877892 | —1.22579 x 10~* | 3.98409
809 40 0.877862 | —3.07156 x 107° | 3.99078
1617 80 0.877854 | —7.68650 x 107¢ | 3.99605
3233 160 0.877852 | —1.92238 x 1076 | 3.99842
6465 320 0.877852 | —4.80678 x 107 | 3.99931
102 5 0.881929 - -
203 10 0.880122 | —1.80663 x 103 -
B2 405 20 0.879356 | —7.65886 x 10~* | 2.35888
809 40 0.878937 | —4.18938 x 10~* | 1.82816
1617 80 0.878662 | —2.75726 x 10™* | 1.51940
3233 160 0.878462 | —1.99039 x 10~* | 1.38529
6465 320 0.878314 | —1.48614 x 10~* | 1.33930
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4.2 Convergence and Verification of methods

In order to test out the convergence of the FD and MC methods we developed simulations
using MATLAB. All simulations were run in MATLAB 7.8.0 on a MacOSX with 4GB of
memory.

We validate our FD method by demonstrating the convergence of bond prices using the
CIR process. We consider the Crank-Nicolson discretization using boundary conditions
BC1 and then BC2 with constant time-stepping. The number of points in the grid of
interest rates is doubled for each simulation. For each test, as we double the number of
points we divide the time-step in half. The range of the grid is from [ro = 0,74, = 10]
with initially 102 points and eventually expanded to 6465 points. The price of the bond
is computed using the different sets of parameters as shown in Table 4.1. The results are
contained in Tables 4.2 and 4.3. In the Tables we fix a point on the grid which is close to
the boundary (r = 0.02 in our case) and compare the convergence rate to the theory as
given in equation (4.2).

Looking at Table 4.2 for the case where the boundary is attainable it can be seen that
BC1 and BC2 do not converge to the same solution (the absolute difference between the
two boundary conditions at the finest grid is 3.95 x 1072). In Table 4.3 are the results of
the FD method when the boundary is non-attainable. In the case of Table 4.3, BC1 and
BC2 are converging to the same solution (the absolute difference between the two boundary
conditions at the finest grid is 4.62 x 10™*), however with BC2 the convergence rate is much
slower. Note that with BC2 the solution does not appear to be converging quadratically
(the ratio of changes is about two (first order rate) for the attainable boundary case and
about 1.3 for the non-attainable boundary case instead of four, which we would expect for
quadratic convergence).!

The results demonstrate that where there is a non-attainable boundary, the boundary
condition is not required as both BC1 and BC2 will eventually converge to the same
solution. Thus, if the boundary is non-attainable, then the boundary behavior is not needed
to guarantee uniqueness of solution. While convergence is guaranteed using both boundary
conditions, from a numerical perspective using BC1 will provide faster convergence even if
it is not required from a mathematical perspective.

The results are further emphasized by comparing the plots of the FD solution in Figures
4.3 and 4.2. In the case of the attainable boundary in Figure 4.1(a), as the number of grid
points is increased the solution with BC2 will never converge to the solution with BC1.

"'We remark that a variable time-step selector was tested in order to see if the convergence ratio could
be improved. The time-step selector was based on one used in [19]. However, it was found that the variable
time-step selector did not improve the convergence ratio when used for the FD method with either BC1
or BC2.
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In the non-attainable case in Figure 4.1(b), as the number of grid points is increased the
solution with BC2 converges to the solution in BC1. The difference in the two boundary
conditions is also evident in Figure 4.2, where we can see plots of bond price in the attain-
able and non-attainable cases using the different boundary conditions for time values from
0toT.

The Figures 4.3 and 4.2 also partly explain the slower convergence rate when using
BC2. When using BC2, the FD solution at » = 0 is pinned down to the value one, so in
order to converge to the true solution at r = 0 requires a much finer grid than in the case
of BC2. However, it was observed that the convergence rate when using BC2 was improved
with larger initial interest rates (i.e fixing the grid at larger interest values). This is to
be expected since the solution values computed using larger initial interest rates do not
depend as much on the solution values close to the boundary.

We now turn to the numerical solution of the SDE in equation (1.1) using the MC
approach. We tested the six SDE discretization schemes - Euler, Milstein, 2nd Order
Milstein, implicit Euler, BIM, and ETD - described Section 3.2. In order to obtain bond
prices we simulate the discretization R(t) = R,, n = 0,1,...,N — 1 with the step-size
h = T/N, the simplest estimate of the bond price is then

V(t) = % Z_ [exp (—h Z_ R;’{‘)

=0

with m being the m-th brownian path.

The convergence results are shown in Tables 4.4 and 4.5. Looking at Table 4.4 for the
case where the boundary is attainable, we can see that all methods except the BIM and
ETD method produce negative paths. For the case where the boundary is non-attainable,
as shown in 4.5 the BIM and EDT method still out performs all other methods in terms
of non-negative paths.

We wish to show that the numerical approximation methods converge to the solution
given by the FD method. Comparing the value of the bond and change-in-value in Tables
4.4 and 4.5, it is evident that all numerical methods except the BIM method converge to
the solution given by the FD method.? Note also that all methods except the BIM are
converging to the solution given by BC1 when the boundary is attainable. Figures 4.3(a)
and 4.3(b) confirm the convergence results by showing a comparison of the bond price for
the different methods versus computation cost.

2 As shown in [15], the BIM method is not an appropriate choice to integrate this SDE. For the SDE
(1.1), it is necessary to choose the control functions as gy = # and ¢ (R(t)) = cR(t)~2. However, in the
limit as R(f) — 0, ¢; is an unbounded function and therefore does not satisfy the condition in Definition
10.
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Next we compare the weak error of the MC methods relative to the FD method as
defined in equation (4.3). Analyzing the error of the six different SDE methods in Table
4.6, we note that the absolute error of the methods lies in the interval [107%,1073] for the
attainable boundary and non-attainable boundary case. In the attainable boundary case,
the Euler method has the largest error, while for the non-attainable case the BIM method
performs the worst. In both cases the ETD, 2nd Order Milstein, and ETD methods have
the smallest error.

Finally, we examine the distribution produced by the numerical methods. Figure 4.4
compares the exact distribution of R(t) as given by the equation (A.3) with the distribution
produced by five numerical approximations. First note that for the case of an attainable
boundary, the exact distribution approaches an exponentially increasing value in the limit
as R(t) — 0. The Milstein and 2nd order Milstein methods produce the closest match to
the exact distribution in the attainable case.

Examining the case where the boundary is non-attainable in Figure 4.4(b), the exact
distribution approaches zero in the limit as R(t) — 0. Note that for this case, the distri-
bution for the BIM method is skewed to the right of the true mode. The Milstein methods
closely match the exact distribution, while the Euler method produces too many values
close to or below zero.
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Finite difference simulation for attainable boundary — Bond Price vs. Inital Rate.
M = Number of grid points.
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Finite difference simulation for non-attainable boundary — Bond Price vs. Inital Rate.
M = Number of grid points.
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Figure 4.1: Finite difference results for a zero coupon bond using the CIR model. Figure
4.1(a) is the bond price computed using different boundary conditions when boundary
at the origin is attainable, Figure 4.1(b) is the bond price computed using two different
boundary conditions when boundary at the origin is non-attainable. Parameters are given

in Table 4.1.
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Figure 4.2: Figures 4.2(a) and 4.2(b), attainable boundary with BC1 and BC2 respectively.
Figures 4.2(c) and 4.2(d), non-attainable boundary with BC1 and BC2 respectively. Pa-

rameters are given in Table 4.1.
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Table 4.4: Monte-Carlo simulation of pricing a zero-coupon bond using the CIR model.
Boundary at the origin is attainable. Parameters are given in Table 4.1.

Method # Paths | #Time Steps | Neg. Paths | Value Change
100 9 9.00% 0.844147 -
400 17 8.05% 0.849106 | 4.9586 x 1073
Fuler 1600 33 8.34% 0.863727 | 1.46211 x 102
6400 65 8.40% 0.875178 | 1.14512 x 1072
25600 129 8.47% 0.883108 | 7.9302 x 1073
102400 257 8.46% 0.88747 | 4.36155 x 1073
100 9 9.20% 0.888752 -
400 17 8.20% 0.884117 | —4.63501 x 1073
Milstoin 1600 33 8.20% 0.887759 | 3.64191 x 1073
6400 65 8.20% 0.891614 | 3.85466 x 1073
25600 129 8.30% 0.894456 | 2.84233 x 1073
102400 257 8.30% 0.895302 | 8.45813 x 104
100 9 6.30% 0.902384 -
400 17 6.10% 0.889893 | —1.24915 x 102
o 1600 33 6.90% 0.889999 | —1.05806 x 104
2nd Order Milstein | ) 9 65 7.60% 0.892434 | 2.43495 x 10~3
25600 129 7.90% 0.89484 | 2.40593 x 1073
102400 257 8.10% 0.895553 | 7.13607 x 104
100 9 7.70% 0.903941 -
400 17 6.7% 0.890924 | —1.30172 x 102
Implicit Milstein 1600 33 7.4% 0.890057 | —8.66521 x 104
6400 65 7.9% 0.892454 | 2.39712 x 1073
25600 129 8.1% 0.894806 | 2.35181 x 1073
102400 257 8.2% 0.895442 | 6.3583 x 1074
100 9 0% 0.900543 -
400 17 0 0.899096 | —1.44756 x 1073
BIM 1600 33 0 0.899333 | 2.37411 x 104
6400 65 0 0.901201 | 1.86852 x 1073
25600 129 0 0.902291 | 1.08979 x 1073
102400 257 0 0.902452 | 1.60503 x 10~*
100 9 0% 0.88611 -
400 17 0 0.894203 | 8.09309 x 103
ETD 1600 33 0 0.893621 | —5.82248 x 10j4
6400 65 0 0.895367 | 1.74598 x 103
25600 129 0 0.895894 | 5.27318 x 104
102400 257 0 0.895605 | —2.89517 x 104
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Table 4.5: Monte-Carlo simulation of pricing a zero-coupon bond using the CIR model.

Boundary at the origin is non-attainable. Parameters are given in Table 4.1.

Method # Paths | #Time Steps | Neg. Paths | Value Change
100 9 10.0% 0.838945 ;
400 17 9.70% 0.854002 | 1.50569 x 102
rler 1600 33 3.70% 0.864918 | 1.09161 x 102
6400 65 0.22% 0.872035 | 7.11642 x 10~3
25600 129 2.73¢-03% | 0.875821 | 3.78631 x 1073
102400 957 0% 0.87696 | 1.13861 x 10~3
100 9 10.0% 0.860662 ;
400 17 9.80% 0.869099 | 6.71405 x 10~
Milstein 1600 33 1.30% 0.872459 | 2.86081 x 102
6400 65 0% 0.875264 | 3.9011 x 1073
25600 129 0 0.87722 | 1.80347 x 1073
102400 9257 0 0.877487 | 2.67708 x 10~
100 9 10.0% 0.880883 ;
400 17 3.85% 0.872025 | —8.85794 x 103
L 1600 33 0% 0.873157 | 1.13106 x 1073
2nd Order Milstein | ) 9 65 0 0.875632 | 2.47533 x 103
25600 129 0 0.877408 | 1.77643 x 1073
102400 9257 0 0.877578 | 1.69779 x 10~
100 9 0% 0.87906 ;
400 17 0 0.873596 | —5.46375 x 10~3
mplicit Milstein 1600 33 0 0.873978 | 3.82041 x 10~*
6400 65 0 0.876024 | 2.04589 x 10~3
25600 129 0 0.877598 | 1.57397 x 1073
102400 257 0 0.877678 | 7.96427 x 1075
100 9 0% 0.879563 ;
400 17 0 0.879377 | —1.85705 x 10~*
BN 1600 33 0 0.879793 | 4.16128 x 10~*
6400 65 0 0.881177 | 1.38406 x 10~3
25600 129 0 0.881864 | 6.86789 x 10~
102400 9257 0 0.881455 | —4.09203 x 10~*
100 9 0% 0.861204 ;
400 17 0 0.874199 | 3.9295 x 1073
5TD 1600 33 0 0.874868 | 29482 x 10~
6400 65 0 0.875975 | 2.72441 x 10~3
25600 129 0 0.876965 | 8.6216 x 10~
102400 257 0 0.87752 | 3.5479 x 10~*
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Figure 4.3: Comparison of numerical approximation bond value versus computational cost
in a Monte-Carlo simulation. Figure 4.3(a), boundary is attainable. Figure 4.3(b), bound-
ary is non-attainable. Parameters are given in Table 4.1.
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Table 4.6: Weak error of numerical approximation schemes. Case 1: attainable boundary
and Case 2: non-attainable boundary. FD method computed using BC1, 6465 grid points,
and 320 time-steps. Numerical discretization computed at 102400 paths and 257 time-
steps.

Error for Case 1 | Error for Case 2
Euler 8.624 x 1073 8.920 x 104
Milstein 7.920 x 1074 3.650 x 1074
2nd Order Milstein | 5.410 x 10~* 2.740 x 1074
Implicit 6.520 x 1074 1.740 x 10~*
BIM 6.358 x 1073 3.603 x 1073
ETD 4.890 x 1074 3.320 x 107
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Figure 4.4: Comparison of exact distribution and the distribution of the numerical approxi-
mation schemes for the square-root diffusion. Figure 4.4(a), boundary is attainable. Figure
4.4(b), boundary is non-attainable. Monte Carlo simulation with M = 5000, At = 0.1, and
CIR parameters given in Table 4.1.
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Chapter 5

Conclusions

In this paper we have provided an analysis of different boundary conditions for the CIR
equation or square-root process. Boundary conditions are needed for finite difference meth-
ods, however in the CIR process, boundary conditions are only needed when the boundary
is attainable. When the boundary of the CIR process is attainable there is only one true
boundary condition that will satisfy the original CIR stochastic differential equation, and
this is given by equation (2.4). While imposing another boundary condition is valid from a
finite difference sense, it will artificially modify the density of the CIR stochastic differential
equation. When the boundary of the CIR process is not attainable it is possible to use any
arbitrary values at the boundary and still have convergence to a valid solution. However,
based on our results we have shown that when using finite difference methods for the term
structure equation, the convergence rate is far greater with the boundary condition given
by equation (2.4).

We also provide a validation of the FD results by showing that numerical approx-
imations of the CIR process and Monte Carlo simulations are able to provide natural
convergence. We test six numerical approximations to the CIR process. It was shown that
the EDT and 2nd Order Milstein, and Implicit methods converge to the FD solution the
fastest, while the Euler method provides slower convergence. Further, it was shown that
the BIM method is not appropriate for the CIR process because the control functions used
in the BIM method become unbounded for vanishing interest rates.

Finally, we repeat the main result of the paper. If the boundary is attainable, then
this boundary behavior servers as a boundary condition and guarantees uniqueness of the
solutions. However, if the boundary is non-attainable, then the boundary behavior is not
needed to guarantee uniqueness.
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Appendix A

Probability distribution of the CIR
process

This appendix provides an overview of the probability distribution for the process given
in equation (1.1). Some useful properties about the boundary behavior can be understood
by examining the stationary probability distribution.

Let P(R(t),t) be the probability density function of interest rate process R(t) under
the risk-neutral measure at time ¢, given an initial Dirac delta function distribution at time
t= to

P(R(t),t = to) = 0(Ry — Ro) (A1)

This function is referred to as a pricing kernel. The resulting equation for a pricing kernel
is called the Fokker-Planck equation.

Theorem 4 (Fokker-Planck Equation) The probability density function P(r,t) under
the risk-neutral measure for the interest rate values R at time t satisfying initial conditions
(A.1), obeys the following equation:

OP(r,t)
ot

IP(r,t) 102

= kP(r,t) — k(b —1)
where r = R(1).

Proof 5 The proof follows exactly as in [6].
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An exact analytical solution of the time-dependent Fokker-Planck equation for the
distribution function P(r,t) = P(r,ro;t), subject to the initial-time condition P(r,t =
0) = 6(r — 1), can be shown as in [6], to take the form

q/2
) exp(—c(roe " + r))Iq(th(rore’bt)l/Q) (A.3)

where ¢, = 2k/(0?(1 — e™")), ¢ = (2kb/0?*) — 1, and I,(-) is the modified Bessel function
of the first kind of order ¢q. In the long time limit ¢ — oo the distribution approaches a
steady state with dp/0t — 0. The stationary probability distribution is given by

(2,%/02)2/%/02 ob /o)1 — )
Poo _\ene ) (2kb/0?)—1 —(2Kb/c*)r A4
") = oo " ‘ (A4)

where T'(+) is the gamma function. It is possible to deduce some interesting properties of
the density near the boundary r = 0. The interested reader can refer to [20] and [7] for
more details.

0, 2kb> o2
lim P, (r) ={ const, 2xkb= o> (A.5)
Tt 0o 2kb < o?

The above equation says that when 2xb > o2, there is zero probability of attaining zero
interest rates. When 2xb < o2, there is positive probability of attaining zero interest rates.
Equation (A.5) allows us to determine when a boundary condition will be necessary for
the process given in equation (1.1).

38



Appendix B

Analytical solution to the term
structure equation

As shown by [21], a closed form solution for the time zero value of a bond under the CIR
model is given by

B(t,T) = a(t,T)e t®TIr® .
where
(t,T) = 2hexp{(a+ h)(T —1t)/2}) 2ab/02
BT ot (@ ) (exp{(T — t)h} — 1)
b(t,T) = 2(exp{(T — t)h} — 1)

~ 2h+ (a + h)(exp{(T —t)h} — 1)’

h = Va2 -+ 202
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Appendix C

Algorithm for simulation of
square-root diffusion

Simulation of dr(t) = k(b — r(t))dt + o+/r(t)dW (t) on the
time grid 0 =ty < t; < ... < t, with d = 4bk /0>

Case 1: d >1

fori=0,...,n—1
¢ o2(1 — e =t /(45)
) — r(ti)(efﬂ(tiﬂ*ti)/c
generate Z ~ N(0,1)
generate X ~ x2
P(tisn) < c[(Z + /(N + X]

end

Case 2: d <1

fort=0,...n—1
c  0%(1 — e "=t /(45)
A r(t;) (et /e
generate N ~ Poisson(\/2)
generate X ~ X7 oy
T<ti+1> —cX

end

Simulation of square-root diffusion by sampling from the transition density as shown in
[17].
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