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Abstract

Stochastic agent based models of monoculture bacterial colonies are an important first step
in modelling more complex systems. We present a basic growth simulation of monoculture
bacterial colonies using the cell simulation software BSim. These simulations are highly
parameterized and require careful calibration to ensure model outputs are true to experi-
mental observations. A set of features extracted from raw simulation data are proposed to
be utilized in the calibration of BSim simulations. These features underwent a sensitivity
analysis with respect to the growth simulation parameters. Several features are identi-
fied as promising candidates for utility in calibration. We then perform an Approximate
Bayesian Computation calibration of a simple growth simulation in BSim.
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Chapter 1

Introduction

In recent history, the field of synthetic biology has developed into an exciting research
domain that combines engineering, biology and mathematical principles, all of which have
been heavily studied (Benner and Sismour, 2005; Yeh and Lim, 2007; Cameron et al., 2014).
During the field’s infancy, the concept of genetic circuits was introduced as an exciting way
to induce and control gene expression, specifically in E. coli microbial systems (Gardner
et al., 2000). This novel framework allowed for more complex circuits to be designed
and tested, which has led to new discoveries in metabolic engineering and microbiology
(Stephanopoulos, 2012). Additional applications of synthetic biology appear in agriculture
(Roell and Zurbriggen, 2020), material sciences (Tang et al., 2021), immunology (Sepich-
Poore et al., 2021) and therapeutics (Charbonneau et al., 2020).

As expected with modelling complex, dynamical systems, there is a strong desire for
accurate and efficient computational frameworks. Computing complex, biological systems
in silico allows for the rapid prototyping and testing of experiments over a design space
that would be otherwise unfeasible in vitro. A modelling approach for biological systems
known as agent based modelling (ABM) has gained significant popularity recently, es-
pecially for synthetic biology applications (Gorochowski, 2016; An et al., 2017). ABM
approaches attempt to model the individual behaviour of distinct biological entities within
their environment, which allows for the careful control over agent to agent interactions and
global dynamics of the system’s population.

Studying microbial systems of practical interest often involve multiple, distinct popu-
lations of bacteria interacting with one another. Therefore, it is crucial that we accurately
model the growth dynamics and morphology of monoculuture (single progenitor) bacte-
rial populations in silico. Once accomplished, ABM models can be created from baseline
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growth behaviours that are highly characterized and more interesting bacterial properties
can be added from specific in vitro experimental conditions. For example, a case study
performed by Matyjaszkiewicz et al. (2017) utilizing a stochastic cell simulation software
called BSim, showed a successful in silico implementation of an oscillating, synthetic mi-
crobial system designed first observed in vitro by Chen et al. (2015). BSim is particu-
larly successful due to its ability to hybridize the model approach by characterizing the
spatio-temporal nature of a bacterial colony with individual agent dynamics and underly-
ing chemical signalling with ordinary or delay differential equations. There are many other
useful computational tools to perform biophysical simulations of monocultural, microbial
populations such as gro, CellModeller, and BacSim; see Pinheiro and Gorochowski (2016)
for a more comprehensive list.

Stochastic modelling approaches, such as BSim (Matyjaszkiewicz et al., 2017), require
careful calibration of model parameters to ensure that simulation outputs mimic desired
target data (i.e. experimental data). In particular, we are concerned about calibration
methods that take into account microscopy data, where the data captures bacterial colony
growth and morphology, as well as genotypic expression that may be encoded in a genetic
circuit and expressed through fluorescence. Calibration and validation of stochastic ABM
models in finance and economics is very common (Fievet and Sornette, 2018; Fagiolo et al.,
2019; Pietzsch et al., 2020), however, there is a scarce amount of literature regarding
calibration methods for the spatio-temporal ABM simulations we are interested in.

A major roadblock for calibrating stochastic ABM simulations is the inability to ob-
tain a computationally tractable likelihood function, due to the implausibly large task of
producing all possible simulation trajectories. To overcome this problem, likelihood free
methods such as Approximate Bayesian Computing (ABC) are an increasingly popular and
effective choice (Sunn̊aker et al., 2013; Liepe et al., 2014; Lintusaari et al., 2017). ABC
methods use a reduced dimension representation of simulated and target data to determine
the similarity between the two, with an iterative refinement of the similarity criteria. In
essence, the goal of ABC is to estimate a posterior distribution for the parameters used
to generate simulations, such that the distance (similarity) between simulated and target
data is minimized. It is critical that appropriate representations of the data are calculated
such that very little information loss occurs. Often a set of summary statistics or features
are collected from continuous stochastic simulations with relative ease and have success-
fully been utilized in ABC calibration experiments (Hartig et al., 2011; Fearnhead and
Prangle, 2012b). However, for stochastic ABM models and in particular spatio-temporal
models of cell growth, there is no standardized method for obtaining suitable features to
be applied in ABC methods. A number of studies (You et al., 2018; Dell’Arciprete et al.,
2018; Doumic et al., 2020) suggest emergent features that could be extracted from typical
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bacterial simulation or microscopy images.

In this study, we utilize the stochastic cell simulation software BSim (Matyjaszkiewicz
et al., 2017) to generate in silico monoculuture populations of E. coli. Our goal is to
accurately capture single colony dynamics using BSim, which requires the proper modelling
and parameterization of cell behaviour for these simulations. In Section 2 we outline
the specific details for our BSim simulations and the underlying parameterization and
biophysical assumptions. If cell to cell interactions are properly implemented to reflect
experimentally observed E. coli, the stochastic BSim simulations should be capable of
producing results sufficiently similar to real experimental data. Sufficiency is a loose criteria
set by specific use cases, however, our expectations are that the BSim models can be
appropriately calibrated against a target experimental data set. Section 3 outlines a set
of data features motivated by (You et al., 2018; Dell’Arciprete et al., 2018; Doumic et al.,
2020) to be utilized during calibration. In the following Section (4), we investigate the
sensitivity of the proposed data features by performing a one-at-a-time (OAT) sensitivity
analysis on our parameters outlined in Section 2. For our BSim simulations of monocluture,
bacterial growth, calibration involves the estimation of weighted parameter distributions
for later use in generating validated model output. Finally, we present a case study in
Section 5, where we attempt to infer parameter distributions from synthetic data for a
simple growth simulation in BSim.
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Chapter 2

BSim Cell Simulator

2.1 Overview

To simulate bacterial populations, the simulation software BSim was utilized to accom-
plish this task (Matyjaszkiewicz et al., 2017). BSim uses an agent-based modelling (ABM)
approach for simulating cell dynamics, where individual agents represent unique entities in
a biological environment. The major benefit of ABM comes from the fact that a developer
has full control over the mathematical rules that govern the behaviour and interactions of
each individual agent, or in this case, bacteria. This fact is very attractive in synthetic and
systems biology as it suggests an inherent ability to quickly implement and test experimen-
tal designs in silico, that would otherwise take long periods of time in vivo. Additionally,
BSim incorporates stochastic effects into the modelling structure of cell simulations, with
the hopes of capturing the stochastic qualities of natural systems. In the simplest case
of modelling cell growth, stochastic effects appear by randomly sampling distributions to
select the individual cell growth rate and the position of daughter cells after its progenitor
divides.

2.2 Bacterial Monoculture Modelling in BSim

It has been shown that many interesting applications arise from investigating microbial
systems where multiple colonies interact (González-Pastor et al., 2016). Therefore, it is
critical that the morphology of individual (monoculture) cell colonies are accurately mod-
elled before exploring multi-colony interaction. For this reason, modelling monoculture
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growth, from a single cell initial condition, was used as the baseline experiment for this
study. To simplify the analysis further, we look at a two-dimensional model of cell growth,
restricting bacteria from growing into the z plane. Consequently, the cell simulation out-
puts resemble that of two-dimensional images taken from typical microscopy experiments.

To model the two-dimensional system, a canonical growth simulation was crafted that
employed 8 adjustable parameters. These parameters modify simulation behaviour that
both directly and indirectly impact cell interaction, growth and division. Table 2.1 shows
the parameter names in BSim, along with their numerical ranges. The numerical ranges
were determined throughout the numerical experiments performed in this study. More
detailed explanations of each parameter are provided in the relevant subsections.

Other important characteristics of the BSim simulations are the individual agents’
attributes at every time step. Firstly, since we are modelling rod shaped E. coli bacteria,
each cell is represented by two coupled points denoted by x1 and x2, with some fixed radius
r defining a capsular shape for all cells. We denote the position of the center of the cell
with x̄. BSim also keeps track of other pertinent quantities such as cell length (L) and
orientation (φ). All simulations are initialized with a single cell placed at the center of a
1800 units by 1800 units square with a total simulation time of 5 hours and a dt = 0.03
hours.

To consult the exact modelling implementations, please refer to https://github.com/

ingallslab/bsim/blob/master/run/BasicSimulation2D/BasicSimulation2D.java.

Parameter Description BSim Name Symbol Low High

Initial Asymmetrical Growth init_growth_asym αi 0 1
Scale Asymmetrical Growth asymmetry_scale αs 0.5 1
Twist Cell at Birth birth_twist β 0 0.5
Sticking Force Constant k_stick ks 0 1
Overlap Force Constant k_overlap ko 10 500
Internal Force Constant k_int ki 0 5
Sticking Force Range contact_rng δr 0 0.5
Sticking Force Contact Threshold contact_damping δd 0 4

Table 2.1: Full list of BSim parameters used to adjust growth simulation behaviour. A short
description accompanies the naming convention used in BSim, as well as an abbreviated
symbol used throughout the report.
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2.3 BSim Parameterization

2.3.1 Spring Forces

BSim utilizes a suite of spring forces to describe several different forces imposed by cells
on each other. These spring forces are generically described by,

Fspring ∝ kspring(L̃spring − L̃rest
spring)

p (2.1)

where Fspring is proportional to the difference between spring length L̃spring and the resting
spring length L̃rest

spring, and scaled by the corresponding spring constant kspring. For a value
of p = 1 this expression is Hooke’s law for a linearly elastic spring force, and for p 6= 1
we have a non linear spring force. The three spring forces that are relevant to this study
utilize different values of p and will be outlined next.

The first of the three spring forces is the internal force, which is parameterized via the
spring constant ki. At a time step t, the simulation will propose a growth amount ∆L that
updates the length of the cell to Lnew = Lold +∆L. In the internal spring force calculation,
the resting spring length Lrest

spring = 0 and Lspring = ||x2−x1||−Lnew, where x2 and x1 are the
positions of the cell nodes. It’s important to note that the node to node distance ||x2−x1||
will almost always be less than Lnew because the positions are not updated to reflect the
proposed growth step until after all the forces are resolved. Therefore, the spring force
Finternal ∝ ki(||x2−x1||−Lnew)2 acts outwardly on each node to ensure that no other forces
prevent the cell from realizing it’s new length Lnew. A simple depiction of this force is
presented in Figure 2.1. In the rare case that ||x2 − x1|| > Lnew this force would be able
to pull nodes back to the desired length.

A high valued ki will ensure that any forces acting along the growth axis of the cell,
do not effect the new length Lnew at the current time step t. If a small ki is used, this
allows neighbouring forces to impact the new length of the cell after the growth amount
is proposed. In practice, a small value of ki will cause cell lengths to increase very slowly
(due to compression from other forces), with very few reaching their threshold length in
an appropriate time scale.

Figure 2.1: Schematic of internal force acting on cell nodes in BSim simulations.

6



Next we consider the overlapping force between cells, which ensures that two neighbour-
ing cells do not physically occupy the same volume. The strength of this force is controlled
with the spring constant ko. As shown in Figure 2.2, if two cells’ positions overlap, the
spring force will act such that they are pushed apart. Two cells i and j are considered
overlapping if their neighbour distance dn = ||x̄i− x̄j|| is less than 2r, where r is the radius
of our rod shaped cells. The resting spring length Lrest

spring = 0 and the overlap force is
described by Foverlap ∝ k0(2r− dn)2.5. A small ko allows cells to coalesce because the force
won’t be strong enough to continually push cells past overlapping, whereas a large value
will guarantee separation occurs.

Figure 2.2: Schematic of overlap force acting on neighbouring cells in BSim simulations.

Finally, the third spring force is the sticking force. In reality, E. coli possess surface
organelles called pili (Paranchych and Frost, 1988) that allow for an individual bacteria
to adhere to other bacteria. Modelling these filament structures directly would be too
complex and instead the adhesion effects are modelled with a sticking spring force. Figure
2.3 shows a simple depiction of how the sticking force is applied to two cells. The strength
of this force is again parameterized with the corresponding spring constant ks.

The specific implementation of the sticking force takes into account the pairwise dis-
tances between all nodes of two neighbouring cells. For each of the 4 pairwise distances,
we model a spring with either a short resting spring length Lrest

short or a long resting spring
length Lrest

long. The short and long axes correspond to the shortest node distance between
neighbour cells and the longer (diagonal) distance respectively. We denote the shorter
distance as dshort and long distance as dlong. Therefore, along the two short axes we apply
a sticking force Fsticking,short ∝ ks(dshort − Lrest

short) and along the two long axes we apply a
sticking force Fsticking,long ∝ ks(dlong − Lrest

long).
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Figure 2.3: Schematic of sticking force acting on neighbouring cells in BSim simulations.

2.3.2 Sticking Force Limits

In Figure 2.3, we see the force diagram of how two cells are drawn towards each other
when the sticking force is applied. If two cells are within reach of each others pili, which
is defined as a threshold distance contact_rng (δr), the sticking force model will attract
the two cells to each other. We also define a dampening effect, such that the sticking force
stops acting on neighbouring cells when they have sufficient contact. Numerically, the
amount of contact is calculated by drawing two bounding boxes around neighbouring cells
and finding the perimeter of the overlapping section between the two boxes. The parameter
contact_damping (δd) is the threshold value of this perimeter at which the sticking force
turns off between neighbouring cells. An example of two intersecting bounding boxes
between neighbouring cells in shown in Figure 2.4.

Figure 2.4: Schematic of contact damping parameter δd effect in BSim. Note that the
perimeter of the red intersection area is compared to δd to control the strength of sticking
force.
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2.3.3 Asymmetric Growth

When observing E. coli growth, it has been shown that the two poles of a rod shaped
bacteria may grow at differing rates (Kysela et al., 2013). Therefore, during growth of that
bacteria, the forces exerted by each pole of the bacteria may differ and consequently alter
the morphology of an entire colony over time. We choose to model and tune this behaviour
using two parameters, init_growth_asym (αi) and asymmetry_scale (αs).

At a given time step t during the simulation, a certain growth amount ∆L is proposed
to extend the length of the cell. For symmetric growth, this length extension is applied
equally to both ends of a cell. To account for asymmetric growth, we define an initial
degree of asymmetry αi bound between 0 and 1. This parameter scales the amount of
internal force felt by each node x1 and x2. It is implemented in BSim such that x1 feels
a greater internal force, which ensures this end of the cell grows by ∆L at time t and the
node x2 will grow by some amount less than ∆L.

The second parameter used to model asymmetrical growth is the scaling parameter
αs. This has a relatively simple effect of tapering off the initial asymmetrical growth αi,
as the cell grows. Once the cell reaches a length of L = αsLthresh, the cell will start to
grow symmetrically until it reaches its predefined division threshold length Lthresh. If we
denote the internal force felt during symmetric growth as finternal and the internal force felt
during asymmetric growth as Finternal, we have the following equations that describe the
dampening model as,

Finternal(x) = finternal(x)(1 + ω) , at x = x1 (2.2)

Finternal(x) = finternal(x)(1− ω) , at x = x2 (2.3)

where,

ω = max

(
0 , αi

(
1− L

αsLthresh

))
. (2.4)

2.3.4 Cell Division

Once a cell reaches a length L = Lthresh, this is the length at which the cell will divide. In
BSim, the program simply creates two new cells at this time step, with the parent’s nodal
information passed onto the daughter cells. Additionally, BSim adds a small perturbation
vector βv̄ to one of the daughter cells orientations’ to ensure they are not perfectly aligned.
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Here, v̄ ∈ R2 is a random uniform vector scaled by the birth_twist parameter β. The
new position of the daughter cell right after birth is given by x̄birth. To perturb the position
right after birth, we calculate

x̄new = x̄birth + βv̄ (2.5)

where x̄new is the new perturbed position of the daughter cell. Figure 2.5 shows a depiction
of how this random orientation might look in the simulation.

Figure 2.5: Schematic of two daughter cells after a division event in BSim, where one cell
has their position perturbed by βv̄.
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Chapter 3

Feature Definitions

3.1 Overview

In order to compare experimental data to simulated data sets of E.coli growth, we search
for some means of numerical comparison. Since BSim, and many other biophysical models
are stochastic (Goel and Richter-Dyn, 2016), a one-to-one comparison of experiment and
simulation is impossible and therefore more careful measures must by employed. In general,
the comparison of raw, stochastic data is performed by seeking a set of summary statistics
(Fearnhead and Prangle, 2012b) that are reduced dimension representations of the data. In
this study we refer to summary statistics as features of the data. Many of the features are
calculated with image analysis tools and therefore require two dimensional images of cell
colonies. Although E. coli are not perfectly capsular in shape, it is easiest to approximate
their shape as a capsule with fixed radius and a variable cell length. Therefore, using our
data containing cell position, length and orientation, we can generate an image X of size
Npixels of the cell colony using the Python package Pillow (Clark, 2015), with a total of Ncell

objects represented as a capsule. Features that do not require images of the cell colonies
are instead calculated from the raw data.

3.2 Scalar Features

There are a set of four features obtained by calculating a single quantity from the data,
either because the feature involves collapsing all data points into one quantity or because
it is related to a single time point in the dynamics of the E. coli colony. One of these four

11



features is calculated for every cell at a given time t, where the distribution of values is
collapsed into an averaged value over the total cell population at every time step. This
approach is a notably naive approach for obtaining the trend over time, however, was chosen
for simplicity. These features are motivated by (Doumic et al., 2020) and are adapted to
fit our modelling framework.

3.2.1 Density

The first of the scalar features is the density of the single E. coli cell colony. This is an
easy feature to calculate at any time point and is done through simple image analysis.
For a given image at time t, we leverage the Python packages opencv (Bradski, 2000) and
skimage (Van der Walt et al., 2014) to output pertinent measurements. First, we obtain
the total area A of the colony to be used in the density calculation. This is obtained by
generating a contour around the edges of the colony and setting all pixels to 255 within the
contour and counting the total number of pixels equal to 255. Then, to obtain the density
of the colony given an image X, where pixels corresponding to cells are set to an integer
pcell we get

fdensity =
(Npixels∑

i=1

I(Xi = pcell)
)
/A (3.1)

where, fdensity corresponds to the density feature and I is an indicator function. The two
image creation steps mentioned in this formulation are shown in Figure 3.1.
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Figure 3.1: (a) Sample image of post processed cell colony with approximated edge contour
and filled in pixels. (b) Overlayed image of raw cell colony data, on top of filled in colony.

3.2.2 Dyad Structure

As noted in (Doumic et al., 2020), rod shaped bacteria, and in particular E. coli, form a
consistent pattern in their colony morphology when the colony reaches a total population
of four bacteria. Specifically, they form a tetrad formation shown in Figure 3.2.

Figure 3.2: Phase microscopy image of a four cell E. coli colony forming an aligned, tetrad
structure.

With the tetrad formation observed at a high frequency in E. coli growth, capturing
this effect in simulation is paramount and therefore requires a unique feature used in
calibration. We utilize a similar quantity defined in (Doumic et al., 2020) that takes into
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account the orientation of each bacteria in the two cell colony, which we refer to as the
dyad structure. In experimental data, the two cell colony trends towards having two cells
stacked on top of each other (see either left or right pair in Figure 3.2). Therefore, we aim
to capture this by calculating,

fdyad =
(x̄1 − x̄2) · x̄2
||x̄1 − x̄2|| ||x̄2||

(3.2)

where x̄1 and x̄2 are the positions of the center of each of the bacteria in the two cell colony.
Notice that if the two bacteria are parallel, fdyad will equal 1 and subsequently will equal
0 if they are orthogonal.

3.2.3 Aspect Ratio

The third scalar feature that is obtained is the aspect ratio of a single E. coli colony. The
aspect ratio feature was shown to change for different parameterized adhesion strengths
in simulations performed by (Doumic et al., 2020) and therefore presents an interesting
measure of cell colony difference between unique simulation configurations. Aspect ratio is
collected by fitting an approximate ellipse to the enclosed colony region shown in Figure
3.1. An ellipse inherently has a major axis a and minor axis b that defines it’s shape
and eccentricity. The two axes are are then combined to calculate the aspect ratio. The
equation for the aspect ratio of an ellipse and hence the cell colony, is given by the ratio,

fap =
a

b
(3.3)

where fap corresponds to the feature for aspect ratio. A depiction of the ellipse fitted to a
sample cell colony is presented in Figure 3.3.
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Figure 3.3: Sample image of post processed cell colony with approximate ellipse fitted to
the colony area.

3.2.4 Anisotropy

Individual cell orientation, and the orientation of neighbouring cells can have dramatic
effects on the morphology evolution of bacterial colonies. Therefore, it is critical to capture
a measure of how cells are oriented with respect to their neighbours over the duration of
colony growth. We utilize the measure of local anisotropy as described by (Doumic et al.,
2020), which captures the degree to which neighbouring cells are similarly oriented to to
one another.

The calculation of anisotropy is as follows. For every cell i in a colony of size N , the
average projection matrix Pi is calculated with,

Pi =
1

Nneighbour

N∑
j=1

(
cosφ2

j cosφj sinφj
cosφj sinφj sinφ2

j

)
I(d(i, j) < d∗) (3.4)

where d(i, j) is the center to center distance between two cells given by,

d(i, j) = ||x̄i − x̄j||. (3.5)

The threshold distance d∗ for cells to be considered neighbours, is set at a fixed value of
60µm and Nneighbour is the number of cells that satisfy d(i, j) < d∗ for a given cell i. The
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local anisotropy λi of each cell i is then calculated with,

λi = λmax(Pi) (3.6)

where λmax is the largest eigenvalue of the matrix Pi. Since we end up with a local
anisotropy value for each cell, at every time step in data, we collapse the collection of
values at each time step to an average anisotropy value given by,

fanis =
1

N

N∑
i=1

λi (3.7)

where fanis is the feature corresponding the ”total” anisotropy of a colony. With this
method of calculating anisotropy within the cell colony, it is important to note that a λi
value equal to 1 indicates that all neighbouring cells within d(i, j) < d∗ are oriented in
the same direction and a λi value equal to 0.5 suggests the opposite scenario. The two
extremes can be seen in Figure 3.4.

Figure 3.4: Local anisotropy values for individual cells in a sample BSim simulation output.
Anisotropy values range from 0.5 (not oriented) to 1.0 (highly oriented).
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3.3 Distributed Features

The first four features were of a classification, where at a given time point in the data, we
can extract a single measure for each cell in the total population (or for a single time point
in the case of dyad structure). The final three features differ from the scalar features for two
reasons. First, they are collected as a distribution of a quantity over the total population
of a single colony and second, they are only calculated at the final time step of the data.
Collecting the distributed features at the end of a simulation, or in experimental data,
gives more statistics and therefore a greater chance of obtaining a precise measurement.

3.3.1 Cell Orientation on Colony Boundary

As suggested by Dell’Arciprete et al. (2018), there is a tendency for E. coli at a large
colony size to align themselves with the boundary of the colony, which can be seen in
Supplementary Figure A.1. This suggests that a simulation which correctly characterizes
the distribution of angles for cells on the boundary of a colony could act as a very powerful
comparison tool between simulated and real data. In Dell’Arciprete et al. (2018) the
authors represent cell positions as a continuum, whereas we have discrete positions x̄ for
each individual cell object in the data. Therefore, a modified approach is taken to obtain
a distribution of cell orientations on a colony’s boundary.

The cell positions at the final time step are collected and make up a set of points V . An
algorithm called alphashape (Asaeedi et al.; Kirkpatrick and Seidel, 1983) is applied to the
set of points V , where a subset of points U ⊂ V are obtained. In practice, the coordinates
U ⊂ V are used to define a bounding polygon whose vertices are given by the points in U .
The discrete set of points U chosen by the alphashape will later be used as the foundation
for a continuous boundary representation. Each point in U corresponds to a cell that lies
exactly on the boundary.

The alphashape algorithm takes in a single parameter α ∈ R, which defines the radius
of 1

α
of a generalized disk. A connected component of the bounding alpha shape polygon

is drawn between two points v1 and v2 in V , if a generalized disk of radius 1
α

intersects v1
and v2 but contains no other points in the set V . For a small α, we have a large generalized
disk, which invokes the requirement that two points be on the outside of a cluster of points,
i.e. cluster of points representing a cell colony. In fact, if we set α = 0, the generalized
disk becomes a half plane and the alpha shape algorithm reduces down to computing the
convex hull. All computations of alpha shapes in this study utilize α = 0.01. The points
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that make up all of the connected components define U ⊂ V and we then have a set of
coordinates that can be used to define a boundary for a single cell colony.

We then fit a cubic spline to the points in U for a continuous representation of the
boundary. A sample image of the splines generated for α = 0 (convex hull) and α = 0.01
is given in Supplementary Figure A.2. With a spline fitted to the alpha shape boundary
of a cell colony, we can then easily compute the cell’s orientation corresponding to points
in U , with respect to the cell boundary and obtain an overall distribution for our data.
Supplementary Figure A.3 showcases a sample result from the orientation calculation for
a simulated cell colony. Distributions of cell orientation are then generated by making a
histogram of the cell orientations, with bins of 1◦ width. All cell angles are transformed to
be between 0 and 90◦ to avoid degeneracy of angles for rod shaped bacteria. We denote
the feature relating to the distribution of cell orientation on the boundary of a colony as
fangle. An example distribution is shown in Figure 3.5.

Figure 3.5: Distribution of cell orientations with respect to cell colony boundary for a
sample BSim simulation ensemble of 500 runs.

3.3.2 Oriented Patch Size

In a study performed by You et al. (2018), they investigated the existence of oriented
microdomains within a rod-shaped bacterial cell colony. A microdomain, or patch, is
defined as a cluster of neighbouring cells which are similarly oriented within a tolerance
angle θt. Clusters of neighbouring cells are also dependent on a length scale l that defines
the distance at which cells are considered neighbours. It was found by You et al. (2018)
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that the size of a patch, which corresponds to the total number of cells in that patch,
depends on certain growth specific factors, such as growth rate and division length. This
suggests that probing the number of cells in oriented patches for a fixed l and θt could yield
different patch size frequency for colonies of differing growth or simulation conditions.

We utilized the method by You et al. (2018) to cluster cells in our data into patches of
similar orientation for a length scale of l = 25µm and θt = 1◦. The result of applying this
method to BSim simulation data is shown in Figure 3.6. It is clear that regions of cells
that exhibit very similar or identical orientation are coloured the same, indicating they
belong to the same oriented patch. Taking data, like the data we see in Figure 3.6, we
can collect a distribution corresponding to the frequency of patch size in that data set or
ensemble. An example of a resulting distribution is shown in Figure 3.7. We denote the
feature related to the distribution seen in Figure 3.7 as fpatch.

Figure 3.6: Sample result for patch size calculation. Neighbouring cells that are coloured
the belong to the same patch.
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Figure 3.7: Distribution of patch size for a sample BSim simulation ensemble of 500 runs.

3.3.3 Cell Age and Distance within a Colony

To track an individual cell’s age, an addition to BSim was made in order to ensure the
lineage is calculated correctly. In the biological context, the cell’s age corresponds to a
daughter cell’s node inheriting the same nodal material as it’s parent cell. Put simply,
each daughter cell will have half of the grandmother cell and one half of ”new” material.
Therefore, the bacteria in BSim carry an age associated to each node x1 and x2, where
each node age is incremented each time that node becomes part of a daughter cell after
division. The entire cell’s age is then defined as the maximum age over the two node
ages. Intuitively, one would then expect the oldest cells to be pushed to the exterior of
a cell colony, since they contain the material from the first, single cell. Because of this,
we then group all of the cells of equal age and collect the relative positions of those cells
with respect to the colony’s centroid. An overall trend in these distributions should favour
younger cells being more centralized and older cells being near the exterior of a colony.
Figure 3.8 shows a sample simulated colony with the observed behaviour.

Since each age group has their own distribution of cell distances, we collapse each
of those distributions down into a mean value µage that is then used to create a point
(age,µage), for each of the observed ages in a simulation ensemble or data set. A set of
points (age,µage) for age = 1, ...,max(age) is denoted as the feature fage. These points
allow us to plot curves which show how the mean changes for age group, as well as how
the overall trend changes when model parameters are adjusted. An example curve created
from BSim simulation data is shown in Figure 3.9.
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Figure 3.8: Sample BSim simulation with cell colours corresponding to their age. As
expected, older cells in blue trend towards the exterior of the colony.

Figure 3.9: Sample curve corresponding to mean distance of cell’s to their colony centroid
as a function of cell age. Error bars are the standard deviation in cell distance for a
particular age group. Statistics were collected from a BSim simulation ensemble of 500
runs.
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Chapter 4

Feature Sensitivity Analysis

4.1 Methods

There are a total of seven features that are explored in this study, where each feature
was determined to be either sensitive or non-sensitive to parameter changes in BSim. The
main application of the sensitivity analysis is to determine whether the features defined in
Section 3 could effectively measure a distance between simulated and experimental data.
We are able to calculate a distance via the aforementioned features because they will be a
transformation from individual agent data, to scalar or vectorized quantities that describe
a global state of the agents.

The sensitivity analysis will not involve real data sets. However, the ability to compare
simulations of different configurations in our parameter space should indicate the efficacy of
our features for the task. Ideally, the set of seven features examined in this study should be
able to capture differences between data sets when the seven BSim parameters are modified.
If a feature is unable to capture differences, it’s possible that additional experiments or
modelling refinements could be added to address this problem in the future.

To determine what features were sensitive to parameter changes, a one-at-a-time (OAT)
(Hamby, 1994) sensitivity analysis was performed for the BSim parameters. This involved
performing a sweep between a single parameters high and low value, where we chose 25
steps between the extremes. Additionally, we defined a default value p0 as the midpoint
between the high and low value for each parameter. p0 was treated as the comparison
data point for the sensitivity analysis. Although parameter interdependence exists for the
BSim modelling, an OAT sensitivity analysis was chosen for simplicity. For each param-
eter value, an ensemble of 500 simulations were ran using high performance computing
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(HPC) resources courtesy of ComputeCanada. The simulation ensembles ensure that am-
ple statistics are obtained for each of the data features and uncertainties are minimized
from stochastic effects.

Unlike a formal sensitivity analysis, we did not use a quantitative measure of how
sensitive a feature was to parameter perturbation and instead we relied on visualizations of
each feature to inform that judgement. For the visualizations we employed three different
methods. First, the features were compared across parameter values for only the final
time point of the simulations in each ensemble. Then we extend the amount of data
to comparing the feature trends over the full temporal evolution of a simulation. It is
important to note that the temporal evolution of a cell colony is not tracked in time units,
but by cell colony area, which in a solely growth simulation will increase monotonically over
time. Finally, we calculated the distance between feature distributions for each parameter
value compared to the relevant default parameter value p0 using a variety of distance
metrics. Distance metrics included the Wasserstein distance (Villani, 2009), Kullback-
Liebler (KL) divergence (Kullback and Leibler, 1951) and the absolute integral difference.
The Wasserstein and KL divergence metrics were calculated using the Python open source
package scipy (Virtanen, 2020) and the integrals of distributions were calculated using
numerical Simpson integration. An example of the three visualization types is shown in
Figure 4.1.

Since we utilized visualization techniques to inform our understanding of each features
sensitivity with respect to each parameter, it is important to guide the reader through
an example of what is considered a sensitive feature. Referring to Figure 4.1.a there is
a clear separation in the mean aspect ratio for each of the ensembles simulated for high,
middle and low ks values. Despite some overlap with the error bars we can confidently
say that at the final time point of a simulation, different values of ks yield different aspect
ratio values. Extending the endpoint analysis to the full temporal evolution, as shown in
Figure 4.1.b, we wish to see a separation in the feature over the full simulation. Again,
we see that the aspect ratio evolution differs across multiple parameter values. Utilizing
the final visualization shown in Figure 4.1.c requires that there is monotonic increase or
nearly monotonic increase in integral distance between simulation ensembles. Specifically
we wish to see deviation from p0 for all other parameter values considered in their respec-
tive ranges. A strong deviation from p0 suggests that a given data set with a ”true” value
corresponding to p0 will yield features that are distinguishable to data sets with differ-
ent parameter values. Each feature is said to be sensitive to a parameter by inspecting
that features’ visualization and looking for adequate separation between data of different
simulated parameter configurations.

23



Figure 4.1: Example visualizations used in feature sensitivity analysis. (a) Endpoint com-
parison of aspect ratio feature fap between simulations of varying sticking force ks. (b) Full
temporal comparison, as a function of colony area, for fap. (c) Integral difference between
curves in panel (b) corresponding to different ks values. Integral difference is calculated
between all parameter values and the central parameter value.
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4.2 Results

4.2.1 Density

We tabulate the sensitivity results for the density feature fdensity in Figure 4.2, where filled
in cells corresponds to an observed sensitivity in fdensity for the matching parameter in
that row. It is clear that the three spring forces have an impact on colony density and
this is expected, since the three spring forces ks, ki and ko dictate the strength of forces
exerted between neighbouring cells. As both ki and ko decrease, the density should increase
since small internal and overlap forces would allow for cells to pack together more tightly.
This effect can be observed in Supplementary Figures B.1 and B.2. The inverse effect is
observed for ks, where increasing the sticking force decreases the density, since ”stickier”
cells prevent cells from sliding past one another and therefore form a tightly packed colony.
This is shown clearly in Figure 4.3. We also observed a sensitivity in fdensity with respect
to birth twist β, however, the effect is not as dramatic as the spring forces. For all other
parameters, the density evolves nearly identically for each parameter values.

BSim Name Symbol fdensity
init growth asym αi
asymmetry scale αs

birth twist β

contact rng δr
contact damping δd

k stick ks
k int ki

k overlap ko

Figure 4.2: Sensitivity results for density (fdensity). Grey boxes correspond to sensitivity
in fdensity with respect to the BSim parameter in the same row.
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Figure 4.3: Mean density (fdensity) as a function of cell colony area for three different
sticking force constant ks simulation ensembles. Error bars represent standard deviation
of the density over the simulation ensemble.

4.2.2 Dyad Structure

For the dyad structure feature fdyad, we observed promising results with respect to the
birth twist parameter β only. We inspected the mean of fdyad, defined in Equation 3.2,
over simulation ensembles and plotted the mean with respect to the parameter value used
to generate the ensemble. The resulting curve is shown in Figure 4.4 for ensembles collected
from differing birth twist simulations. It is evident that there is an increase in the mean
value as we increase β. This indicates that varying the degree to which the first daughter
cell is rotated after division, will also determine how the parent and daughter cell are
aligned at the next cell division event. By creating the same plot shown in Figure 4.4 for
all other parameter ensembles, there was no noticeable change in the mean dyad structure.
Ideally, the dyad structure would show more variation when changing the parameters
for asymmetrical growth since one would expect that growth favouring one end of a cell
would encourage two cells to slip past one another. It is possible that the modelling of
asymmetrical growth may need to take into account more complicated effects.
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Figure 4.4: Mean dyad structure (fdyad) for birth twist simulation ensembles. Birth twist
values on x-axis refer to scale parameter β applied to random vector v̄ ∈ R2. A cell’s
position after birth is perturbed to x̄new = x̄birth + βv̄, where x̄birth is the position of the
cell right after birth. Error bars represent the standard deviation of the dyad structure of
simulation ensembles.

4.2.3 Aspect Ratio

The aspect ratio feature fap is closely related to cell colony shape and was therefore observed
to be sensitive to many of the parameters considered in our BSim model. The results are
tabulated in Figure 4.5. Both of the asymmetrical growth parameters αi and αs produce
significantly different aspect ratios between their high and low parameter values. This is
shown for αi in Figure 4.6, where a similar result was found for αs. The results in Figure
4.6 also depict the sensitivity trend observed for birth twist β and contact range δr, where
there is a significant difference in aspect ratio as the colony grows in area. Of all of the
parameters, ks produced the most variation between it’s high and low parameter values.
The results for ks are shown in Supplementary Figure B.3.
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BSim Name Symbol fap
init growth asym αi
asymmetry scale αs

birth twist β

contact rng δr
contact damping δd

k stick ks
k int ki

k overlap ko

Figure 4.5: Sensitivity results for aspect ratio (fap). Grey boxes correspond to sensitivity
in fap with respect to the BSim parameter in the same row.

Figure 4.6: Mean aspect ratio (fap) as a function of cell colony area for three different initial
asymmetrical growth αi simulation ensembles. Error bars represent standard deviation of
the aspect ratio over the simulation ensemble.
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4.2.4 Anisotropy

Although the anisotropy feature fanis is collapsed to a mean local anisotropy over all cells in
a colony, it was still shown to be important for half of the parameters. The results for the
fanis sensitivity analysis are shown in Figure 4.7. A sample visualization for fanis is shown
for the sticking force parameter ks in Figure 4.8. Here we see the most dramatic sensitivity
result for fanis, where changing the order of magnitude of ks has a significant impact on
the feature. This is intuitive for the sticking force since we expect low ks values to produce
highly compacted colonies, where neighbouring forces could easily align cells. For the
other observed sensitivities in fanis with respect to birth twist, internal force and overlap
force constants, we saw significant overlap in the feature value over time for three different
parameter values. However, we also noted that the separation between these curves was
largest at their endpoints. This led to the conclusion that there may be suitable sensitivity
in fanis with respect to these three parameters, if considered only at the endpoint of the
data. Further investigations should be performed to reduce the overlap in error between
fanis results. These investigations should also include an improvement on the calculation
of the anisotropy feature.

BSim Name Symbol fanis
init growth asym αi
asymmetry scale αs

birth twist β

contact rng δr
contact damping δd

k stick ks
k int ki

k overlap ko

Figure 4.7: Sensitivity results for mean local anisotropy (fanis). Grey boxes correspond to
sensitivity in fanis with respect to the BSim parameter in the same row.
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Figure 4.8: Mean anisotropy (fanis) as a function of cell colony area for three different
sticking force constant ks simulation ensembles. Error bars represent standard deviation
of the anisotropy over the simulation ensemble.

4.2.5 Cell Orientation on Colony Boundary

For the first of the distributed features fangle, we observed a high impact by ks and ki. A
collection of fangle distributions are shown for various values in the parameter ranges for
ks and ki in Figure 4.9. It is clear from these distributions that there is distinct variation
of cell orientation on the boundary of a colony when changing the parameter values fir ks
and ki. We also show this quantitatively by inspecting the absolute integral distance and
KL divergence between distributions. These results are shown in Figure 4.10.
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Figure 4.9: (a) Sample distributions for simulation ensembles with varying ks. (b) Sample
distributions for simulation ensembles with varying ki. Distribution of cells on the bound-
ary of cell colony and their orientation with respect to an alphashape, spline boundary.
All data is collected at the final time point of the simulation.

It is important to note that the different metrics utilized to calculate distances between
fangle distributions yield much different results. Since the distributions for fangle are of a
similar shape for varying ki, the only way to get a proper distance between distributions is
by capturing the difference in peak height around 0.25 rad. Comparing the integral values
of distributions for ki was a valuable tool in capturing this effect. This result is clearly
shown in Figure 4.10.b with increasing distribution difference for parameter values across
the range of ki values. Utilizing the KL divergence to compare distributions of fangle for ki
proved to be unhelpful, which is shown in Figure 4.10.d. In contrast to ki, we see that the
KL divergence metric for comparing fangle distributions for ks values is very effective. It
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is likely that differing distribution shapes in Figure 4.9 leads to better distance sensitivity
seen in Figure 4.10.c.

Figure 4.10: (a) Absolute integral difference between fangle distributions for varying ks. (b)
Absolute integral difference between fangle distributions for varying ki. (c) KL divergence
between fangle distributions of varying ks. (d) KL divergence between fangle distributions of
varying ki. The central value in each of the parameter ranges are used as the comparison
data set for each of the metrics.

4.2.6 Oriented Patch Size

For the feature fpatch it was found to be sensitive with respect to five of the eight parameters.
These included the parameters β and δr for birth twist and contact range, as well as the
three spring force constants ks, ki and ko. To determine the sensitivity of fpatch we utilized
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the distributions for oriented patch size as shown in Figure 3.7 and compared the distance
between distributions for different simulation ensembles with the Wasserstein distance
metric. Figure 4.11 shows the Wasserstein distance between patch size distributions of
simulation ensembles corresponding to differing parameter values of ko. There is a clear
monotonic increase in the distance as we compare parameter values further from the central
ko value, indicating that there is sensitivity in fpatch with respect to ko. We observed similar
trends for the other two spring force constants ks and ki.

Figure 4.12 shows a much noisier Wasserstein distance calculation between simulation
ensembles corresponding to δr. We also observed a similar trend for β simulation ensembles.
Despite the presence of noise in the distance output, there is still a noticeable increase in
distance as we deviate from the central parameter value, thus signifying the impact δr has
on the fpatch feature.

Figure 4.11: Wasserstein distance between fpatch distributions for varying overlap spring
force constant ko. All difference calculations were calculated with respect to the central
value in the ko range.
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Figure 4.12: Wasserstein distance between fpatch distributions for varying contact range
δr. All difference calculations were calculated with respect to the central value in the δr
range.

4.2.7 Cell Age and Distance within a Colony

Figure 4.13 shows a sample comparison of fage curves corresponding to mean distance of
cells to their colony centroid, per age group in the cell colony. Each curve corresponds
to a simulation ensemble simulated for a specific value of the asymmetric growth scaling
parameter asymmetry_scale. We wished to observe curves, where mean distance varied
across individual curves for a given age value. Effectively, an increasing separation between
curves as cell age increases indicates that the feature fage is able to capture the dynamics
of certain age groups as we modify parameter values. Indeed as we modify the asymmetry
scale parameter αs, we see in Figure 4.13 that there is increased separation between fage
curves as αs increases. Note that there are data points which extend out to a cell age
of 10 for only three of the five curves in Figure 4.13, which is due to a small number
of simulations in each ensemble producing cell colonies with cells of that age. Since we
simulate stochastic simulations for a fixed time of 5 hours, we do not stop simulation for
a particular age condition. We observed similar results for initial asymmetric growth αi,
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birth twist β, contact range δr and the three spring constants ks, ki and ko. Each of the
visualizations for these six other parameters follow a similar trend to that of Figure 4.13
with increasing separation between curves as the cell age increases. Therefore, we conclude
that fage is sensitive to the seven parameters mentioned above.

Determining the degree of sensitivity for the feature fage was not a straightforward
task. Since we collapse many distributions per simulation into an overall mean in the
simulation ensemble, we are removing valuable information trapped within the original
distance distributions per age group in a cell colony. We attempted an absolute integral
difference comparison for curves shown in Figure 4.13 for the seven parameters that showed
sensitivity in fage, however the results showed a very noisy parameter versus distance
relationship. An example of this noisy distance calculation is shown in Figure 4.14 for αs
simulation ensembles. Other distance metrics like Wasserstein distance and KL divergence
were not calculated for these curves and should be explored further.

Figure 4.13: The mean cell distance to colony centroid within increasing age groups (fage).
Error bars represent the standard deviation in the distance with respect to the total dis-
tribution of distances over an entire simulation ensemble and age group.
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Figure 4.14: Absolute integral difference between fage curves for varying asymmetry scale
αs simulation ensembles. All difference calculations were calculated with respect to the
central value in the αs parameter range.

4.3 Discussion

BSim Parameter Symbol fdensity fdyad fap fanis fangle fpatch fage
init growth asym αi
asymmetry scale αs

birth twist β

contact rng δr
contact damping δd

k stick ks
k int ki

k overlap ko

Figure 4.15: Full tabulation of sensitivity analysis results for all seven features with respect
to the eight BSim growth simulation parameters. Grey boxes correspond to sensitivity of
a feature column to the BSim parameter in the same row.
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The final tabulation of sensitivity analysis results is provided in Figure 4.15. It is clear
that some parameters had a greater effect on the features than others and this is likely due
to a number of reasons. However, parameters which had little to no effect should not be
treated as having no further utility. Notably, none of the features had a significant response
with respect to the contact damping parameter δd. There is a possibility that our current
growth simulations in BSim do not correctly model the desired behaviour for δd, which
dampens the sticking force once ample contact between neighbouring cells occurs. More
experimentation should also be performed after increasing the parameter range for δd, as
its upper bound is dependent on the other parameter effects in our growth simulations.
Specifically, the amount of contact between neighbouring cells is dependent on the contact
range parameter δr. If certain values of δr increase the contact amount such that δd is too
small of a threshold quantity, it will not perform its intended behaviour.

For the two asymmetrical growth parameters αi and αs it is important to note that
only fap was observed to have any feedback with respect to parameter modification. We
did not find a reliable distance metric for distributions of fage, which suggests the feature
needs experimentation, especially due to the observed impact from modifying αi and αs.
It is also desirable to capture sensitivity in fdyad for these two parameters. We expect that
during fully asymmetric growth, combined with twisting at birth, that the first two cells
should migrate into a stacked dyad structure (as seen in Figure 3.2).

We observed the most frequent amount of sensitive features with respect to the three
spring force constants ks, ki and k0, as well as the birth twist parameter β. It is clear that
the temporal evolution of the scalar features and endpoint distributions for fangle, fpatch
and fage can be used to formulate a compelling distance comparison between simulations
for these four parameters. Note that we can also apply the same metrics used when
comparing distributed features for scalar features, if we compare the temporal evolution of
the scalar quantities. For example, the absolute integral difference or KL-divergence can
be calculated between curves corresponding to different β values in Figure 4.8. A sample
result is shown in Supplementary Figure B.4.

We recognize that it’s inconclusive whether or not the features used in this sensitivity
analysis are optimal or sub-optimal, as there was no succinct sensitivity criterion. Most
importantly, we identified which features are promising tools for comparing simulated data
using BSim for monoculture growth. Additionally, features which were identified as having
no sensitivity with respect to a parameter should not be discounted. All features should
be improved further by reducing error and refining the growth modelling.

Other approaches open for investigation include studies by (Yeremi et al., 2014; Koch
et al., 2017), which outline a systematic approach to determining the sensitivity and efficacy
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of statistical comparison between simulations and observations. In addition to this, a study
by (Fearnhead and Prangle, 2012b) suggests an approach to determining optimal summary
statistics (features) from data by using fitted linear models as the summary statistics which
minimize a quadratic loss function between known and sampled parameters. Although this
is a promising method, it may be difficult to translate to agent based simulations.
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Chapter 5

Approximate Bayesian Computing

5.1 Overview

The ultimate goal of the feature exploration and sensitivity analysis performed in this
study was to collect a number of quantities that can be used to compare two data sets D
and D0, where D is obtained from a mathematical model and D0 is a real world data set.
In our case, the mathematical model we are concerned with is the BSim cell simulation
of monoculuture, bacterial growth for a given set of parameters θ ∈ Rn, where n is the
dimension of our parameter space Θ and D0 is the data of a target biological system. If
there is confidence that the underlying modelling accurately describes the dynamics of
the target biological system, then it’s assumed there exists some θ∗ ∈ Rn, such that D is
sufficiently similar to D0 under the same initial conditions. Ideally we would be able to
directly compare a data set D given a parameter configuration θ to our experimental data
D0, however, both our model and biological systems are stochastic in nature, making direct
comparison impossible. Many parameter inference problems are approached by computing
and maximizing the likelihood function f(D0|θ), however the likelihood is computationally
intractable for stochastic simulations using BSim. We therefore choose to approach finding
a θ∗ by utilizing the likelihood free methods known as Approximate Bayesian Computing
(ABC).

We remove the calculation of a likelihood function in ABC and therefore, the main goal
is to approximate a posterior distribution f(θ|D0) ∝ f(D0|θ)π(θ), where π(θ) is a prior
distribution for the parameters in our BSim simulations. The fundamental principles of
ABC are as follows. A parameter configuration θ′ is sampled from a known distribution,
and a corresponding simulated data set D′ is generated from these parameters. A collection
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of p features are calculated for the simulated data and the target data, such that we obtain
two feature vectors ~FD′ ∈ Rp and ~FD0 ∈ Rp. The parameters θ′ are accepted if and only
if D′ is sufficiently similar to D0. Similarity between data is determined by a distance
metric d : Rp −→ R, where θ′ is accepted when d(~FD′ , ~FD0) < ε for some tolerance ε. If

the feature calculations ~F are sensitive to parameter adjustment, and ε is small, then we
can conclude that f(θ′|D0) ≈ f(θ′|d(~FD′ , ~FD0)) < ε). There have been many variations
of ABC methods that include rejection sampling (Pritchard et al., 1999; Sunn̊aker et al.,
2013), markov chain monte carlo (MCMC) sampling (Beaumont et al., 2002; Sisson et al.,
2007) and sequential monte carlo sampling (SMC) (Del Moral and Jasra, 2007; Toni and
Stumpf, 2010; Del Moral et al., 2012). Reviews on the progressions and performance of
different ABC methods have also been written by (Marin et al., 2012; Filippi et al., 2013;
Lintusaari et al., 2017).

In this study we focus on the ABC-SMC method for approximating the posterior dis-
tribution f(θ|D0) of BSim parameters. By taking the main features of ABC methods and
adding more careful sampling and refinement of the target posterior distribution, we have
the following framework for the ABC-SMC method. First, we define a population size of N
’particles’, that will comprise samples {θ(i)} for i = 1, .., N from the posterior distribution.
Then, for a fixed number of iterations T , we set a schedule for decreasing values of ε such
that ε1 ≥ ε2 ≥ ... ≥ εT ≥ 0. In theory, if we continue to shrink the accepted distance
tolerance between simulated and target data such that εT ≈ 0, the final population {θ(i)T }
should be a highly accurate approximation of f(θ|D0). At the end of each iteration t, a

weight w
(i)
t is calculated for each sample θ

(i)
t to obtain a weighted distribution, represented

by the discrete population, that can be sampled from in the next iteration t + 1 with
probabilities w

(i)
t−1. In the first iteration of ABC-SMC, the parameters are sampled from

the prior distribution π(θ) until they are accepted within a tolerance of ε1 and weights
are chosen to be 1/N . After the first iteration, a perturbation function is applied to the

weighted samples θ
(i)
t−1, to obtain the sample θ, used by the simulation, which is either

rejected or accepted according to the distance and epsilon at that iteration. In the ABC-
SMC formulation by (Beaumont et al., 2009), a multivariate normal distribution is utilized

for the perturbation function with mean θ
(i)
t−1 and covariance estimated from the previous

population θt−1. Generally the covariance is scaled by a factor of 2 (Beaumont et al., 2009),
however, we leave it as an arbitrary constant η. This description of the ABC-SMC method
is presented in Algorithm 1.

40



Algorithm 1 ABC-SMC Beaumont et al. (2009)

1: Calculate feature vector ~FD0 for target data D0

2: Define an epsilon schedule such that ε1 ≥ ε2 ≥ ... ≥ εT ≥ 0
3: Choose scaling factor η for covariance calculations
4: for i = 1 −→ N do
5: repeat
6: Sample θ′ from π(θ)
7: Generate data D′ from parameters θ′

8: Calculate feature vector ~FD′

9: until d(~FD′ , ~FD0) < ε1
10: θ

(i)
1 = θ′

11: w
(i)
1 = 1

N

12: end for
13: Σ1 = ηCov(θ1)
14:

15: for t = 2 −→ T do
16: for i = 1 −→ N do
17: repeat
18: Draw θ′′ from previous population θt−1 with probabilities wt−1
19: Sample θ′ from N (θ′′,Σt−1)
20: Generate data D′ from parameters θ′

21: Calculate feature vector ~FD′

22: until d(~FD′ , ~FD0) < εt
23: θ

(i)
t = θ′

24: w
(i)
t =

π(θ′)∑N
j=1w

j
t−1N (θ′|θ(j)t−1,Σt−1)

25: end for
26: Σt = ηCov(θt)
27: end for
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5.2 Experimental Setup

We seek to test the ABC-SMC method on inferring the posterior distribution f(θ|D0) for
the BSim parameters in 2.1. For a simple test case we only consider a three dimensional
parameter space that includes the three spring force constants ki, ks and ko and a synthetic
data set D0. A target data set D0 was generated from our canonical BSim growth simu-
lation, with a total simulation time set to 4 hours using a dt = 0.02 hours and initial cell
population of 1 cell. The spring force constants were set to ki = 50, ko = 500 and ks = 0.01,
with all other BSim parameters set to their default quantities. Utilizing a synthetic data
set for the test experiment is crucial in determining the efficacy of data comparison using
the results of the feature sensitivity analysis in Section 4.

The distance metric used to reject samples during ABC-SMC is the L2 norm of the
feature vector ~F ∈ R7. We define the feature vector component by component, depending
on the classification of the seven features defined in Section 3. This method of feature vector
calculation is used for the ABC-SMC simulations and the synthetic data simulation. For
each of the four scalar features fdensity, fdyad, fap and fanis we only calculate their quantity
at the final time step of the simulation. This was chosen to reduce computations each
time a BSim simulation is invoked during the ABC-SMC inference. After obtaining the
endpoint value for each feature, we then set the first four elements of ~F to the corresponding
scalar feature. For the three distributed features fangle, fpatch and fage we chose to reduce
each distribution to a scalar quantity that can be assigned to the final three elements of
the feature vector ~F . This was accomplished by numerically integrating the distributions
using the Simpson method and setting the last three elements of the feature vector to the
corresponding integral quantity. We can then easily perform this sequence of calculations
for a simulated data set D′ and target data set D0 in order to calculate the distance
d(~FD′ , ~FD0) between the two data sets where,

d(~FD′ , ~FD0) = ||~FD′ − ~FD0||2. (5.1)

To perform the ABC-SMC calculations, we utilized the open source Python library
pyabc (Klinger et al., 2018). pyabc offers many tools to perform and customize ABC-SMC
calculations, however, by default it will run Algorithm 1 with a scaling factor of η = 1.
Beyond the default configuration in pyabc, the user must supply the program with a user
defined model and distance function, as well as the parameter prior distributions π(θ),
particle population size N , maximum number of iterations T and an epsilon schedule.
In our implementation of ABC-SMC using pyabc, we utilized BSim as our model and
the distance function in Equation 5.1, with additional configurations outlined in Table
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5.1. pyabc also offers many parallel sampling methods which allow concurrent simulations,
thus increasing computational speed. In our test ABC-SMC experiment we utilized the
HPC resources on the ComputeCanada cluster Graham to run 10 parallel simulations.
The Python code and documentation for this ABC experiment can be found on GitHub
https://github.com/ingallslab/bsim-hpc-package.

pyabc Option Choice

Prior Distributions π(θ) ki −→Uniform(0,100)
ko −→Uniform(0,1000)
ks −→Uniform(0,1)

Population Size N 100
Maximum Iterations T 20

Epsilon Schedule εt is set to median d(~FD′ , ~FD0) at
iteration t− 1. εmin = 0.1.

Table 5.1: ABC-SMC configuration for implementation using the Python library pyabc

5.3 Results

Despite constricting the ABC-SMC experiment to a small parameter space, the ABC-SMC
experiment outlined in Section 5.2 yielded sub-optimal results. Figures 5.1, 5.2 and 5.3
each show a similar story that the estimation of each parameter’s one dimensional pos-
terior is struggling to converge around the exact value used to simulate D0. Although
the results suggest that the feature calculations and distance metric outlined in Section
5.2 are insufficient for accurate posterior estimation, the data is inconclusive to make this
conclusion. It’s suspected that poor results occurred mainly due to computational chal-
lenges related to the ABC-SMC inference of BSim parameters. The maximum number of
iterations (populations) that the experiment was intended to run for was T = 20, however,
for a population size of N = 100 and corresponding BSim simulation configuration, the
full number of iterations was never attained. This was due to computational resources
becoming unavailable after the requested time limit of 48 hours was surpassed, thus pro-
ducing a result that never fully completed the full ABC-SMC algorithm. It’s likely that a
population size of 100 is also too small to accurately infer the posterior distribution.
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Figure 5.1: One dimensional KDE plot of internal spring force constant ki posterior dis-
tribution inferred by ABC-SMC.

Figure 5.2: One dimensional KDE plot of overlap spring force constant ko posterior distri-
bution inferred by ABC-SMC.
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Figure 5.3: One dimensional KDE plot of sticking spring force constant ks posterior dis-
tribution inferred by ABC-SMC.

5.4 Discussion

Setting up ABC-SMC runs of the scale expected to produce adequate results poses an
interesting problem for many reasons. Increasing the number of particles per population
and size of the parameter space subsequently increase the time required to complete an
ABC-SMC calculation such that d(~FD′ , ~FD0) < εT ≈ 0. Additionally, creating an epsilon
schedule such that ε approaches 0 too quickly and too close to 0, will likely cause the
algorithm run indefinitely. This is due to the acceptance rate of particles being extremely
small when ε is small. For example, in our ABC-SMC experiment we observed that by
the sixth iteration, the acceptance rate had dropped to around 1%, which results in the
sampling and computation of ∼ 100N simulations to satisfy ε6 (shown in Table 5.2). With
each BSim simulation running for a minimum of 20 seconds given the initial conditions and
simulation set up, that amounts to 5 hours of computation for the sixth iteration given that
we are able to run 10 concurrent simulations. It is important to note that although HPC
offers resources suitable for running long computations, an εT ≈ 1 and N = 100 are not
suitable for producing accurate results and the compute time will increase proportionally
as your decrease εt and increase N . Therefore, it is evident that there is a careful trade-off
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that must occur when balancing total simulation time, epsilon scheduling, population size
and the available computing resources.

Iteration t εt Acceptance Rate

0 - 100.0 %
1 90.0 38.4 %
2 46.0 25.5 %
3 23.2 15.1 %
4 11.0 6.4 %
5 6.0 2.6 %
6 4.2 1.6 %

Table 5.2: Resulting epsilon schedule from ABC-SMC experiment, with corresponding
particle acceptance rates per εt in percentage.

Beyond configuring the ABC-SMC algorithm and BSim simulations, there a number
of potential modifications that can be made to improve performance. First, utilizing more
results from the sensitivity analysis in this study to craft a more dense feature vector ~F
should be explored. By dense, we imply that the feature vector should contain as much
information as possible from the available temporal evolution of each feature defined in
Section 3. An immediately obvious extension from our ABC-SMC experiment would be to
include the temporal evolution of each of the scalar features (excluding dyad structure).
By including the full set of points or distributions for each feature, extra care must then
be taken to construct a distance metric that properly handles each feature type directly.
For example, the Wasserstein distance metric could be applied to each of the temporal and
distributed features individually and then averaged over the resulting distances.

Additional techniques have been proposed in ABC literature to improve performance.
These studies include adaptive distance metrics (Fearnhead and Prangle, 2012a; Prangle,
2017) and post sampling correction methods that fit linear or non-linear models to interme-
diate posterior distributions (Lintusaari et al., 2017). Both of these methods are included
in pyabc. The reader should also refer to (Lintusaari et al., 2017; Grazzini et al., 2017;
Sisson et al., 2018) for more information on recent advances and methods in boosting ABC
performance.
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Chapter 6

Conclusion

In this study we have proposed a systematic approach to determining features for data
comparison between stochastic agent based simulations of monocultural, microbial com-
munities and experimental data. We performed a one at a time sensitivity analysis for
features inspired by several studies (You et al., 2018; Dell’Arciprete et al., 2018; Doumic
et al., 2020) with respect to the relevant BSim parameters that dictate the dynamics of
our growth simulation. It was found that most features had meaningful responses to 2
or more parameters, therefore indicating that the features could act as suitable tools for
measuring quantitative distances between simulation and data. Parameters that showed
little to no feature sensitivity should be investigated further as their parameter ranges may
have been outside of the range of sensitivity of the studied features. Alternatively, the
model parameterizations may not be implemented such that they cause significant impacts
on the dynamics of simulated cell colony growth. Model refinement should be explored
further to ensure errors are reduced in feature calculations, as well as reducing errors in
the target model behaviour.

Utilizing the features investigated in the one at a time sensitivity analysis, we con-
structed a simple L2 distance metric which captured the distance between synthetic BSim
data set and other simulated data sets. The distance metric compared features at a single
time point of the data and should be extended to the full temporal structure of the feature
(where possible). Finally, we performed a test to infer the posterior distributions for the
parameters used in our BSim growth simulations, where a synthetic data set was crafted
as the target. Our inference calculations were performed using the ABC-SMC algorithm,
employing the l2 distance metric. The test was unable to infer accurate posterior distribu-
tions for the known parameters used in the simulation. This was likely due to insufficient
scaling of the population size and computational time used in the ABC-SMC run. Given
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this was the inaugural run for parameter inference in our BSim growth simulations, results
are likely to be refined after further tests are performed.
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Appendix A

Supplementary Figures

Figure A.1: Sample image of a single E. coli cell colony obtained from phase microscopy
imaging.
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Figure A.2: (a) Resulting cubic spline fitted to alphashape points obtained for an α = 0,
which corresponds to calculating the convex hull. (b) Resulting cubic spline fitten to
alphashape points obtain for an α = 0.01.
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Figure A.3: Sample calculation output for cell orientation with respect to cell colony
boundary. Boundary is calculated using cubic spline fitted to alphashape with α = 0.01.
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Appendix B

Sensitivity Analysis Results

Figure B.1: Mean density (fdensity) as a function of cell colony area for three different
internal force constant ki simulation ensembles. Error bars represent standard deviation
of the density over the simulation ensemble.
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Figure B.2: Mean density (fdensity) as a function of cell colony area for three different
overlap force constant ko simulation ensembles. Error bars represent standard deviation of
the density over the simulation ensemble.
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Figure B.3: Mean density (fap) as a function of cell colony area for three different sticking
force constant ks simulation ensembles. Error bars represent standard deviation of the
density over the simulation ensemble.
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Figure B.4: The distance between scalar feature values as a function of colony area are
calculated for BSim simulation ensembles for birth twist parameter β. (a) The absolute
integral difference is obtained between temporal evolution of aspect ratio, density and
anisotropy. (b) The KL divergence is obtained between temporal evolution of aspect ratio,
density and anisotropy.
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