Deterministic solution of a rational
linear system of polynomials over
abstract fields

by

Jonathan Valeriote

A research paper
presented to the University of Waterloo
in fulfillment of the
research paper requirement for the degree of
Master of Mathematics
in
Computational Mathematics

Waterloo, Ontario, Canada, 2010

(© Jonathan Valeriote 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i

Abstract

Given a matrix A we present a way to decompose A into two matrices U, and H,
with = being relatively prime to det U, and (x — 1) being relatively prime to det H,. We
then apply this to design a deterministic algorithm for solving a rational linear system of
equations over an abstract field K. Given an A € K[z]™" and b € K[z]"*! the algorithm
will return A=1b € K(z)™*!. The cost of the algorithm is O(n3M(d) + nB(nd)) where d is a
bound of degree of A and (degree of b)/n, M is the cost of polynomial multiplication, and B
is the cost of gcd-like operations. We also present an algorithm using partial linearization
to extend the effectiveness of system solvers.

il

Acknowledgements

I would like to thank my supervisor, Dr. Arne Storjohann, for all of his help and
guidance while writing this paper.

v

Dedication

This is dedicated to my parents.

Contents

List of Figures

1 Introduction

1.1 Preliminaries

2 Computing a triangular z-basis matrix factorization
2.1 Via polynomial multiplication

2.2 Cost Analysis

3 System solving via partial linearization

3.1 Partial Linearization of Columns

4 Deterministic rational system solving over K|[z]

4.1 Worked Example
5 Conclusions
APPENDICES
A Maple Code

References

vi

vil

10

12
12

19
20

22

23

24

35

List of Figures

2.1
2.2
2.3
24

3.1
3.2
3.3

Algorithm x-HermiteForm 6
Algorithm overDeterminedLifting 7
Algorithm updateInverse 8
Example of overDeterminedLifting 9
Algorithm PartialColumnLinearization 16
Algorithm SolveViaPartialColumnLinearization 17

Algorithm SolveViaPartialRowLinearization 18

vii

Chapter 1

Introduction

Let K be a field. Finding the unique solution to a nonsingular rational system of linear
equations is a classical mathematical problem. The nonsingular rational system problem
takes as input a nonsingular matrix A € K[z]™ " and vector b € K[z]™! and returns
as output A7 € K(z)™!. There has been much research done [1, 3, 4, 5, 7] on solving
nonsingular rational systems and this paper will attempt to improve on some of the previous
work. We follow previous authors and analyze algorithms in terms of required number of
field operations from K, and give cost estimates in terms of n, deg A and degb. We define
deg A to be the maximal degree of any element in the matrix/vector A.

[1] and [3] developed algorithms for solving the nonsingular rational system problem.
Fast polynomial multiplication can be incorporated without much difficulty, see for example
[5]. Let d be a bound for deg A and (degb)/n. Given an X € K]z] such that X L det A and
deg X < d, linear lifting can be used to compute A~'b in O(n® M(d) + n B(d)) operations
from K. Here, M is the cost of polynomial multiplication, and B is the cost of gcd-like
operations, see Section 1.1. Using high-order lifting [7] was able to incorporate matrix
multiplication to achieve a cost of O(n“(logn)B(d)) field operations.

Both linear and high-order lifting require as input a small irreducible X € K|z], such
that X 1 det A, where X | det A means that X and det A are relatively prime. To
support the stated running time bounds we should also have deg X < deg A, or at least
deg X € O(d). A suitable X can be chosen randomly. Typically, X is chosen to be
X = (z — 7)¥ for v € K chosen randomly. Since we require that X L det A, v needs to be
selected such that (z —) is not a factor of det A. We know that det A < nd so there are
at most nd roots, if |K| > 2nd the algorithms will select a good prime with probability at
least 1/2. If K is too small such a v may not exist. To solve this, the algorithms extend K
to an extension field, but using an extension field is costly. Randomly selecting the prime
causes these algorithms to be Las Vegas probabilistic.

There has also been work done on deterministically solving the nonsingular rational
system problem. [4] present an algorithm which has cost O(n®*M(d) + nB(nd)). They
arc able to solve this deterministically by using the vector b from the system as an oracle
which shows them how to find the solution. This forces more work to be done for every
new system.

In this paper we instead focus on the matrix A from the system and decompose it into
two matrices,U, and H,, such that A = U,H, with x | detU, and (x — 1) L det H,.
Having an algorithm that works this way allows a user to only need one decomposition for
the matrix A which then allows them to solve any number of systems by selecting a new b.
Using a solver based on high-order lifting requires a small irreducible, so we use the fact
that for all fields K, K[z] has irreducibles x, and (z — 1). We use a power of x to solve a
system involving U, and then use a power of (z — 1) to solve a system involving H,, this
allows us to find A~1b.

Problems may arise when attempting to use an existing rational solver with the input
matrix H,. H, may have some some columns with large degree. In fact, for A with
deg A < d, the matrix H,, in the decomposition A = U, H,, may have some columns with
degree as large as nd. This can adversely affect the efficiency of computing A~'b because
the cost of linear or high-order lifting algorithms is sensitive to the largest degree in the
input matrix. We deal with this by presenting a method for transforming the system
Av = b into an equivalent system Du = ¢ with D having degree bounded more tightly
than the degree of A and with dimension less than 2n.

The main contributions of this thesis are:

e An algorithm to decompose a matrix, A € K[z|"*" of degree d, into two parts U, and
H, with | detU, and (z — 1) L det H,. The cost of the algorithm is O(n3 M(d))
field operations from K.

e A method for transforming a system which has some column (or row) degrees higher
than most into an equivalent system which has degree equal to the average of the
column (or row) degrees, and with dimension less than twice that of the input matrix.
The transformation is a rewriting of the input matrix and does not require any
computation.

We now give an outline of the rest paper. The algorithm for decomposing a matrix A
into U, and H, is detailed in Chapter 2. Chapter 3 presents the transformation technique
which improves the effectiveness of system solvers. Finally Chapter 4 shows how the two
main results can be used together to solve deterministically a nonsingular rational system
of linear equations with a cost of O(n®M(d) + n B(nd)).

1.1 Preliminaries

The cost analysis of our algorithm is given in terms of a bound on the number of required
field operations from K on an algebraic random access machine; the operations +, —, x,
and “divide by a nonzero” are considered as unit step operations.

We use M for the cost of multiplying polynomials. Let M :Z>y — N be such that
polynomials in K[z| of degree bounded by d can be multiplied using at most M(d) field
operations. The algorithm of [2] allows M(d) € O(d"*?). We may also assume that M(ab) <
M(a)M(B) for a,b € Z~,.

We also define a function B for polynomial gcd-related computations. We assume that
B(d) is O(M(d)logd). Then the extended gcd problem with two polynomials in K[z] of
degree bounded by d can solved with O(B(d)).

Chapter 2

Computing a triangular r-basis
matrix factorization

Given a matrix A € K[z|"*" we will factor it as the product of two matrices: A = U, H,.
This factorization will be a variation of the Hermite normal form of A but H, will have
only powers of x along the diagonal. So H, will remove all of the powers of x from the
determinant of A. This allows U, to have determinant that is not divisible by x. We will
call H, the z-Hermite form of A.

Definition 1. The xz-Hermite decomposition of nonsingular A € Klz]™" is A = U,H,
where U, H, € K[z]™" with:

e H, is upper triangular with powers of x along the diagonal.
o Forj>i,degH,[i,j] < deg H,[i,1].
o [fdet A= z°g(x) where x L g(z) then det H, = z°.

To illustrate the process used to factorize A we will use the following example. The

matrix
0 A3 + 42 222+ 1+ 3

A=| = 4ot + 4a® + 22 4a* + 3z +4 € Zs[z]**® (2.1)
472 S+t + a3+ 422 B+ P4+ +2

has Hermite factorization

v H
0 4 2 x 2z 4
A= 1 4z 0 i S (2.2)
dr 2241 4 v’ +w

while it has z-Hermite factorization

Us H,
0 4r +4 2x + 3 r 2z 4
A= 1 4% + 4z T 2 2 (2.3)
4y >+ +a+1 42% +4x+3 T

There is one main difference between the Hermite normal factorization A = U H and the
xr-Hermite factorization A = U,H,. On the one hand the Hermite form has the property
that det U € K\ {0} and det H is an associate of det A. On the other hand we get that
det H, is a power of x and det U, is an associate of det A with all powers of x removed.

The algorithm constructs H, one column at a time which allows for H, to be viewed
as a product of structured matrices which we will write as H, = E,V,E,_1Vi_1... 41V}
where V; = 1.

For our example, we obtain the following:

Es V- Es Vs E
r 2x 4 1 1 4 1 1 2z T
H, = 22 2 | = 1 1 2 x? 1 1
T T 1 1 1 1

We can see that the E;’s are constructed based on the diagonal elements of H, and the
Vj’s are based on the entries above the diagonal in column j.
Algorithm z-HermiteForm allows for H_ ! to be found easily as H;' =V, 'E; ... V. L E L V-LESL
Based on the construction of the V;’s and F;’s it easy to find their inverses. Here is H !
constructed in this way

rt —2x —4
H ' = 72 =2
:L,fl
Ert vyt Ey! Vit Byt
! 1 —22 1 1 4 1
— 1 1 72 1 -2 1
1 1 1 1 !

2.1 Via polynomial multiplication

We present an algorithm for computing the z-Hermite form of a given matrix over K[z].
The algorithm is iterative and works through the matrix one column at a time. The given

5

r-HermiteForm(A, n)

Input: Nonsingular A € K[z]™*"

Output: H,, U, such that A = U,H, and H, in xz-Hermite Form

d = deg A;

H, := 0 x 0 matrix; # this will grow in size at each step

P := I,; # will keep track of the row swaps

B := 0 x 0 matrix;# this will store the inverse, starts as empty matrix

U, := A; # in practice, A is modified in place.

for j from 0 to n—1 do
Decompose U, as

U, = {Cl kA8 } € Klz]"™"

Cy | we | *

where C} € K[z)*7, w; € K[z]"*1, Cy € K[z]™=)*7 | and w, € K[z]®=)*L,
eji1, VWY wuy uy, Pji= overDeterminedLifting(Cy, wy, Ca, wy, n, j, B, d);

o xCiti

i+1
H, = [H, Ut] € K[a:](jﬂ)x(”l);

Column(U,, j + 1) == [w1 | ug }T;

U, == PU,
P = P;P;
Decompose U, as
Clr|x
U= | wlal|x* | €Klz]""
x | k| %

where C' € K[z]7*7, r € K[z}, w € K[z]**J, and a € K.
B := updatelInverse(C, w, r, a,B, j, d);

od;

U, = P~ U,;

return H,, U,;

Figure 2.1: Algorithm xr-HermiteForm

overDeterminedLifting(C}, wy, Co, we,n,j, B, d)
Input:

i n€Z>Oaj€[0,...,n—1],d€Z>0
o (] € K[x]jxj, wy € K[.ﬁU]jX17 B = Rem(c’;l’xd)
o Cy € K[z]™=D%i | wy € K[z]r=7)x1

Output: k € Zsg, v € K[z]"*! with degree(v) < k, uy € K[z, uy € K[z]"=9x1 a
permutation P = diag(/;, *) such that

e v := Rem(C] 'wy, 2*) € K[z]’*!, with k& maximal such that Cov = w, mod z*

Uy (wy, — Cyv)/a*

) {u_} - { (w; — Cyv) [a

} € K[z]™*!

o P [gl Zl] has principal (j + 1) X (j + 1) submatrix nonsingular modulo x
2 | U

Condition: {Ol w1
Cg Wwo

} € Klz]™*U*Y has rank j + 1

1. Use x4-adic lifting with B to compute v := Rem(C} 'wy, 7*¢) for maximal ¢ such that
Cyv = wy mod zte.

2] Fzigr] e

Us (wy — Cyv) /'

N

3. Let v, := Rem(C; 'uy, 2%) and find maximal s such that 2° divides uy — Cyvs. (s < d)

4. Let P be the permutation matrix for swapping a row which has trailing degree s in
Uy — Clvs . .
{ s — Cou,] with row j+1.
5. Let ¥ := Rem(v,, 2°). Set v := v + 02V and k := td + s.

)= e e kiar

e

Figure 2.2: Algorithm overDeterminedLifting

updateInverse(C,w,r a, B, j,d)
Input:

L] jGZzO,dEZZO
o CcKx) weK[z]™, reKz)* aeK[z]

e B=Rem(C !) € K[z)>*

Output: B := Rem(C~!, 2¢) where C = [%'%] € K[z]U+D)xG+1)

_ [Rem(B + Bw(a — rBw) 'rB, z%) | Rem(—Bw(a — rBw)™ !, 24)

o (F+1)x (j+1)
P T Rent @By v B | Rem((a—rBu) Lo | <K

return B;

Figure 2.3: Algorithm updateInverse

matrix A is treated as the working matrix and is modified in place, allowing U, to be equal
to the final A up to some row permutations. The algorithm is presented in Figure 2.1.

Theorem 2. Algorithm x-HermiteForm is correct.

Proof. By construction we get that H, is upper triangular with powers of x along the
diagonal and that the degrees of the diagonal entries are strictly larger than the degrees
of the other elements in the same column. At the end of the algorithm we have computed
B = U;' mod z¢, this tells us that x L detU,. If det A = 2°g(x) with x L g(x) then
det H, = x° since det A = (det U,)(det H,) and = L det U,.

The correctness of findInverse follows from the Sherman-Morrison-Woodbury for-
mula. Within this construction the element (¢ — rBw) is needed to be invertible. After
calling overDeterminedLifting and updating U, we have that the (j + 1) x (j + 1) prin-
cipal submatrix of U, is nonsingular modulo x. Thus the pivot element (a — rBw) from
the Sherman-Morrison-Woodbury formula must be invertible modulo z. O

The function overDeterminedLifting uses x%-adic lifting on each column to compute
the maximum power of x that can be removed from the column. The lifting also computes
what we will be adding to the corresponding column in H, for the decomposition of A.
Refer to Appendix A for the Maple code implementation of the algorithm.

Refer to Figure 2.4 to see how the lifting algorithm works.

Example of overDeterminedLifting
1]22%2+1
Let A= [vt }
x x
Set ¢, = 1, Cy = x, w = 22>+ 1, wy = =z and B := 1 then
overDeterminedLifting(Cy, wy, Cs, we, 2,2, B, 2) is executed in the following way.

k=0: v=Rem(w;,1) =0s0o Cov =0 mod 1 and wy =0 mod 1.

k=1 v=Rem(w,x) =1s0 Cov =0 mod z and wy =0 mod =z.

k=2 v=Rem(w,z?) =150 Cov =2 mod z? and wy = mod 2.
k=3:v=Rem(w,23) =222 +1s0 Cov =2 mod 23 and wy =z mod z3.
k=4: v =Rem(wy,z*) = 22% + 1 s0 Cov = 22° + x mod z* and wy = mod z.

When k = 4, we get a difference in Cov mod z* and w, mod x* this tells us that the choice
for k is 3.
So then we get

v = Rem(Cy 'wy, 2¥) = 227 + 1

u; = (w; — Cy) /") =0
Uy = (wy — Cy)/2*) =2

And because there are no row swaps P = I

Figure 2.4: Example of overDeterminedLifting

Examining the algorithm we see that at the beginning of step j+1 we have the following

situation:
| Clw | * nxn
A= [D | wsy | *] € Kiz]

where C' € K[z]7*7, D € K[z]"=*7 w; € K[z]?*, wy € K[z]"=9*! We have also updated
the inverse matrix B to be such that

B = Rem(C™ ', 2%) € K[z]™
The formula used in the algorithm for computing B is based on the Sherman-Morrison-

Woodbury formula for matrix inversion.

Within each step, the algorithm stops when we are unable to pull out a full 2¢ factor
from the working matrix. At this point we are pulling out z* for some k < d.

Once we have completed step j + 1 we now have the z-Hermite form of the principal
(j +1) x (j + 1) submatrix of A.

2 3 +1
l.el Ug] UE] U£]+]
3 +1
€2 Ug] U£j+]
x® :
[7+1]
H, = Yj
rCitt

Lemma 3. z L detU,

Proof. From the z-Hermite form of A we know that U,=AH_ ! so this tells us that det U, =
(det A)(det H'). The structure of H, forces det H, = ¥ for some k € Zs,. Having
this, we also know that det H! = 2%, So we get that det U, = (det A)/z* and by the
construction of H, we know that k is maximal (ie, "™ 1 detU,). This gives us that
r 1 detU,. Ol

2.2 Cost Analysis

Lemma 4. Given H, € K[z]"*", the x-Hermite form of a matriz A € Klz]**", deg H, <
nd, where d = deg A.

10

Proof. Using the z-Hermite factorization we have that A = U,H,. From Hadamard’s
bound for determinants we get that det(A) < nd. The factorization tells us that det(A) =
det(U,) det(H,), so when looking at the degrees of this equation we get that

deg(det A) = deg(det U,) + deg(det H,).

Now since the left hand side of this equation is < nd, we know that the right hand
side will also be < nd. This then gives us that deg(det H,) < nd — deg(detU,) and
since deg(detU,) > 0 we get that deg(det H,) < nd. Since H, is in xz-Hermite form
we know that the determinant is just the product of the diagonal elements and that the

highest degree element will be somewhere along the diagonal. Hence we get our result that
deg H, < nd. O

Lemma 5. The cost of computing the x-Hermite form of A € K[z]™*™ is O(n3M(d)).

Proof. At each step in the algorithm, we are doing z%-adic lifting which allows us to pull
out d factors of x at a time from A. Since the determinant of A is < nd there will be
at most n full z¢ factors of being removed. Hence we will only be doing our loop O(n)
times. Within the loop the main cost is doing matrix-vector multiplications which have a
cost of n? M(d) where M is the cost to multiply two polynomials of degree < d. Thus the
overall cost of calculating H, is O(n®M(d)). O

11

Chapter 3

System solving via partial
linearization

Solving a nonsingular rational system Av = b with lifting has cost proportional to O™ (nd)
bit operations where n is the dimension of the system and d is a bound for deg A and
(degb)/n. Since the cost is sensitive to the largest element in A, there may be cases
where there is a waste of significant computational work. This happens when only a few
columns/rows have higher degree compared to most. In this chapter we show how to use
partial linearization to transform the system into a new one which allows us to extract
the solution to the original problem. The new system will have dimension bounded by
O(n) and maximum degree bounded by d = [E/n] where E is the sum of the column/row
degrees.

3.1 Partial Linearization of Columns

If we are given a system Av = b which has some columns with larger degree than most of
the others we can transform it into a new system Du = ¢. Here is an example to show how
the process works. Let K = Z/(11) with the system Av = b where

Sat4+ad+9x+7 4 222 +3 2x
A= | 62" +42°+1022+ 100 2 622 +2x+8 | € K[z**? b= | 5z | € K[z)*!
102* + 1023 +522+ 32 6z 8x+5 3

After applying PartialColumnLinearization (see Figure 3.1) we get the following new

12

system Du = ¢ where

[7 4 3|9 0 1+5z | 22
0 x 8|10 10 4+6x |2+6x
0 6z 5|3 5 10+10x| 8
Di=|—-x 0 0/ 1 0 0 0 € Kz]™7
0 0 0 |-z 1 0 0
0 0 00 —x 1 0
0 0 —z| 0 0 0 1]

Now using a linear system solver we get the following solution vectors

2x

O O OO W

2243234722 4824+3

—7|—816+2 54544323 4+8 2249
+30 24450 224100 22470 £+80

44323472248 x+3 102547 242345 22+

7.L7+8 .L6+2 J,5+5 ‘L4+3 .L3+8 2249

—70-8L6+2L5+5:L4+313+8¢2+9¢
90ac +30 24450 2% 4100 22470 £+80 c K[x]?)xl

7x5+8 L5+2 z4+5 .L3+3 z24+8 249
224323472248 x+3

7TxT+8 506+2 a:5+5 a:4+3 z32+8 249

102547 2423 +5 2242 2543247234822 4+3

7x5+8 a:5+2 m4+5 :c3+3 r24+8 x+9

Tx0+8 224224452343 2248 2+9

7x6+8 x5+2 z4+5 x3+3x2+8x+9
29+3 2%+ 72448 2% +3 22

72548 x5+2 445 .’,E3+3 x2+8 x+9
10 2847 242445 23422

We can then see that the u contains v in its upper three entries.

Theorem 6. Algorithm PartialColumnLinearization is correct.

Proof. Property (a) holds by construction. To show that properties (b) and (c) hold

| 7264+8x5+2x4+523+322+8x+9

we demonstrate nonsingular matrices Ty, 75 and T3 such that D! = T3T,T, with A~1

evidently the principal submatrix of T37577.

Let
In —OlBl_l e _CnB1:1
B!
T, =
BT

Note that

_xd

B:lxdcol([m”]_) = , e K[l.]min.
xmid

Each B; is unit upper triangular, so det 77 = 1.

13

(3.1)

c K[$]7Xl

€ K[x}”l

If we transform D on the left with 77 we obtain

col(A,1) | --- | col(A,n)
by I

T,D = , (3.2)

by I

where b; denotes the column vector on the right hand side of (3.1). Now continue to
transform the matrix on the right hand side of (3.2) with T, := diag(A™', I) to obtain

col(I,,1) |-+ | col(I,,n)
by I
: (3.3)
by, I
Finally, let
col(I,,1) |-+ | col(I,,n)
—by I
T3 —)
—by I

the inverse of (3.3). Note that det Ty = det A™!, and det T3 = 1 since it is unit lower
triangular. We then have 73757, = D~! which tells us that

det D™! = (det T3)(det Ty)(det T}) = det A™".

From this property (b) follows. O

Now given this partial lineariz ation algorithm we can create solvers for solving rational
systems.

Theorem 7. Let nonsingular A € Klz]"™*" and b € K[z]"*! be given. The problem of
computing A~'b can be transformed to that of computing D~ c for a matriz D € K[z]™"
of degree bounded [£] where

e E can be the sum of the column degrees of A or

e F can be the sum of the row degrees of A

and n < 2n.

14

Proof. If we let D be the output of PartialColumnLinearization then we have the fol-
lowing lemma.

Lemma 8. dim(D) < 2n and deg D < [£].

dim(D) =n+my+mg+ ... +my,
= n + max(0, [(degcol(A, 1) —d)/d]) + ...+ max(0, [(degcol(A,n) — d)/d])
<n+degcol(A,1)/d+ ...+ degcol(A,)/d
since max([(a—d)/d]) <5

=n+ Z(deg col(4,)/d)

=1

=n+ cli Z(deg col(A,1)/d)

=1

1
=n+ (E)
<n+ é(nd) since d = [£]
=2n

Degree bound follows from the construction of D.

Now using

e SolveViaPartialColumnLinearization for the column case

e SolveViaPartialRowLinearization for the row case

will produce A~'b because D is constructed to have A~! as its n x n submatrix. Then
since we set up c in the new system to have its top n entries equal to b, it is clear that the
top of entries of D~'c will be equal to A~1b. O

15

PartialColumnLinearization(A,n,d)
Input: Nonsingular A € K[z]"*" and d € Z,.
Output: D € K[z]"™" and i € Z>, such that

(a) deg D < d,
(b) det D = det A, and
(c) A~1is equal to the principal n x n submatrix of D™!.

for i to n do
m; := max(0, [(deg col(A, i) — d)/d]);

1
—z¢ 1
1
L —z? 1]
Let C; be an n X m; matrix.
if m; = 0 then
v; == col(A,1).

else
v; := Rem(col(A, 1), z%).
for j from 1 to m; — 1 do

Ci[*, 7] := Rem(Quo(col(A, i), z¥), x¢)
od;
Ci[*,m;] := Quo(col(A, i), z¥m).
fi;

Comment col(4,7) = v; + C;[*, 1]z + - - - + Ci[, m;]a®™:.
od;
n:=n-+m;+mg+---+m,.

vy . vy, ol o,

—z%col(I,,,,1 B
D = CLRE) : : . € Klz]

3
X
3

—zcol(l,,, 1) B,
return D, n
Note: An n x 0 vector is the empty column vector.

Figure 3.1: Algorithm PartialColumnLinearization

16

SolveViaPartialColumnLinearization(A,b,n, X)
Input: Nonsingular A € K[z]"™" b € K[z]"™!, X € K][z].
Output: A~'b

Condition: X 1 det A

1. [Construct partially linearized system]

Let E be the sum of the column degrees of A.
d:=[71;

D,n :=PartialColumnLinearization(A,n,d);
ci=[b by ... by 00 ... 0] €Kz

2. [Compute solution of transformed system)]
u := RationalSolve(D,c, X);

3. [Recover solution of original system]
v :=ull.n|;
return v;

Figure 3.2: Algorithm SolveViaPartialColumnLinearization

17

SolveViaPartialRowLinearization(A,b,n, X)

Input: Nonsingular A € K[z]"™" b€ K[z]"™!, X € K][z].
Output: A~'b

Condition: X 1 det A

1. [Construct partially linearized system]
Let E be the sum of the row degrees of A.

d:=[Z];
D' n .= PartialColumnLinearization(A”, n,d);
ci=[b by ... by 00 ... 0] €Kz

2. [Compute solution of transformed system)]
u := RationalSolve(D,c, X);

3. [Recover solution of original system]
v :=ull.n|;
return v;

Figure 3.3: Algorithm SolveViaPartialRowLinearization

18

Chapter 4

Deterministic rational system solving
over K|z]

Given U, = AH_' where H, is the z-Hermite form of A then the following two facts holds.

Lemma 9. deg(Adjoint(H,)) < deg(det H,).

Proof. Let D := deg(det H,). Each element of Adjoint(H,) is a determinant of an (n —
1) X (n—1) minor of H,. We also know that the Adjoint(H,) is an upper-triangular matrix.
So there are three cases for the (4, j)-minors of H,.

Case 1: When i = j then the (¢,j)-minor is upper triangular and of the same form as
H,. This tells us that the determinant in this case is 2* for some k < D.

Case 2: When i < j the (7, j)-minor is no longer upper-triangular but the determinant is
the sum over all permutations of a product of elements coming from each column. Since
we are looking for the degree of this element we just need to look at the largest possible
product in the sum. In our case this would occur when each element chosen for the product
is from the original diagonal of A. These are the largest elements in each column because
of the form of H,. This then tells us that the degree of the determinant of this minor is < D.

Case 3: When ¢ > j the (4, j)-minor is upper-triangular but will have a zero along the
diagonal. This then forces the determinant of this minor to be zero.

Thus we get that deg(Adjoint(H,)) < deg(det H,).

19

Fact 10. degU, < d where d = deg A

Proof. We have that deg H, < nd from Fact 4. As well,

Adjoint(H,)

U, = AH;' = (A)(W)

and so

deg U, < deg A + [deg(Adjoint(H,)) — deg(det H,.)|(x).

Using Lemma 9 we get that deg(Adjoint(H,)) — deg(det H,) < 0, and using this with (*)
we get that degU, < deg A =d. O

Theorem 11. Let nonsingular A € K[x]™*™ with degree bounded by d be given, together
with a b € Klz]"™*!. If (degb)/d = O(n), then the unique rational vector A~'b can be
computed with O(n® M(d) + nB(nd)) field operations

Proof. Given A and b, if we can solve for v in the system Av = b then we have found
the unique vector A='b. We start off by computing the z-Hermite form of A using the
algorithm from Figure 2.1. This allows us to factor A as A = U,H,. We can then write
our system as U,(H,v) = b and by setting w := H,v, work on the system U,w = b.

We know that deg U, < d from Fact 10 and that « L det(U,) from Lemma 3. Thus we
can quickly solve for the vector w = U, 'b using our system solver.

We then move on to the system H,v = w. All we know about the degree of H, is that
deg H, < nd but we need to have the degree bounded by d. To solve this problem we can
usc SolveViaPartialColumnLinearization with H,, b, and z — 1. Since det(H,) = x*
we get that (x — 1) L det(H,) and thus is suitable for the system solver. This algorithm
will give us A~1b.

Cost Analysis: O(n®M(d)) for computing the z-Hermite form. We make two calls to a
system solver and since we have irreducibles for both of them we know that we can solve
them in O(n® M(d) + nB(nd)). So overall we get a cost of O(n* M(d) + nB(nd)). O

4.1 Worked Example
I will demonstrate the ideas presented in this paper on the following system:

z? xz 2x2 2x 2x1
A_lx 2x2—|—1}EZ5 b= 322 € Z;

20

r-HermiteForm(A) gives us the following decomposition for A

x 3}{3: 29524—1}

A:UwHw:Lo 0 a°

We then need to solve for w := U, ' B and since det U, = 2 we can use x as an irreducible
for the system solver. This gives us

. 322
W= 403 4 dx

Now we can solve for H'w. Looking at H, we see that it has a column of degree greater
than 2. This means we can use SolveViaPartialColumnLinearization(H,,w,2,x — 1)
to get our solution.

This function returns

x

32741
H*lu, — 73

And since

sa’ 41
A = (H'U; b= H, YU b)) = Hy'w = { }

We are done.

21

Chapter 5

Conclusions

We have considered the problem of solving a nonsingular rational system of linear equations.
We have extended the effectiveness of existing solvers by removing the randomness as well
as allowing multiple systems to be solved with one decomposition. To do this we introduced
the notion of the x-Hermite factorization of a matrix which allowed us to easily find suitable
lifting moduli for the solvers. We also introduced the idea of partial linearization to extend
the effectiveness and allow systems with some large degrees to be able to be solved quickly.

The partial linearization ideas extend immediately to the case of integer matrices.
Further work could be done to improve the exponent of n in the cost down to w by using
fast matrix multiplication.

22

APPENDICES

23

Appendix A

r-Hermite form maple code

xHermiteForm := proc(A,p)
local H,1,i_min,temp,B,j,d,n;

n := LinearAlgebra[ColumnDimension] (A);
convertModpl(A,p,n);

d := findDegree(A,p,n);

H := Matrix(n,n,modpl(Zero(x),5));

1,i_min := trailingDegree(A[..,1],p,d,n);
temp := A[1,..];

Al1,..] := Ali_min,..];

Ali_min,..] := temp;

columnShift(A,p,n,1,1);

H[1,1] := modpl(ConvertIn(x~1,x),p);

modpl (Gedex(A[1,1],ConvertIn(x~d,x),’s’),p);

B = <<s>>;

for j to n-1 do
H[1..j+1,j+1] := overDeterminedLifting(A,B,j,p,d,n);
B := updatelnverse(A,B,p,d,j);

od;

convertOut (H,p,n);

24

return H;

end;
convertOut := proc(A,p,n)
local 1i,j;
for i to n do
for j to n do
Ali,j] := modpl(ConvertOut(A[i,j],x),p);
od;
od;
end;

overDeterminedLifting := proc(A,B,j,p,d,n)
local c¢,M,z,v_column,V,C,D,v1,v2,k,count,Bv,CBv,DBv,wl,w2,1,
i_min,s,v_lower,v_upper,q,newAdd,i,temp,newlLowAdd;

v_column := Vector(j,modpl(Zero(x),p));
V := Vector(j+1);

C := A[1..j,1..51;
D := A[j+1..n,1..3];
vl = A[1..j,j+1];
v2 := A[j+1..n,j+1];

k = d;

count := 0;

Bv := matrixVectorProduct(B,vl,p,d,j,j);

CBv := specmatrixVectorProduct(C,Bv,p,d,j,j);
DBv := specmatrixVectorProduct(D,Bv,p,d,n-j,j);

wl := vectorSubtract(vl,CBv,j,p);
w2 := vectorSubtract(v2,DBv,n-j,p);

1,i_min := canShift(w2,p,d,n-j);
if 1 = -1 then
for s from 1 to j do

wils] := modpl(Shift(wil[s],-d),p);
od;

25

for

od;

for

od;

fi;

s from 1 to n-j do
w2[s] := modpl(Shift(w2[s],-d),p);

s from 1 to j do
v_column[s] :=
modp1 (Add (v_column[s],Multiply (Bv[s],Power (ConvertIn(x,x),d*count))),p);

while 1 = -1 do

Bv := matrixVectorProduct(B,wl,p,d,j,j);

CBv := specmatrixVectorProduct(C,Bv,p,d,j,j);
DBv := specmatrixVectorProduct(D,Bv,p,d,n-j,j);
wl := vectorSubtract(wl,CBv,j,p);

w2 := vectorSubtract(w2,DBv,n-j,p);

1,i_min := canShift(w2,p,d,n-j);

if 1 = -1 then
count := count + 1;
#Now shift
for s from 1 to j do
wi[s] modpl (Shift(wi[s],-d),p);
od;

for s from 1 to n—j do
w2 [s] modp1 (Shift (w2[s],-d),p);
od;

for s from 1 to j do
v_column[s] :=
modp1 (Add (v_column[s],Multiply(Bv[s],Power (ConvertIn(x,x),d*count))),p);
od;
fi;
k =k + d;

26

count := count + 1;
od;

k:=k-(@d-1);
v_lower := Vector(j);

v_upper := Vector(j);
q := modpl(ConvertIn(x~1,x),p);

for s from 1 to j do

v_lower[s] := modpl(Rem(Bv([s],q),p);

v_upper [s] := modpl(Multiply(Quo(Bv[sl,q),q),p);

v_column[s] :=

modpl (Add (v_column[s] ,Multiply(v_lower [s],Power(ConvertIn(x,x),d*count))),p);
od;

newAdd := specmatrixVectorProduct(C,v_upper,p,d,j,j); ## fixing up work matrix. #
newLowAdd := specmatrixVectorProduct(D,v_upper,p,d,n-j,j);#

for i from 1 ton - j do
w2[1] modpl (Add (w2[i] ,newLowAdd[i]),p);
od;

for i from 1 to j do
wlli] modpl (Add (w1[i] ,newAdd[i]),p);
od;

#Now shift to fix overshoot
for s from 1 to j do

wi[s] := modpl(Shift(wll[s],-1),p);
od;

for s from 1 to n-j do
w2[s] := modpl(Shift(w2[s],-1),p);
od;

Al1..j,3+1] := wi;
Alj+1..n,j+1] = w2;

temp := A[j+1,..];

27

Alj+1,..] = Ali_min + j,..];
Afi_min + j,..] := temp;

V[j+1] modpl (ConvertIn(x~k,x),p);
V[1..j] := v_column;

return V;

end;

updateInverse := proc(A,B,p,d,j)
local r,a,w,W,X,Y,Z,Inv,Bw,rBw,rB,1,neg _Bw,G,k;

W := Matrix(j,j);
X := Vector(j);
Y := Matrix(1,j);

Inv := Matrix(j+1,j+1);
convertModpl (Inv,p,j+1);

r := A[j+1,1..3];
w o= A[1..5,j+1];
a := A[j+1,j+1];

Bw := matrixVectorProduct(B,w,p,d,j,j);
rBw := dotProduct(r,Bw,p,j);

Z := modpl(Gcdex(Subtract(a,rBw),ConvertIn(x~d,x),’s’),p);
Z := s;

rB := negateMatrix(vectorMatrixProduct(r,B,p,d,j),p,1,]);
for i to j do
Y[1,i] := modpl(Multiply(Z,rB[1,il),p);
od;
neg_Bw := negateVector(Bw,p,j,1);
for i from 1 to j do

X[i] := modpl(Multiply(neg_Bwl[il,Z),p);
od;

28

G := outerProduct(neg_Bw,Y,p,d,j); # both negative so should make positive

for i from 1 to j do
for k from 1 to j do
Wli,k] := modp1(Add(B[i,k], G[i,kl),p);
od;
od;

Inv[1..j,1..3] = W;
Inv[l..j,j+1] := X;
Inv[j+1,1..3] = Y;
Inv[j+1,j+1] := Z;

modPower (Inv,p,d, j+1);
return Inv;
end;

findDegree := proc(A,p,n)
local i,temp,deg,j ;

deg := modpl(Degree(A[1,1]),p);

for i from 2 to n do
if modpl(Degree(A[1,i]),p) > deg then
deg := modpl(Degree(A[1,i]),p);
fi;
od;

for 1 from 2 to n do
for j from 1 to n do
if modpl(Degree(A[i,j]),p) > deg then
deg := modpl(Degree(Ali,jl),p);
fi;
od;
od;

return deg;

end;

29

convertModpl := proc(A,p,n)
local 1i,j;
for i to n do
for j to n do
Ali,j] := modpl(ConvertIn(A[i,jl,x),p);
od;
od;
end;

dotProduct := proc(a,b,p,n)
local result, i;
result := modpl(Zero(x),p);
for i to n do
result := modpl(Add(result,Multiply(alil,bl[il)),p);
od;
return result;
end;

matrixVectorProduct := proc(A,v,p,d,m,n)
local b,i;
b := Vector(m);
for i to m do
b[i] := modpl(Rem(dotProduct(A[i,..],v,p,n),ConvertIn(x~d,x)),p);
od;
return b;
end;

specmatrixVectorProduct := proc(A,v,p,d,m,n)
local b,i;
b := Vector(m);
for i to m do
b[i] := dotProduct(Al[i,..],v,p,n);
od;
return b;
end;

vectorMatrixProduct := proc(v,A,p,d,n)

30

local b,i;
b := Matrix(1,n);
for i to n do

b[1,i] := modpl(Rem(dotProduct(v,A[..,i],p,n),ConvertIn(x~d,x)),p);
od;

return b;
end;

outerProduct := proc(u,v,p,d,n)
local b,B,i,j;
B := Matrix(n,n);
for i to n do
for j to n do
B[i,j] := modpl(Rem(Multiply(uli],v[1,j]),ConvertIn(x~d,x)),p);
od;
od;
return B;
end;

negateMatrix := proc(A,p,n,m)
local B,neg,i,j;
neg := modpl(Constant(-1,x),p);
B := copy(4);
for i to n do
for j to m do
B[i,j] := modpl(Multiply(neg,Ali,jl),p);
od;
od;
return B;
end;

negateVector := proc(v,p,n)
local b,neg,i;
neg := modpl(Constant(-1,x),p);
b := copy(v);
for i to n do
b[i] := modpl(Multiply(neg,v[il),p);
od;
return b;
end;

31

trailingDegree := proc(v,p,d,n)
local deg,i,temp,allZero,i_min;

allZero := 1;
if v[1] <> modpl(Zero(x),p) then

deg := modpl(Ldegree(v[1]),p);

i_min := 1;

allZero := 0;
else

#deg := -1;

i_min := 1;

fi;
for i from 2 to n do
if v[i] <> modpl(Zero(x),p) then

if allZero = 1 then
deg := modpl(Ldegree(v[il),p);

i_min := i;

allZero := 0;
else

allZero := 0;

temp := modpl(Ldegree(v[il),p);

if temp < deg then
deg := temp;
i_min := 1i;
fi;
fi;
fi;
od;

if allZero = 1 then
return -1,-1;
else
return deg,i_min;

32

fi;
end;

columnShift := proc(4,p,n,d,j)
local i;
for i to n do
Ali,j] := modpl(Shift(A[i,j]l,-d),p);
od;

end;

vectorSubtract := proc(u,v,n,p)
local w,i;

w := Vector(n);
for i to n do
w[i] := modpil(Subtract(ulil,v[il),p);
od;
return w;
end;

canShift := proc(v,p,d,n)
local deg,i,temp,allZero,i_min;

allZero := 1;
if v[1] <> modpl(Zero(x),p) then
deg := modpl(Ldegree(v[1]),p);
i_min := 1;
allZero := 0;
fi;
for i from 2 to n do
if v[i] <> modpl(Zero(x),p) then

allZero := 0;
temp := modpl(Ldegree(v[il),p);

33

if temp < deg then
deg := temp;
i_min := 1i;
fi;
fi;
od;

if allZero = 1 then
return -1,-1;
else
if deg < d then
return deg,i_min;
else
return -1,-1;
fi;
fi;
end;

modPower := proc(A,p,d,n)
local 1i,j;
for i to n do
for j to n do
Ali,j] := modpl(Rem(A[i,j],ConvertIn(x~d,x)),p);
od;
od;
end;

34

Bibliography

1]

2]

J. D. Dixon. Exact solution of linear equations using p-adic expansions. Numer. Math.,
40:137-141, 1982. 1

A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata. Soviet
Physics-Doklady, 7:595-596, 1963. 3

R. T. Moenck and J. H. Carter. Approximate algorithms to derive exact solutions to
systems of linear equations. In Proc. EUROSAM 79, volume 72 of Lecture Notes in
Compute Science, pages 65—72, Berlin-Heidelberg-New York, 1979. Springer-Verlag. 1

T. Mulders and A. Storjohann. Rational solutions of singular linear systems. In
C. Traverso, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation: IS-
SAC 00, pages 242-249. ACM Press, New York, 2000. 1, 2

T. Mulders and A. Storjohann. Certified dense linear system solving. Journal of
Symbolic Computation, 37(4):485-510, 2004. 1

A. Storjohann. High—order lifting. Extended Abstract. In T. Mora, editor, Proc. Int’l
Symp. on Symbolic and Algebraic Computation: ISSAC 02, pages 246-254. ACM Press,
New York, 2002. 35

A. Storjohann. High—order lifting and integrality certification. Journal of Symbolic
Computation, 36(3-4):613-648, 2003. Extended abstract in [6]. 1

35

