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Abstract

Pricing American options under a regime switching model requires the solution to a set
of coupled nonlinear partial differential equation—variational inequalities. This paper ex-
plores three iterative methods used to solve these American option pricing equations. These
include fixed-point policy, local policy, and global-in-time iteration methods. Numerical
experiments were conducted to compare the iteration techniques using a direct control
discretization for an American butterfly contract. Results demonstrate that the global-in-
time method is outperformed by the two alternatives as grid and timestep refinements are
made. Convergence inefficiencies are particularly prominent for longer duration contracts.
Additionally, the global-in-time iteration requires a large amount of memory storage mak-
ing it an unfavourable technique for pricing options under a regime switching model. The
fixed-point method performs well requiring less computational work than both the local
policy and global-in-time methods.
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Chapter 1

Introduction

In their seminal 1973 paper, Fischer Black and Myron Scholes derived a partial differen-
tial equation for correctly pricing financial derivatives, now famously referred to as the
Black-Scholes equation [6]. While this equation forms the foundation for much of the cur-
rent financial mathematics research, the basic assumptions leading to its derivation have
nonetheless been scrutinized extensively. In particular, practitioners have been critical of
the following assumptions:

e (Cash can be borrowed and lent at a constant risk-free interest rate.

e No transaction costs are incurred when buying or selling the underlying asset.

The position in the underlying asset can be hedged continuously.

There are no arbitrage opportunities.

The underlying asset price movement is modeled by Geometric Brownian Motion
(GBM) with constant drift and volatility.

Selling options at the Black-Scholes price and dynamically hedging the position can expose
the writer to kurtosis, liquidity, and volatility risks, all a direct result of the assumptions
above [16]. The fundamental assumption that the underlying asset price follows GBM does
not accurately reflect what is observed in the real marketplace. The price jumps and fat-
tails associated with historical stock returns cannot be replicated by a GBM model with
constant volatility and drift [15]. As such, appropriate model selection for the underlying
asset movement now plays a key role in the pricing of derivative contracts.



A popular alternative approach to Black-Scholes is to propose a more complicated
model for the underlying price movement. The risk-neutral pricing equations can then be
derived using an appropriate hedging portfolio. Some examples of these models include
stochastic volatility, jump diffusion, and, in the case of this paper, regime switching.

A regime switching model defines a specified number of regimes/states, each with their
own parameter set (interest rate, volatility, etc.) and governing stochastic process. Tran-
sitions between the regimes occur at a specified rate which corresponds to a jump in price
and volatility. The model can be further complicated by allowing the parameters to vary
with time and price to better fit market data. Regime switching is a practical alternative
to the popular stochastic volatility, jump diffusion models because its model parameters
can be casily interpreted by practitioners and it is computationally less expensive. Further-
more, regime switching models are capable of replicating the volatility smile phenomenon
present in the Black-Scholes model [11].

Recently, regime switching models have found successful use in pricing assets in elec-
tricity markets, a day-ahead market characterized by seasonality effects, mean-reversion
and (typically shortlived) jumps [5]. The 2010 daily electricity spot prices from the Nord
Pool exchange can be seen in Figure 1. It has been shown that the seasonal spike intensity
and consecutive spikes or price drops common to electricity spot prices can be effectively
replicated with a Markov regime switching model [10]. A sample price path resulting from
a two-state regime switching simulation showing short-lived prices spikes can be seen in
Figure 2. Evidently, solving options pricing equations under a regime switching model
accurately and efficiently is important in certain types of commodity markets.

Numerical Approach

Pricing an American option under a regime switching process requires the solution of a
system of Hamilton-Jacobi-Bellman equations, typical of optimal control problems. Due
to their nonlinear nature, discretizing and numerically solving these equations is a nontriv-
ial matter. When implementing a numerical solver, one needs to ensure that the method
converges to the financially meaningful solution, termed the viscosity solution [14]. Three
discretizations of the pricing equations have been proposed in the literature including
an explicit American constraint, a direct-control formulation, and a penalty method ap-
proach [9]. All three formulations have been shown to converge to the viscosity solution.
Huang et al. [9] generalized this approach by constructing a framework to write the non-
linear algebraic equations resulting from an implicit-constraint discretization. This frame-
work can be easily extended for solving any nonlinear algebraic equations that arise from
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a stochastic optimal control problem in finance. Four iterative solution methods used by
various authors were consolidated and analyzed in the context of this framework. These in-
clude policy iteration, fixed-point policy iteration, local policy iteration, and global-in-time
iteration methods.

The primary goal of this paper is to demonstrate that the global-in-time iteration is
inefficient as compared to the fixed-point and local policy iterations. The global-in-time
method, also known as iterated optimal stopping, has found use in solving impulse control
problems [13]. Bayraktar [2] used the method in a proof related to the value of an American
put option under a jump diffusion process. This method was then numerically implemented
for pricing American options [3] and Asian options [4] under jump diffusion. The authors
suggested that the iterative optimal stopping procedure is an efficient numerical scheme
that converges uniformly and linearly, though they called this “exponentially fast”. Le
and Wang [12] later implemented this technique to numerically solve an optimal stopping
problem with regime switching.

Subsequently, Huang et al. [9] demonstrated that the global-in-time solving method
has a weaker convergence bound than the other policy iteration methods and also has
hefty memory storage requirements, however, no numerical work has been done to verify
that the global-in-time iteration performs better or worse than the alternatives. Thus,
it is worthwhile to numerically investigate and compare the performance of this iteration
algorithm to the others in order to conclusively establish its inferior performance.

Objectives

The main purposes of this paper are as follows:

e Outline the regime-switching model and show how it can be used to price options

e Perform numerical experiments comparing the efficiency of several iterative methods!
consolidated in [9]

e Demonstrate through numerical experimentation that the global-in-time method is
inferior to the proposed alternatives, thereby discounting its unnecessary use in future
publications

'Numerical experiments are conducted using the fixed-point policy, local policy, and global-in-time
iterations. These three methods are revisions of the full policy iteration also analyzed in [9].
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Chapter 2
Regime Switching

This chapter outlines the development of the regime switching model leading to the equa-
tions used to price American options. A brief description of some financial terms and
contracts referred to in this paper is provided (§2.1) followed by a description of the classic
Black-Scholes model (§2.2). The regime switching model is covered in Section 2.3.

2.1 Basic Background

Arbitrage Opportunity

An arbitrage opportunity refers to an investment with a guaranteed profit in excess of the
risk-free rate. That is, an investment portfolio with zero value today, zero probability of
having a negative value in the future and a positive probability of having a positive value in
the future. In classical finance theory, it is assumed that no arbitrage opportunities exist
in the markets [16]. The principle of no-arbitrage is best summarized by the colloquial
phrase “There’s no such thing as a free lunch.”

European Options

The simplest example of a financial derivative is a European call option, a contract that
gives the holder the right, but not the obligation, to buy an asset at a specific strike
price, K, at a specified expiry time in the future, T. A European put option gives the
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Figure 3: Payoff of a European call option (left) and put option (right), both with strike
price K = 100.

holder the right, but not the obligation, to sell the asset at the specified strike and expiry.
Mathematically, the payoff of a European option is given by

max(S — K,0) for call options

Option Payoff = { (2.1)

max(K — S,0) for put options

where S is the price of the underlying asset. The payoff is plotted in Figure 3.

American Options

An American option may be exercised at any time before the specified expiry date. The
payoff received upon exercise is identical to the European payoff given by equation (2.1).
An American option is never valued less than a European option with the same strike and
expiry, otherwise one can make a riskless profit by purchasing the American version and
writing a European contract, immediately pocketing the difference in price. Upon expiry,
any money owed to the holder of the European contract can be paid by exercising the
American option. Hence, in order to prevent an arbitrage, American options are always
priced greater than or equal to their European counterpart.



2.2 Black-Scholes Model

2.2.1 European Options

Fischer Black and Myron Scholes derived a partial differential equation for pricing Furo-
pean options by assuming the underlying asset follows the lognormal stochastic process

dS = pSdt +08dz (2.2)

where S is the price of the underlying asset, p is the drift, o is the volatility, d¢ is the
infinitesimal increment of time, and dZ is the increment of a Wiener process. The Wiener
process is defined by

dz = ¢\Vdt (2.3)

where ¢ ~ N(0,1) is a random draw from a standard normal distribution.

A hedging portfolio, P, is constructed
P=V—-aS (2.4)

consisting of a long position in one option of value V' and a short position in « shares of
the underlying asset. By applying Ito’s Lemma to (2.2) and choosing a = 0V/9S, all risk
associated with the randomness of the underlying can be eliminated from the value of the
portfolio. That is, the change in portfolio value over an infinitesimal increment of time
is deterministic. Therefore, by the no arbitrage principle, the portfolio should receive the
risk free rate of return, r. This leads directly to the famous Black-Scholes equation

Vi + ‘722 Vs 4rSVe—1V =0 . (2.5)

By defining the Black-Scholes operator, £, as follows
LlV] = "225 Vst rSVs — 1V (2.6)
and applying a transformation of variable t — 7 : 7 = T'—{, equation (2.5) can be rewritten
V., =LV (2.7)

where T represents time running backwards.

Together with the initial condition
V(S,7 = 0) = Option Payoff (2.8)

equation (2.7) can be solved to find the value of a European option. Note that an analytical
solution to the Black-Scholes equation exists for a European option payoff.
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2.2.2 American Options

If an American option is valued less than its payoff, an arbitrage opportunity will exist.
In this case, one could purchase the option and immediately exercise, thereby making a
riskless profit. To preclude this possibility, the option value must satisfy the additional
constraint

V(S,7) > Option Payoff (2.9)
at all times and for all asset prices.

Because the American option holder controls the early-exercise feature, the no-arbitrage
portfolio in equation (2.4) may earn less than the risk-free rate of return if not exercised
optimally. This means that the equality in equation (2.7) must be relaxed as follows

V, > LV (2.10)

recalling that 7 is time running backwards. Equations (2.9) & (2.10) can be combined to
form a Hamilton-Jacobi-Bellman equation for pricing American options

min[V —V*V, = LV]| =0 (2.11)

where V* = V(5,7 = 0) is the payoff at expiry. Equation (2.11) has no analytical solution
so numerical techniques are required for pricing American options in the Black-Scholes
construction.

2.3 Regime Switching Model

As discussed in Chapter 1, the GBM stochastic process does not capture the price dynamics
observed in the financial marketplace. The GBM model can be extended by allowing
discrete price jumps and volatility shifts to occur. In constructing a regime switching
model consisting of K states, the following set of parameters are associated with each
regime

e Discrete volatilities, o; j=1,..., K
e Drift rates, pn; j=1,..., K
e Transition probabilities, \;r j,k=1,..., K

— The probability of transitioning from regime j — k



e Jump amplitudes, {; j,k=1,..., K

— Asset price jumps from S — §;,S when transitioning from regime j — k

A continuous Markov chain process is used to transition between any two states. The
system of stochastic equations governing the regime switching process is a simple extension
of equation (2.2) given by

K
dS = p; Sdt +0;8dZ +> (Ep—1)SdX,  j=1,....K (2.12)
k=1

where dZ is the increment of a Wiener process as in equation (2.3) and

4X = {1 with probability A dt + 6 (21

0 with probability 1 — A\jidt — 03
The transition probabilities are defined such that
Aig >0 it G #k

K
Nij == Ak
k=1
k£
To prevent price jumps from occuring without a regime transition, we set §;; = 1.

Analogous to the Black-Scholes development, a hedging portfolio is constructed as

follows
K—1

P=-Vi+eS+Y wikF (2.14)

k=1
where e is the amount held of the underlying asset with price S, wy, is the amount held of the
additional hedging instruments with price Fj, and Vj is the no-arbitrage value of the option
in regime j. Provided that the underlying asset and the additional hedging instruments

form a non-redundant set, all risk can be eliminated through a dynamic hedging strategy
[11].

Using Ito’s Lemma and applying a no-arbitrage argument to the value of the hedging
portfolio, it is possible to derive the pricing equations for a European option shown below

oV ,
a_TJ:LjVj+)\jij} j=1...,K (2.15)



where £; is the analogous Black-Scholes operator in regime j, and J; captures the impact
of regime transitions on the option value. These operators are defined as

0252 9%V ov;

LV = 2 aSZJ +(r— PJ)S% —(r+A)V; (2.16a)
TV = }: V%QMST) (2.16b)
k#J

where 7 is the risk-free rate and p;, \; are defined by

K
Pj = Z Ajk(ik — 1)

x>
Sl
S

M>./
I
]~

Ajk = —Ajj

Sl

-

Eoabal

As described in Section 2.2.2, American options must satisfy the additional constraint
in equation (2.9), as well as a modified version of equation (2.10) shown below

6V>£V+A@ | (2.17)

Imposing these constraints, the American option value is the solution to the set of Hamilton-
Jacobi-Bellman type equations

min Vj—V*, %—ﬁj‘/;—)\%zv :O jzl,,K (218)

where V* = V(5,7 = 0) is the initial condition.

Remark. The pricing of a European option under a regime switching model requires the
solution to a set of coupled partial differential equations, while an American option requires
solving a nonlinear free-boundary optimization problem.
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Chapter 3

Discretized Equations

In this chapter, the American option pricing equations (2.18) will be discretized for the
purposes of implementing a numerical solving method on a computer.

3.1 Computational Domain

The partial differential equations are solved on a pricing grid consisting of a set of M nodes
{51,852, ...,5u}

following a sequence of J discrete timesteps
{07 ... 77}

where 77! = 7 +- A7™ such that A7™ is the time step size in going from 7 — 771, By
convention, we set 70 = 0 and 77/ = T, recalling that 7° corresponds to the expiry time
t =T, and 77/ corresponds to the start time ¢t = 0. In general, the n*® time step is given by

n—1
™ = Z AT (3.1)
=0

If equally spaced time steps of size A7 are taken, equation (3.1) simplifies to

" =nAT . (3.2)

11



The approximate solution at (.S;, 7") in regime j is denoted by V. A vector of solution
values at all nodes in every regime at time level n is constructed as follows

V’n/ - [‘/l,r,l/l’ ceey V]@,l? ceey ‘/]:';LK, ceey Vﬁ.K]/ (3.3)
where K is the number of regimes. The solution vector V™ has length N = K - M.

For succinctness, a single row index will often be used to refer to entries in V" as
illustrated below
Vi =V

(=G —1)M+i

Hence V;7 may be interchanged with V;" from here on in.

3.2 Discretized Operators

3.2.1 L Operator Discretization

The Black-Scholes operator in equation (2.16a) is discretized using central, forward or
backwards differencing for the 0V;/0S term to yield a positive coefficient discretization.
Specifically, forward or backward differencing is used only at nodes for which central dif-
ferencing does not yield positive coefficients. This ensures that the second-order central
differencing approximation is used as much as possible. Denote Eh as the discrete form of
the Black-Scholes operator £;. The general form of the discrete Black-Scholes operator is
then given by

(LIV™)is = @iV + BiVityy — (ug + Bij + 1+ AV (3-4)

where «;; and §;; are selected using Algorithm 3.1 to ensure a positive coefficient dis-
cretization. The expressions for o and [ using central, forward, and backward differencing
are included in Appendix A.

3.2.2 J Operator Discretization

The regime-switching operator in equation (2.16b) is discretized through a linear interpo-

lation approximation
K

n )\ n



Algorithm 3.1 Positive Coefficient Algorithm for E;‘ operator. The o and ( terms are
defined in Appendix A.

1. if af?ﬂtral > () and ﬁ?e-n“al > () then

. central
2: Q= Q; Jt |
. _ [Jcentra;
3: Bi; = Iy
1: else if o[ > 0 and "1 > 0 then
5 s = aforward
: i,
. forward
6: Bij = By

7: else if a}j’;‘-*ward > () and ﬁEjPCkward > 0 then

8- az] — abackward
9: 527 — ‘tijackward
10: end if
where
7] k - n n : ( ’ )
T+ (1—w)V, . otherwise

where w € [0,1] is the linear interpolation parameter and indices p and p + 1 correspond
to the grid nodes adjacent to the jump price {;.S;. Ie. S, < &rSi < Spp1. Note that
in the above discretization, jumps which extend beyond the largest grid price Sy, are
approximated with that value. If Sy, is chosen to be sufficiently large, the error introduced
by this truncation approximation will be negligible near grid points of interest.

3.3 Direct Control Discretization

One can introduce a scaling factor, €2, to the variational-inequality form of equation (2.18)
as follows

ov;

5. ~LiVi= ATV 20

QV;—V* >0 (3.7)
(a—; — L,V — Aﬂﬂ/) Q(V; =V =0

13



Equations (3.7) can then be combined to give the direct control formulation

oV

max [0V =) - (1-0) (52

max. — L;V; — M )} =0 . (3.8)

Observe that the equation above is simply a reformulation of the optimization problem
in equation (2.18); However, the introduction of the scaling factor allows one to more
accurately determine the optimal control on a finite precision machine. Comparison of the
two terms in equation (3.8) in a floating point number system is aided by selection of an
appropriate € value [9]. More intuitive reasoning for introducing 2 follows from the fact
that a conversion factor is required to compare the two terms with differing units.

In discretizing the direct control form equations, a parameter 6 is introduced such that

0 {1 for fully implicit discretization

0.5 for Crank-Nicholson discretization

The discrete form of equation (3.8) is then written

Vn+1
(1 _ n—l-l)( eﬁhvn+l> +0 ¢n+1vn+1

2Y) AT J o n)

n V7 n * n hy/n
=(1-¢; +1) - +Q¢ WV (L= o NOLT VY

+(1- qﬁzjl)( —0) [LIV] + N[T V4] i< M
(3.9)
Vit =y t=M
where
ntl _ yn
(o'} € avgmax{ 007 — V) - (1) (22 g
¢€{0,1} T

SO(ELVE ATV (1= (e + A1) )

g Vi
(3.10)
The set {(éfj ci=1,...,M;j=1,..., K} are the control parameters at every node in
each regime at time level n. A value of 0 indicates exercise is not optimal while a value

of 1 indicates early exercise is optimal. The equation above constitutes a set of coupled
nonlinear algebraic equations.

14



Remark. Huang et al. [9] analyze two additional discretizations: an explicitly imposed
American constraint, and a penalty method discretization. The explicit constraint ap-
proach results in a delta (0V/0S) that is not continuous across the early exercise bound-
ary and will only achieve a first order convergence rate. Together, these issues make the
explicit method undesirable. The penalty method, while unconditionally stable, has been
criticized for introducing an additional source of error into the numerical solution [3]. The
numerical work that follows in this paper will thus focus on implementations of the direct
control method.

3.4 General Form of Equations

It will be advantageous to write equations (3.9) and (3.10) in a generalized matrix form to
be solved computationally using one of the iterative algorithms of Chapter 4. A vector of
control parameters for all nodes in each regime is defined by

Q= [P11s 0y Orr1s -y PLkcs oy Drr i) - (3.11)

The matrix form is structured as follows

AV =C(Q)
(3.12)
with Q, = arg max [—A*(Q)V”Jrl + C(Q)]

QeZ

where Z = {¢ | ¢ € {0,1}}. The A* matrix has dimensions N x N and V"*! and C are
vectors of length V. These are nonlinear discretized algebraic equations since both A* and
C are a function of the solution V"1,

14

The coeflicients from the Black-Scholes operator contribute tridiagonal elements in A*
while the terms coupling different regimes contribute to off-tridiagonal elements. These
off-tridiagonal elements add irregularities that break the nice tridiagonal sparsity pattern
that would otherwise be present. Therefore, it is useful to separate the regime-switching
coefficients by splitting the A* matrix as follows

A(Q) = A(Q) - BQ) (3.13)

with A(Q) containing the coefficients of nodes coupled within the same regime, while B(Q)
contains the coefficients that couple nodes in different regimes. This splitting will be useful
when implementing numerical algorithms to solve the nonlinear equations.

15



The matrix coefficients for nodes i < M can be easily deduced from equation (3.9) as
shown below

Vn+1
A@ V™= (1= o) (Y- - o) v
[B(Q) V™™ = (1= ¢o)\;0[TV" ], (3.14)
CQ) = (1= 603L + 00V

+ (1= ) (1 = 0) [TV + N[TV]
The boundary condition at node ¢ = M requires that

[AQ) V™ = Vit
[B(Q)V"™],=0 when ¢ = (j — )M + M (3.15)
[C(@)]e = Vi

16



Chapter 4

Iterative Solving Methods

This chapter outlines the iterative algorithms that will be implemented to solve the non-
linear algebraic equations (3.12). Three numerical algorithms will be discussed, all variants
of Howard’s policy iteration method [8] for dynamic programming problems. In the fol-
lowing sections, the notation (V™)* is used to refer to the k'™ iterate of the solution at
timestep n.

4.1 Fixed Point Policy Iteration

The fixed point policy iteration takes advantage of the splitting in equation (3.13) to reduce
the amount of computational work required to find a solution. The iteration method is
outlined in Algorithm 4.1'. Observe that the splitting of the regime-coupling terms in line
4 results in a tridiagonal coefficient matrix. Thus, a sparse matrix algorithm can be used
to efficiently solve the linear equations.

In [9], the authors demonstrate that an upper bound on convergence of the fixed point
iteration is
OAAT A0

AHQM)B(QY) || < max |max < ,  max —— 4.1
A7 QB e < max [max 22 mox (@)

where A = max; ;.

IThe Scale term in line 5 of the algorithm is used to prevent division by very small numbers. A value
of Scale = 1 is typically used for dollar currencies.
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Algorithm 4.1 Fixed Point Policy Iteration
1. (V") =1V"  — the solution vector at the previous time level

2: for £ =0,1,2,... until converged do

3: QF = arggrenzax{— [A(Q) — B(Q)} (V"H)k + C(Q)}z
4: Solve:  A(Q")(VME = B(QF)(V™TF + C(QF)

|(V£n+1>k+1 - (V[H_l)k‘

5: if £ > 0 and max < Tolerance then
¢ max [Scale, | (V" T)k+1[]

6: Break from the iteration

7: end if

8: end for

Theorem 4.1. If the direct control parameter ) satisfies

Q>0-\ whereﬂzmax)\j
J

then the fixzed point policy iteration in Algorithm 4.1 converges.

Proof. Follows from the requirement that the convergence bound in equation (4.1) be less
than one. 0

4.2 Local Policy Iteration

In the local policy iteration the American control problem is solved with the regime coupling
terms lagged behind one iteration. The method is outlined in Algorithm 4.2. Note that
the local policy iteration can be thought of as a generalization of the fixed point iteration
discussed in the previous section. Line 3 in Algorithm 4.2 requires solving a nonlinear
equation through an iteration of (V™)AL If this “inner” solve is terminated after one
iteration, then the local policy method is equivalent to the fixed point method.

Theorem 4.2. Define EF = (V*\)k —V where V is the solution to equation (3.12). If the
matrices A and B are given by equation (3.14) then the local policy iteration in Algorithm
4.2 converges at the rate
| B OAAT
<

- 4.2
[ E¥ oo = 1460+ NAT (4:2)
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Algorithm 4.2 Local Policy Iteration
1. (V") =1V"  — the solution vector at the previous time level

2: for £ =0,1,2,... until converged do

3: Solve: gl&)zc{—A(Q)(V"“)k“ + B(Q)(Vhk 4 C(Q)} =0
s
n+1\k+1 n+1\k
4: if £ > 0 and max |(Ve ) <V51 /| < Tolerance then
¢ max [Scale, |(V,"T1)k+1]]
5: Break from the iteration
6: end if
7. end for
Proof. See [9]. O

4.3 Global-in-Time Iteration

A global-in-time method attempts to generate a solution at all timesteps during each
iteration. Essentially, the loop structure is reordered such that the timestep loops take
place within each iterative loop as seen in Algorithm 4.3. The obvious downside is that
the solution at every timestep must be stored in memory.

Theorem 4.3. Define (E™)F = (V™) — V™ where V" is the solution to equation (3.12) at
timestep n. If the matrices A and B are given by equation (3.14) and fully implicit time
stepping (0 = 1) is used, then the global in time iteration converges at the rate

max | (B4 | 1 5
max | (B T | S A 4
3 o0 1+ AT(A+ 7“)]

Proof. See [9]. O

Remark. Equation (4.3) places a bound on the number of correct decimal places in the
numerical solution from one iteration to the next. This bound differs from the convergence
criteria in line 6 of Algorithm 4.3 which is based on the maximum relative change in the
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Algorithm 4.3 Global in Time Iteration
1: (V™)° = payoff n=0,...,J Ar=T/J

2: for £ =0,1,2,... until converged do

3: forn=0,1,...,J—1do

4; Solve: glaé{—A(Q)(v"“)k“ + B(Q)(V™HF C(Q)} —0
€

5: end for

|<‘/€n+1)k+1 _ (V[H—l)k|

6: if max < Tolerance then
¢ max [Scale, |(V,""1)++1]]

7 Break from the iteration

8: end if

9: end for

solution between iterations. As such, using equation (4.3) to predict the approximate num-
ber of iterations required to meet a particular convergence tolerance may not correspond
to the number of iterations observed in practice.

As the timestep size decreases the global convergence bound becomes

i (- ) (B =) () - o

—00

Equation (4.4) illustrates that refining the timestep size has a limited impact on the con-
vergence of the global in time method. Additionally, contracts spanning longer periods of
time have a theoretically worse convergence bound.

Furthermore, some straightforward analysis can be used to demonstrate that

AAT ] 1 ( A ) (4.5)
~ - - N J ~ .
L+ (r+A)AT 1—0—A7’(/\—|—7”)i| At

indicating that the convergence bound on the local policy iteration in equation (4.2) is less
than that on the global in time iteration.
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Chapter 5

Numerical Work

This chapter outlines the numerical results obtained for pricing American options under
a regime switching model. The results presented will focus on performance comparisons
between the different iterative algorithms outlined in Chapter 4. The option values, cpu
runtime, and the number of iterations required to satisfy the specified convergence crite-
ria will be tabulated for the fixed-point policy, local policy, and global-in-time schemes.
All algorithms were implemented in Matlab R2010b on an Intel ULV SU7300 machine
overclocked at 1.7GHz with 4GB of RAM.

5.1 Numerical Procedure and Data

Numerical experiments were performed using a three state regime switching model. The
transition probability matrix A, jump amplitude matrix &, and discrete volatilities o are
given in equation (5.1). Additional data can be found in Table 5.1.

—-3.2 0.2 3.0 1.0 0.90 1.1 0.2
A= 1.0 —1.08 .08 E= 1.2 1.0 1.3 o= 0.15
3.0 0.2 —-3.2 095 0.8 1.0 0.30
(5.1)

An American butterfly contract is used in all numerical runs with a payoff given by

V* = max(S — K1,0) — 2max(S — (K + K2)/2,0) + max(S — K,,0) . (5.2)
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Exercise American
Butterfly Parameters: Ky, Ky | 90, 110
Risk free rate r 0.02
Scale factor, €2 106/ AT
Maximum Grid Price, Spax 5000
Convergence Tolerance 10-8

Table 5.1: Data for the regime switching implementation.

Refinement Level | Nodes | Timesteps | Unknowns
0 76 50 228
1 151 100 453
2 301 200 903
3 601 400 1803
4 1201 800 3603
5 2401 1600 7203

Table 5.2: Grid refinement levels and timestep data used during numerical tests. On each
refinement, a new grid point was placed halfway between all old grid points and the number
of timesteps was doubled. A constant timestep size is used.

It is assumed that the American contracts in equation (5.2) must be exercised all together at
one time. This contract has been used by several authors as a test case for their numerical
work [1, 7].

A non-uniformly spaced grid is used for all trials. This consists of a fine mesh nearby
the butterfly strikes and an increasingly coarser grid further away. Both fully implicit and
Crank-Nicolson timesteps are implemented for contracts lasting 0.5, 0.7, 5, and 10 years.

Numerical tests explore the convergence of each iteration method as AS and A7 tend
to zero. This is achieved by simultaneously refining the grid spacing and timestep size;
Upon each successive refinement, a new grid point is placed halfway between all old grid
points and the number of timesteps is doubled. The succession of grid refinement levels
can be seen in Table 5.2.

Remark. Huang et al. [9] found that the direct control scale factor must increase as grid
and timestep refinements are made in order to efficiently determine the location of the
excercise boundary. Experiments showed that © = 10°/A7 is a suitable value.
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5.2 Fixed Point Policy Iteration Results

The fixed-point policy iteration was implemented using both fully implicit and Crank-
Nicolson (with Rannacher smoothing) timestepping. The average number of iterations at
each timestep is tabulated for various grid refinements and contract lengths. These results
are shown in Table 5.3.

Observe that the convergence bound in equation (4.1) simplifies to
O\, AT

—1/Nk k
147 @B o < 1y

when using the Q and A7 values from these trials. This indicates that the number of
iterations required to reach convergence decreases as the timesteps are refined. This is
verified in Table 5.3 for a variety of contract lengths.

5.3 Local Policy Iteration Results

The local policy iterations results for fully implicit and Crank-Nicolson timestepping can
be seen in Table 5.4 and Table 5.5, respectively. These include the number of outer
iterations and average number of inner iterations required for convergence. Note that
“inner iterations” refers to those used to solve line 3 in Algorithm 4.2.

The results agree with the convergence bound in equation (4.2); As the refinements
increase, the number of outer and inner iterations both decrease. This is true for all contract
lengths and for both timestepping methods. Notice that the outer iteration numbers are
nearly the same as those for the fixed-point method seen in Table (5.3). Solving the local
nonlinear equations until convergence appears to have little impact on convergence of the
outer iteration. Thus, the fixed-point iteration requires less computation and may be
preferred to the local policy iteration.

5.4 Global-In-Time Iteration Results

The global-in-time iteration outlined in Section 4.3 was implemented using fully implicit
and Crank-Nicolson timesteps. The refinement results for the fully implicit method are
shown in Table 5.6. We observe that refining the grid has little to no impact on the
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Fully Implicit
Refinement Value Outer Iterations Inner Iterations CPU Time
per Timestep | per Outer Iteration | (seconds)
0 6.419181330 6.0 1.92 0.6
. 1 6.423205938 5.0 1.90 1.5
S 2 6.427081498 4.4 1.89 4.4
. 3 6.429439269 4.0 1.87 14
4 6.430649200 3.8 1.85 52
5 6.431281897 3.1 1.81 170
0 6.921184838 6.4 1.92 0.6
I 1 6.921706764 5.3 1.91 1.6
S 2 6.924671005 5.0 1.90 4.9
g{ 3 6.926763612 4.0 1.88 15
4 6.927890150 4.0 1.87 56
5 6.928491798 3.2 1.82 176
0 8.637759313 12 1.97 1.2
- 1 8.626553409 9.1 1.96 2.7
I 2 8.624697580 7.1 1.93 6.9
e~ 3 8.624953026 5.8 1.91 20
4 8.625254627 5.0 1.90 68
5 8.625457792 4.1 1.88 221
0 8.927413160 17 1.98 1.6
= 1 8.903548405 12 1.97 3.4
‘ﬂ{ 2 8.894472258 8.6 1.95 8.3
- 3 8.893634938 6.8 1.93 24
4 8.893621922 5.4 1.91 73
5 8.893709012 4.8 1.89 258

Table 5.4: Refinement results for the local policy iteration using fully implicit timesteps.
Option values are at S = 93 in Regime 1. “Inner iterations” refers to the iterations used
to solve line 3 in Algorithm 4.2.
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Crank-Nicolson
Refinement Value Outer Iterations Inner Iterations CPU Time
per Timestep | per Outer Iteration | (seconds)
0 6.438496257 5.1 1.89 0.5
o 1 6.433060318 4.8 1.87 1.5
S 2 6.432079690 4.0 1.85 4.3
. 3 6.431962775 4.0 1.84 15
4 6.431919116 3.2 1.79 47
5 6.431919625 3.0 1.77 176
0 6.940245784 5.8 1.91 0.6
. 1 6.931349509 5.0 1.89 1.6
S 2 6.929546911 4.1 1.84 4.3
g{ 3 6.929219411 4.0 1.85 15
4 6.929124507 3.4 1.81 50
5 6.929111223 3.0 1.77 177
0 8.645142805 9.4 1.96 0.9
- 1 8.630349017 7.3 1.93 2.2
I 2 8.626633685 6.1 1.91 6.3
~ 3 8.625926753 5.1 1.89 19
4 8.625743441 4.2 1.86 62
5 8.625702939 4.0 1.85 231
0 8.932920175 13 1.97 1.3
. 1 8.906182627 9.2 1.96 2.8
‘ﬂ‘ 2 8.895774529 7.1 1.93 7.3
- 3 8.894290245 5.8 1.91 22
4 8.893950546 5.0 1.89 73
5 8.893873781 4.1 1.86 237

Table 5.5: Refinement results for the local policy iteration using Crank-Nicolson timesteps.
Option values are at S = 93 in Regime 1. “Inner iterations” refers to the iterations used
to solve line 3 in Algorithm 4.2.
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number of outer iterations as is suggested by the bound in equation (4.4). Furthermore,
the average number of inner iterations increases upon each refinement, making the global-
in-time method highly inefficient. As the contract length, 7', increases, the number of
outer iterations required to converge also increases as expected. The refinement results
for the Crank-Nicolson method are shown in Table 5.7. While the Crank-Nicolson method
requires fewer iterations and less CPU runtime than the fully implicit case, it still suffers
from the same refinement issues and problems with longer contract lengths. Note that the
option values obtained using the global-in-time iteration are nearly identical to the values
from the local policy iteration in Tables 5.4 and 5.5, however, the global-in-time results
required significantly longer runtimes to achieve convergence.

Remark. Assuming the bound in equation (4.3) holds with equality, a contract length of
T = 0.7 would require approximately twice as many iterations as a T = 0.5 contract for
convergence to 8 decimal points. See Appendix B.

Clearly, the number of iterations does not double for the 7" = 0.7 contract in Ta-
bles 5.6 and 5.7. There are two possible explanations:

1. The relative change convergence criteria in line 6 of Algorithm 4.3 terminates the
iteration before an accuracy of 8 decimal points is achieved (see Remark in §4.3).

2. The global bound does not hold with equality.

Even if the global bound does not hold with equality, the ratio of successive errors may
still be significantly worse than the fixed-point or local policy iterations. This is verified
by approximating the exact option values with a numerical solution generated using a
convergence tolerance of 107'2. The approximate error terms || (E™)* || can then be
calculated at each iteration and timestep. The average and maximum ratio of successive
error estimates can be seen in Table 5.8. These are computed using fully implicit timesteps
for direct comparison with the theoretical bound. Although the error ratios never achieve
the global-in-time bound, the ratios are significantly worse than the local policy bound in
all runs, making it a comparably inefficient method. Additionally, the error ratios increase
as the contract duration increases, growing closer to the convergence bound. Although not
tabulated, the approximate error ratios for a 7' = 20 contract was also computed which
was consistent with this pattern. At the 3™ refinement level, the average and maximum
ratios are 0.83 and 0.96, respectively, with a global-in-time convergence bound of 0.994.

In summary, the global-in-time iteration suffers from the following deficiencies:
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e Burdensome memory allocation. Storage of the solution vectors at all timesteps is
required.

e Refinement inefficiencies. As grid and timesteps are refined, the number of outer
iterations remains approximately the same while more inner iterations are required
to reach convergence.

e Poor convergence bounds. The fixed-point and local policy iterations outperform the
global-in-time method, particularly for longer duration contracts.
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Fully Implicit
Refinement Value Outer Iterations Inner Iterations CPU Time
per Timestep (seconds)
per Outer Iteration
0 6.419181331 14 1.92 2.1
o 1 6.423205939 14 2.04 6.5
= 2 6.427081500 14 2.21 22
i{ 3 6.429439269 14 2.49 85
4 6.430649201 14 2.91 363
5 6.431281898 14 3.58 1644
0 6.921184841 17 1.88 2.5
. 1 6.921706766 16 2.05 7.4
= 2 6.924671005 16 2.24 25
i{ 3 6.926763613 16 2.54 08
4 6.927890150 16 3.00 423
5 6.928491800 16 3.74 1924
0 8.637759320 47 1.81 6.8
- 1 8.626553413 44 1.97 20
I 2 8.624697583 43 2.18 67
~ 3 8.624953031 42 2.58 260
4 8.625254628 42 3.13 1144
5 8.625457795 42 3.99 5325
0 8.927413169 75 1.76 11
. 1 8.903548417 70 1.87 30
FII{ 2 8.894472269 67 2.03 101
- 3 8.893634945 66 2.36 390
4 8.893621933 65 2.86 1670
5 8.893709017 65 3.63 7707

Table 5.6: Refinement results for the global-in-time iteration using fully implicit timesteps.
Option values are at S = 93 in Regime 1. “Inner iterations” refers to the iterations used
to solve line 4 in Algorithm 4.3.
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Crank-Nicolson
Refinement Value Outer Iterations Inner Iterations CPU Time
per Timestep (seconds)
per Outer Iteration
0 6.438496257 11 1.92 1.7
o 1 6.433060318 11 1.96 5.2
S 2 6.432079691 11 2.12 18
i{ 3 6.431962775 11 2.32 68
4 6.431919117 11 2.64 285
5 6.431919625 11 3.12 1247
0 6.940245785 13 1.87 2.0
. 1 6.931349509 13 1.94 6.0
S 2 6.929546912 12 2.16 20
. 3 6.920219411 12 2.40 76
4 6.929124508 12 2.76 319
5 6.929111223 12 3.30 1416
0 8.645142808 31 1.91 4.8
- 1 8.630349020 29 1.99 14
I 2 8.626633686 29 2.18 48
~ 3 8.625926754 28 2.47 181
4 8.625743444 28 2.91 775
5 8.625702939 28 3.53 3474
0 8.932920179 47 1.86 7.2
- 1 8.906182630 44 1.91 21
FII{ 2 8.895774531 42 2.11 68
- 3 8.894290248 42 2.34 261
4 8.893950547 41 2.77 1096
5 8.893873783 41 3.32 4866

Table 5.7: Refinement results for the global-in-time iteration using Crank-Nicolson
timesteps. Option values are at S = 93 in Regime 1. “Inner iterations” refers to the
iterations used to solve line 4 in Algorithm 4.3.
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Refinement Convergence Bounds Approximate Error Ratio
Local Policy | Global-in-Time || Average Value | Maximum Value
o 0 0.031 0.790 0.22 0.37
= 1 0.016 0.793 0.21 0.36
& 2 0.008 0.794 0.21 0.36
3 0.004 0.794 0.20 0.36
4 0.002 0.795 0.20 0.36
- 0 0.043 0.887 0.26 0.44
— 1 0.022 0.889 0.26 0.45
. 2 0.011 0.890 0.26 0.44
3 0.006 0.891 0.25 0.44
4 0.003 0.891 0.25 0.44
- 0 0.242 0.994 0.65 0.85
I 1 0.138 0.994 0.63 0.85
e 2 0.074 0.994 0.62 0.85
3 0.038 0.994 0.62 0.85
4 0.020 0.994 0.62 0.85
. 0 0.389 0.994 0.77 0.93
‘ﬂ' 1 0.242 0.994 0.75 0.92
= 2 0.138 0.994 0.75 0.92
3 0.074 0.994 0.74 0.92
4 0.038 0.994 0.74 0.92

Table 5.8: Approximate error ratios, max; || (E*)*™ ||/ max; || (E?)* |, for the global-
in-time-iteration. The approximate error ratio values are computed using fully implicit
timesteps. The convergence bounds also correspond to fully implicit timesteps. The exact
solution was approximated by generating a solution with a convergence tolerance of 10712,
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Chapter 6

Conclusions

In this paper, the efficiency of several iterative methods used to price American options
under a regime switching process were numerically compared. Regime switching models
attempt to capture phenomenological market effects such as jumps and mean-reversion by
allowing asset prices to be controlled by different stochastic processes at different times.
Pricing American options under regime switching required the solution of a set of cou-
pled partial differential equation variational inequalities. The American constraint was
implicitly handled through a direct control formulation. The direct control form was then
discretized and written as a system of nonlinear algebraic equations. These nonlinear equa-
tions were solved using three iterative methods including fixed-point policy, local policy,
and global-in-time iterations.

A three-state regime switching model was used to compare the iterative algorithms
by tabulating the number of iterations required for each method to converge. This was
done for various grid and timestep refinements in order to observe the efficiency of each
algorithm as the discretized equations converge to the continuous time equations. The
results demonstrated that the fixed-point and local policy algorithms are efficient methods
requiring fewer iterations to converge as the grid spacing and timestep size was decreased.
By comparison, the global-in-time method required approximately the same number of
outer iterations as refinements were made, but more inner iterations were required to solve
the local American problem, thus making the method less efficient than the two others.
Furthermore, longer contracts required more iterations for the global-in-time method which
did not see much improvement as the grid spacing was refined. In all numerical trials,
longer CPU runtimes were required for the global-in-time method as compared to both
fixed-point and local policy methods. These runtimes were significantly greater for highly
refined grids and for longer duration contracts. Additionally, the global-in-time method
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requires storage of the solution vectors at all time levels whereas the fixed-point and local
policy methods only require a single solution vector to be stored at any given time.

In conclusion, the numerical trials conclusively demonstrate that the global-in-time
method is significantly outperformed by the alternatives on the basis of a comparably
poor convergence rate and severe memory allocation requirements. These results should
hopefully preclude the use of a global-in-time iteration in future numerical work, in contrast
to [2, 3, 4, 12]. Tt is suggested that a fixed-point policy iteration be used instead as it was
shown to be a much better alternative requiring the least amount of computation.
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Appendix A

Expressions for a and 3 in
Discretization of £; operator

In Section 3.2, the discretization of the Black-Scholes operator was given by
(LIVM)iy = iVl + BigVitay — (g + Big + 1+ X))V

where o; ; and 3; ; are selected using Algorithm 3.1 to yield a positive coefficient discretiza-
tion.

The central difference expressions are

central __ |: O-JZSlZ _ (7“ — p])S7 :| (Ala)
" (Si = Si—1)(Sit1 — Si-1)  Sit1 — Sima

central __ |: 0—32512 + (T B pj)Si :| (Alb)
" (Sit1 = 8i)(Siy1 — Sic1)  Sig1 — Sima

The forward difference expressions are

. 262

Ozf,O?ward — { 957 :| A 2a
I (Si — Siz1)(Si1 — Siz1) ( )
I (Six1 — Si)(Six1 — Si1) Siv1 — S
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The backward difference expressions are

backward __ |: 0-32312 o (T — p])SZ:|
I (Si —Si—1)(Si1 — Siz1) Si — Si—1
backward — |: 0]2 812 :|

" (Siz1 — Si)(Six1 — Sic1)
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Appendix B

Number of Iterations of
Global-in-Time Method

In Section 5.4, it was stated that if the convergence bound in equation (4.3) holds with
equality, then approximately twice as many iterations are required for a 7' = 0.7 contract
to converge as compared to a T = 0.5 contract. The rationale for this statement is sketched
below.

Define §(7T") as A A
o(T) = (1= e ()

which is the right-hand side of equation (4.4). Writing equation (4.4) as an equality gives
1B oo = 6]l E* [loc

By recursive substitution, the error after n iterations is
I E™ [loo = 0" B [l

Taking logarithms on both sides and solving for n gives

o 1oa(l] £ [lo) — log (] £°|)
log d

(B.1)

Assume the initial error is of order unity || E° || = 1, the solution converges to 8
decimal points || E" || = 107%, and the model parameters are A\; = 3.2 and r = 0.02
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(see §5.1). The convergence bounds are then

(T =0.5)=0.795
T =0.7) =0.892
which can be substituted into equation (B.1). This gives a ratio of iteration numbers of

nNr—o.7

~ 2.0

nNr—=o0.5

indicating twice as many iterations are required for the longer contract.
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