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Abstract

The Elo rating system was created in 1978 to better model the outcome of chess matches
and estimate player skill. Player are rated based on the outcome of their previous games
and the perceived skill of their previous opponents. The model uses the difference in
estimated skill between players to calculate the probability of future game outcomes. The
idea was extended to multiplayer matches in the TrueSkill algorithm, originally used to
rank players in multiplayer Halo matches. This algorithm predicts the outcome of games
based on the sum of individual player’s skill ratings. This assumes players play most if not
all of the games and are always playing the same opponents during the game. This paper
explores implementing the TrueSkill algorithm using the outcome of individual non-scoring
events within a game to rank players instead of just the outcome of the game. Each in-
game event is weighted based on its estimated impact on the outcome of the game. This
approach could allow us to rank players in fluid games where players only play a fraction
of the game. This approach also helps differentiate between teammates which always play
on the same team. This paper uses publicly available data for hockey games in the NHL
to test the model.
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Chapter 1

Introduction

The Elo rating system was created in 1978 to better model the outcome of chess matches
and estimate player skill. Player are rated based on the outcome of their previous games
and the perceived skill of their previous opponents. The model uses the difference in esti-
mated skill between players to calculate the probability of future game outcomes. Glicko
models improved this simple player rating system by modeling player skill using Gaussian
random variables. Each player is assigned a skill mean and variance. The idea was ex-
tended to multiplayer matches in the TrueSkill algorithm, originally used to rank players
in multiplayer Halo matches. This algorithm predicts the outcome of games based on the
sum of individual player’s skill ratings. This assumes players play most if not all of the
games and are always playing the same opponents during the game.

This paper explores implementing the TrueSkill algorithm using the outcome of individ-
ual events within a game to rank players instead of just the outcome of the game. Events
that directly affect the outcome of the game are considered as well as events that indirectly
affect the outcome. Each in-game event is weighted based on its estimated impact on the
outcome of the game. This approach could allow us to rank players in fluid games where
players only play a fraction of the game. This approach also helps differentiate between
teammates which always play on the same team. Using in-game events also increases the
number of outcomes passed into the TrueSkill model.

This paper uses publicly available data for hockey games in the NHL to test the model.
All in-game events are weighted using multiple pre-existing hockey models that quantify
the impact of in game events as well as the quality of shots. The model was run in R and
the code is available upon request.

1



Chapter 2

Background

2.1 Elo Ratings

The Elo rating system was proposed as an improved way to rank chess players by the
Frenchman Arpad Elo in 1978 [3]. Using the ratings, one can model the probability of
a player winning any given matchup. In the system, every new player is given the same
rating of 1000. The rating then gets updated after each head-to-head match based on the
outcome of the match and the rating discrepancy between the two opponents.

Contributions by Mark Glickman [5] expanded the Elo rating system by modeling the
player skill rating as a Gaussian random variable. These new models are referred to as
the Glicko models. Adding in uncertainty to a player’s rating greatly improved how the
model handled newer players. New player ratings are based on few games so the outcomes
of their games are less predictable. In the Elo system, players with less than 20 games
were considered to have a provisional rating. In the Glicko model, the variance of a new
player’s rating properly represents the uncertainty of contests with new players. The game
outcome can greatly effect a new player’s rating while an established player’s rating is less
effected.

2.2 TrueSkill

Microsoft proposed a new algorithm named TrueSkill [6] that extends the work of Elo and
Glickman to team based games. In particular, TrueSkill was first used to rate players in
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their online multiplayer shooting game Halo 2 (Herbrich, Minka & Graepel, 2007). The
player’s skill rating would then be used by the Halo 2 matchmaking system. Players often
queued up for a multiplayer game on their own. Microsoft’s matchmaking system would
then group players into teams that would create balanced and interesting matches. It was
later offered to all games on Microsoft’s Xbox 360 Live platform.

Similarly to the Glicko models, TrueSkill models player’s skill rating as a Gaussian
random variable. It then models each player’s performance as the player’s skill plus a
Gaussian noise variable representing uncertainty within each game. The team performance
is set as the sum of the performances of the members of the team. The difference in team
performances are used to calculate the likeliness of the game outcome. The only possible
outcomes are a win, a draw or a loss. Player’s skill mean and variance are then updated
accordingly (see section 2.2.1). TrueSkill also works in cases where more than 2 teams are
competing by ranking the teams. Then teams are compared pair-wise, where the higher
placed team is considered the winner between the two unless they are tied.

Microsoft has since released an updated TrueSkill 2 [14] which tries to account for more
factors that could effect the skill of a player or a team. For example, the variance of a
player’s skill now increases over time if they are inactive. The performance of a player
in a team can also be adjusted if their are playing as part of a squad, if they are more
experience or based on their previous individual in-game statistics.

2.2.1 Simple Chess Example

Let’s take a look at how TrueSkill updates player ratings by considering the simple case
of a two person chess match. We will further simplify this example by assuming no
ties. The pre-match skill Si of players 1 & 2 in our example are assumed to be Si ∼
N(µi, σ

2
i ) where µ1 = 1400, σ1 = 40, µ2 = 1200 and σ2 = 150. µi represents the current

estimate for the skill of player i. A higher value means a higher skill and a higher likelihood
of winning games. This value is adjusted after each game outcome to better reflect the
player’s estimated skill level. σi represents the uncertainty around the estimated skill level
µi. It’s value will decrease as more games are input into the model and more information
on the player’s skill is observed.

We can see in our example that player 1 has a higher mean skill level than player 2.
Player 1 also is a more established with less variance in his rating.

In the TrueSkill model, each player’s performance Pi is modeled to be normally dis-
tributed around the player’s skill Si plus a noise variable with constant variance β2. The
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added noise represents the variability of a players performance within a given game. It rep-
resents additional game outcome uncertainty. The value of β will determine how spread out
player’s ratings will be. A small β causes a small difference in skill to result in a large win
probability, and vis versa. The performance variables are modeled as Pi ∼ N(µi, σ

2
i + β2).

In chess, they use β = 200 for their ratings [3], so we will do the same for our example.

The winner of a game is the player with the higher realised performance value pi.
Whereas the probability of a player winning is determined by the distribution of P1 − P2.
For our example, we will consider the less likely outcome that player 2 won the match. To
update the true skill, we first need to calculate the mean difference in team performance
between the winner and the loser. The difference in performance is ∆ = µ2 − µ1 =
1200− 1400 = −200.

We can then update both player’s rating mean and variance. The TrueSkill model
is a Bayesian model. Each observed outcome is approached with a prior describing the
probability of the outcomes. In this case, the prior is the players original rating mean and
variance. Once the outcome is observed, the likelihood function is calculated using the
prior. The posterior, or updated player mean and variance, is calculated by combining the
prior and the likelihood.

To do this, we first calculate intermediary variables c, v, w. The c variable represents the
total standard deviation of the player performances within the game. The ratio ∆

c
, modeled

as a standard N(0, 1) Gaussian distribution, describes the likelihood of the outcome. That
likelihood is then used to update the skill means and variance. The v variable is used
scale to scale how much the skill mean will be updated. The more unlikely the outcome,
the higher the value will be and the more the skill means will be shifted. The w variable
is similar to v, but scales how much the skill variance will be reduced from the outcome.
Similarly to v, the more unlikely the outcome, the higher the value. The more unlikely the
outcome, the less the skill variance will be reduced.

c =
√

2β2 + σ2
1 + σ2

2 =
√
2× 2002 + 402 + 1502 = 285.92

v =
ϕ (∆/c)

Φ (∆/c)
=

ϕ (−200/285.92)

Φ (−200/285.92)
= 1.2901

w = v

(
v +

∆

c

)
= 1.2901

(
1.2901 +

−200

285.92

)
= 0.7619

I1 = (−1)1Player 1 Lost = −1

I2 = (−1)1Player 2 Lost = 1

4



Now we can perform the updates. In the equations, the dynamics variance τ is a
constant variance added to each player’s skill to ensure the variance does not tend to 0.
It can represent inherent variance in a player’s skill over time. The value of τ can be
increased if a player has not played in a long time and his rating estimation is deemed to
be less accurate. In this example, we will set τ = 0 to keep the calculations simpler.

µ1new = µ1 + I1 × v
σ2
1 + τ 2

c
µ2new = µ2 + I2 × v

σ2
2 + τ 2

c

= 1400 + (−1)× 1.2901
402 + 02

285.92
= 1200 + 1× 1.2901

1502 + 02

285.92
= 1392.78 = 1301.52

σ2
1new

=
(
σ2
1 + τ 2

)(
1− w

σ2
1 + τ 2

c2

)
σ2
2new

=
(
σ2
2 + τ 2

)(
1− w

σ2
2 + τ 2

c2

)
=
(
402 + 02

)(
1− 0.7619

402 + 02

285.922

)
=
(
1502 + 02

)(
1− 0.7619

1502 + 02

285.922

)
= 1576.14 = 17781.83

σ1new = 39.70 σ2new = 133.35

We see that as a result of the game, the skill of player 2 has greatly increased from 1200
to 1301.52 and their σ has decreased a bit from 150 to 133.35. On the other hand, player
1 saw a small change in skill and variance. In response to an unlikely outcome, the player
with the larger variance is more heavily impacted as they are more likely to be further
from their mean skill level. In response to a likely outcome, the TrueSkill model will make
larger updates to the variance of the players since their mean skill was more likely closer
to it’s true value. If both players kept on playing and their ratings were updating based
on the outcomes, their ratings would converge to their true underlying skill. An example
though simulation is shown in section 4.1.1.

2.2.2 Head to Head Team Games

When using TrueSkill to measure player skill in head to head team games, the methodology
is similar to the example in section 2.2.1. We first determine the team performance using
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the individual player skill levels. Let A = {ai} to be the set players in team A and B = {bi}
to be the set of players in team B. Each team’s performance is the sum of each player’s

individual performance. This is represented by PA ∼ N

( ∑
ai∈A

µai ,
∑
ai∈A

(σ2
ai
+ β2)

)
and

PB ∼ N

(∑
bi∈B

µbi ,
∑
bi∈B

(σ2
bi
+ β2)

)
. The winner of the game is the team with the highest

realized performance.

When updating player ratings, e.g. if team A won, you would need to make the following
adjustments to the team performance ∆ and to the value of the c variable.

∆ =
∑
ai∈A

µai −
∑
bi∈B

µbi

c =

√
(|A|+ |B|)β2 +

∑
ai∈A

σ2
ai
+
∑
bi∈B

σ2
bi

The rest of the calculations remain the same as shown in the example above. Each
player’s mean and variance are updated after each game.

2.2.3 Multi-Team Games

To update ratings in the case where more than 2 teams are involved in the game, then it
is necessary to iterate pairwise over the teams. All teams will need to be ordered in the
standings reflecting their performance in the game. When comparing two teams, the team
with the higher standing at the end of the game will be considered the winner. Teams
can be tied, in which case the rating updates are more complex. The ∆ calculation also
changes to allow for ties. Since this will be outside the scope of this report, we will not
discuss it further. For more information, you can look at the TrueSkill paper [6].

2.2.4 TrueSkill Applied to Sports

TrueSkill has been used to rank players or teams in a sporting context. For tennis, Gustavo
Landfried suggested to created multiple skill levels for a single player [11]. i.e. A general
skill level representing the skill of a player, and the other skill level representing the type
of court on which the match was played. As a tennis player accumulated more games on
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multiple court types, his general skill might differ from the court type specific skill. For
example, the player “Rafael Nadal” is known for being dominant on clay so the model
would be able to account for court type. This means that, when calculating his probability
of winning a game, the player with skill level equal to “Rafael Nadal on clay” would be
stronger than just “Rafael Nadal” or “Rafael Nadal on grass”. It is an elegant method to
update a player’s rating based on their opponent as well as the context in which the game
was played.

Another application to sports attempted to account for home court advantage and the
winning margin when ranking tennis players as well as football and hockey teams [8]. They
also used Gibbs sampling and batch processing to marginally increase the predictive power
of their rankings. When ranking teams, they considered them to be a single entity and did
not attempt to assign rankings to individual players in each team.

2.3 Hockey Analytics

Many new metrics and models have been created to try to quantify what happens on the
ice of an NHL game. Hockey is a complex game to model due to multiple reasons. The
game is very fluid with possession of the puck often changing sides very quickly, making it
hard to separate individual plays. Players do not spend extended amounts of the time on
the ice. As a result, the players on the ice change very regularly, making it hard to track
how much someone is responsible for the outcome of a game. To attempt to overcome
these obstacles, many different approaches have been taken.

2.3.1 Player Value Models

Some models attempt to evaluate players by quantifying the number of goals or wins that
a player is contributing to their team. Most of these models will attempt to quantify the
number of goals or wins a player contributes over a replacement level player, i.e. wins over
replacement or goals over replacement. A replacement level player is defined as a player
that is on the fringe of most teams and could be easily acquired or replaced. An example
of such a model would be the one created by Luke Solberg, also known as EvolvingWild
[23]. The model uses a mixture of a large number of on-ice metrics to evaluate players.
Linear regression and machine learning is used to determine which metrics offered the
most insight. The goal of this model was to predict a player’s future value, therefore, a
player’s future skill is projected using age curves [22] which describe a player’s perceived
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skill over their career. Other models have been suggested using slightly different metrics.
For example, Emmanuel Perry’s WAR model [17] which relies heavily on quality over just
shot quantity by using Corsica’s xGF metric for shots [2]. Many models are no longer
public due to their authors being hired by professional teams[1].

Dom Luszczyszyn created a model [12] which attributes a game score to each player.
The game score is meant to be on a similar scale to points scored by the player during the
game instead of being a value relative to replacement level players. The score is calculated
as a weighted average of many in-game stats for each player. It values primary assists over
secondary assists, takes into account penalties drawn and taken as well as the quantity of
shots for and against while a player is on the ice. The idea is based off of the game score
metric for basketball created by John Hollinger[26]. While the base game score value does
not account for context or competition, Luszczyszyn has added an adjusted score metric
that takes into the quality of teammates and competition in his final weighted scores [13].

2.3.2 Shot Quality Modelling

Some of the models above consider shot quality while others consider all shots equally.
However, it is clear when examining shot data that not all shots are created equal [18]. As
a result, many have developed different ways to assess the shot quality based on publicly
available data. Earlier models assessed shot quality based on shot distance given different
game situations and shot type. Alan Ryder’s model [19] took into account whether a shot
was a rebound, a long shot or a scramble shot. A rebound was defined as a shot taken
no less than 2 seconds after another shot. A scramble shot was defined as a shot within
6 feet which is not a rebound. Ken Krzywicki built upon his model, adding the period
during which the shot was taken to his model [9]. Corsica’s newer shot quality model adds
in shot angle to their calculation [2] and reduced the number of game context variables to
rebounds and rush shots. A rush shot is defined to be a shot less than 5 seconds after an
event occurred outside the offensive zone. Then they attribute a fraction of a goal to each
shot. Aggregating these fractions, they estimate the expected number of goals to occur
when a player is on the ice. They name this aggregate as the “expected goal for” metric
or “xGF”. It has more predictive power to similar models using just shot or shot attempts
[16].

8



Chapter 3

TrueSkill with In-Game Events

TrueSkill was created for team competitions where players don’t change throughout the
game. e.g. Halo 2, tennis and to a lesser extent baseball and basketball. Furthermore, to
distinguish between different player skills, TrueSkill needs players to play with a variety of
teammates. TrueSkill struggles with franchises playing each other as it is hard to distin-
guish between the skill on individual players on each franchise. Here we define franchises as
teams with a set group of players who only play for that franchise. So players will mostly
play with the same team from game to game. An example in Halo of franchises would be
squads that play all their games together. Here we are considering expanding TrueSkill to
games where players on the field are often switched for other players on the team but the
players on a team usually stay the same from game to game.

Some issues in adapting TrueSkill are that different players are no longer equality
responsible for the result of the game. Secondly, the quality of competition that each
player on a team sees can vary. Finally, players on the same team have the same game
outcomes. This report suggests using in-game events to update player ratings instead of the
final game outcome. Using in-game events will greatly increase the number of observations
for each player, resulting in more accurately tracking the impact of a player on the game
instead of using time played. The proposed model will also allow to distinguish between
players on the same team based on the outcomes of when they were actively playing.

The goal of this model is to properly distinguish player ratings through in game events.
We show in section 4.4 that this method leads to faster and more accurate detection of a
player’s skill.

9



3.1 In-Game Events

The goal is to take into account how the game went instead of a binary win or loss when
updating player skill. The in-game events will better reflect a player’s impact on the game.
We label these in-game events as either scoring or non-scoring events. We define scoring
events as events that directly contribute to a team winning or losing the game. A team
wins the game by achieving more scoring events than their opponent. Some examples of
scoring events in different games are getting a kill in a team-deathmatch game in Halo,
capturing a flag in a Capture The Flag game in Halo, scoring a goal in hockey or soccer,
and making a basket in basketball.

Conversely, non-scoring events do not directly contribute to winning the game. How-
ever, they can have a positive or negative impact on the game and can lead to a scoring
event. Some examples of non-scoring events in different games are taking a shot in hockey
or soccer, making a pass in basketball, picking up a strong weapon in a team-deathmatch
in Halo, and getting a kill in a Capture The Flag game in Halo.

The proposed methodology will use both scoring events and non-scoring events. At
each event, active players from both teams will be credited with the outcome of that event.
Each non-scoring event will be weighted using the probability that it leads to a scoring
event.

3.2 Weighting In-Game Events

The extend to which an event impacts the outcome of the game will dictate how much
player ratings should be adjusted. For non-scoring events, we will calculate this as the
probability that the event leads to a scoring event for either team. There are two different
approaches we could take to calculate this weight.

The first approach is based off of the THoR rating system [20] used for hockey players.
In the THoR rating system, each type of in-game event is given an NP20 score to determine
it’s value which is then attributed to the player performing the event. NP20 stands for net
probability after 20 seconds. It gives the probability that a goal occurs in the 20 seconds
following the event for the team for which the event occurred. The value is the probability
that the team scores minus the probability that the other team scores. 20 seconds was
chosen as the effect of events on the score seemed to no longer be significant afterwards.
This approach looks to attribute the impact of a type of event based on how likely a scoring
event occurs shortly afterwards. This could be used in other games like soccer or in Halo.

10



The length of time for which to determine the impact of the event would likely need to
change from game to game. For example, a lower pace and lower scoring event game like
soccer might need a larger window when assessing the impact of non-scoring events.

The second approach would instead look at the outcome of a possession within a game.
This is based off of a paper looking at passing networks in basketball [25] to cluster players
based on their style of play and performance. In their model, they constructed a network
for each possession where there are a set number of outcomes. This approach would weight
events based on the expected value of the outcome of the play given an event occurred.
This method does have challenges where we need to properly weight the value of an event
that could occur multiple times in the same play. This method makes more sense for cases
like basketball where possession is clearly defined and delineated. Each game can be broken
down into a series of possession plays, making it easier to evaluate events in this context.

Once we have assigned a weighting to the outcome of each event, all players active at
the time of the event will have their skills updated as a result of the event. This will allow
us to only adjust players for the events they can control. The player update will be scaled
proportionally to the weight of the event. Therefore, players winning high-impact events
will have greater rating increases than players winning low-impact events. The size of the
update will be directly proportional the the weight of the event. Given an event weight,
ω, the skill mean and variance update for a player will be

µnew = µold + ω × v
σ2
old + τ 2

c

σ2
new =

(
σ2
old + τ 2

)(
1− |ω| × w

σ2
old + τ 2

c2

)
This is slightly different than the TrueSkill method outlined in section 2.2.1. We applied

the weight ω scale to the mean scaling factor v as well as to the variance scaling factor w.
For the variance, we use the absolute value of the weight since we want to do the same
size update whether the update is positive or negative. One caveat of this approach is that
there are no longer ties. All events are either a net positive or negative for a team. Any
event that has no positive or negative impact on a scoring event game does not need to be
considered.

3.3 Including Game Context

When observing specific game events, including the game context can help better under-
stand the impact of certain players. There are many factors that can cause one team to
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have an advantage over the other during a part of the game or during the whole game.
If players achieve good results in advantaged situations, it makes sense to take that into
account when updating ratings.

A game-long advantage could be a map in Halo where one team is advantaged over
the other team due to the characteristic of the map. Another example is the home field
advantage in many sports. It has been well documented that across all major sports, there
is an advantage for the home team [15]. Non-scoring events might also favor the home
team. This was noticed in hockey where these events are recorded by in-house statisticians
[4].

An example of a temporary advantage that could impact a player’s performance is a
team being down a player due to a player disconnecting in Halo or due to a red card in
soccer. Another example could be a team being on a power-play in hockey. These contexts
could be useful to account for since they are not present for the entire game, only for
certain events.

To calculate the weighting of these advantages, we follow a similar method to the one
used by Lanfried [11] to calculate the skill of players on different playing surfaces. We will
add a generic game context player to a team for each advantage. Each game context player
ci will start with mean µci = 0 and with the same starting variance σ2

ci
= σ2

0 as the players.
The game context will be included in the team performance calculation as shown below.
As they are not a true player, we will not add performance variance β to the game context
but instead a dynamics variance of τ .

Assume that we have two sets of players {a1, ...} ∈ A, {b1, ...} ∈ B representing our two
teams. Team A has the set of m game contexts {c1, ..., cm} ∈ CA for the given event. Team
B has the set of n game contexts {cm+1, ..., cm+n} ∈ CD for the given event. ∆ and c are
calculated as follows.

∆ =

(∑
ai∈A

µai +
∑
ci∈CA

µci

)
−

(∑
bi∈B

µbi +
∑
ci∈CB

µci

)

c =

√
(|A|+ |B|) β2 +

∑
α∈(A

⋃
B
⋃

CA
⋃

CB)

σ2
α

The values of µ and σ are updated for all context elements and players after each event.
Enough events need to be simulated for all individual context elements to reach a certain
stability in their rating. Once that has occurred, the average value of µ is taken after it has
reached that stability. The average µ will be used as a constant to represent the value of
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that game context. We will assume it to be the true underlying value of the game context.
When then re-run all events through our model, applying the weightings of the game
context when calculating ∆ as shown above and recalculate the player skills accounting for
game context. As the context’s no longer have any variance, c will be calculated as it was
in section 3.2.
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Chapter 4

Simulations

To asses the validity of the model we will simulate games between players with set ini-
tial ratings. The outcomes of those games are then passed into the model without the
knowledge of the prior player ratings. The idea is that the model will properly detects
each player’s skill given a reasonable number of samples. If it can not extract the player
skill ratings given these games, then it will be unable to detect player skills in a real world
example.

4.1 Estimating Skill Using Game Outcomes

We will first verify the TrueSkill model can detect underlying player skill based on the
outcomes of simulated games. This can give us an idea of how many samples the TrueSkill
model needs to detect player skill as well as ensure our processes are correct.

First, we need to set the constants for our modeling system. We will set the starting
player skill mean as µ0 = 1 and the rest of the parameters will be set using the suggested

values in the original Trueskill paper [6]. The starting variance is set to σ2
0 =

(
µ0

3

)2
= 1

9
,

the player’s performance variance is set to β =
σ2
0

4
= 1

36
and set the dynamics variance to

τ =
(

σ0

100

)2
= 1/90000.

Then we create our set of players A. Each player i is given a mean skill µi. Their skill
variance will be equal to the dynamics variance τ of the system.
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4.1.1 Single Player Contests

We will begin with single player contests. Examples of single player contests are a chess
match, a singles tennis match or a billiards game. In this case, the TrueSkill model works
identically to a Glicko model. To simulate the outcome of single player contests, we will
start by taking two random opponents i, j ∈ A. The opponents must be different players,
so i ̸= j. In the TrueSkill algorithm, each player’s performance pi follows a Gaussian
distribution with the player’s mean skill rating as the mean. The variance is given by the
variance of the player’s underlying skill, which in our case is just the dynamics variance τ ,
plus the generic performance variance β. So, we sample each player’s performance pi from
the distributions Pi ∼ N(µi, τ + β).

If pi < pj, then player j has won the game and vis versa. Once the game outcome
has been recorded, the process is repeated for the next game until the required number of
games have been simulated. For our purposes, we will assume no ties can occur since there
will be no ties when we simulate events.
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Figure 4.1: Single Player Contests

The games are run through the
TrueSkill model, without the knowledge of
the players actual skill, to calculate each
player’s skill rating. Details on how to run
the TrueSkill algorithm in this simple case
is covered in section 2.2.1. Each player is
given an initial rating of µ0 and variance of
σ2
0. Since the TrueSkill model sets player

rankings based on the relative ranking of
other players, if you want to achieve the ac-
tual underlying values of µi for each player,
then you will need the sum of starting mean
ratings to be equal to the sum of underly-
ing ratings

∑
i∈A

µi = µ0 × |A|. Otherwise,

the relative ratings of the players should tend to the underlying ratings, but the absolute
ratings will not.

Figure 4.1 shows the results of single player contests simulated as described above
between a set of four players {a, b, c, d} where a pair of players chosen are at random over
300 games. The underlying player ratings used for simulating the games were µa = 1.2,
µb = 1.05, µc = 0.9, µd = 0.85. The results of the games were then run through the
TrueSkill model. All players started with µ0 = 1. After about 50 games, the µ rating
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of each player had started to converge towards its underlying value, represented by the
dotted line in Figure 4.1. The rating fluctuates over time as outcomes change, but remain
close to the true underlying skill. This is the expected behavior we will want to remain
constant as we modify the model. Note that the player’s ratings only reach their proper
values because the sum of their initial mean ratings is equal to their underlying ratings.

4.1.2 Multiplayer Contests without Franchises

Next we will simulate the outcome of multiplayer contests with k players on each team.
These games will between random teams and not between franchises. This is like a mul-
tiplayer Halo match which is the exact case for which the TrueSkill model was originally
created. The games are team based and the composition of the teams change per game. A
player that was your opponent one game can just as easily be your teammate in the next
game.

Let us build random teams of k players each. Start by sample without replacement
2× k players {a1, ..., ak, ak+1, ..., a2k} from the set of players A in a random order. Assign
the first k players {a1, ..., ak} to team 1 and the remaining k players {ak+1, ..., a2k} to team
2. We calculate the performance pi of each player in the same way as shown in 4.1.1. The
performance of the team is then calculated as the sum of each team member’s individual
performance.

p1 =
k∑

i=1

pi p2 =
2k∑

i=k+1

pi
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Figure 4.2: Multiplayer Contests

If p1 < p2, then the players on team 1
have won the game and vis versa. We keep
track of the players on both teams as well
of the outcome. Once that is done, we re-
peat the process, choosing different random
teams each time until the required number
of games have been simulated.

Next, the games are run through the
TrueSkill model. The details on how to run
this model are covered in section 2.2.2.

In Figure 4.2, we show the results of
ranking 8 players in random multiplayer games with 3 person teams. The players were
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labeled a to h, a being the strongest player and h being the weakest. Again, we can see
the player ratings tending towards their underlying skill after around 80 to 100 observed
games. It took a bit longer to reach the proper rating than in the single player contests,
but not by a too large margin.

4.1.3 Multiplayer Contests with Franchises

The goal of our model is to extend the TrueSkill algorithm to work in cases where teams
might be more static and player skill is harder to extract. Therefore, we will now evaluate
the strength of the TrueSkill algorithm in cases where players belong to separate franchises
Ai where a player can only belong to one franchise. If a1 ∈ Ai then a1 /∈ Aj where j ̸= i.

To simulate these contests, we first create n franchises A1, ...,An with at least k players
in each. Then, we randomly select 2 franchises from {A1, ...,An} and randomly select
k players from both those franchises. With the two teams of players, we then proceed
the same way as described in 4.1.2 to simulate the outcome of the game. We continue
this process, each time selecting 2 random franchises and k random players from those
franchises until we have reached the desired number of games.
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Figure 4.3: Multiplayer Contests with Teams

The outcomes of the games are run
through the TrueSkill using the methodol-
ogy outlined in 2.2.2.

We simulated 3 person multiplayer
games from 3 franchises: {a, b, c}, {d, e, f}
and {g, h, i, j}. The first two franchises
have 3 players each, so all players play in
every game. The last franchise has 4 play-
ers, so the makeup of the team will change
from game to game. For the first two fran-
chises, since all players play all the games,
it is impossible to differentiate the between
the skill of different players, giving them all
have the same skill. The skill of players of
those franchises will tend to the average skill of the franchise. The players on the last
franchise will have different skill ratings based on how well the team does with and not
without them. Their individual ratings will tend to their true value. In Figure 4.3, you
can see that for franchises {a, b, c} and {d, e, f}, where each player played every game,
all player ratings stayed the same. In team {g, h, i, j}, where the players changed in each
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game, the model was able to properly detect each player’s underlying skill. This shows a
limit of TrueSkill using game outcomes if most of the players on a franchise always play
each game.

4.1.4 Contests with Game Context

Next, we will simulate the model described in section 2.2.4. In that section, we dis-
cussed work by Gustavo Landfried which consisted of creating additional players in tennis
matchups based on the type of court the match was played on. This method is used to
add game contexts to our model.
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Figure 4.4: Single Player Tennis Contests

To recreate the tennis scenario, we will
take a set of 3 players: {a, b, c}. Each game
will be played between 2 randomly selected
players from the set. For each game, we
will also randomly select whether the game
will be played on a clay or a grass court.
Once the court type is selected, we will add
a player of that court type to each team.
For example, let player a be playing against
player c on a clay court. The set of players
on the two teams will be {a, a-Clay} versus
{c, c-Clay}. Once the teams are set, the
games are simulated as in section 4.1.2. The
outcomes of the games are then passed into
the TrueSkill algorithm.

For our simulation, player a had mean skill µa = 0.95 and is slightly stronger on clay
with µa-Clay = 1.1 and µa-Grass = 0.8. Player b had consistent skill mean skill µb =
µb-Clay = µb-Grass = 1.05. Player c had mean skill µc = 1 and is slightly stronger on grass
with µc-Clay = 0.9 and µc-Grass = 1.1. In Figure 4.4, we can see that the algorithm is able
to properly detect the true skill of player a as well as their strength of different types of
courts. Therefore, we should be able to use the TrueSkill algorithm to detect the impact
of different underlying game context.
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4.2 Estimating Skill Using In-Game Events

Now to test through simulation whether using weighted outcomes can still allow us to
detect the underlying player skill. While the number of events to detect the skill will likely
increase, the hope is that by seeing more events per game will skill allow us to quickly
detect player skill. This paper discussed some player value models discussed in section
2.3.1 that showed different ways to weight in-game events for hockey. We will use some of
these methods as a basis for how our events are weighted.

Using the original values of β and σ2
0, the model using in-game events was slow at

converging to the underlying ratings. To increase the speed of the algorithm, the initial

parameters were changed to σ2
0 =

(
1
8

)2
and β =

σ2
0

2
. The reason behind the parameter

adjustments are discussed further in section 4.3.

4.2.1 Weighted Individual Events
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Figure 4.5: Hockey Event Weights

We will start by simulating events the same
way we were simulating games in section
4.1, except each outcome will be assigned a
random weight. For this chapter, we used
hockey events to decide on the weight dis-
tribution. The hockey weights were calcu-
lated using a mix of the ThoR model and
the xGF shot quality model. More details
on how the hockey weights were calculated
can be found in section 5.2. Note that
any method is valid to generate the random
weights ωi as long as 0 < ωi ≤ 1. Figure
4.5 shows the weight distribution of hockey
events against an exponential distribution
with rate 30. We found that the distribution was close enough to an exponential distri-
bution for the sake of our simulations. Therefore, for each simulated event i, it will be
given the weight ωi from the distribution Ω ∼ Exp(30). If ωi > 1, we set ωi = 1 but
note that P (Ω > 1) = e−30 ≈ 9.3× 10−14. Therefore, this will not significantly change the
distribution curve shown in Figure 4.5.
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Figure 4.6: Weighted Multiplayer Contests

These weighted events are then used in
the model using the methodology shown in
section 3.2 to update player ratings.

In Figure 4.6, you can see players rated
from events with random weights. As a re-
sult of the smaller weightings for each in-
dividual event, player ratings move much
less sporadically, especially in the first 10 or
so events. However, after 600 or so events,
TrueSkill was able to detect the reach the
underlying rating. Comparing Figure 4.6 to
Figure 4.2, the player ratings are more sta-
ble when using weighted events. However,
the absolute number of events to reach the proper rating is larger than the absolute num-
ber of games. If there are many events per game per player, this method could still be
significantly faster than just looking at game outcomes.

4.2.2 Adding Game Context to Events
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Figure 4.7: Multiplayer Contests Contexts

As discussed in section 3.3 and shown in
section 4.1.4, we can add game context
to modify a team’s expected performance.
This is to account for advantages that play-
ers may have that might be outside of their
control and for which they should not get
credit. To achieve this, when simulating
events, we will randomly attribute a con-
text ci to a team. The other team is at-
tributed the opposite context c−i. Each
context ci has a mean rating µci and a
variance equal to the dynamics variance
τ . The context performance is sampled as
Pci ∼ N(µci , τ) and Pc−i

∼ N(−µci , τ).

Once the context’s performance is sampled, it is added to each team’s performance.
We then proceed as in section 4.2.1 to detect the winner and weight of each event. Once
all events are simulated, we run the model as outlined in section 3.3. Once all events are
run through the model, we can observe the results for different contexts.
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We set a home advantage of µ = 0.03 in our simulations. In Figure 4.7 can see that
the model properly detected the advantage of being home and the disadvantage of not
being home. In Figure 4.7, we can see that the ratings seem to stabilize after the first
2000 events played. Taking the average of the remaining values of µ gives us a value of
µhome = 0.0318 which is pretty close to the underlying value of 0.03. Once the estimate
for µhome is calculated, we can rerun the events in the model with a fixed context value of
µhome to get a better player rating estimate.

4.2.3 High Substitution Contests

A limitation of using TrueSkill on outcomes was for games where many player substitutions
occur during the game. The hope is that using TrueSkill on event outcomes will improve
the detection of player skill. To test this, we will base our simulations off of hockey. In
a hockey game, players will stay on the ice for very short periods of time, called shifts.
A typical shift in hockey last about 45 seconds, after which they change and new players
come on [24]. This means that each player will only play a fraction of the complete game
and may play against a wide range of players throughout the game. Therefore, calculating
each player’s skill solely on the game’s outcome may not be an efficient way to detect their
skill since they only have a limited impact on the outcome of the game. However, looking
only at in-game events where the playing is actively playing should give us a better picture
of their skill.

Each team will be comprised of the typical hockey formation of 18 players {a1, ..., a18}.
Our simulations will be ignoring goalies since they effect play very differently than the rest
of players. In hockey, players will play with their lines for most of the game. A team has
4 forward lines with 3 players each and 3 defense lines with 2 players each. To mimic this,
the players will be split into 4 distinct sets {F1,F2,F3,F4} of 3 players and into 3 distinct
sets {D1,D2,D3} of 2 players. We will assign the players to each set as such:

a1, a2, a3 ∈ F1 a13, a14 ∈ D1

a4, a5, a6 ∈ F2 a15, a16 ∈ D2

a7, a8, a9 ∈ F3 a17, a18 ∈ D3

a10, a11, a12 ∈ F4

On a regular hockey team, each line will not be equal. Some lines will be stronger
than others and as a result will receive more ice time. To take this into account in our
simulation, when an event occurs and we will favor certain sets of players when deciding
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which line was playing. We will assume that in terms of general strength, the lines are
ordered as F1 > F2 > F3 > F4 and D1 > D2 > D3. We will assume each line has the
following amount of ice team in a regular 60 minute game. From that we can infer how
likely a forward player f or a defenseman d from that line is playing at any given moment.

F1 : 18 mins → P (f ∈ F1) = 30% D1 : 22 mins → P (d ∈ D1) = 36.7%

F2 : 16 mins → P (f ∈ F2) = 26.7% D2 : 20 mins → P (d ∈ D2) = 33.3%

F3 : 14 mins → P (f ∈ F3) = 23.3% D3 : 18 mins → P (d ∈ D3) = 30%

F4 : 12 mins → P (f ∈ F4) = 20%

For each event of the game, we will randomly select the forward {Fi}i∈[1,4] and defense
{Dj}j∈[1,3] lines that are on the ice using the probabilities above. All players {ak}k∈[1,18] ∈
Fi∪Dj will make the active players for that event. We repeat this process to select random
lines for the other team. We could also assume that the other team matches their opponents
lines, i.e. if the first team has lines F2,D3 on the ice, then the second team will have lines
F2,D3 as well. This is a strategy sometimes used by coaches in hockey. We don’t do that
in this simulation, but that is a case which could arise in a real-world example that would
reduce the effectiveness of the algorithm.

Team Line
Actual
Skill

Model
Skill

Diff

A F1 1.3 1.27 -0.03
A F2 1.25 1.19 -0.06
A F3 0.95 0.82 -0.13
A F4 0.8 0.67 -0.13
A D1 1.05 1.17 0.12
A D2 0.85 0.96 0.11
A D3 0.75 0.84 0.09
B F1 1.1 1.21 0.11
B F2 0.95 1.05 0.1
B F3 0.85 0.93 0.08
B F4 0.8 0.83 0.03
B D1 1.25 1.16 -0.09
B D2 1.2 1.09 -0.11
B D3 0.9 0.75 -0.15

Table 4.1: Hockey Game Simulations

Finally, we need to decide how many
events will occur over the course of the
game. Looking over NHL games from the
2018-2019 season to the 2021-2022 season,
the number of events per game has a bell
curve shape with a mean of 200 and a stan-
dard deviation of 25. Therefore, we will
randomly set the number of events e per
games by sampling from E ∼ N(200, 25).

To simulate a hockey game, simulate e
events. For each event, randomly select the
lines from each team to determine the play-
ers on the ice. Then calculate the weight of
the event from Ω ∼ Exp(30). Once both
teams are set, we randomly sample their
performance as done previously and detect
which team won the event by comparing the
performance of both teams. The outcome is
recorded and we continue to the next event.
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This is done until all events in the game
have been recorded and we move on to the next game.

There are many simplifications in this method of simulating hockey contests. These
were left out in the goal of simplicity. Further work could be done to improve this frame-
work.

• Power plays are ignored

• Players are not kept on the ice for continuous shifts

• Events are not differentiated

• Previous events have no impact on which events might come next

In Table 4.1, we see the results of simulating two hockey teams against each other over
50 games of events. We did not match lines against one another. Team A has a strong
offense, especially it’s first two lines. Team A’s defensive lines are weaker. Team B is the
opposite with a stronger defense core and weaker offensive lines. We can see that in both
cases, the stronger of the offense or the defense for a team was underrated by the model
and the weaker of the two was overrated by the model. This is due to the fact that the
model can’t fully distinguish between the relative strength of groups of players on the ice.
This shows a weakness in the model where the players on the ice is not fully random. You
will always see some forwards and some defensemen on the ice. If all defensemen on a
team a much weaker, it will be harder for a forward to win as many events as he maybe
should. However, the model did do a great job of ranking similar type players within a
team. When analysing real data, taking into account these limitations will be important.

4.3 Parameter Tuning

While running event simulations, it was observed that player ratings would often spread
out too much after the first few event outcomes. Only after many more events would
the spread of player skill contract again and tend towards the true underlying skill levels.
Increasing the beta and decreasing the starting variance reduced this phenomenon.

In Figures 4.8a and 4.8b, we see the results of the TrueSkill algorithm ratings players
based on events taken from 2 player multiplayer matches. The first figure uses the basic

parameters outlined at the start of section 4.1; σ2
0 =

(
1
3

)2
and β =

σ2
0

4
. The second figure

23



uses values used starting in section 4.2.1: σ2
0 =

(
1
8

)2
and β =

σ2
0

2
. The player mean ratings

reach their true value a bit slower in Figure 4.8b, but mostly stop increasing or decreasing
once they have reached the theoretical value.
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(a) Base Parameters
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(b) Updated Parameters

The beta is double in value relative to the variance compared to the suggested value
in the TrueSkill paper. Having a larger beta makes sense when evaluating events since the
variance of a player’s performance will be larger on a single event than from a whole game.
The lower starting variance is to counter the fact that we are decreasing variance much
more slowly with weighted events.

4.4 Comparing In-Game Events to Game Outcomes

To see the efficiency of using events to rate players rather than game outcomes, let’s
simulate game outcomes based on events. We will assume players for each team play the
whole game and are involved in all events. Otherwise, the event-based modeling will always
be more accurate than the game-based modeling since it can distinguish between players.

We will simulate 50 events per game. Each event will be given a random weight following
the same method outlined in section 4.2.1. After each event with a weight ωi, we will
randomly determine whether a team has scored a point. Say team A won event i with
weight ωi. We then detect whether team A or team B has scored a point by checking
the following conditions. Team A scored a point if ωi > 0 and u ≤ ωi where U ∼ U(0, 1).
Team B scored a point if ωi < 0 and u ≤ |ωi| where U ∼ U(0, 1).
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Repeat this process for each event in the game and compare the points for each team
at the end. The team with the most points is recorded as having won the game. If the
game is tied, continue simulating new events until one of the teams scores a point. Once
a team has scored a point, they have won the game.
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Figure 4.9: Ranking Game Outcomes
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Figure 4.10: Ranking Events

In Figures 4.9 and 4.10, we can compare how well the TrueSkill algorithm does ranking
players using game outcomes versus using events. In this example, we simulated 100 2
player multiplayer games. Each game, the teams were randomly created using a set of 7
players. The event weighting was using the weighting discussed in section 4.2.1. We can
see the events based model offers a much more stable and accurate player ratings. This
makes sense since they sample count is greatly larger than the games played.
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Chapter 5

Hockey Implementation

This report will use hockey as an implementation event-based TrueSkill. Hockey is a very
fluid game with possession of the puck changing sides many times during play. The data
used for this paper was obtained from the NHL public API. The API endpoints used is
documented in appendix A. Given the granularity of the data and the style of play in
hockey, the first method of weighting events described in section 3.2 will be used.

5.1 Implementing Event Based TrueSkill in Hockey

Players will be ranked using on-ice events from the 2018-2019 season to the 2021-2022
season. The event data is taken from the NHL API detailed in appendix A.1.4.

The considered on-ice events are goals, shots, missed shots, blocked shots, giveaways,
takeaways, hits, faceoffs and penalties. The data also contains stoppage in play events.
Stoppages in play will be used to calculate certain metrics, but does not have a location
associated to it in the data and won’t be considered as an event for player ratings.

Overtime events were omitted as skill on 3-3 play might be very different than regular
play. Goalies were also excluded from the analysis since they have a very different impact
on the flow of play than the rest of skaters.

Each event will be given a weight representing the likelihood the event leads to a goal.
Shifts data is used to determine which players were on the ice at the time, with the exception
of faceoffs. The outcome of a faceoff mainly depends on the two players taking the faceoff,
so that event is of little interest to us to rank all players on the ice. However, generating
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faceoffs in advantageous locations can be a benefit. If a player is creating many faceoffs in
the opponent’s zone, it is likely due to good play and leads to good opportunities for their
team. The inverse is true for creating many faceoffs in the defensive zone. Therefore, the
creation of a faceoff will be considered as an event for the players on the ice at the time
the faceoff was called.

All players will start with a mean rating of µ0 = 100. The remaining parameters will

have the same relative values as discussed in section 4.3: σ2
0 =

(
100
8

)2
= 12.52, β =

σ2
0

2
=

12.52

2
and τ =

(
σ0

100

)2
= 0.1252.

5.2 Event Weighting

The weight of an event will be the probability of the event leading to a goal for the player’s
team. All events will be weighted on the expected impact and not the actual impact of
that event. Therefore, goals will have weights equal to the probability that the goal would
have occurred.

Most events will be weighted using the NP20 method from the THoR hockey model
discussed in section 3.2. The zone in which the event happened will be tracked when
calculating the NP20 value for each type of event. An event either occurs in the offensive
zone, neutral zone or defensive zone. The NP20 value in zone i for an event is calculated
as goals within 20s of event in zone i

event in zone i
. Goals that occur after any stoppage in play within those

20 seconds are ignored. Goals for the team are counted as a positive and goals against
are counted as a negative. The result gives us the expected number of goals for in the
20 seconds following an event in a particular zone. Below are examples of the calculated
NP20 value for a few event types.

Event Type Offensive Neutral Defensive

Giveaway -0.0146 -0.0254 -0.0434
Hit 0.0046 -0.0025 -0.0105

Missed Shot 0.0169 0.0202 0.0296

Table 5.1: Event NP20 Values By Zone

Blocked Shots, hits, giveaways, and takeaways are weighted using purely their
NP20 value. The quality of the shot need to be accounted for in the weight of shot related
events.
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To calculate the expected goal per shot, or “xG”, Corsica’s shot quality model [2] will
be used. The probability of a goal p on a given shot is calculated using logistic regression
on the shot type γ, the distance δ, the angle α, whether the shot is a rebound ρ, whether
the shot is on the rush σ and whether the shot was from outside the offensive zone θ. The
probability of a goal scored from outside the offensive zone is calculated as a flat probability
since those goals are rare. Looking over all shot attempts from the last 4 seasons, 0.78%
of the shots resulted in a goal. The probability P of a goal being scored on a shot given
these parameters is then calculated by:

t = βγ
0 + βγ

1 δ
3 + βγ

2 δ
2 + βγ

3 δ + βγ
4α

3 + βγ
5α

2 + βγ
6α + βγ

7ρ+ βγ
8σ

P =

{
θ = 1 : 0.0078

θ = 0 : 1
1+e−t
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Figure 5.1: xG of Snapshot Rebound

Figure 5.1 shows the calculated xG val-
ues for a snapshot taken on a rebound. The
center of the net is located at coordinates
(0,0). The end of the offensive zone is lo-
cated at X = 68.

The weight for goals, shots and
missed shots will be the xG+ (1− xG)×
NP20. So the weight is the probability that
the shot directly resulted in a goal plus the
chance that a goal occurred shortly after,
assuming the shot did not result in a goal.
Goals will be given the NP20 value for shots
since the NP20 value for a goal is always 0
as it creates a stoppage in play.

The league average power play percentage over the four observed seasons will be used
to weight penalties. Over that time, teams scored on 20% of their power plays, so the
weight will be 0.2.

For faceoffs events, the weight will be set using the NP20 value assuming either team
has a 50% chance to win the faceoff. For a faceoff in the neutral zone, the weight will be
0 since the positive impact of winning a neutral zone faceoff is equal to the impact of the
opponent winning a neutral zone faceoff. For a generated offensive zone faceoff, the weight
will be equal to 50% times the NP20 value of a team winning a offensive zone faceoff plus
50% time the NP20 value of a team winning a defensive zone faceoff. The negative value
of the result will give the weight for a defensive zone faceoff.
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5.3 Game Context

Three different game contexts will be considered to add to the model. Home ice advantage,
man advantages and offensive zone starts may impact the outcome on the ice and will be
investigated further in this section.

5.3.1 Home Team Advantage

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

−
4

−
2

0
2

4

Events Played

C
on

te
xt

 R
at

in
g 

M
ea

n

Home
Away

Figure 5.2: 2018 Home Ice Advantage

As discussed earlier in this report, it is
an observed phenomenon that home teams
tend to perform slightly better than their
opponents in major sport leagues. There-
fore, the “home” context will be added
to the home team in all events and the
“away” context will be added for the op-
posing team. Running the model over all 4
seasons, the means of the contexts reach a
certain stability. The mean observed rating
for the contexts are 2.67 for “home” and
−2.67 for “away”. There does seem to be a
small advantage for home teams, as expected. The contexts weighted as µhome = 2.67 and
µaway = −2.67 will be added to the model.

5.3.2 Man Advantages

In hockey, there are multiple ways for the teams to have a different number of players on
the ice. The first is when a player performs an infraction, they are assessed a penalty,
usually for 2 or 5 minutes. During the duration of the penalty, their team must play with
one player less on the ice. This is called a power play. Teams will also elect to pull their
goalie to put on an extra skater when the game has a couple minutes left and they need a
goal to tie the game. Whenever teams have a different number of players on the ice at the
time of an event, a man advantage context will be added. For example, if one team has
5 players and the other team has 4, the team with more players will be given the “5-4”
context and the other team will be given the “4-5” context.

The only man advantages that are possible during a hockey game are “5-4”, “5-3”,
“4-3”, “6-5”, “6-4”, “6-3”. Other man advantages seen in the data will be ignored as it is
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likely due to bad shift data with too many or too few players recorded on the ice. If the
shift data is incorrect, there is no way to know who was on the ice for the event. These
bad data cases account for only 0.2% of all events.

To properly evaluate the impact of man advantages, instead of comparing the sum of
team skill on the ice, the average team skill will be compared. The man advantage context
will then account for the entirety of the difference between the two teams. The average
team player skill will be scaled to the size of a normal team size to get a reasonable value
for ∆. Let sets A,B be the sets of the two teams of players on the ice in a man advantage
situation where team A has won the event. The calculation of ∆ is as follows.

∆ = 5×

 1

|A|
∑
{i∈A}

µi −
1

|B|
∑
{j∈B}

µj


The contexts with the largest sample size were the “5-4” and “4-5” contexts. Starting

with µ0 = 0, they did see enough samples to t reach any stability in their rating. Therefore,
the process was rerun, starting them at a higher value initial value, for example µ0 = 20,
did see the context means reach a certain stability at around µ5-4 = 70 and µ4-5 = −70.
This is close to but not quite the value of an average player given our starting rating for
players of 100. So the disadvantage of being a man short is quite large.

An issue with how our model views the man advantage is that it will reward players
whose play is more likely to lead to goals for their team. However, our model does not
account as much for simply stifling the offense of the other team. When a team has a man
disadvantage, the main goal is to reduce the number of scoring chances from the opponent.
This is not something our model can account for. A player is not rewarded for the absence
of events occurring on the ice. A way to incorporate this into the model would be to include
ties. A tied event would be one where nothing has occurred on the ice for a certain amount
of time, say 5 seconds. Players would be rewarded for achieving a tie when they are at a
severe disadvantage. While this is true of all situations, it feels particularly important in
a situation where such an imbalance is present. Therefore, it may be more productive to
exclude man advantages from our current model and only compare events at even strength
to better analyze player skill.

5.3.3 Offensive Zone Start

Starting a shift with an offensive zone draw should give those players a small advantage.
They begin in a favorable position and could result in more positive events occurring on the
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ice. Adding a context element for starting in the offensive zone could account for players
mostly starting in offensive or defensive roles. When comparing the impact on an attacking
team when taking a faceoff in the offensive zone, the weight of events in the following 10
seconds is quite positive as seen in Figure 5.3.
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Figure 5.3: Offensive Zone Advantage

As expected, the large number of events
seen were positive for the team with the
“Offensive Zone Start” context. Creat-
ing “Offensive Zone Start” and “Defensive
Zone Start” contexts for any event occur-
ring within 10 seconds of a faceoff in the
offensive zone created contexts that would
continue to diverge in skill. Rerunning the
model using much higher initial starting
values for the contexts would not prevent it
from continuing to diverge. The outcomes
of events shortly after a faceoff are too posi-
tive to be effectively modeled. What should
be rewarded is efficiently generating scoring
chances from an offensive zone start. However, the model does not penalize the absence of
events.te For that reason, this conxt will not be included to generate the results in section
5.4.

5.4 Results

The best and worst players when running the model on a single season can be seen in Table
5.3. While many of the top and bottom players change from year to year, there are some
recurring names. Matthews has steadily climbed the rankings each year to end at the top
in the 2021-2022 season. McDavid, considered to be the best active player in the NHL,
tops the rankings once and only appears in the top 10 in the last two years.

There is also a tendency to see players from the same team for any given year. In 2018,
Williams and Aho are both on Carolina, Theodore and Merrill play together in Vegas and
Dunn and Tarasenko play for St Louis. In 2019, there are 5 Vegas players: Theodore,
Pacioretty, Mark Stone, Holden and Stasny. Hamilton and Slavin both play defense for
Carolina and Danault and Tatar play on the same line in Montreal. In 2020, Colorado
has many players present with Devon Toews, MacKinnon, Rantanen, Makar, Girard and
Landeskog. There is also McDavid and Puljujarvi from Edmonton. In 2021, Toronto’s top
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line of Matthews, Marner and Bunting are all present as well as many Boston players with
McAvoy, Bergeron, Marchand and Pastrnak.

2018-2019 2019-2020 2020-2021 2021-2022
Player µ− µ0 Player µ− µ0 Player µ− µ0 Player µ− µ0

Williams 2.14 Theodore 2.37 McDavid 1.91 Matthews 2.77
S. Aho 1.89 Pacioretty 1.97 D. Toews 1.82 McAvoy 2.54

Theodore 1.87 J. Slavin 1.74 MacKinnon 1.71 Bergeron 2.52
Merrill 1.75 M. Stone 1.69 Matthews 1.67 McDavid 2.47
Dillon 1.73 Holden 1.53 Rantanen 1.64 Weegar 2.27
Crosby 1.71 Danault 1.44 Puljujarvi 1.54 Marner 2.2
Dunn 1.65 Stastny 1.4 Makar 1.48 Bunting 2.15
Panarin 1.63 Matthews 1.39 Girard 1.44 Marchand 2.07
Tatar 1.54 Hamilton 1.36 Yandle 1.39 Pastrnak 2.02

Tarasenko 1.5 Tatar 1.32 Landeskog 1.33 M. Tkachuk 1.96
. . . . . . . . . . . . . . . . . . . . . . . .

Pionk -1.43 Khaira -1.13 Gavrikov -1.01 Reaves -1.52
Manson -1.44 Holzer -1.18 Deslauriers -1.04 Gambrell -1.56
Ceci -1.48 Bowey -1.3 Eakin -1.1 Peeke -1.58
Laine -1.49 Rowney -1.32 T. Myers -1.12 Galchenyuk -1.63

Abdelkader -1.49 Zaitsev -1.32 Ristolainen -1.16 Gavrikov -1.65
M. Staal -1.5 Grant -1.34 Zadorov -1.19 Gostisbehere -1.69
Hagg -1.61 Beagle -1.35 Edler -1.22 McCabe -1.7

Doughty -1.62 Filppula -1.38 N. Schmidt -1.35 Barbashev -1.71
Sobotka -1.84 Watson -1.45 M. Staal -1.36 Stralman -1.87

Glendening -2.14 Glendening -1.56 Grant -1.38 Mayo -2.44

Table 5.2: Single Season Mean Rating

Notice that the player mean ratings do not differ much from their initial values. The
events from the season did not have enough weight to cause proper separation between
players. The player ratings can not tell us much about the probability of outcomes on the
ice since any match-up of players will still be close to a 50/50. This means the ratings
are not taking into account the quality of competition or of teammates if all players have
essentially the same rating. A larger sample size to rate these players is needed. The
highest and lowest rated players when running the model all 4 seasons consecutively are
shown in Table 5.3. Some superstar forwards as well as elite young defenseman appear

32



at the top of the list. One surprise is Danault who is seen as a strong two way forward
who is often charged with shutting down the other team’s best players. The lowest rated
player are mostly comprised of depth players. The one exception in the list is Laine who
is a young elite sniper.

Best Worst
Player µ− µ0 Players µ− µ0

Matthews 5.51 Glendening -5.08
Theodore 5.21 M. Staal -4.06
McAvoy 4.72 Beagle -3.89
Bergeron 4.66 Laine -3.61
Marchand 4.61 Watson -3.49
McDavid 4.37 Tierney -3.13
Danault 4.15 Deslauriers -3.03
Pastrnak 4.15 Kuraly -2.97
D. Toews 4.14 Zaitsev -2.95
MacKinnon 4.01 Khaira -2.93

Table 5.3: All Seasons Mean Rating

The separation between the best
and worst players remains small
though. Let us play the five best
players against the five worst play-
ers and see the advantage for the
stronger team. The two teams
are A = {Matthews, Bergeron,
Marchand, Theodore, McAvoy} and
B = {Watson, Laine, Beagle,
M. Staal, Glendening}. The perfor-
mance P of team A is the sum of each
individual performance.

PA ∼ N

∑
{i∈A}

µi, |A|β +
∑
{i∈A}

σ2
i


The random variable PA−PB can be derived to calculate the probability of PA−PB > 0.

This random variable gives us the probability that teamA would score the next goal against
team B.

The teams performance variables are calculated as PA ∼ N(524, 2460) and PB ∼
N(479, 2519). From those, the probability that team A would score the next goal against
team B is calculated to be P (PA − PB > 0) = 0.737. This is not a huge disparity between
the worst and best players in the league. This is to be expected since as player means had
not converged to any value, especially those with higher or lower ratings. So the model
had not finished estimating player skill.

Another option would be to rerun the events from a given year multiple times to get a
better separation between players. The year’s events should be replayed in the modeluntil
there is convergence in most player ratings. Table 5.4 has results for player mean ratings
after the 2021-2022 season events were run through the model 100 times when most player
ratings had begun to stabilize.
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Best Worst
Player µ− µ0 Players µ− µ0

McDavid 38.26 Weatherby -41.26
Marchment 36.86 Gambrell -39.52
J. Robertson 36.04 Blidh -37.39
M. Tkachuk 33.16 Reaves -36.66

Meier 29.38 Mayo -36.28
Garland 29.21 Cizikas -36.23
J. Slavin 28.21 Pederson -32.93
Matthews 28.13 J. Benn -32.52

Raffl 28.08 Beagle -31.6
Milano 27.37 Richardson -30.52

Table 5.4: 2021-2022 Modeled 100 Times

Different names appear in the top
10 and bottom 10. McDavid retakes
the top spot while Matthews appears
a bit lower on the list. There are also a
few lesser known names among the top
players. Marchment jumps to second
place after a great season in Florida
that was cut short due to injury. Gar-
land and Milano are seen as decent
players but end up with surprisingly
high rankings. Raffl is very surprising
as he played as a depth player for Dal-
las. He is the only player in the top
10 that had, at one point, a mean rat-
ing below 100. After a few iterations
through the season, his rating started to climb dramatically. This is an example of the
quality of teammates and competition changing a player’s rating.

Player µ− µ0

M. Tkachuk 33.16
Mangiapane 21.99

Dube 17.98
Zadorov 15.89
Coleman 13.16
Backlund 8.71
Monahan 7.07
Kylington 5.53
Hanifin 4.86
Lucic 2.94

R. Andersson 1.65
Gudbranson 0.53
J. Gaudreau 0.12
E. Lindholm -0.14
C. Tanev -9.46
Lewis -12.24

Table 5.5: Calgary 2021-2022

Next, let’s look at all players from a single team
over the 2021-2022 season. Calgary had very few in-
juries and therefore had a pretty stable lineup, which
makes then a good team to look at. In Table 5.5,
you can see the player ranking for all players which
played at least 65 games for Calgary in 2021-2022.

Something that jumps out is to see Tkachuk at
the very top while Gaudreau and Lindholm are near
the bottom of the team. The three played most of
their seasons together and were one of the most pro-
lific lines in 2021-2022. The expectation would be
for their ratings to be similar. This suggests that
Tkachuk performed very well when away from Gau-
dreau and Lindholm while they did not perform as
well. This would cause Tkachuk to have a slightly
higher rating than the other two. As the model con-
tinues to iterate through the seasons, Tkachuk gets
further and further away from the other two and
then gets more credit for the success of their line.
This results in Tkachuk having a much higher rating
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than the other two. It is interesting to note that for the 2022-2023 season, all three players
would end up on different teams. Tkachuk was traded to Florida while Gaudreau signed
as a free agent with Columbus. As of the time of writing this report, Tkachuk is having
another great season while Lindholm and Gaudreau are failing to recreate the numbers
they produced in 2021-2022. Tkachuk might well have been the main driver in the success
of that line, but it is impossible to say for sure as there are many more factors impacting
their play in 2022-2023.

Player S-Rank R-Rank GP Points Cap Hit Hart Selke Norris

Matthews 1 8 73 106 11.6 1 10 -
McAvoy 2 113 78 56 4.9 - 4
Bergeron 3 11 73 65 6.9 1 -
McDavid 4 1 80 123 12.5 2 -
Weegar 5 141 80 44 3.3 - 14
Marner 6 157 72 97 10.9 16 -
Bunting 7 106 79 63 1.0 -
Marchand 8 127 70 80 6.1 12 -
Pastrnak 9 197 72 77 6.7 -

M. Tkachuk 10 4 82 104 7.0 14 27 -
Grzelcyk 11 68 73 24 3.7 -
Makar 12 183 77 86 9.0 8 - 1

Reinhart 13 110 78 82 6.5 27 -
D. Toews 14 112 66 57 4.1 - 8
M. Reilly 15 96 70 17 3.0 -
Ekblad 16 245 61 57 7.5 - 6

J. Robertson 17 3 74 79 0.8 13 -
J. Slavin 18 7 79 42 5.3 - 9
Puljujarvi 19 155 65 36 1.2 27 -
T. Hall 20 76 81 61 6.0 -

Table 5.6: Top 20 Ranked Players Using Single 2021-2022 Season

Finally let’s compare the rankings we got when running the events for the 2021-2022
season through the model once versus repeatedly running the season events through the
model 100 times. Tables 5.6 and 5.7 show the single season rank (S-Rank), the rank after
running the season repeatedly 100 (R-Rank), the number of games played by the player
during that season, the number of points they scored over the season, their salary cap hit
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Player S-Rank R-Rank GP Points Cap Hit Hart Selke Norris
McDavid 4 1 80 123 12.5 2 -
Marchment 25 2 54 47 0.8 18 -
J. Robertson 17 3 74 79 0.8 13 -
M. Tkachuk 10 4 82 104 7.0 14 27 -

Meier 112 5 77 76 6.0 -
Garland 43 6 77 52 5.0 -
J. Slavin 18 7 79 42 5.3 - 9
Matthews 1 8 73 106 11.6 1 10 -

Raffl 757 9 76 16 1.1 27 -
Milano 124 10 66 34 1.7 -
Bergeron 3 11 73 65 6.9 1 -

Fox 99 12 78 74 0.9 - 5
Doughty 33 13 39 31 11.0 -
Asplund 160 14 80 27 0.8 -
Kadri 80 15 71 87 4.5 27 -
Brodin 37 16 73 30 6.0 -
Kaprizov 57 17 81 108 9.0 7 -
Mikheyev 154 18 53 32 1.6 -
Perfetti 273 19 18 7 0.9 -
Petry 559 20 68 27 6.3 -

Table 5.7: Top 20 Players Repeatedly Using 2021-2022 Season 100 Times

(or average salary) in millions of dollars during that season as well as their rank in the
voting for three different individual awards. The Hart trophy is given to the player judged
to be the most valuable to his team during the regular season. The Selke trophy is given to
the best defensive forward. The Norris trophy is given to the best defenseman. All three
awards are voted on by the Professional Hockey Writers’ Association. Player that are not
eligible for a particular award are marked with “-”.

The top players in Table 5.6 all have played many games that season. This makes sense
since they have more samples to increase their rating. The players are slightly more likely
to have been voted for an award, especially for the Norris. Only 2 of the 8 defensemen
in the top 20 did not receive votes for best defenseman. The winner of all 3 awards are
present in the top 20. Most players have a high point total, especially the forwards. The
exceptions seem to be players on very good teams that have other teammates in the top
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20. Matt Grzelcyk and Mike Reilly are both defenseman for Boston which have 5 other
players in the top 20: McAvoy, Bergeron, Marchand, Pastrnak and Taylor Hall. They are
rated so highly due to playing on such a good team. In fact, all Boston players have a
much lower ranking after 100 runs with only Bergeron staying in the top 20. This seems
to be a trend for teams with multiple players in the top 20. Of the top Toronto line of
Matthews, Marner and Bunting, only Matthews remains near the top of the rankings in
the R-Rank. The player that falls the furthest in ranking after running the model over
the season 100 times is Aaron Ekblad. Similar to the Boston and Toronto players, Ekblad
could be the victim of the strength of his teammates. He played on a very deep Florida
team that dominated their opponents for most of the year, so the model might not give
him as much credit for his success as time went on.

In Table 5.7, we see many players who have played fewer games than the players in
Table 5.6. The player with the fewest games is Cole Perfetti for Winnipeg with 18 games.
The fact he is in the top 20 players with only 18 games does suggest that we may have run
the events through the model too many times for the season if such a small sample size can
bring someone near the top of the league. We also see less players who were nominated for
an award. There are more players making less than $2 million dollars in the top 20. It is
important to note that Jason Robertson, Adam Fox and Cole Perfetti are all on their entry
level contract which limits how high their salary can be for the first few years in the league.
Both Fox and Robertson signed contracts with a much higher salary after the 2021-2022
season. Perfetti still has two years remaining on his entry level contract. There are some
lesser known names and players with smaller point totals. A few players rose very high in
the rankings after 100 runs, but none more than Raffl which we had discussed earlier in
the results.

Results after running the model over the season once seem to give a better indication
of the total success a player has seen over the season while the results after the 100th run
seem to offer more insight into how players performed given the quality of their teammates
and competition. While both do provide interesting information, running the model many
times over the data on a season might offer the most interesting and less obvious insights.
There is a balancing act on how many times the model should be ran. This is a topic that
could be explored further.
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Chapter 6

Conclusion

In conclusion, an event-based TrueSkill model produced promising results through simula-
tion. The changes in player rating were much more gradual and could detect the underlying
skill faster if enough events per game were present. It also succeeded in distinguishing be-
tween players within a team when the players changed during a game. Game context which
could have an impact on the outcome of an event was able to be detected by the model
and properly accounted for.

When applying the event-based TrueSkill model to hockey, several hurdles were discov-
ered. When detecting player skill during certain events, like a man advantage, the model
implementation fails to take into account the passage of time. There are times when the
absence of an event is positive. A potential improvement on the implementation would
have been to add artificial events when there was a gap in the observed events. This would
require adding ties into event-based TrueSkill models.

Furthermore, the weightings on the events were such that no meaningful player ranking
was able to be achieved when running all the events through the model. To reach a
stable estimate of the player’s underlying skill, the events were rerun through the model
several times. There seem to be benefits to this method. The quality of teammates and
of competition would be properly accounted for when updating player rankings based on
the outcome of events. However, more investigation might need to be done to ensure this
method produces the desired outcome.

Therefore, the event-based TrueSkill model does seem to have promise in modeling fluid
games such as hockey. I can lead to interesting insights as shown in this report. However,
more work could be done to make the implementation more robust.
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Appendix A

NHL Public data API

The NHL has public APIs with game data that were used to get the data used in this
report. There is no official publicly available documentation for these APIs, however many
people have documented many of the endpoints online. The APIs are covered by the
following copyright.

”NHL and the NHL Shield are registered trademarks of the National Hockey League.
NHL and NHL team marks are the property of the NHL and its teams. © NHL 2022. All

Rights Reserved.”

A.1 Game Data Endpoints

The main NHL API has many different end points and a lot of available data. A high level
overview of the API’s endpoints was done by Kevin Sidwar [21]. He links to the work of
Drew Hynes [7] and Paul Laberge [10] which have more extensive documentation of the
endpoints. For the work done in this report, the following APIs were used.

A.1.1 Seasons

https://statsapi.web.nhl.com/api/v1/seasons

Returns a JSON list of all NHL seasons with data. Each season has a ”seasonId”
property which is used in other endpoints as a unique identifier.
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A.1.2 Teams

https://statsapi.web.nhl.com/api/v1/teams

Returns a JSON list of all NHL active teams. Each team has an ”id” property which
is used in other endpoints as a unique identifier. We can get high level information about
teams from this endpoint.

A.1.3 Schedule

https://statsapi.web.nhl.com/api/v1/schedule?season=@seasonId&gameType=R

Returns a JSON list of all regular season NHL games for a given season. The season
is specified using the season id found in A.1.1. Each team is referenced using the team id
found in A.1.2. From this endpoint, we can get all the game unique ids from the parameter
”gamePk”. We can also determine which team is the home team.

A.1.4 Game Events

https://statsapi.web.nhl.com/api/v1/game/@gameId/feed/live

Returns a JSON with a list of all events for the specific game as well as the game
boxscore and individual player stats. We use this endpoint primarily for the list of game
events. The game is specified using the game id found in A.1.3.

A.2 Shifts Data Endpoints

Shifts data was queried from the following API:

https://api.nhle.com/stats/rest/en/shiftcharts?cayenneExp=gameId=@gameId

”@gameId” needs to be replaced with the specific game for which you want shift data.
The game ids match those found in A.1. The API returns a JSON object which contains
a list of shift objects as well as goals. This API was only used for the shift data. Goals
were ignored. Each shift object represents a single shift from a player during the game.
The shift object containts the following properties:
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• id : Globally unique identifier for the shift

• detailCode: Did not use. (Gives information on goals)

• duration: Length of shift

• endTime: Exclusive end of shift (time starts at 00:00 and counts up)

• eventDescription: Did not use. (Gives information on goals)

• eventDetails: Did not use. (Gives information on goals)

• eventNumber: Did not use

• firstName: Player first name

• gameId: Global game identifier matching those found in in A.1

• hexValue: Team colour

• lastName: Player last name

• period: Numerical value of period (starting at 1. Overtime is 4)

• playerId: Global player identifier matching those found in in A.1

• shiftNumber: Shift count for player

• startTime: Inclusive start of shift (time starts at 00:00 and counts up)

• teamAbbrev: Team name abbreviation

• teamId: Global team identifier matching those found in in A.1

• teamName: Team name

• typeCode: Type of event. Shifts have typeCode = 517
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A.3 Notes From Working with API Data

Events with null location ids were ignored with the exception of penalties, since location
data was not used to assess the impact of the event, and takeaways since there were many
missing location data. This resulted in excluding 2 blocked shots, 1 giveaway, 1 hit, 2
shots. For the 474 takeaways missing location data, they were assumed to have happened
in the neutral zone.

Three goals were missing location values in the data. They were manually updated
since goals were critical to many metrics and not just as individual events. The goal scored
by Oshie in the third period of game 2018020993 on the 1st of March, 2019 was given
(X,Y) coordinates of (45, -40). The second goal scored by Schaller in the first period of
game 2018021114 on March 17th, 2019 was given (X,Y) coordinates of (67, 10). The goal
scored by Burakovsky in the first period of game 2018021122 on March 19th, 2019 was
given (X,Y) coordinates of (-65, -22).

Location data have (X,Y) coordinates where X represents the length of the ice and Y
represents the width. The center of the ice has coordinates (0,0) and the coordinates are
bounded by |X| <= 100 and |Y | <= 42. Any event have occurred in the neutral zone if
|X| <= 25. To determine whether a coordinate is in the offensive zone, you need to know
the period as teams switch sides after every period. The home team will always start on the
same side in each game. However, which side that is depends on the team. The following
teams will be in the offensive zone if X > 25 in the first or third periods and they are at
home: Anaheim Ducks, Arizona Coyotes, Boston Bruins, Buffalo Sabres, Columbus Blue
Jackets, Edmonton Oilers, Nashville Predators, New Jersey Devils, New York Islanders,
Ottawa Senators, Pittsburgh Penguins, San Jose Sharks, Seattle Kraken, St. Louis Blues,
Tampa Bay Lightning. The remaining teams would be in the defensive zone if X > 25 in
the first or third periods and they are at home.
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