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Abstract

We use direct numerical simulations to study the evolution of a initially two-dimensional
standing internal gravity wave in a 1024% periodic computational cube. The numerical
method used is a spectral method dealised with Orszag’s 2/3 rule. We examine the density
field and kinetic energy spectra during and in the immediate aftermath of the breaking of
the wave. We also attempt to study the transition in the kinetic energy spectra from the
anisotropic k3 buoyancy-range to the isotropic k°/3 inertial-range.

We find that the breaking of the standing wave is initially two-dimensional and ac-
companied by a steep decline in the total energy of the system and an increase in the
dissipation rate. It the aftermath of the breaking, a lot of small scale features are gen-
erated. Then, there is also a secondary wave breaking during which the dissipation rate
reaches its maximum. We also find a wide k=3 buoyancy-range in the kinetic energy spec-
trum in-between the two breaking events. After the second wave breaking event, we find
a wide k%3 inertial-range spectrum. We also justify the use of Taylor’s hypothesis in
the experiments of Benielli and Sommeria [1996], where the authors find a f~3 frequency
spectra in density field, and conclude the presence of a k=2 wavenumber spectra in the
kinetic energy.
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Chapter 1

Introduction

Internal gravity waves can occur in the interior of any fluid with a stable density stratifica-
tion, like the oceans or the atmosphere. The stratification can be due to vertical temper-
ature or salinity gradients, and in either case wave motion can be induced with gravity as
the restoring force. The breaking of internal gravity waves is a major source of turbulence
in the interior of oceans (Lesicur [2008]). Breaking is observed when the amplitude of the
wave become large enough for local overturning to occur. Heavier fluid from underneath
in the stratified medium spills over the lighted fluid, and this leads to irreversible mixing
and turbulence. In turbulent flow, eddies of different sizes are formed and they interact
with each other. The large eddies are due to internal wave activity and contain most of the
energy, while the smallest ones are due to isotropic turbulence where energy is dissipated
into heat by viscosity. Between these two extremes, the dynamics is a competition between
waves and turbulence. This range of length scales is called the buoyancy-range, and it is
not very well understood. The smallest scales are characterized by the Kolmogorov theory
under an assumption of isotropy, and are known to exhibit a k=°/3 power law for the kinetic
energy spectrum. For the intermediate anisotropic buoyancy-range, it is generally accepted
that a k= power law holds for the kinetic energy spectrum (Carnevale et al. [2001]).

There have been a number of experimental studies that attempt to study the breaking of
internal gravity waves in order to understand the buoyancy-range of turbulence (Benielli
and Sommeria [1996], Benicelli and Sommeria [1998]). In these studies, internal waves
are induced in a cubic tank with a stratified fluid by oscillating it vertically. Physically
it is difficult to obtain the wavenumber energy spectra, but it is possible to obtain the
frequency spectra of the density of the fluid at fixed locations the tank. In order to relate
these spectra, the authors propose a simple relationship between the spatial wavenumber
and temporal frequency.



A number of numerical studies (Bouruet-Aubertot et al. [1996], Bouruet-Aubertot et al.
[1995], Carnevale et al. [2001]) have been performed to study the breaking of internal waves
and the kinetic energy spectra. But all of these have either been (a) two-dimensional which
is not suitable to model the highly anisotropic buoyancy-range, or (b) a low resolution large
eddy simulation, which is not as accurate as a direct numerical simulation which faithfully
represents all scales in the system.

In this report, we attempt to characterize the breaking of an initially smooth standing
internal gravity wave using full direct numerical simulations of the nonlinear Navier-Stokes
equations under the Boussinesq approximation. We will study the evolution of the density
field and make observations about the kind of structures that formed in the field. We will
also study the vertical wavenumber spectra and try to relate it to the frequency spectra of
the density in the middle of our computational domain.

The Chapters 2 and 3 contain the relevant fluid dynamics and numerical methods
background that is needed to understand the problem at hand. Chapter 4 contains the
results of the simulation and interpretation of results. We summarize the results and
discuss conclusions in Chapter 5.



Chapter 2

Fluid dynamics background

2.1 Introductory theory of turbulence

Turbulence is the state of fluid motion that is chaotic and and accompanied by apparently
unpredictable three dimensional vorticity. When it is present, it is a dominant phenomena,
resulting in increased energy dissipation, mixing, heat transfer and drag (Lesicur [2008]).
Turbulence is ubiquitous: like the smoke rising from a cigarette, exhaust from an auto-
mobile all all geophysical flows like ocean and atmospheric currents. One often hears the
term during air travel, and it signals a bumpy ride.

The study of turbulence is widely acknowledged to be one the most intriguing, in-
tractable and important problems of classical physics. It is a subject studied by many of
the greatest physicists and mathematicians of the 19th and 20th centuries, yet we do not
possess a complete understanding of how or why it occurs, nor can we predict turbulent
behaviour accurately. At one point, it was thought there might be a universal theory of
turbulence, along the lines of the kinetic theory of gases, that averages out the apparently
random motions of the fluid and gives us a non-random, macroscopic, statistical model
(Davidson [2004]). However, even after a century of concerted research effort, such a the-
ory has not been found. What has emerged are a few universal features of turbulence,
like Kolmogorov’s theory for small scale turbulence (1941), and the law of the wall for
turbulent flow near a smooth wall first propsed by von Kdrméam (1930).



2.1.1 Description of turbulence

The Navier-Stokes equations are universally accepted as the most general descriptors of
the physics of all Newtonian fluid flows, including turbulent ones, within the confines of the
continuum hypothesis. For an incompressible fluid (with a constant density), the equations
are written as

0
p (a—t; +u- Vu) = —Vp + uVu + f, (2.1)

Vou=0. (2.2)

In these equations

u(x,y,z) = (u(x,y, 2),v(x,y, 2),w(x,y, z)) is the velocity field in the x = (z,y, 2)
directions respectively,

e p(z,y,2) is the fluid pressure,

e p(x,y,2) is the fluid density,

p is the dynamic viscosity, and v = u/p is the kinematic viscosity,

f» is the body force per unit volume.

The Navier-Stokes equations (2.1-2.2) are nonlinear and difficult to solve. By introducing
some simplifying and often physically unrealistic assumptions, exact solutions can be ob-
tained, but often these are of little value. Early descriptions of turbulence thus were based
mainly on experimental observations. Osborne Reynolds was the first to formally study
the conditions under which the flow of fluid transitions from laminar to turbulent flow. His
observations of flow in pipes led him to define a dimensionless parameter, now called the
Reynolds number Re,

_pUL UL
=

Re (2.3)

that characterizes flow behaviour in this situation. Here, p and p are the fluid density and
dynamic viscosity respectively. U and L are the typical velocity and length scales of the
flow. What Re quantifies is the ratio of the inertial forces to the viscous forces and the



relative importance of these types of forces for the given flow conditions. Note that this
can be realized by scaling

. oz ~ U _ P .u
=2 {=t= = = — 2.4
z=1 o P YT (2.4)
and writing (2.1) as
a’il ~ ~ ~ 1 2 e
— . = — —_— 2-5
at+u Vau Vp+ReVu+fb, (2.5)

and realizing how the parameter Re controls the dynamics between the inertial forces
arising from u - Vu and the dissipative viscous forces arising from ;V2?u. For small values
of Re the flow remains laminar. As Re increases and reaches a certain critical value, small
disturbances can cause the flow to become unstable. For very large values (> 10%), the
turbulence is fully developed and it is the dominant mechanism in the flow. Under fully
developed turbulence, fluid particles move erratically and there is a lot of mixing (Avila
et al. [2011]).

Some physical attributes of turbulence that summarize the descriptions of turbulent
flow are

e Irregularity. Turbulent flow is disorganized, chaotic, and seemingly random. This is
why a statistical approach can also be used to understand it.

e Nonrepeatability. The evolution of turbulence is sensitive to initial conditions, but
after a certain amount of time it shows non-repeatable fluctuations.

e Dissipation. Both diffusion and dissipation are enhanced by turbulence.

e Rotationality. Turbulent flows are characterized by strong three dimensional vorticity
generation by vortex stretching.

2.1.2 Richardson’s energy cascade

The Richardson (Richardson [1926]) cascade is a phenomenological way to explain the
transfer of energy from the largest scales in the system to the smaller ones. A brief
explanation of this idea as presented in Davidson [2004] follows.



Statistically stationary turbulent flow can be considered to be composed of a mean flow
and a random fluctuating component. At a location x, the velocity w can be assumed to
be

u(z,t) = u(zx) + u'(x,t) (2.6)

where @ is the time averaged mean velocity, and «’ is the random component. We consider
the turbulence when Re = UL/v is large, where U is the typical value of w' and L is the
typical size of large scale turbulence eddies. The largest eddies are accompanied by smaller
eddies with a wide range of sizes. The dissipation rate is given by

e = 2| S| (2.7)

where S is the strain rate tensor whose elements are of the form

1 [(0u;  Ou, o
S; 2(axﬁaxi>’ i,j=1,2,3 (2.8)

Hence, we expect maximum dissipation in the areas where the shear, or the instantaneous
gradient in velocity is largest.

This led Richardson to believe that the dissipation of mechanical energy is concentrated
in the smallest eddies, where the shear stress is large. The largest eddies are created by
instabilities in the mean flow, and are themselves subjected to inertial instabilities leading
to their break up into smaller eddies. The life-span of a typical eddy is of the same order
of its so-called turn-over time L/U (confirmed by experimental evidence). The smaller
eddies further break up into even smaller eddies, and so on. Thus, there is a continual
cascade of energy from larger to smaller scales. It is important to note that viscosity is not
important at this stage, because Re = UL/v is large, and the viscous stresses acting on
these eddies are negligible. This whole process is driven by inertial forces, until the size of
the eddy becomes so small that Re is of the order of unity. At this scale, viscous forces are
significant, and dissipation has to be accounted for. So we can visualize a picture of large
scale eddies being created by mean flow, these eddies breaking into smaller ones through
a series of inviscid instabilities, and energy being destroyed by viscosity only in the final
stages where Re is of the order of unity.

We can now perform some heuristic calculations to determine the smallest scales in
the turbulent cascade. We represent U and v as the typical velocities associated with the
largest and smallest eddies respectively, and L and 7 as the typical length scale of the
largest and smallest eddies respectively. We can then estimate the rate of energy per unit



mass (which has units m? s7!) passed down by the energy cascade as a function of the turn
over time L/U

U? Us

I1

This is an estimation based on dimensional analysis. Similarly, the rate of dissipation at
the smallest scales is

02
g~ V’S’USU ~ V_Q' (210)
Ui
When conditions are statistically steady, the rate of the energy cascade must match exactly
the dissipation of energy at small scales. This is because energy is not accumulated at some
intermediate scale during fully developed turbulence. Hence,

U3 v?
— ~VU—. 2.11
v (211)
However, we also know that at the smallest scales the Re, based on v and 7 is of the order
of unity

o
— ~ 1. 2.12
! (212)
Combining (2.11) and (2.12), we find
3\ 1
n~LRe™i or n~ (%) : (2.13)
and
v~URe T or v~ (l/e)i, (2.14)

where Re = UL/v is based on the largest scale eddies. The quantity 7 is called the
Kolmogorov dissipation scale, while L is called the integral scale.

A typical lab-scale water channel experiment will have Re ~ 10*, L ~ 10 cm, U ~ 10
em s, giving 7 ~ 0.1 mm and v ~ 1 cm s~!. Or for a typical wind tunnel might have,
Re~ 105 L ~1m,U ~1ms ! giving, n ~ 0.2 mm and v ~ 5 cm s~'. So much of the
energy dissipated will be contained in eddies less than a millimeter in size!



2.1.3 Kolmogorov’s theory of 1941

In 1941 the Russian statistician Andrey Kolmogorov published three papers (in Russian)
(Kolmogorov [1941c], Kolmogorov [1941a], Kolmogorov [1941b]) that form some of the
most important and most quoted results in turbulence theory. These results are popu-
larly called the “K41 theory” to distinguish them from his later work, called the “K61
theory” Kolmogorov [1962]. Kolmogorov originally stated his theory by basing them on
two “universality assumptions”. Frisch (Frisch [1995]) provides a more easily understood
explanation of this theory, and that is what we will state here. The starting point is the a
set of three hypothesis:

Hypothesis 1 In the Re — oo limit, all possible symmetries of the Navier-Stokes equa-
tions, usually broken by the (physical) mechanisms producing turbulence, are restored in a
statistical sense at small scales and away from boundaries.

Hypothesis 2 Under the assumptions as above, turbulent flow is self similar at small
scales; i.e., it possesses a unique scaling exponent h such that

su(xz, \l) = \'du(x,l), VAER,, =xcR> (2.15)

with increments U and N\l small compared with the integral scale.

Hypothesis 3 Again, under the same assumption as in Hypothesis 1, turbulent flow has
a finite, nonvanishing mean rate of dissipation per unit mass, €.

The small scales referred to in Hypotheses 1 and 2 are associated with length scales much
smaller than the integral scale. One way to interpret this small-scale homogeneity is in the
context of velocity increments

u(z,l) =u(x +1) — u(x) (2.16)

and the requirement that statistics of these increments be invariant under arbitrary trans-
lations r for steady flow,

(ou(x + 7,1)) = (du(x,1)), (2.17)

where (-) denotes any generic averaging procedure. The requirement of being “away from
boundaries” makes sense in the same context, because homogeneity and isotropy cannot



be expected to hold in the vicinity of solid boundaries. Hypothesis 2 establishes a vector
self similarity relation (2.15) in velocity increments, where A and h are scalars and the
spatial increment I and positive multiplier are small compared with the integral scale. Also
the power law representation found in (2.15) is typical of fractal attractors of differential
dynamical systems and their trajectories appear same on all scales. Finally, Hypothesis
3 agrees with experimental observations. Sreenivasan (Sreenivasan [1984]) performed an
experiment, and measured L /U3, the nondimensionalized dissipation rate, where L and
U are the integral scale and r.m.s. turbulence velocity fluctuation for a range of Re values.
He found that this nondimensional dissipation is independent of Re.

Kolmogorov’s 2/3 law. In a turbulent flow at very high Reynolds number, the mean-
square velocity increment € = ((du(l))?) between two points separated by a distance 1
behaves approzimately as the two-thirds power of the distance.

As we have already discussed, based on Hypothesis 2, |I| = [ is much smaller than
the integral scale. The 2/3 law holds specifically in the inertial subrange of the energy
spectrum, where viscosity is unimportant, i.e., viscous forces are dominated by inertial
forces. This corresponds to a sufficiently high Re so that at large scales, flow is dominated
by inertial effects. This means that at smaller scales, the turbulence statistics are only
dependent on the length [ and dissipation rate e.

To explain Kolmogorov’s 2/3 law, we first need to realize that the quantity ((du(l))?) =
{((u(x +1) —u(x))?) is associated with kinetic energy of fluctuations, and has dimensions
L?/T?. Also, € has dimensions L?/T3, and so the only combination of € and [ to form &
are

E = CeBP3, (2.18)

where C is a universal constant.

The k=°/ energy spectrum. We can now use (2.18) to derive the Kolmogorov
k~5/3 inertial-range scaling of the turbulent energy spectrum. The fraction of energy d&
contained in the eddies with wavenumbers ranging from k to k + dk is d€ = E(k)dk.
It follows that the cumulative energy corresponding to all wavenumbers higher than an
arbitrary k is

E(k) = / d€ = / E(k) dk. (2.19)
k k
Note that, the wavenumber k associated with a length scale r is k = 1/r (up to a scaling

constant, depending on the chosen Fourier representation); and because of the integral
scale and (2.13), the extremal values of k are kuyi, ~ 1/L and kpay ~ e'/40=3/4,

9



Frisch (Frisch [1995]) shows, that under general circumstances E(k) must satisfy
Ek)xk™, 1<n<3. (2.20)

Hence, substituting (2.20) into (2.19) gives

~ E(k)k. (2.21)

and we can write,
CoE(k)k = E(k) = Ce2/35/3,
Rearranging gives,
E(k) = Cre?Pk™3, (2.22)

the well-known result for the Kolmogorov inertial-range spectrum. Here Ck is the Kol-
mogorov constant, and it is experimentally determined to be about 1.5 for three-dimensional
spectra (Sreenivasan [1995]).

2.2 Internal gravity waves

2.2.1 The Boussinesq approximation

The Navier-Stokes equations, which arise from the Newton’s second law of motion, are the
most general description of fluid motion. Along with the equations for conservation of mass
and energy and well formulated boundary conditions, they can model fluids accurately.
For geophysical fluid flows, characterized by accounting for the rotation of fluid due to

10



planetary rotation, and stratification or layering of the fluid according to density, some ap-
proximations can be adopted that leads to a simplification of the Navier-Stokes equations.
These approximations, attributed to Boussinesq (Boussinesq [1903]), are summarized by
Spiegel and Veronis (Spiegel and Veronis [1960]) by the following two statements: “(1)
The fluctuations in density which appear with the advent of motion result principally from
thermal (as opposed to pressure effects). (2) In the equations for the rate of change of
momentum and mass, density variations may be neglected except when they are coupled
to the gravitational acceleration in the buoyancy force.”

Under the Boussinesq approximation, evolution equations may be written as

1 /
a—u—ku-Vu—i——Vp—ﬁg—i—%]xu:VVQu (2.23)
ot Po Po

V-ou=0 (2.24)
op’ ,_Op 2
i . = 2.2
8t+u Vp azw+HVp (2.25)

where in addition to the vaiables from the Navier-Stokes equations (2.1-2.2), we have the
following dimensional variables:

e p/'(z,y,z) is a perturbation density, and p(z) is a background density profile. pq is
the average of p(z) over z. The total density is given by p = p+ p'(z, vy, z,t). We also
assume the perturbation is small, p’/py < 1.

e g =(0,0,—g) is the acceleration due to gravity.

e (2 is the angular velocity of the co-ordinate system. Typically, it is due to the rotation
of the earth.

e i is the constant molecular diffusivity.

The vector equation (2.23) and equations (2.24), (2.25) are a coupled system of partial
differential equations in five unknowns, w, p, and p’. Equation (2.23) is the modified
Navier-Stokes momentum equation with the Boussinesq approximation, where we can see
that when conserving momentum, we disregard the change in density, except when p/
is multiplied by g. The term p'g/po is called the buoyancy term, and in flows involving
buoyant convection its magnitude is of the same order as the vertical acceleration dw/0t or
the viscous term vV2w. Equation (2.24) is the continuity equation for an incompressible
fluid, which means that the relative density changes of a fluid particle p~'(Dp/Dt) are
small compared to velocity gradients that constitute V - w. This excludes scenarios like

11



high speed gas flows where the Mach number is large, or in large scale flows where where
the density changes in the vertical direction is of the order ¢?/g ~ 10 km, ¢ being the
speed of sound in the air. For our application of the study of turbulence in a stratified
medium, these constraints hold. Finally, equation (2.25) stems from the energy equation,
which reduces to an equation for the perturbation density p’. Using the equation of state
for an ideal gas, (2.25) can also be cast in terms of an equation in terms of perturbation
temperature 1".

For a detailed explanation of how these equations are derived, one can refer to [Kundu
et al., 2011, Chapter 4], or Spiegel and Veronis [1960).

2.2.2 Stratification

As stated in Section 2.2.1, problems in geophysical fluid dynamics concern fluid motions
with one or both of planetary rotation and stratification. A stratified fluid will tend to align
itself, under gravity, so that higher densities are found under lower densities. Such vertical
stratification is a naturally occurring phenomenon in both the oceans and the atmosphere.
For example, in the ocean, the average temperature is about 7" = 10 °C near the surface
and typical salinity is S = 3.47%, which corresponds to a density of p = 1028 kg/m? at
surface pressure, and variations in the density rarely exceed 3kg/m3. In the lowest layer
of the atmosphere called the trophoshere (which extends to a height of 10 km above sea
level), where most of the weather patterns are confined, the density variation is no more
than 5%.

Let us start by considering an incompressible stratified fluid in static equilibrium, i.e.,
a fluid at rest because of the lack of lateral forces. The stratification is purely vertical
with a background density profile of p(z), and the fluid is horizontally homogeneous. If we
were to displace a fluid parcel at a height z with density p(z) to a height z 4+ h, where the
ambient density is p(z + h), the parcel would retain it density because of incompressibility,
and experience a buoyancy force equal to

glp(z+h) = p(2)]V,

where V' is the volume of the parcel. Newton’s first law of motion (force equals mass times
acceleration) then tell us that

PV S = glalz - )~ (] V. (2.26)

12



One of the assumptions that is made in the Boussinesq approximation is that density
perturbations are small, and this allows us to write p(z) on the left as pg, and use Taylor
expansion to write
dp
o(z+ h) —p(z) =~ —h.
pleth) = ple) ~ L

Equation (2.26) hence reduces to
—— 2L Ph=y, (2.27)

which shows that one of two things can occur, depending on if the coefficient —(g/po) dp/ dz
is positive or negative. If it is positive (i.e., dp/ dz < 0 which means denser fluid is under
lighter fluid), then the solution is (2.27) is a simple oscillator with a frequency N given by

N=_9% (2.28)

This means that the fluid parcel when displaced upwards to a region of higher density, sinks
due to a downward restoring force, due to the inertia reaches the region with lower density
and is pushed back up again due to the buoyancy. This oscillation is sustained about the
equilibrium position. The quantity N(z) defined by the square root of the expression on
the right of (2.28) is important because it defines the buoyancy frequency. It is commonly
called the Brunt-Vaisala frequency, after David Brunt and Vilho Vaisala, who were the
first scientists to highlight the importance of this frequency in stratified fluids.

On the other hand, if the coefficient is negative (i.e., dp/ dz > 0 corresponding to heavier
fluid on top of lighter fluid), the solution of (2.27) shows exponential growth. Physically,
this means that a fluid parcel that is displaced upward will be surrounded by heavier fluid,
and it is pushed farther and farther away by buoyancy, setting into motion the process by
which the fluid tries to stabilize itself so that lighter fluid is above heavier fluid.

2.2.3 Internal gravity waves

We shall now demonstrate that a fluid that is vertically and stably stratified can exhibit
waves in its interior. As discussed in Section 2.2.2, gravity (or buoyancy) acts as the
restoring force. A common example of internal gravity waves is the oceanic phenomenon
of “dead water” in Norwegian fjords which causes sizable drag on passing ships (Gill [1982]).
The phenomenon was a mystery until it was explained as being due to the formation of
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internal waves at the interface of a shallow layer of light water sitting on denser water.
In fact the existence of these waves is not restricted to just the case of two layer and one
interface. For three fluid layers of different densities and two interfaces, two wave modes
are possible, under the condition that the middle layer is thin enough to let energy pass
from the top to the bottom. In the limiting case of a continuously stratified fluid, an
infinite number of modes are possible. These waves are dispersive (i.e., its phase speed and
group speed are different). They can also propagate in either the vertical or the horizontal
direction.

Following the method outlined in Kundu et al. [2011], we will derive some results about
internal gravity waves using linear theory. The assumptions that we make are: (1) There
is no ambient rotation, or it is small enough to to ignored. (2) The domain is infinite
in all directions. (2) There is no dissipative mechanism of any kind, i.e., the motion is
effectively inviscid. (4) The fluid motions are small. The very last assumption allows us to
linearize the governing equations. Under these assumptions, the governing set of equations
(2.23-2.25) may be written as

du _19p v _ 10p Ow _1dp pyg

v__®» m__ R M __ PP 2.2
ot po Ox’ Ot po Oy’ Ot po 02 po’ (2:29)
ou Ov Ow
a—x‘f—a—yﬁ-g—o, (2.30)
op’ op
S we =0, (2.31)

respectively. The set (2.29) are the same as the linear momentum equations (2.23) without
the nonlinear advection term and the dissipation term; (2.30) is the incompressible conti-
nuity equation; and (2.31) is the density equation (2.25) without the nonlinear term and
dissipation term.

There are five unknowns that we are solving for in system (2.29-2.30), viz. (u,v,w,p,p).
We already know that when the fluid is immobile (i.e. under hydrostatic balance), the
density profile is just a function of z, p(z). The quiescent pressure distribution is similarly
a function of z, say p(z). The equation for vertical acceleration in (2.29) allows us to relate
the quiescent pressure and density by the relation

1dp p
0=_—L_1P9 (2.32)
po dz  po
When motion develops, the pressure will change relate to this quiescent value
p=p(z)+p" (2.33)
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Hence (2.29) can be written as

ou 10p ov 10p ow 19p pyg

g~ v w29 P9 2.34
ot po Ox’ Ot po Oy’ Ot po 02 po (2:34)
Now, we rewrite (2.31) using a constant Brunt-Véiséla frequency N (2.28) as
op' N?
LA P’} (2.35)
ot g

The system of equations we need to solve is now equations (2.34), (2.30), and (2.35). We
can now obtain an equation involving only p’ and w by taking the time derivative of (2.30)
and using the horizontal momentum equations in (2.34) to eliminate u and w. The result

will be
1 [ 02 0? 0*w
==+ =y = . 2.
Po (8:62 i 8y2> P =50t (2:36)

Another relation between p’ and w can be obtained by eliminating p’ from the vertical
momentum equation in (2.34) and (2.35)
1 0%w B 0w
poOtdz 012

— N*w. (2.37)

Finally, p’ can be eliminated by operating by 9%/02% + 0%/0y? on (2.37) to obtain an
equation in w

2 2 2
g—tQV% + N? (% + %) w = 0. (2.38)

We are now ready to obtain the dispersion relation which relates the angular frequency w
and the wavenumber K = (k,1,m). We do so by seeking a wave solution to (2.38) of the
form

w =10 ei (kachlermszt). (239)
Substituting (2.39) into (2.38) leads to the dispersion relation

) k2 + [? 2

YRRt (249
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Alternatively, (2.40) can be obtained by assuming wave mode solutions of the form

u U

v )

w — ) ei (kx+ly+mszt)’ (241)
/ A1

v \7

—iw 0 o & 9

_- i ) (o
0 iw 0 o 0 D 0
0 0 —jw 4 _im b =10 2.42
0 0 pN? op0 gi 0 .
_— 1w
g N
ik i im0 0 P 0

A non trivial solution of this system exists if and only if the determinant of the matrix in
(2.42) is zero. Setting the determinant to zeros yeilds the same expression (2.40).

For a two dimensional problem in the z-z plane we set [ = 0 in (2.40). No generality is
lost because the medium is horizontally isotropic, and k will represent the entire horizontal
wavenumber. We obtain

kN

W = \/ﬁ = N cos 9, (243)
where 6 = tan~!(m/k) is the angle between the phase velocity vector ¢ (and therefore K)
and the horizontal direction. Immediately, certain interesting observations can made with
regard to the angular frequency from the expression (2.43). First, the frequency of internal
waves in a stratified fluid depends only on the direction of the wavenumber vector and not
its magnitude. Second, the frequency is bounded by the range 0 < w < N, indicating that
N is the maximum possible frequency of internal gravity waves in a stratified fluid.

The dispersion relation (2.43) also allows us to obtain the phase velocity (¢),

c= %eK = %(kex + me,), (2.44)

which is the velocity that any one frequency component of the wave (like a crest or a
trough) travels at; and the group velocity (c¢,),
ow Ow ow Nm

i had e, = — — 2.4
akex+ 51 & + o = I3 (me, — ke,) (2.45)

Cg:
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which is the velocity at which the overall wave envelope travels. It can also be thought of
as the velocity at which energy or information is conveyed along a wave. The dot product
of the phase and group velocity produces

c-c, =0, (2.46)

which shows us that the phase and the group velocity vectors are perpendicular! This is a
counter intuitive relationship because this means that the wave and the energy carried by
the wave are moving perpendicular to each other, which is unlike surface and interfacial
waves.

What we have discussed so far is a linear treatment of internal gravity waves. The gov-
erning equations are nonlinear, and wave nonlinearity is quantified by the Froude number
Fr, a ratio between the inertial and buoyancy effects

U
Fr=— 2.47

where U is the typical oscillating velocity, and L = 1/|k| is the wavelength.

2.3 Turbulence in geophysical flows

So far, we have we have described turbulence with assumptions of homogeneity, station-
arity and isotropy as employed by Kolmogorov. However in geophysical turbulence, the
symmetry of these assumptions is upset by rotation, stratification and shear effects. The
largest scales in geophysical flows are dominated by the energy containing internal wave
activity, and at the smallest scales the Kolmogorov isotropic turbulence is dominant. In
between these two extremes, we have what is called the buoyancy-range or the saturation-
range which is extremely anisotropic. A proposed theoretical model for the kinetic energy
spectra in the buoyancy-range when N is assumed to be a constant is (Carnevale et al.

[2001])
E(k) = aN?*k™3. (2.48)

Note that this spectrum depends only on the Brunt-Vaiséala frequency N and the wavenum-
ber k. The constant « is an empirical constant determined to be about 0.47. Since stratifi-
cation affects only the vertical direction, we can assume horizontal isotropy. If we consider
the kinetic energy spectra of the horizontal velocities (u,v) and vertical velocities w sepa-
rately, then a ~ 0.2 for the spectrum of either component (cf. Gargett et al. [1981]).
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As we've already discussed in Section 2.1.3, the inertial-range kinetic spectra is given
by

E(k) = Cxe?Pk™3, (2.22)

where ¢ is the turbulent dissipation rate, C'x is the empirical Kolmogorov constant which
is determined to about 1.5. For the energy spectra of just one component of the velocity
field, we would have to multiply Cx by 1/3 as the spectra is isotropic.

By matching the two kinds of spectra, we can estimate the Ozmidov wavenumber ko
where the buoyancy-range starts, up to an order one multiplicative constant as

ko = @ (2.49)

Using the relation for the Kolmogorov scale (2.13), we can estimate the inertial-range
wavenumber, k, as (again, up to an order one multiplicative constant),

k, = v3/4el/4, (2.50)

Hence the anisotropic buoyancy-range in the kinetic energy spectra can be thought of as
existing between the wavenumbers ko and k,, and the isotropic dissipation-range exists
beyond the wavenumber £,.
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Chapter 3

Numerical Method

In this chapter we will describe and motivate the numerical method used in our turbulence
simulations. We have already established the model we will be using for the simulations
as the Navier-Stokes equations under the Boussinesq approximation. We will now discuss
the spectral method and also its application to the Navier-Stokes equations.

Due to the recent growth of computational power, there has been a lot of interest in the
study of turbulence using numerical methods. Although fluid turbulence is a very com-
plicated phenomenon, it is deterministic, and it is possible to simulate its evolution. The
spatial and temporal derivative operators in the governing equations are evaluated using a
suitable numerical scheme (spectral, finite-difference, finite-volume, or finite-element meth-
ods). Given the initial state and boundary conditions, one can calculate deterministically
all the properties of the fluid flow at at certain time. If the spatial mesh is taken small
enough to resolve the smallest features of the flow (i.e., at the Kolmogorov scale), the simu-
lation is termed a direct numerical simulation (DNS). It is usually performed for moderate
Reynolds numbers, because at very high Reynolds numbers, the spatial resolution needed
is to high and the method is too expensive. As of now, computing clusters are available
that enable us to run DNSs of up to 1000 resolution quite easily (DNS studies of 40963
(Kaneda et al. [2003]) and higher have been performed). For very high Reynolds numbers,
a possible approach is utilizing a large-eddy simulation (LES), where the small scales are
filtered out, but the large scales are evolved. For practical purposes, LESs are more useful
because they allow us to determine the dynamics of coherent vortices and the statistical
qualities of turbulence for a wide variety of high Reynold number flows. However, LESs
contain some errors due to the inaccuracy of the numerical schemes and the incomplete
resolution of the smallest scales.
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3.1 The spectral method

3.1.1 Series-expansion methods

Series-expansion methods are a general class of numerical methods that encompass the
spectral, pseudospectral and finite element methods. All three of these methods share a
common foundation that we will discuss in this section. The discussion in this section
follows Chapter 4 from Durran [1999].

Consider the simple partial differential equation

o

— +F(Y)=0 3.1

4 (W) (3.1
with initial conditions i (z,ty) = f(x), and some boundary conditions specified at the
edge of the spatial domain S. Here F' is some operator involving spatial derivatives of
1. A series-expansion method seeks to approximate the spatial dependence of 1) as a
linear combination of a finite number of predetermined expansion functions, called basis

functions. For a continuous function ¢(z,t), we write the general form of the expansion as

ox,t) =Y ap(t) p(x), (3:2)

k=1

where 1, -+, py are predetermined expansion functions satisfying the required boundary
conditions of ¢ on S. To solve (3.1) one only needs to determine the unknown coefficients
ai(t),--- ,an(t) so that the error in the solution is minimized. We quantify this requirement
by defining the residual

which is the amount by which the approximate solution fails to satisfy the governing
equation (3.1).

There are three broad strategies for minimizing the residual, and each leads to a system
of coupled ordinary differential equations for the coefficients ay(t),---,an(t). The first
strategy is to minimize the square of the f5-norm of the residual

(IR (6)]2)? = / R(¢(x) de. (3.4)
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The second approach, called a collocation method, is to require the residual to be zero at
a discrete set of grid points,

R(¢(jAz)) =0, forallj=1,--- N. (3.5)

The third strategy, known as the Galerkin approximation, requires that residual to be
orthogonal to each of the expansion functions, i.e.,

/ R(¢(x)) pr(z)dx =0, forallk=1,---,N. (3.6)
S

The collocation strategy is used in the pseudospectral method and some finite-element
formulations. The spectral method uses the Galerkin formulation. Note that for the
problem (3.1), the o-norm minimization and Galerkin approximation are equivalent (refer
[Durran, 1999, Section 4.1]).

3.1.2 The spectral method

Opting for the third strategy (3.6), we find that a system of ODEs are obtained for the
unknown coefficients a;(t),--- , an(t),

N N
O:/R(¢)¢kdx=/ [Z%%%—F(Z%%)] opde Vk=1,--- N.
§ 5 Ln=1 n=1

or,
N da, N
;Inkgz—/s F(;ang0n>g0k] dz Vk=1,---,N, (3.7)
where
I = /Sgpngok dx. (3.8)
The initial conditions for the system (3.7) are chosen so that ay(ty),- - ,an(tp) and hence

¢(x,tp) provide the “best” approximation to f(z). This is done in a similar fashion, by
setting the Galerkin requirement that the initial error be orthogonal to each of the basis
functions,

/5 (Z an (to)pn(z) — f@)) op(x)dz =0 Vk=1,--- N (3.9)
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or,

Zlnkan /f x)pp(r)de VEk=1,- (3.10)

n=1

The defining characteristic of the spectral method is that the basis functions form an
orthogonal set. This means that I, is zero unless n = k. Hence the system (3.7) reduces
to

da,, 1

dt Iy

N
F <Zangon> gpk] de Vk=1,--- N, (3.11)

n=1

and the initial conditions (3.10) reduce to

(to) = Ii / f(@)on(z) da. (3.12)

3.1.3 The Fourier-Galerkin spectral method

The geometry of the problem we are dealing with and periodic boundary conditions dictate
that we use Fourier coefficients as the basis functions. We demonstrate the Fourier-Galerkin
spectral method using a the simplest nonlinear partial differential equation, the Burgers
equation. We also demonstrate the importance of dealiasing, and how dealiasing is per-
formed using Orszag’s transform method (cf. Orszag [1971]), commonly called the 2/3
rule.

Consider the Burgers equation in one dimension,
ou n ou 0%u
- U— = 1——
ot ox ou?
whose solution we seek on a periodic domain —7 < z < 7, with initial condition u(x,0) =

f(x). Multiply (3.13) by a test function v € H and integrate by parts on the nonlinear
term to obtain the weak conservative form of the Burgers equation as

(3.13)

Ju T, 0v ou v
—ovde = *— —y—_—dr=0, YveH,. 3.14
/ o U /_W“ or  or ox VU E (3.14)
In the inner product notation (f,g) = [ f(x g(x) dz, equation (3.14) can be written as
ou 1, ou Ov

<%,v> = (§u Vo 8_31:) (3.15)



To apply the Fourier-Galerkin method, choose
K
u(z,t) = Y ag(t) et (3.16)
k=—K+1
where the Fourier coefficients ay are ag(t) = fjﬁ u(x,t) e~k dx, and

v e span{e’” k= -K,--- | K}. (3.17)

Due to the orthogonality relation

" inr _—imax _ 271—7 m=n
/We e dx—{o’ m£n. (3.18)

the terms of the equation (3.15) reduce to

(ug, eF*) = (0, Zan e kT = 21 0 ay, (3.19)
and
<1u2—1/% o eikr) _ <(Za eimm)(za einz)_ya Za eime Zkezka:>
2 ax7 x — m - n xT ~ m Y
1 ) . ) )
Y t(m4n)z - tkxy : imz ikax
<2;;amane JikettT) (Vz;mame Jike™T)
(3.20)
=k Z Ay Ay, — 27ryk2ak.
m-++n==k
Thus the equation (3.15) breaks into a set of ODEs
da, ik
d—t’“r7 S tmarmtrkar =0, k=-K+1,-- K. (3.21)
m=—K+1
The straightforward computation of the linear convolution sum
K
> mtim, k=-K+1-- K (3.22)
m=—K+1
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in the wave-number space takes O(K?) operations. Since this is a unreasonable expense
to bear at each time-step, Orszag (1970) proposed the transform method (cf. [Durran,
1999, Section 4.2.2]) which employs three Fast Fourier Transforms (FFT) to perform this
operation in O(K log K') operations.

The idea behind the transform method is to transform u to the physical space, and
compute the product u?, and transform it back to wave-number space. This operation is
identical to computing the convolution sum as given by (3.22), provided there is enough
spatial resolution to avoid aliasing error. Suppose that the physical space mesh is defined
as

2y

i=—,7=1--- 2N 3.23
xj IN »J ) ) ( )

and we consider the Fourier expansion of u(x,t)

N

u(zj, t) = Z ar(t) et (3.24)

k=—N+1

where

a =0, for K <|l|<N. (3.25)

The question we want to answer is: what should be the physical resolution 2N so that
there will be no aliasing?

Substitute the expansion of u(x;,t) into the kth component of the FFT (computed at
the grid points (3.23)),

Pr =5 Y u(xy,t)%e (3.26)

to obtain
k

k 12N
Pr = Z Z Ay A, <ﬁ26i(m+n_kﬂj) ) (3.27)

m=—K+1n=—K+1 j=1

Due to the discrete version of the orthogonality relation (3.18), the above equation reduces
to,

N N N
Pk = E A, A, + E A, Ol 2N—m + E U A —2N—m- (3.28)
m=—N+1 m=—N+1 m=—N+1
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The second and third expressions in the above expansion represent the aliasing error, and
only one of them will be non zero for a given value of k. For a negative value of k£,

N

Z A Am4+2N—k (329)

m=—N+1

will tend to be non zero. If follows from (3.25) that a,, ax_, = 0 if m > K, so all the
terms in the above summation will be zero if k + 2N > 2K. In the most extreme case of
k = —K + 1, the inequality is N > (3K — 1)/2. Hence a choice of N = 3K /2 is sufficient
for dealised convolutions.

The procedure used to implement the transform method for the Burgers equation on a
periodic one dimensional domain —7 < z < 7 is summarized by this algorithm:

e Truncate the Fourier coefficients ay of w so that a; = 0 for 2N/3 < k < N.
e Perform the inverse FFT to obtain u in the physical space.
e Compute the product «? in the physical space.

e Perform the FFT of u?, and truncate the Fourier coefficients at wavenumbers k& >

2N/3.

e Step Fourier coefficients forward using a desired time stepping scheme.

A simple one-dimensional demonstration of the Fourier-Galerkin spectral method with
dealiasing using Orszag’s 2/3 rule is included in Appendix A.

3.2 Navier-Stokes equations in Fourier space

We will now formulate the Navier-Stokes in Fourier domain following the same method
outlined in [Lesicur, 2008, Section 5.3]. Recall the Navier-Stokes equations (2.1-2.2),

1
%—’t‘ +u-Vu= —;Vp + vV, (2.1)

V-u=0. (2.2)
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Consider a function f(x,y, 2,t), and its Fourier transform F(f)

~

the Fourier transform of 0f/0x is iky f (k1, ko, k3,t). Hence, casting (2
gives us

f(k].; ks, k3,t). Then
.2) into Fourier space

k-u(k,t) =0, (3.30)

which shows us that velocity w(k,t) is in a plane II that is perpendicular to k. Similarly,
Ou(k,t)/0t and vk®a are in the same plane II. On the other hand, the pressure gradient
ipk is parallel to k.

Write the equation (2.1) in Fourier space

ou 1, . 0.
— . = — h— . 1
p + F(u - Vu) pkp vk, (3.31)

and take dot product with k on either side, and use the orthogonality relation (3.30) to
obtain

1
k-F(u-Vu)+ ;kzp =0. (3.32)

The above relation allows us to isolate the pressure term p, and substitute it back into
(3.31),

ot kk 2 -
o + Flu - Vu)(1 — ﬁ> = —vk*u. (3.33)

Here, we note that the term 1—kk/k? that multiplies the Fourier transform of the advection
term. The rest of the terms are in a plane parallel to @. Hence, we can imagine 1 — kk/k?
as being a projection operator into the u-plane. Hence, we are getting rid of the pressure
term by projecting the advection term onto the @-plane.

We call
P=1-— (3.34)

the projection tensor, which will project the Navier-Stokes onto the w-plane. In Einstein’s
summation notation it is written as

kikj
k2

Pyj(k) = d;j — (3.35)
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It is easy to verify that P;;Pj; = Py, meaning that P is idempotent, P> = P. Also, by
noting that k; P;; = 0 and 4;P;; = u;, we can verify that the projection tensor projects a
vector to the w-plane.

Apply P to (3.31) to obtain

%—"; + PF(u-Vu) = —vk*a. (3.36)

The term F(u - Vu) still needs to be calculated. To do so, rewrite

j(?_xi - 8Ij

u-Vu=u (3.37)

using the incompressibility condition (2.2). By the convolution product property of the
Fourier transform, we write

p+g=k
Putting everything together, the Navier-Stokes equations in Fourier space are

% 1P (k) / i;(p, t)itm(q, t) dp = —vk2i, (3.39)
ptq=k

k-a(k,t) =0. (3.30)

For the numerical formulation, the direct evaluation in Fourier space of the convolution
product in (3.39) is not very convenient for implementation. Hence, we will rewrite the
advection term in a form that is suitable for numerical evaluation. Starting from the
identity

1
u-Vu=wxu-— QVUQ, (3.40)
and applying the projection operator P, we notice that the Vu? vanishes because it is

orthogonal to the w-plane. For the Fourier transform of the advection term, we use the
transform method discussed in Section 3.1.3,

Flwxu) = F(F @) x FH(a)). (3.41)
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For direct numerical simulations of turbulence, the preferred form of the Navier-Stokes
equations in Fourier space is (refer Orszag and Patterson Jr [1972]).

o0
8—7: L PR)F(F &) x Fl(@)) = —vka. (3.42)
This formulation has the same advantages as (3.39) because of the absence of the pres-
sure term. The pressure can still be evaluated whenever it is needed using (3.32). The
Boussinesq equations can be written in Fourier space using a similar method (cf. Lesieur

[2008)).

3.2.1 Note on the timestepping method

The equation (3.42) are actually a coupled system of ordinary differential equations. Each
Fourier mode has an equation of the form

dy B
3 T =F). (3.43)

Using an integrating factor, the left hand side of (3.43) can be written as

dyp _ad(e™)
Hence we have
d(ge™) .
= = F()e™, (3.45)

which we can solve using many different timestepping methods (cf. [Durran, 1999, Sec-
tion 2.3]). We use a third-order Adams-Bashforth scheme,

23 4 5
wnJrl e'r(thrAt) . wn ertn AN e'r‘tnF(wn) . gAt ertn_lF(wnfl) + EAt ertn_gF(wn72)7

12
(3.46)

or,

2 4 0
¢n+1 _ e—At¢n + éAt e_AtF(l/)n) — At e—QAtF(¢n—1) 4+ %At e—SAtF(,L/)n—2)‘ (347)
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3.2.2 Note on the code

The code used for running the simulations in report was developed by Michael Waite
based on an earlier version by Peter Bartello, and it has a proven track record for stratified
turbulence simulations (eg. Waite and Bartello [2004], Waite [2011]). The code, written
in Fortran 90, uses the spectral method discussed in Section 3.1 to perform a DNS of
the Navier-Stokes equations under the Boussinesq approximation, (2.23-2.25) in a periodic
domain of the size L; X Lo x L3 discretized into My x My x M5 points. The code is parallelized
along the z axis using Open MPI v1.6, so each processor only has to deal with one slice of
the cubic domain. For switching between the Fourier and physical domains, the code uses
FFTW v3.3 (Frigo and Johnson [2005]). For computing the dealiased nonlinear terms, the
transform method discussed in Section 3.1 is used. Hence the Fourier coefficients along all
directions are truncated at two thirds the maximum wavenumber, M;/3. The timestepping
method used is the third order Adams-Bashforth scheme that was just discussed. The
code also uses the NetCDF library for periodic data dumps of the real space fields. It also
dumps restart files (which are the Fourier space fields (w, p) being solved for) at the end
of a simulation which can be used to resume the simulation from the same point in time.

Some modifications to the code had to be performed to adapt for a high resolution
1024% DNS. Originally, the Fourier fields being dumped at the end of the simulation were
stored in a single file. However, the NetCDF library has a constraint of being able to
support only one very large variable in a single file. So the code had to be modified to
put the four fields (w,p’) in four different files. Also, originally the code used FETW2,
which is now considered obsolete and has not been upgraded since 1999. FFTW3 is faster
and supports three-dimensional inplace distributed memory transforms without using MPI
function calls, but is not backward compatible with FEFTW2. Considerable effort was put
into upgrading the code to FFTW3 to make use of these advantages.
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Chapter 4

Problem

The original paper that motivated this project is Benielli and Sommeria [1996]. This
is an experimental study where the authors induce standing internal gravity waves in a
cubic tank with salt solution that is linearly and stably stratified by varying the salinity.
The tank is then vigorously oscillated in the vertical plane so that the apparent gravity
is modulated around its mean value with some excitation frequency f.. As discussed in
Section 2.2.3, internal gravity waves can oscillate in any mode with frequency between 0
and the Brunt-Vasila frequency N. In this case, a primary wave with the mode close
to f./2 was observed to be amplified, f./2 being the frequency of the energy input. The
growth of this primary wave is quickly curtailed by nonlinear effects; an instability occurs,
and the wave overturns leading rapidly to turbulence.

During the experiment, the authors measure the salinity (and hence the density) at the
center of the tank using a conductivity probe. The power spectrum of the time series of
this data exhibits a peak at frequency f./2 as expected. At higher frequencies, beyond
N /27 where internal wave activity ends and the buoyancy-range begins, a f~3 spectrum
is clearly observed in over two decades on the logarithmic scale.

When making measurements at a single point, it is often assumed that the turbulence
is “frozen”. This is known as Taylor’s frozen turbulence hypothesis (Taylor [1938]), which
assumes that the advection velocity of the turbulence is much greater than the velocity
scale of the turbulence itself. Mathematically, this means that for any fluid property (, its
material derivative is zero, i.e., d{/dt = 0. In other words the rate of change of { is only
due to advection,

o o o B
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Suppose that the mean advection velocity is U, then the time taken for eddies of size [ to
pass through the point of measurement is t = [/U, and corresponding measure frequency
is f = 27/t. This frequency f and the eddy wavenumber k = 27/l are hence related by
f=kU.

In Benielli and Sommeria [1996] also, the authors invoke Taylor’s hypothesis to relate
the spatial wavenumber and the temporal frequency spectra, and conclude the presence
of a k=3 density spectra. This kind of a spectrum is commonly observed in the buoyancy
subrange of the oceans and atmosphere. In general, there is no simple relationship between
the wavenumber and frequency spectra, and Taylor’s hypothesis is usually held to be valid
in situations such as wind tunnels, where the turbulence blows past the measurement point
very quickly. But for turbulence in stratified fluids, the validity of Taylor’s hypothesis
is questionable. This is because the background advection velocity is due a standing
wave, and it is not necessarily much larger than the turbulence velocity. One of the goals
of this report is to verify the equivalence of the wavenumber and frequency spectra in
a stratified medium using direct numerical simulations in which, unlike the experiment
described above, the frequency and wavenumber spectra can be measured independently.

Two numerical studies that are directly related to the experiment that was just de-
scribed are Bouruet-Aubertot et al. [1995] and Bouruet-Aubertot et al. [1996]. Both stud-
ies are two-dimensional direct numerical computations, and of fairly low resolution (either
128% or 256%). In these simulations the numerical domain is square of side m, and the
Brunt-Vaséla frequency is set to unity. The viscosity is set to its minimum possible value
for a given spatial resolution so that all scales are well resolved. The the initial condition
is a standing wave with a small amplitude, and the nonlinear evolution of this wave is
observed until it breaks. It is found that the life time of the coherent wave is inversely
proportional to the square of the amplitude. Also, it is observed that the wave breaking
eventually occurs, whatever the wave amplitude. The authors also propose a mechanism
for wave breaking and the transfer of energy from higher lower wavenumbers to higher
wavenumbers, which involves resonant interactions of the parametric subharmonic insta-
bility type. The authors also observe the turbulent buoyancy subrange with the k=2 energy
spectra during the decay after wave breaking.

Another related numerical study is Carnevale et al. [2001], where the authors examine
the transition from the buoyancy-range to the inertial-range in stratified turbulence. The
authors use a three dimensional large eddy simulation to examine the breaking of a standing
wave in a 1283 computational cube containing a stratified medium. Unlike the previous
numerical studies where the wave was allowed to decay, the authors use forcing to maintain
the amplitude. However the forcing wave has a small enough amplitude so that the primary
wave is not overturned within one forcing cycle. A smaller amplitude allows wave-wave
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interactions to produce smaller waves without being subject to shear instability. The
authors observe the breaking of the wave and the transition from the anisotropic k=3
buoyancy-range spectra to the isotropic k~°/3 inertial-range spectrum.

A review paper that examines the mechanisms associated with steepening and breaking
of internal gravity waves in a stratified medium is Staquet and Sommeria [2002].

4.1 Set-up of the simulation

Our simulations are performed in a cube of dimensions L1 = L, = L3 = 27 discretized at
the resolution M; = My = M3 = 1024. Since we use the 2/3 rule for dealiasing, the number
of wavenumbers retained in each direction is 341. The Brunt-Vaisala frequency given by
(2.28), is taken to be N = 1, by setting the background density gradient dp/dz = —1 and
g/po = 1. Also the molecular diffusivity is taken to be the same as the kinematic viscosity,
K =U.

Note that the difference between the densities at the bottom and top of the domains is
27, and even though p'/py < 1 is not true in this case, the Boussinesq approximation is
still valid in our simulation. This is because when N is assumed to be a constant, pg does
not appear independently in the equations (2.23-2.25) — one can verify this fact by making
a change of variable, b = —gp'/po. There will be different combinations of g, po and dp/ dz
that give the same constant /N, but all that matters is the value of N.

The goal of this study is to observe the evolution of a simple standing wave in a stratified
medium until breaking occurs. One way to do this by initialing the density field and keeping
the velocity fields zero. Hence the system will begin in a state of maximum potential energy
when oscillations start. As the initial condition, we initialize the perturbation density p,

/

£ — 4cosxcos z, (4.2)
Po
(u,v,w) = (0,0,0). (4.3)

with the amplitude set to a = 1. As noted by Bouruet-Aubertot et al. [1995], the amplitude
affects the lifetime of the coherent wave (or the time required for breaking) and we expect
faster breaking for larger amplitudes.
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A linear solution of the system for the standing wave (4.2) is

p'(x, z,t) = apy cos x cos z cos wt (4.4)
u(z, z,t) = —Cff—(; sin x sin z sin wt (4.5)
w(x, z,t) = —i\gf—j COS x €OS 2 sin wt, (4.6)

with the frequency of the wave given by (2.43) as

N 1
w:—QZE (4.7)

and hence the time period as

Ty = V32T~ 9n\/3. (4.8)
N
This standing wave can be seen as a superposition of four pairs of travelling waves with
frequencies, +w and with wavenumber vectors (1,0, 1), (—1,0,1), (1,0,—1) and (—1,0, —1).
Hence, it is necessary to remember that the modes will not change by reversing any of the
wavenumber components across (4.4-4.6), and the oscillation frequency is unchanged by
reversing the sign of w.

Note that the choices of size of the cube and N set the length and time scales re-
spectively, and any general physical situation can be represented by setting these values.
Before running the simulation, the kinematic viscosity is adjusted to get its minimum pos-
sible value so that the smallest spatial scales are well resolved. This is done by looking at
the maximum value €., of the dissipation rate £ during the simulation, and making sure
that the inertial-range wavenumber k, = v~3/4c/s is less than the largest wavenumber
that is resolved in our numerical method, which is 341. Another general rule of thumb is
to make sure that at all times during the simulation, there is a well defined dissipation
range in the kinetic energy spectra, where the energy drops to a very small value for large
wavenumbers. After some experimentation, the value of kinematic viscosity is set to be

v=10"%

The initial condition (4.2), and hence the linear solution (4.4-4.6) is two-dimensional.
Although this standing wave will eventually become unstable and generate turbulence, the
turbulence will be constrained since there is no source of y-variation in the flow. To break
this two-dimensional symmetry, we add a random initial perturbation of the order a/100
to the density field.
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The evolution of the initial condition (4.2) involves nonlinear interactions, and hence
the exact solution will be quite different from the linear solution. In fact, the two depart
from each other progressively, and the importance of the nonlinear interactions can be

estimated by the Froude number (2.47) as mentioned earlier. In our case,
agw a

Also note that the Reynolds number (2.3) is of the order
ag/2w)L  2mV/2

Re = ( - = 510 4 x 10*, (4.10)
1.6
1.4v
= .1
O.Su
0.4f 1
O0 0.5 1 1.5

x/T

Figure 4.1: A contour plot of the initial density field p = p’ 4+ p given by (4.2) for a vertical x,z slice of
the computational domain through y = 0. Each side of the domain is 27 units. Random noise of the order
a/100 has been added throughout. The contour spacing is 0.1358.

The initial density perturbation has no variation along the y direction, and a repre-
sentation of it on the plane y = 0 is shown in Figure 4.1. Note that this profile has two
nodal planes at z = 7/2 and z = 37 /2. The fluid above and below these planes approaches
and retreats from them depending on the z coordinate. On the nodal plane z = 37/2 at
x = 0,27, and on the nodal plane z = 7/2 at = m, there are regions of ‘compression’ or
centers of high oscillating strain. Similarly, on the nodal plane z = 7/2 at x = 0,27, and
on the nodal plane z = 37/2 at = 7, there are regions of vertical ‘dilation’.
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4.2 Density field structures

The simulation was run for a long time (ten linear periods, 1077 ), and we now will make
some comments and observations about the evolution of the density field. From the time
t =0 tot = 10T, the linear approximation is a very indicator of how the density field
is evolving. The effect of the nonlinearities is not yet pronounced. In Figure 4.2, we see
that over one period, the region of vertical compression, which is originally around (x, z) =
(7, 7/2) moves up to where the region of vertical dilation is around (z, z) = (7, 37/2), and
returns to its original position. The random noise that is visible along lines of constant
density at ¢ = 0 smooths out, and they are no longer visible in subsequent times.

Further, we also observe that between ¢ = 0 and ¢ = 3.077,, even though the evolution
progressively departs from the linear approximation, it is essentially two dimensional. We
see in Figure 4.3, that for the first three periods the dissipation rate is only due to the
evolution of the standing wave only. The breaking event itself occurs around ¢t = 3.6577,
when the dissipation blows up. Subsequently, the evolution of dissipation rate shows
large fluctuations, although there is still a cyclical component corresponding to the initial
standing wave.

Figure 4.6 captures the breaking event, the frames are ordered temporally (a) through
(h); (a) corresponds to 3.07,, and the interval between consecutive frames is 77, /7. Hence,
(a) and (h) are in the same phase of oscillations. In (a), we can see that by 3.07%, the
density field has already departed quite a lot from the the initial condition of a standing
wave. In (c) we can see the fold starting to form in the isodensity lines and the field is
already unstable, and by (f) which is around ¢ = 3.7177, the breaking seems to have started
along with a lot of mixing happening between the layers. The folding is symmetric, and it
is most pronounced around the regions of ‘compression’ that was discussed when describing
the initial conditions. During the breaking event (f), we see that heavier fluid spills over
lighter fluid, starting the mixing process between layers and leading to the creation of
small-scale structures along the breaking region. Comparing (h) with (a), we see that the
density field has become irreversibly unstable. An examination of the x and z slices of the
density field shows that at this point the field is still two dimensional. The breaking of the
wave begins the process of generation of three-dimensional turbulence.

If we further observe the evolution of the density field, we see that the wave will break
again, but after about two and a half linear periods, at around ¢t = 6.07,. By then, the
flow is completely asymmetric and three-dimensional. This is observed in Figure 4.7, which
are snapshots of the density field on the planes = 0 and y = 0 between the times 5.577,
and 6.577. This is also the point at which the dissipation rate is at a maximum and
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the Kolmogorov dissipative scale 1 is at a minimum, as seen in Figures 4.3 and 4.4. The
minimum value of the Kolmogorov dissipative scale is 7y, = 0.0052 which is within the
smallest feature that is resolved in the simulation, 27/1024 ~ 0.0061. Hence, this is a valid
direct numerical simulation.

4.3 Energy spectrum

We now consider the total kinetic energy (KE) spectra of the flow at the same times as
those in Figure 4.6. Just like Benielli and Sommeria [1996], we consider the spatial spectra
in the vertical direction. Since the flow is not isotropic, we choose not to use the isotropic
total wavenumber spectra. Along with the spectra, the lines representing the inertial-range
spectrum Cxe?/3k~5/3 and buoyancy-range spectrum aN?k~3 (refer Section 2.3) are also
drawn. The ¢ is taken as the dissipation rate at that time, and the constants Cx and «
are taken to be 1.5 and 0.2 respectively.

For Figure 4.8, which represents the vertical KE spectra during first breaking event,
we see that the inertial-range is very shallow, and the potential and kinetic energy spectra
drop off very quickly into the dissipation-range. At this point, the turbulence is not well
developed and the flow is still two dimensional. But for the smaller wavenumbers (up to
20), we see a reasonable agreement with the £~3 buoyancy-range spectrum.

Figure 4.9 represents the vertical KE spectra during the secondary breaking event, when
three-dimensional turbulence is fully developed, and the Kolmogorov dissipation scale 7 is
the smallest. The estimated Ozmidov and inertial-range wavenumbers are ko ~ 20 and
k, =~ 180 (the typical value of € at this point in time being 1073). Indeed, between the
wavenumbers of 20 and 180, we see very good agreement of the spectra with the k=%/3
inertial-range spectrum.

We now consider the vertical KE spectra between the first and second wave breaking
events in Figure 4.10. The first frame in the plot corresponds to the time 4.077, and the
interval between consecutive frames is 77, /7. The dominant mechanism in this point of time
is neither the large scale internal wave activity nor the small scale turbulent dissipation, but
it is transport of fine-scale density structures by wave motion. Hence we should expect a
wide buoyancy-range, and as expected this is seen in Figure 4.10. The spectra clearly aligns
with the steeper k=3 line between the wavenumbers 10 to 80. We now turn our attention
to the perturbation density at the center of the computational domain. In Figure 4.11,
we have the physical values of the perturbation density p' at (m,m,7), the center of the
computational domain, and underneath we have the power spectra of the signal through a
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Hamming window vs the frequency. The point represented by the * is the N/27 frequency
which is the end of the internal wave domain in the frequency spectra. Beyond that point,
for about one and half decades, there is a good fit with the f~3 power law. This verifies
the assumption made in Benielli and Sommeria [1996] to use the Taylor’s hypothesis to
relate the wavenumber energy spectra with the frequency density spectra.
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Figure 4.2: Nonlinear evolution of the total density fields after (a) one quarter (b) one half (c) three
quarters and (d) one linear wave period Ty, with the initial conditions (4.2). Compare (d) with Figure 4.1
to estimate the importance of nonlinear effects after one linear period.
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Figure 4.3: Plot of the total dissipation rate € vs. the time in number of number of linear periods t/t,,
where Ty, = v/2(27)/N. The blowup in ¢ starts at around ¢ = 3.657}, and the maximum occurs at around
t =5.95Tr.
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Figure 4.4: Plot of the Kolmogorov scale n = (v*/€)'/* vs the time in number of lincar periods t/Tp.
The smallest Kolmogorov scales corresponds to the time at which we have highest dissipation rate.
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Figure 4.5: Plot of the total (kinetic + available potential) energy vs. the time in number of linear
periods. At the around the same time the blowup in e starts, there is a sharp decline in the total energy.
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Figure 4.6: Total density field snapshots of the y = 0 plane during breaking. The frames are ordered by
time from (a) to (h). The first one corresponds to 3.077, and the last one corresponds to 4.07y,. So the
interval between snapshots is 77, /7. Unlike the secondary wave breaking event represented in Figure 4.7,
we do not include the x = 0 slices because at this point the flow is still predominantly two-dimensional.
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Figure 4.7: The top 8 panels are of the y = 0 plane, and the bottom 8 are the z = 0 plane during the
secondary break. Panel (a) is at 5.577,, and consecutive panels are 77, /7 apart. Originally, the = 0 plane
only contains straight lines, but after the secondary break we see a lot of small scale features develop.
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Figure 4.8: Kinetic energy spectra in the vertical direction for one linear timeperiod, corresponding to the
density panels shown in Figure 4.6. First panel corresponds to 3.077, and the interval between consecutive
panels is 77, /7. The dashed line represents the (1/3)Cxe?/3k~5/3 inertial-range spectrum with Cx = 1.5
and the dotted line represents the 0.2N?k~3 buoyancy-range spectrum.
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Figure 4.9: Kinetic energy spectra in the vertical direction for one linear timeperiod, corresponding to the
density panels shown in Figure 4.7. First panel corresponds to 5.577, and the interval between consecutive
panels is T, /7. The dashed line represents the (1/3)Cre?/3k=>/3 inertial-range spectrum with Cx = 1.5
and the dotted line represents the 0.2N?k~3 buoyancy-range spectrum.
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Figure 4.10: Kinetic energy spectra in the vertical direction for one linear timeperiod. First panel
corresponds to 4.077, and the interval between consecutive panels is Ty, /7. The dashed line represents the
(1/3)Ce?/3k=>/3 inertial-range spectrum with Cx = 1.5 and the dotted line represents the 0.2N2k~3

buoyancy-range spectrum.
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Figure 4.11: (a) The perturbation density p’ at the center (w, 7, 7) of the computational domain. (b)
Power spectra in logarithmic coordinates of the perturbation density. A Hamming window has been applied
to the signal. The dashed line represents the f~2 spectrum for comparison. The buoyancy frequency N/2m
is indicated by the point *, and the frequency of the standing wave N/(2w+/2) is indicated by the point CJ.

46



Chapter 5

Conclusions

The goal of this paper was to study the evolution of a standing internal gravity wave until
breaking and overturning occurs. To do this, a code which solves the Boussinesq equations
in a periodic computational cube was used. The code outputs the density and velocity fields
at specified times, it also periodically outputs the kinetic and applied potential energy of
the system, the dissipation rate, the kinetic energy spectra in horizontal, vertical and
spherical wavenumbers,; and the value of the density density field at a fixed point (taken
to be the center of the domain), among other things.

We initialized the density in the computational cube to a two-dimensional standing
wave, and let the code run for ten linear periods of the standing wave. We see that the
wave evolves stably for about three linear time periods, after which the first breaking
event happens. This is a symmetric break and the flow remains two-dimensional during
the process. There is a sharp decline in the total energy of the system and an increase in
the dissipation rate when the wave breaking happens. During this period, an examination
of the vertical wavenumber spectra reveals a wide dissipation range and a small range
of wavenumbers which align with the £~ buoyancy-range spectra. The spectra and the
two-dimensionality of the flow leads us to believe that turbulence is not fully developed at
this point. Allowing the wave to evolve further, we observe the density field and see that
another breaking event happens after about two and half linear periods. At this point, the
dissipation rate has reached its maximum value and hence the Kolmogorov length scale is
at a minimum. The flow has become three-dimensional and a lot of small-scale features
have developed. An examination of the vertical kinetic energy spectrum shows a wide
k~5/3 inertial-range spectrum which is typical of fully developed turbulence.

The buoyancy-range spectra that we are interested in is found to be the widest in
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between the two breaking events. This is because the transition from internal wave activity
to turbulence is happening during this time. An examination of the frequency spectra of
the density at the center of the domain reveals the f~3 power law to hold for frequencies
higher than the internal wave frequency. This was one of the questions we were seeking
to answer with this simulation, and we conclude that the use of Taylor Hypothesis in the
experiments of Benielli and Sommeria [1996] is valid.

This is a surprising result, because one of the necessary conditions for the Taylor hy-
pothesis to be valid as noted in Thorpe et al. [2007], is that the gradient of the mean relative
speed dU/ dz is such that the smaller wavenumbers are much greater than (27 dU/dz)/U.
In our case, the smallest wavenumber is 27/L ~ 1, and (27 d{w)/dz)/(w) ~ 27 are of the
same order. However, as noted in Dahm and Southerland [1997], Taylor’s hypothesis is
used even in conditions well outside the range of validity as envisioned by Taylor. Hence,
only a DNS could justify the use of this hypothesis in the conditions of the experiments of
Benielli and Sommeria [1996].

We end by noting that DNSs are hard to perform. This simulation was of a resolution
1024® with a Reynolds number of the order 10*. Even a simulations resolution 4096%, which
are among the largest possible right now, would only allow us to increase the Reynolds
number by a factor of 6.
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Appendix A

Matlab code for solving the Burgers
equation

We demonstrate how the Fourier-Galerkin spectral with dealiasing using Orszag’s 2/3 rule
(refer Section 3.1) is applied to the viscous Burgers equation.

% viscosity and total time

nu=0.05; tf=1;

% grid

N=256; dx=2*pi/N; x=dx*(0:N-1);

% timestep

dt=dx/10; nsteps=ceil(tf/dt);

% truncate at 2/3rds the largest wavenumber

cutoff = fix(N/3);

trunc = [ones(1,cutoff+l) zeros(1l,N-1-(2*cutoff)) ones(l,cutoff)];
% wavenumber vectors

kx=[0:N/2-1 0 -N/2+1:-1]1%*11i; kx2 = kx."2;

% initial conditions, and first timestep using Euler method

ics = sin(x); ur0 = ics; uk0 = fft(ur0).*trunc; uukO0 = fft(ur0."2).*trunc;
ukl = uk0 - (kx.*uukO - nuxkx2.*ukO)=*dt;

uk1 ukl.*trunc;

for nt = 1:nsteps
% perform convolution in real space
url = ifft(ukl); wuukl = fft(url." 2);
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% time step using Adams Bashforth 2nd order, and truncate

uk2 = ukl + 0.5%dt*(3* (nuxkx2.*ukl-kx.*uukl)-(nu¥xkx2.*ukO-kx.*uuk0)) ;
uk2 = uk2.*trunc;

% store for next iteration

ukO = ukl; ukl = uk2; ur0O = url; uukO = uukil;

end
plot(x,ifft(uk2), ’k’, x,ics,’:k’)
legend([’t = ’ num2str(nt*dt)],’t = 0’)

Figure A.1: Output of the above Matlab program, which solves u; + uu, = vuy, for v = 0.05 at t = 1.0
using a spectral method with dealiasing using the 2/3 rule.
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