Numerical Methods For
Derivative Pricing with
Applications to Barrier Options

by
Kavin Sin

Supervisor: Professor Lilia Krivodonova

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Science
in
Computational Mathematics

Waterloo, Ontario, Canada, 2010

(© Kavin Sin 2010

I hereby declare that I am the sole author of this thesis. This is a true
copy of the thesis, including any required final revisions, as accepted by my
examiners.

I understand that my thesis may be made electronically available to the
public.

11

Abstract

In this paper, we study the use of numerical methods to price barrier options.
A barrier option is similar to a vanilla option with one exception. If the option
ceases to exist then the payoff is zero. If the stock price hits the pre-agreed
upon barrier price, then the option ceases to exist or comes into existent
depending on the type of a barrier option i.e. knock in or knock out. The
immediate payoff is either the same as for a vanilla call or zero, respectively.
We apply a number of classical and recently proposed numerical techniques to
approximate the solutions of the Black-Scholes and Heston models. Our main
goal is to use the more complicated and accurate Heston model. The Black-
Scholes equation is used as a verification tool. Our two major approaches are
Monte Carlo simulations and a finite difference method. The Heston model
relies on five parameters that characterize the current market behavior. We
approximate these from market data by calibrating the model using the least
square technique and Levenberg-Marquardt method. We present the results
of our simulations and discuss our findings. MATLAB codes required to

implement the models are provided in the appendix.

11

Acknowledgements

I would like to take this opportunity to thank Professor Lilia Krivodonova
for her help and advice throughout my research period. I would also like to
thank Andree Susanto for his help with IXTEX. T also would like to show my
gratitude to Professor Li Yuying for an amazing numerical method class that
helped me learn and challenge my thinking thus, enabling me to finish my

thesis.

v

Contents

List of Figures
1 Introduction

2 Barrier Options
2.1 Knock Out Options
2.1.1 Upandoutecall:.

2.2 KnockIn Options

3 Monte Carlo Simulations On Black-Scholes Model
3.1 Generating Stock Paths

4 Stochastic Volatility Model
4.1 Milstein Method
4.1.1 Generation of Correlated Random Samples ¢
4.1.2 Covariance Matrices
4.2 Quadratic Exponential Method (QE)
4.2.1 Sampling The Underlying Stock Price

vii

5 Model Calibration 30
5.1 Levenberg-Marquardt (LM) method 31
5.1.1 Matlab Function Isqnonlin 33

6 Numerical Solution of Option Pricing Using Finite Difference

Method 36
6.1 Heston PDE 36
6.1.1 Setting Up Non Uniform Grid 37
6.1.2 Finite Difference Scheme 39
6.1.3 ADI Scheme 40

vi

List of Figures

3.1

4.1

4.2

5.1

6.1
6.2
6.3

Comparison of the error with MC and improved MC method. 11

Comparison between Milstein MC' and exact option price with N=100
time steps and number of simulations M=1000000 19
Shows the comparison between Milstein’s MC and exact option price with

time step N=1000 and Number of simulation M=1000000 20

May 2010 market implied volatilities for liquid options obtained from

Bloomberg Professional. 34

Two dimensional grid for S and V with Spae =220, Vipez=1.1, and K=55. 39
DIC option price functions U given by Table 12. 43
DOC option price functions U given by Table 12. 44

vii

Chapter 1

Introduction

The most important formula for pricing vanilla options in financial math-
ematic is the Black-Scholes (BS) equation [3]. Black-Scholes model has a
closed form formula and can be used to price European vanilla put and call
options. Because of its simplicity, the BS model is widely used by banks
and other financial institutions. The model assumes that the price of heavily
traded assets follow a geometric Brownian motion with constant drift and
volatility. However, there are well known flaws with these assumptions. One
of the problems is that volatility in fact behaves in a random manner. Heston
model is one of the most well known stochastic volatility models that we can
used to address this problem. The model was proposed by Heston in 1993
[8] as an extension the Black-Scholes model. Unlike the BS model, the Hes-
ton takes into account the non log-normal distribution of asset returns and
non constant volatility. Implied volatility surfaces generated by the Heston
model look like the empirical implied volatility surfaces. One drawback of
the Heston model is that it does not have a closed formula for any options
other than vanilla options. However, some numerical methods such as Monte
Carlo simulations and finite difference methods were proposed to deal with

this problem.

In this paper, we use numerical methods to compute down and out barrier
options using both BS and Heston models. First, we consider the simpler BS
model. We compute down and out barrier option using standard Monte Carlo
method. Then, we will use improved Monte Carlo method proposed by Moon
[14] to price down and out barrier option. The exact solution will be used to
compare the error between these two methods. In chapter 4, we introduce
Heston stochastic volatility and two numerical methods (Milstein and QE)
that can be used to discretize the model. In chapter 5, model calibration is
introduced to estimate five unknown Heston’s parameters using Levenberg-
Marquardt method [12] and Matlab command ”1sqnonlin”. In Chapter 6, the
finite difference method is used to discretize the Heston partial differential
equation. Furthermore, explicit and alternating direction implicit scheme

(ADI) [10] are used to approximate vanilla options and barrier options.

Chapter 2

Barrier Options

The payoff of a standard European vanilla option depends on the underlying
stock price at the expiry date and the strike price. Since the payoff only
depends on the underlying stock price at maturity, it is usually referred to as
a path independent option. Barrier option is referred to as a path dependent
option and is one of the most important exotic option in today’s market. It
behaves like a plain vanilla option with one exception. If the barrier price is
touched at any time before maturity, the option either ceases to exist (knock
out option) or comes into existence (knock in option).

Usually, traders buy or sell this type of options when they believe that
the stock price would either go up or down but would not exceed or become
lower than a certain barrier price. Barrier options can be used to hedge other
financial instruments without paying as much a premium as for normal vanilla
options. The most frequently used standard barrier options are knock in and
knock out options. Knock in options can be divided into two categories, up
and in, and down and in. Similarly, knock out options can also be used as a
down and out and up and out option. Barrier options are available as both
call and put options. In this paper, we will focus on barrier call options only.

In the next subsections, we will describe the payoff structure of these four

types of call barrier options.

2.1 Knock Out Options

2.1.1 Up and out call:

If the underlying stock price stays below the barrier price, the payoff of the
option is equivalent to the European vanilla call option. If the underlying
stock price rises above the barrier price at anytime during the lifetime of the
option, the call option is immediately terminated. Mathematically, this can

be written as [16]

Pavofl — maz (S, — K,0) S, < B, V0O<t<T,
YR = 0 otherwise,

where S, is the underlying stock price at time t, K is the strike price, and B

(2.1)

is the barrier price agreed on at the beginning of the contract.

2.1.2 Down and out call:

If the underlying stock price stays above the barrier price, the payoff of the
option is equivalent to the European vanilla call option. If the underlying
stock price drops to or below the barrier price at anytime during the lifetime
of the option, the call option is immediately terminated. Mathematically,

this can be written as:

max(S; — K,0) Sy > B, V0O<t<T

Payoff = { 0 otherwise. (2.2)

2.2 Knock In Options

2.2.1 Up and in call:

If the underlying stock price rises to or above the barrier price at anytime
during the lifetime of the option, the payoff of the option is equivalent to
European vanilla call option. If the underlying stock price trades below the
barrier price, the call option is immediately terminated. Mathematically, it

can be written as

0 S, <B,YO<t<T

Payoff = { max(S; — K,0) otherwise. (2:3)

2.2.2 Down and in call:

If the underlying stock price trades at or below the barrier price at anytime
during the lifetime of the option, the payoff of the option is equivalent to
European vanilla call option. If the option trades above the barrier price,
the call option is immediately terminated. Mathematically, it can be written

as

Sy >B,V0O<t<T

Payoff = { max(S; — K,0) otherwise. (2:4)

Lemma:

The value of the down and out call plus down and in call option with the
same barrier price and strike price is equal the value of the vanilla call option.
Similarly, the value of the up and out call plus the up and in call option is
also equal to vanilla call option. Throughout this paper, we will use DOC

to denote down and out call option price, UOC to denote up and out call

option price, DIC to denote down and in call option price, UIC to denote up
and in call option price and C to denote vanilla call option. Below is a proof

of the lemma stated above.

Assuming that the expected future payoff is discounted to the present day at the risk-free rate r, -
C=e""T Eg(max(Sr-K,0))

DOC=e""" Eg(max(Sr-K,0)* 15,~5)

DIC=e""" Eg(max(Sy-K,0)* 1s,<5)

UOC=e""" Eg(max(Sr-K,0)* 1g,<p)

UIC=e""T Eg(max(Sr-K,0)* 15,>5)

Summing DOC and DIC, and UOC and UIC we get

DOC+DIC=e""T Eg(max(Sr-K,0)* (15,55 +1s.<p))=¢ "1 Eg(max(Sr-K,0))=C
UOC+UIC= e T EQ(HI&X(ST—K,O)* (1ST<B +1STZB)):e_rT EQ(maX(ST—K,O))ZC

end of proof.

Note that the payoff for the knock out and knock in put options is similar
to the call with one exception. Instead of having the underlying stock price
minus the strike price, the knock in and knock out put options have the strike

price minus the underlying stock price.

Payof f = max(K — St,0)

Chapter 3

Monte Carlo Simulations On
Black-Scholes Model

Monte Carlo (MC) simulations rely on risk neutral valuation. The pricing
of derivative options is given by the expected value of its discounted payoffs.
First, the technique generates pricing paths for the underlying stock via
random simulations. Then it uses these pricing paths to compute the payoffs.
Finally, payoffs are averaged and discounted back to today’s prices and these
results give the value of the option prices. In this section we will use the
classical Black-Scholes model framework and apply Monte Carlo simulations
to compute down and out option price. Note that there exists a closed
form solution for this problem, and, therefore, it is not necessary to use
simulations. However, in this paper we use MC simulations for illustrative

purposes.

3.1 Generating Stock Paths

Assume that the asset price follows a geometric Brownian motion with a
constant volatility and interest rate. Brownian motion process can be used if

we assume that the market is dominated by the normal events. This process

can be written as the following stochastic differential equation for the asset
return [14]
dSt = St,U/dt + StUth, (31)

where

S; - stock price at time t

1 - rate of return of the underlying stock price

o -constant volatility

W;- Wiener process

Let us assume that the asset returns follow a log normal distribution, i.e.,

G(t) = In(S;). Applying Itos lemma we get

dG dG 1d*G

_ = bl - 2
dG(t) = B dS+ — dt+2d5t2d8t,
where
dG_ o dG_ 1 @G 1
dt S, 8 dsz 52
_ 1 1= o 5
dIn(S;) = = (Syrdt + SiodWy) 4+ 0 + 5-S;o7dt,
S, 2 S
1
dIn(S,) = (r — 502)dt + odW,. (3.2)

Integrating both side from 0 to t we get

1
In(Sy) — In(Sp) = (r — 502)75 + W4,
Sy = Spelr=zo oW (3.3)

In order to generate stock paths, we discretize (3.3) as follows

_ 152
St+1 — Ste(r 50)At—l—zj'\/KtZt7

where At is the time step, and Z; is the standard normal random variable

with mean 0 and variance 1.

These paths can be easily simulated in Matlab using the following pseudo

code.

For i=1:M
S = zeros(N,1);S(1)=S(0);
For j=1:N-1
Z;=randn;
S;1=S; e(r—éﬁ)mw\/&zj;
End
End

Using the above stock paths algorithm, we can price down and out barrier

options using the following pseudocode:[14]

For i=1:M

For j=1:N-1
Generate a N(0,1) sample Z;
set S;11=S; e(r—%ﬁ)mw\/&zj;

End

if max= S; > B then
V;=max(S7-K,0) for Call;
V;=max(K-S7,0) for Put;

else

_ M
Set Vze_"“T% ;} Vi

As an example, let us consider pricing a down and out put option by applying
the above algorithm and compare the difference between the exact and the
approximated values using the underlying stock price Sg=100, the risk free
rate r=0.015, time to maturity T=1, lower barrier L=80, Strike price =110,
volatility 0=0.3 and number of simulations M=1000000. The exact solution
with these parameters is Veza:=2.3981. We apply the above algorithm and
compare the difference between the exact and approximated values. By ob-
serving results in Table 1, we see that, the error is large and it converges very
slowly.

In 2008, Moon [14] proposed an improved Monte Carlo (MC) method
that performs more efficiently for pricing barrier options. Figure 3.1 shows
the comparison between the MC and improved MC error. From the graph,
we see that the efficient MC produces a much smaller approximation error
than the standard MC. The key idea behind this new method is to use
the exit probability and uniformly distributed random numbers (U(0,1)) to
predict the first instance of hitting the barriers. First, we compute the exit
probability P using formula (10) in Moon’s paper [14]. Second, we generate
U(0,1) using the Matlab command, unifrnd, and check the following criteria:

lf(Sj >B and Pj < Uj, 1 SVJ < N)
V;=max(S7-K,0) for Call;
V;=max(K-Sr,0) for Put;

else

end

10

M Number of Time Steps | Standard Monte Carlo | Error
1000000 50 3.0021 0.6039
1000000 100 2.8848 0.4867
1000000 200 2.7502 0.3521

Table 1: Comparison of the exact and MC approzimated values for down and out put

option prices with So=100, K=110, B=80, r=0.015, 0=0.3 and T=1

M Number of Time Steps | Standard Monte Carlo | Error
1000000 50 2.3693 0.0288
1000000 100 2.3785 0.0196
1000000 200 2.3988 0.00063

Table 2: Comparison of the exact and improved MC approximated values for down and

out put option prices with Sy=100, K=110, B=80, r=0.015, 0=0.3 and T=1

Erre

or Vs Number of time steps

Error

10
Number of time steps

Figure 3.1: Comparison of the error with MC and improved MC method.

11

Chapter 4

Stochastic Volatility Model

Black-Scholes model is the most widely used tool in the world of finance. The
main reason behind this is that it has a closed form solution and it requires
almost no computational resources. However, the Black-Scholes model relies
on many assumptions that are unrealistic. One of the main flaws within the
model is the fact that Black-Scholes assumes that market is complete and the
volatility is constant. However, empirical evidence shows that the volatility
behaves in a random manner. To correct these flaws, an extension on the
Black-Scholes model was proposed by Heston in 1993. Heston’s stochastic
volatility can be specified as [8]

ds
?t = rdt + /V,dW} (4.1)
t
dV; = =\(V;, = V)dt + 1/ VidW? (4.2)
E(dW}!dW?) = pdt, (4.3)

where r- risk free rate

S; - underlying stock price

12

V,; - variance

V - long term mean variance

A- mean reversion rate

7- volatility of variance

p - correlation between the stock price and variance

W} and W? - Wiener stochastic processes

Note that in order to take into account the leverage effect, the Wiener

stochastic processes W} and W7 should be correlated E(dW;} dW3)=p dt.

One of the main drawbacks of this model is that there is no analytical
solution to it. However, we can approximate this solution using Monte Carlo
simulations. In this paper, we will use Milstein method and Quadratical
Exponential Method (QE) method by Leif Andersen to discretize (4.1) and
(4.2).

4.1 Milstein Method

Milstein’s method is a second order numerical scheme used to numerically

solve stochastic differential equations. Consider a general Ito process

From Euler-Maruyama method, the integral below can be approximated as
[15]
tn+1
/ b(s, Xs)dW,dx = b(t,, X,) AW,,. (4.5)
tn

13

Applying Ito formula to (4.4) we get the following [15]
Bt 3 / 1 " 2
Xew = Xe+ [JalXi)+ @ummxw@ umuxﬁm
t; t;
S tz+l
+ / a’(Xu)b(Xu)dW}dH /)+ / b (X b”(X)02 (X,)du
t; t
!
+ / 5b’(Xu)b(Xu)dm)}OZWS.
t;

If we omit the higher order terms in the formula above, i.e. dW, *du,

dW,*ds, and du*ds, we obtain

E /) b’(Xu)b(Xu)qu)dWs.

Liv1 tiy1
XX [aods e [() +
t; t; t;

Applying formula (4.5) to the second and third terms gives
1 1+1
~ X, +a(X,)A¢ + DX, AT + 5 / / W (X)b(X,)dW,dW,. (4.6)
t; ;
The double integral in (4.6) can be approximated as [15]

tiv1
/ / B (X)b(X,) AW, dW, ~ —b/(Xt)b(Xti)((AWi)Q - At). (4.7)
By combining equations (4.6) and (4.7), the Milstein’s scheme can be obtain
as follows [15]:
Xo — b(Xto)
Xy

i+1

— X,, + a(X)) AL+ b(X,) AW, + b’()b(Xi)((AWZ-)Q—At) (4.8)

Our main goal is to use scheme (4.8) to discretize the Heston stochastic
volatility. Let X,=log(S;), o=v/V. We apply equation (4.8) to (3.2) and
(4.2) to obtain

V 1
X1 =Xi+ (r— E)At + Vv VAt(ﬁ(l) + EW* 0

14

where b/(X;)=0 (since V does not depend on X), a=r-¥, b=V and AZ,=VAt¢
X=X+ (r— %)At +VVAteW (4.9)

Vipr = Vi = MV = V)At + pVVVAL®D + (- 77\/_)(—=)(At(6®)? — At)

\/_
Vier = Vi = MV = V)AL +)V VVALG? + ZnQAt(gb)2 — }anAt

Vier = (Vi DVARD) — AV, ~ Viar) At — 1P At (4.10)

E(¢We@) = pdt. (4.11)

Note that equation (4.4) E(dW} dW?)=p dt can be discretizes as following

E(@@We?) =p (4.12)

where ¢ and ¢® are the standard normal distributions with correlation p.
Having constructed a numerical scheme for solution of (4.1) and (4.2), we
are almost ready to perform MC simulations. The only missing component

is a generator of standard normal random numbers with correlation p.

4.1.1 Generation of Correlated Random Samples ¢
2

Suppose we have a basket of two stocks, S! and S2. Suppose further that the

returns of these two stocks have correlation -1 < p < 1, i.e.

ds?

or = prdt + o Wdw} (4.13)
dS?
o = pldt + o@dw? (4.14)

E(dWrW?) = pdt, dZ' = ¢WVdt, dzZ? = ¢DVdt, E(¢We?) =p.
Before proceeding, we will give a quick overview of a covariance matrix and

its definition. A process for generating covariance matrices is described in

the next section.

15

4.1.2 Covariance Matrices

Let X and Y be two random variables. The covariance of two random vari-

ables is defined as [7]
Cov(X,Y)=FE(X — E(X))E(Y — E(Y)). (4.15)

Let X= (X1, Xy, ..., X,) be a random vector with mean vector p = (pu, i,

..y f1p). Then the covariance matrix Q can be written in the form [7]

Cov(X1,X1) -+ Cov(X1,X,)

Q = .)
Cov(X,, Xq) -+ Cov(X,, X,)

where Cov(X;,X;) is the covariance of X; and X; for i # j , and Cov(X;,X;)
is the covariance of X; with itself, that is, its variance Var(X;). Therefore Q

can be rewritten as:

Var(X,) Cou(Xy,Xs) -+ Covu(Xy, X))
Q= Cov(Xq, X1) Var(Xy) :

Cov(X,, X1) Cou(X,,X3) --- Var(X,)
For example: if X=(X;, X3), Cov(X;,X5)=0.75, Var(X;)=Var(Xs)=1, then

the covariance matrix of X is :

1 075
©= {0.75 1] '

Note, that the covariance matrix is a symmetric positive semi-definite ma-
trix, i.e, for any X € R, XTQX >0. Also, for any real covariance matrix the
diagonal entries are greater or equal to zero.

Using these facts, we can now generate correlated normal random variables.

Assume that we have &, &,...., &, which are independent standard normals

16

ie. E(&)=0, o(&)=1 and E(§;,§;)=0 for i # j. Let

&1
&
€=
&n
Let ¢=GTe (G is the upper triangular matrix such that Q= GG which
can be obtained by computing the Cholesky decomposition of Q) satisfying
£(6)=0.
In Matlab we can compute the Cholesky decomposition of Q using Matlab
command ”chol” [7]. For example, to generate a sample of random vector
with covariance matrix Q, we do the following:
1. Compute G, G= chol(Q).
2. Generate N(0,1) sample X; (X; can be computed using randn(n,1) com-
mand).
3. Compute ¢! = GT X;.
We are now ready to perform Monte Carlo simulations to compute the price
of barrier options. However, since there exists an exact solution for vanilla
call options, we will first compute a vanilla call option and compare the re-
sult with the exact solution. This will serve as a test to check if the model is
working correctly. Its other purpose is to study the accuracy of the model.
Monte Carlo simulations using Milstein discretization for vanilla call option

can be implemented in Matlab using the following pseudocode

17

Compute matrix G and set X=log(S)

For i=1:M

For j=1:N

Generate N(0,1) sample Z;

Compute ¢! and ¢? using matrix G

Compute X, using (4.9)
Compute V; using (4.10)
it V; <0 set V; =0

End

Sstore;=S;

End

Set Sstore=e~

Set V=e"T= > maz(S;-K,0);

Let us price a vanilla call option using the above algorithm with the under-
lying stock price Sp=T71.2, the risk free rate r=0.02, time to maturity T=1,
strike prices =[80,85,90..120], volatility Vq=0.1237, VV=0.677, n=0.3920, p=-
0.6133, A=1.1954, number of time steps N=100, and number of simulations
M=1000000. The exact solution using these parameters are shown in Table

3. In Table 4, we decrease the time step by a factor of 10, i.e increase N by

a factor of 10.

1=0

M N | Strike | MC Price | Exact Price | Diff in Price
1000000 | 100 80 5.423127 5.396080 0.027047
1000000 | 100 85 3.844579 3.822287 0.022292
1000000 | 100 90 2.648261 2.631227 0.017034
1000000 | 100 95 1.778787 1.765087 0.013701
1000000 | 100 | 100 1.170418 1.158476 0.011942
1000000 | 100 | 105 0.756568 0.747489 0.009080
1000000 | 100 | 110 0.482464 0.476524 0.005940
1000000 | 100 | 115 0.304875 0.301545 0.003330
1000000 | 100 | 120 0.191609 0.190173 0.001436

18

Table 3: The exact and the Milstein’s MC approximated value for vanilla call option with
N=100.

MC Vs Exact Solution N=100,M=1000000
5]
T T T T T

| L L
80 =) a0 95 100 108 110 1e 120
Strike Price

Figure 4.1: Comparison between Milstein MC and exact option price with N=100 time
steps and number of simulations M=1000000 .

M N Strike | MC Price | Exact Price | Diff in Price
1000000 | 1000 80 5.387944 5.396080 -0.008136
1000000 | 1000 85 3.815159 3.822287 -0.007128
1000000 | 1000 90 2.625633 2.631227 -0.005594
1000000 | 1000 95 1.760800 1.765087 -0.004286
1000000 | 1000 | 100 1.154263 1.158476 -0.004213
1000000 | 1000 | 105 0.744078 0.747489 -0.003411
1000000 | 1000 | 110 0.474483 0.476524 -0.002041
1000000 | 1000 | 115 0.300171 0.301545 -0.001374
1000000 | 1000 | 120 0.188665 0.190173 -0.001508

Table 4: The exact and the Milstein MC approzimated value for vanilla call option with
N=1000.

The difference between the MC and exact solutions, i.e. the numerical

error, becomes smaller as N increases as expected. Typically, there are two

19

Pz e Exact Solution R=1000, kia=1000000

Exact

Optian Prica

L L L L L L L
[=1n] 85 =1n] o5 100 105 110 115 120
Strike Price

Figure 4.2: Shows the comparison between Milstein’s MC and exact option price with
time step N=1000 and Number of simulation M=1000000 .

sources of error arising from Monte Carlo simulations for pricing derivative
options. One of the errors is the discretization error and the other error is
the sampling error. It can be shown that the overall error of Monte Carlo
simulations is O(\/LM, At), where O(At) is the discretization error and O(\/Lﬁ)
is the sampling error. So, it is not efficient to drive the sampling error if the
total error is dominated by the time discretization error. To ensure that both
errors decrease at the same rate, we choose M = O(ﬁ).

Since our goal is to price barrier options, we need to modify this algorithm
to price down and out and down and in call options. Recall, that for a down
and out call, the option ceases to exist if the underlying stock price hits the
barrier price and for a down and in call option, the option ceases to exist
if the underyling stock exceeds the barrier price. One of the main issues
here is that there exists no closed formula solution for barrier options using
stochastic volatility model. However, we know that the sum of a down and

out call plus down and in call is equal to a vanilla call option. Using these

20

facts, we can modify the above algorithm to price DOC and DIC using the

following pseudocode:

Down And Out

Compute matrix G and set X=log(S)
For i=1:M
For j=1:N
Generate N(0,1) sample Z;
Compute ¢! and ¢* using matrix G
Compute X; using 4.9
set S;=exp(X)
IfS; <B
S; =0
exit for
End
Compute V; using (4.10)
If V;j <0 set V; =0
End
End
Sstore;=S;
End

Set Sstore=eX
B M
Set V=e~""L > maz(S;-K,0);

i=0
Down And In
For i=1:M

For j=1:N

21

End

Generate N(0,1) sample Z;

Compute ¢! and ¢? using matrix G

Compute X, using (4.9)
set S;j=exp(X)

If any S; < B

End

Compute V; using (4.10)

Option is activated

IfV; <0set V; =0

End

Sstore;=S; , V j that hit the barrier

End

Set Sstore=e¥

_ M
Set V=e"L > maz(S;-K,0);
i=0

Let us consider an example of pricing DOC and DIC with So=71.2, r=0.02,
V=0.1237, V=0.0677, n=0.392, A=1.1954, p=-0.6133, B=60, K=[40,45...,55],
and M=1000000 using the above algorithms. Table 5 summarizes DIC and

DOC prices along with the exact prices for vanilla call that we use to assess

the accuracy of the method. We used 100 time steps to compute the results

presented in Table 5, and 1000 time steps in Table 6.

M N | Strike | DOC DIC | DOC+DIC | Exact Price Diff
1000000 | 100 40 29.7885 | 2.6857 32.4742 32.4866 -0.0124
1000000 | 100 45 26.3437 | 1.6401 27.9838 27.9930 -0.0092
1000000 | 100 50 22.8989 | 0.8078 23.7067 23.7131 -0.0064
1000000 | 100 55 19.4541 | 0.2463 19.7003 19.7044 -0.0041

22

Table 5: Prices of down and out and down and in call option along with the sum of the

two options.

M N | Strike | DOC DIC | DOC+DIC | Exact Price Dift
1000000 | 1000 40 29.9509 | 2.5362 32.4871 32.4866 0.0005
1000000 | 1000 45 26.4675 | 1.5234 27.9909 27.9930 -0.0021
1000000 | 1000 50 22.9840 | 0.7246 23.7086 23.7131 -0.0045
1000000 | 1000 55 19.5005 | 0.1991 19.6997 19.7044 -0.0047

Table 6 : 1000 time steps were used and all the other parameters were kept as in Table 5.

Since down and out plus down and in call price is equal to a vanilla call,
we can calculate the erorr by subtracting the sum of DOC and DIC with
the exact price. By comparing Table 5 and 6, we see that the error becomes
smaller as N increases. Note that in order to calculate option prices correctly,

we use one million sample size, i.e. M = 106,

4.2 Quadratic Exponential Method (QE)

QE method was introduced by Andersen in 2006 [1]. It is considered to be
one of the most efficient and highly accurate methods that can be used to
approximate a stochastic volatility model, e.g., Heston’s model. The scheme
seems to work surprisingly well in comparison to Milstein’s method. The
method is based on two segments for the non-central chi squared distribu-
tion, one with a quadratic function and the other with an exponent function.
A combination of these two functions create a method called Quadratic Ex-
ponential method. The segment of large value V(t) can be represented by
a quadratic function of a stardard Gaussian variable and the segment of a

small value can be represented by a distribution of exponent form. Large

23

segment of large value V(t) can be approximated by the following formulas

1]
V(t)=a(b+ Z,)?% (4.16)

where Z, is a standard normal distributed random variable and a and b are

constants that can be computed using the following formulas [1]

m

V=27 — 14 2¢/20 /201 — 1 (4.18)
32
m=V+Vy—V)e M (4.20)
Vin2e—\dt Vn?
2 _ 077; (1 - e—)\dt) + %(1 o efAdt)27 (4.21)

where m and s? are the conditional mean and variance of the square root
process.
Using the inverse distribution function sampling method, the segment of

small value V(t) can be approximated by [1]
V(t) =L (Uy), (4.22)

where Uy is a uniform random number that can be generated in Matlab

using rand command. L' (Uy) can be computed as

- B log(v) p<Uv <1
Lt = 1-U : 4.2
wo-{ s, (423)
And p and 8 can be computed as
Y —1
=——2¢€10,1), 4.24
P= T [0,1) (4.24)
l—p
f=——>0. (4.25)
m

4.2.1 Sampling The Underlying Stock Price

Suppose that the asset price can be modelled using equation (4.1) and the
variance process can be modelled using equation (4.2). Applying Ito’s for-

mula to (4.1), the underlying stock price can be written as [1]
S(t) = S(s)els r=3V@dut[l /Vwdw® (4.26)

Using the Cholesky decomposition we obtain the following equation

log(S(t)) = log(S(s))—l—/ rdu — %/t du+p/ Volu)dw®
+/1 = p? /t Volu)dw®. (4.27)

Integrating the variance process (4.2) we obtain

V(t)=V(s)+ /t AV (u) — du—i—n/ V'V (u)dw® (4.28)

or, equivalently,

/t or V(t)—Vi(s)—)\VUAt + A J, V(u)du. (4.20)

Substituting (4.27) into (4.26), results in the Broadie-Kaya scheme [4]
1 t
log(S(t) = log(S(s)) +rAt+ —/ (u)du — 5/ V(u)du

+§(V()—V(AVAt+\/1—7/ VV@)dw .

(4.30)

The only issue left to be addressed in (4.28) is the the integrand of the
variance process. Applying the drift interpolation method to approximate

the integral of the variance process, we obtain [6]
t
/ V(u)du ~ (anV (s) + aaV (t))At, (4.31)

25

where a7 and as are constants. There are many ways of assigning these
constants, the simplest one is the Euler-like setting:ay=1 and a;=0. The
other way is the mid-point discretization method that would set 0612042:%.
Substituting equation (4.31) into (4.30) using the mid-point discretization

we obtain

log(S(t)) = log(S(s)) + rAt + %(aﬂ/(s) + apV (1)) At

2

+/1 = /o1 V(s) + aaV (t)VALg.

1mﬂ%$+aﬂWﬂAﬁ+%Vﬁ%ﬁd@—AVAﬂ

(4.32)
or, equivalently, [1]
log(S(t)) = log(S(s)) + rAt+ Ko+ K1V (s) + K3V (t)
VK3V (s) + K,V (t) VAL, (4.33)

where ¢ is a Wiener stochastic process and Ky, K;, K, K3, K4 are given by:

|/ 1
KO = —p)\—VAt, K1 = QélAt(M — —) — B, K2 = OéQAt(— - —) + E
n no 2" no 20

Kg = OzlAt\/ 1-— 2, K4 = OéQAt\/ 1-— p2
Quadratic Exponential (QE) Algorithm

[1] Assuming that some critical arbitrary switch level ¢. €[1,2] is given
and supposing the mid-point discretization 0412042:% has been chosen, the
Quadratic Exponential algorithm can be summarized as follows:

1. Given V(s), V, n, A, compute m, s?, and 1.

2. Generate Uy using rand command.

3. I < the

26

(a) Compute a and b.
(b) Compute Zy .
(c¢) Compute segment of large value V(t) using (4.16).

4. if ¢ > 1),
(a) Compute p and f.
(b) Compute segment of small value V(t) using (4.22) and (4.23).

5. Compute Ky,..,Ky.
6. Compute log(S(t)) using (4.33).
7. Take the exponential of log(S(t)) and compute the payoff of the option.

For more details, see Leif Andersen’s paper December 12, 2006 version [1].

First, let us consider pricing a vanilla call option using the QE algorithm
with the underlying stock price So=71.2, the risk free rate r=0.02, time to
maturity T=1, strike price K=[80,85,...,120], volatility V,=0.1237, V=0.677,
1n=0.392, p=0.6133, \=1.1954, ¢.=1.5, ozlzozg:% and N=100. The approx-
imated and exact values using these parameters are displayed in Table 7.
Computations presented in Table 8 use the same set of parameters except

for N which was increased by a factor of 10, i.e., N=1000.

M N | Strike | MC Price | Exact Price | Diff in Price
1000000 | 100 80 5.388041 5.396080 -0.008039
1000000 | 100 85 3.817059 3.822287 -0.005228
1000000 | 100 90 2.627872 2.631227 -0.003355
1000000 | 100 95 1.762576 1.765087 -0.002511
1000000 | 100 | 100 1.157678 1.158476 -0.000798
1000000 | 100 | 105 0.748649 0.747489 0.001160
1000000 | 100 | 110 0.478155 0.476524 0.001631
1000000 | 100 | 115 0.302997 0.301545 0.001452
1000000 | 100 | 120 0.191345 0.190173 0.001172

27

Table 7: The exact and the QE Monte Carlo approximated values for vanilla call option

with N=100.

M N Strike | MC Price | Exact Price | Diff in Price
1000000 | 1000 80 5.399582 5.396080 0.003502
1000000 | 1000 85 3.823886 3.822287 0.001600
1000000 | 1000 90 2.632054 2.631227 0.000827
1000000 | 1000 95 1.765146 1.765087 0.000060
1000000 | 1000 | 100 1.157834 1.158476 -0.000642
1000000 | 1000 | 105 0.746181 0.747489 -0.001308
1000000 | 1000 | 110 0.474983 0.476524 -0.001541
1000000 | 1000 | 115 0.300971 0.301545 -0.000574
1000000 | 1000 | 120 0.190345 0.190173 0.000172

Table 8: The exact and the QE Monte Carlo approzimated value for vanilla call option
with N=1000.

Numerical results show that the QE algorithm errors are much smaller com-
pared to Milstein’s method. In the next step, we will use the QE method
to price down and out and down and in option and verify its performance
against Milstein’s method. The parameters used are similar to those in Mil-
stein’s method. By comparing Tables 9 and 10 with Tables 5 and 6, we see

that the QE method is much more accurate compared to Milstein method.

M N | Strike DOC DIC DOC+DIC | Exact Price Dift
1000000 | 100 40 29.800649 | 2.693808 32.4945 32.4866 0.0079
1000000 | 100 45 26.351403 | 1.645395 27.9968 27.9930 0.0038
1000000 | 100 50 22.902158 | 0.811069 23.7132 23.7131 0.0001
1000000 | 100 55 19.452912 | 0.247674 19.7006 19.7044 -0.0038

Table 9:Prices of down and out and down and in call option using QF method along with

the sum of the two options. The error is the difference between the exact value and the

sum of DOC and DIC option.

28

M N | Strike DOC DIC DOC+DIC | Exact Price Diff
1000000 | 1000 40 29.804870 | 2.681512 32.4864 32.4866 -0.0002
1000000 | 1000 45 26.356202 | 1.636712 27.9929 27.9930 -0.0001
1000000 | 1000 50 22.907535 | 0.804921 23.7125 23.7131 -0.0006
1000000 | 1000 55 19.458868 | 0.244411 19.7033 19.7044 -0.0011

Table 10 : 1000 time steps were used; all the other parameters were kept as in Table 9.

We have described two numerical methods that can be used to discretize

stochastic volatility process if we were given Vo, V, A i, and p. However, in

practice these b parameters are unknown and need to determined by traders

or quants. In the next chapter, we will introduce a model calibration method

called nonlinear least square optimization method that can be used to esti-

mate these five unknown parameters given market volatilities. We will use

market volatilities for vanilla option that are very liquid and can be obtained

using Bloomberg or any other sources such as Google finance, yahoo finance,

CNBC etc. In this paper, we will use RIMM May 2010 volatility obtained

from Bloomberg as our volatility data.

29

Chapter 5

Model Calibration

Model Calibration is an optimization technique used to estimate local volatil-
ity or Heston’s parameters for dependent exotic options that are not very
liquid; thus, their volatilities are not obtainable from the market. It ensures
that the resulting model is consistent with the current market option price
information or, in other words, by using model calibration, the model will
price consistently with market implied volatility. In this chapter, we will use
model calibration to estimate Heston’s parameters by solving a nonlinear
least square optimization problem. We will first introduce a nonlinear least
square problem, and then attempt to solve it using the Levenberg-Marquardt
method. We start with a set of market volatilities and perform an iterative
process to solve nonlinear least square problem using a Matlab command
called lsqnonlin.

Let us suppose that a set of liquid options implied volatilities Vol™e"*¢! on
an underlying asset are observed from the option market. Suppose that we
can price these options using Black-Scholes model and denote the price by
Viarket (K T) for j=1,2,...m. Assume Vo(K;,T,X), X€{ vo,V,A\,n,p } denotes

the initial value that can be obtained using Milstein’s method. A model can

30

be calibrated by solving the following equations [2]
Vo(K;, T, X) — Vbl (K, T) = 0,5 = 1,2, ...,m (5.1)

or

mlnz (Vo(K;, T, X) — Vmarket (), T))?, (5.2)

or, equivalently,

!
min S| F(X)|3, (5-3)

where X consists of Heston’s parameters described above, and F(X) can be

written as

‘/’0([(17 7"7 X) _ ‘/Omarket(Kly T)
F(X)= : . (5.4)

%(Km) T) X) _ ‘/E)ma’l’k‘et(Km, T)
Solving a nonlinear least square problem is often not straightforward. How-
ever, there are many available iterative methods that can be used to solve
this problem. In this paper, we will use the Levenberg-Marquardt method

to solve equation (5.3).

5.1 Levenberg-Marquardt (LM) method

LM is an iterative method that seeks the minimum of a function expressed as
the sum of squares of nonlinear functions. It is a combination of the steepest
descent and Gauss-Newton methods. The method uses the steepest descent
when the current solution is far from the exact solution, and switches to the
Gauss-Newton method when the current solution is close to the actual solu-

tion. It determines X,,.,, via solving a trust region subproblem for some A4

> 0 ie. [13]

1
min §HF(new) + J(Xold) (Xne'w - Xold)H% (55)

Tnew

31

subject to

| X — Xoall2 < Ao, (5.6)

where J(X) is the m by n Jacobian matrix of F(X) that can be written as
[13]

oI oF L. oOF
0X1 0Xo 0Xn
OFy oF> L. OFy
0X 0X 0X
)= |75 es T 5.1)
oFym OFm . OF,
0X1 0Xo 0Xn

It can be showed that the solution to the trust region (5.5), (5.6) subproblem
has the form

-1

Xnew = Xold + <J<Xold)TJ(Xold> +)\old[) dold> (58)

where

dorg = _aJ<Xold)TF(Xold) (5-9)

where a is chosen to minimize (5.5) and A is the largest value in the interval
[0,1] that controls both the magnitude and direction of dyq such that |||
< Ayg. The sketch of the proof is outlined below.

The goal is to find a vector X such that all F;(X) = 0. By Levenberg-
Marquardt [12], [5] we have

(J(Xold)TJ(ond) + /\oldf) dotg = —J(Xo1a) " F(Xopa)
(J(Xold)TJ(Xold) + /\old[) (—aJ(X5)F(Xoa) Xowa)" F(Xoa)
T T -1
—J(X) F(Xoa) = _a<J(Xold> Xowd) + /\old]) (Xold) (Xold))

0= J(X30)F(Xog) — a(J(Xold)TJ(Xold) + /\old]) B <J(ond)TF(Xold)>

32

Applying the Gauss-Newton method we obtain
Xnew = Xoid + (J(Xold)TJ(Xold) + /\old]) 71dold-

Note that when A,y is zero, the direction d,;q is given by the Gauss-Newton
method. When A approaches infinity, the direction d,;, is the steepest descent
direction, with the magnitude tending to zero. The full proof is beyond
the scope of this paper. Interested reader can be referred to Mathworks
website under Trust-Region Dogleg and Levenberg-Marquardt method for
more details.

The advantage of this method is that it only uses the Jacobian matrix in
the equation. The Jacobian matrix can be easily approximated using finite
difference method. In this paper, we will use the forward difference in time

to approximate the Jacobian matrix, i.e.

Oy F(Xag, + AX) = F(Xo,)
J(X) = o, A : (5.10)

where 7 represents the index for the independent variable, j represents the

index of F and AX is the spacing.

5.1.1 Matlab Function Isqnonlin

Matlab has a build-in function Isqnonlin that can be used to solve nonlinear
least squares problem. lsqunonlin takes in the function of the a nonlinear
least square F(X), the initial guess Xg, and the options as inputs. Below is

the function’s formal way of writing it.
Xnew = lsqnonlin(F(X), Xo, options), (5.11)

where options can be set as follows

options=optimset(’Jacobian’,’on’,’Display’,’iter’,’"MaxIter’ n).

33

Options are used to tell the function lIsqnonlin to turn on the Jacobian func-
tion, display the number of iteration for each step, and set the maximum
iteration to be n. We will demonstrate how this function performs numer-
ically using liquid option volatilities that can be obtained from Bloomberg
Professional. In practice market implied volatilities can be obtained by tak-
ing the average between the implied volatilities bid and ask. However, we
used Implied volatilities ask only in this paper, since implied volatilities bid

were not available for some strike prices.

EquityOCm™MM
fol 10 570,415 Op 71.2 P Hi 71.57 P Lo 69.87 P Trd 746.133m
to Edit Sp eadbheet
[AICHG d

Imp Im 1 Day RIMM us Im 1 Day
Aske Volat olat Last et CA Aslc VDlat olat Last
rice rice Bid Ask Trade hanq- > Price [Bid Ask Trade hanq-

0.610 70.62 —
24 6Cunch

Figure 5.1: May 2010 market implied volatilities for liquid options obtained from
Bloomberg Professional.

34

Iter | Func Count f(x) Norm of Step
0 1 0.551332 0.0908061
1 2 0.1912516 0.0209334
2 3 0.1912514 0.0104667
3 4 0.121476 0.00261668
4 d 0.06326799 | 0.000654169
5 6 0.06326790 | 0.000327084
6 7 0.0632671 | 8.17711e-005
7 8 0.0491708 | 5.11069e-006
8 9 0.0192000 | 1.27767e-006
9 10 0.0192000 | 3.19418e-007

Optimization terminated: norm of the current step is less than OPTIONS.TolX.
x =0.1237 0.0677 0.3920 1.1954 -0.6133
resnorm = (.0192
Note that vector x represents the initial variance, long term mean variance,
volatility of variance, mean reversion rate and correlation between the stock

price and variance respectively.

35

Chapter 6

Numerical Solution of Option
Pricing Using Finite Difference
Method

As described earlier in Chapter 4, Heston model has no closed form formulas
for any exotic options except for the simplest, and therefore numerical meth-
ods need to be used. In this chapter, we will use finite difference method
to discretize Heston partial differential equation (PDE) that plays an impor-
tant role in the financial market. We will first introduce Heston PDE and
its parameters. Then we describe the explicit and implicit schemes we used
to solve this PDE. Various numerical examples will be shown using the same
parameters as those in Chapter 5. We will consider vanilla call option as well

as down and out and down and in barrier options.

6.1 Heston PDE

Applying Ito’s lemma and the standard arbitrage arguments to equation (4.1)

and (4.2) we arrive at Heston’s partial differential equation [9]

a_U —1 2 8_U2_|_ ou* +1 2 8_U2+< _) 8_U_|_)\(7_)8_U_ (6 1)
ot 2° Vg2 TP sy T Ve TV T W gy AT g T D

36

This PDE is a two dimensional time dependent convection-diffusion-reaction
equation, where r is the risk-free rate, ¢ is the dividend rate and U(s,v,t)
is the option price for 0 < t < T, s> 0, v> 0. The initial condition for

European call option can be given as [9]
U(s,v,0) =maz(0,s — K). (6.2)
The boundary condition at s=0 can be written as follows
U(0,v,t) = 0. (6.3)
For down and out call option, the initial condition can be given by
U(B,v,t) =0. (6.4)

Note that the two dimensional domain for this PDE is unbounded from
above. In this paper, we will restrict the domain to a bounded set [0,S] x
[0,V] where S and V are sufficiently large. The boundary conditions at s=S
and v=V are set to [9]

ou

g(S,’U,t) = eiqta (65)

U(s,V,t) = se ™. (6.6)

For down and out call option equation (6.6) changes to
U(s,V,t) = (s — B)e . (6.7)
and equation (6.5) stays the same.

6.1.1 Setting Up Non Uniform Grid

Non uniform meshes in both s and v direction will be used in this finite differ-

ence scheme, since we are interested in the solution that lies near (s,v)=(K,0)

37

only. A mesh is constructed in a way such that more points are located near
points of interest and the mesh is constructed sparse elsewhere. Building the
grid this way allows us to greatly improve the accuracy of the finite difference
discretization scheme compared to the use of a uniform grid. The non uni-
form grid that we will be using in this section has recently been considered

by Tavella, Randall and Kluge [9]. Let the equidistant points be &; i.e [9]
& = sinh (=K /c) +iA¢ (0 <i<my), (6.8)

where m; is an integer greater or equal to 1 and ¢ > 0 is a constant. The
spacing A £ can be written as,
1
AE = —(sinh’l((S —K)/c) - smh’l(—K/c)) (6.9)

ma

Then the s grid can be defined as
s; = K + esinh(§;), (0 <i<my). (6.10)
For down and out call option equations (6.8) and (6.9) change to
& =sinh (B — K)/c) +iA¢ (0<i<m), (6.11)
AE = 1 (sinh’l((S — K)/c) — sinh™"((B — K)/c)> (6.12)

my

Now for v grid, let the equidistant points be n; [9]

with spacing
1
An = —sinh 1 (V/d), (6.14)
)

where m, is an integer greater or equal to 1 and d > 0 is a constant. Then

v grid can be defined as
v; = dsinh(n;), (0 <7 <mgy). (6.15)

38

Figure 6.1 displays the two dimensional grid for the underlying stock price
and volatility. We have chosen m;=60, my=30, S,,,.=220, V,,..=1.1 and

the strike price K=55. We see that more points are clustered around S=K.

09

0

0.7

06

05

04

0.3

02

0.1

Figure 6.1: Two dimensional grid for S and V with Syaz =220, Vimar=1.1, and K=55.

6.1.2 Finite Difference Scheme

Three basic finite difference schemes that will be introduced in this section
are base on: the backward, central, and forward differences. In this paper, we
will be using the central difference to approximate stock price’s first derivative
and second derivative. We will also use the central difference to approximate
the second derivative of volatility. For volatility’s first derivative, we will use
the central difference when V <1 and use the backward difference when V
> 1. These three approximations for the first and second derivatives can be

summarized below [9]
Backward : f’(l’l) ~ ai7_2f<.17i_2) + ai,—lf(xi—l) + Oél‘yof(ﬂfi) (616)
Central : f'(z;) = fi—1f(@i—1) + Biof(x:) + Pin f(xiv1) (6.17)

39

Forward : f'(x;) = viof (x;) + virf(xit1) + i f (Tir2) (6.18)

with the coefficients given by

A.’Ei —Aﬂji,l — A.I'i AZ',L',1 + QA.’,EZ
a’l -2 = 5 az -1 = s OQ =
2 Al'i_l(A.iUi_l + A.I’l) ! Al’i_lA.%'i 0 AZ’i(A.fL'i_l + Al’l)
_Ax/iJrl Al’lqu — A%Z A%l
ﬁ@—l = 75@‘70 = T A A ﬂz}l =
AZ'@(AIZ + A{L’H_l) ASCiAl'H_l A.’L’H_l(AJZi + AZL’H_l)
. —ZAZL‘H_l — Axi + 2 o Al’i_;,_l + A$i+2 o —AZL’Z'_H
o = Az (Azip + Aﬂ?i+2)’%’1 Az Arg N2 = Azipo(Azipy + Axigo)

The second derivative can be approximated by [9]

(@) = 6o f(zim) + 0iof (i) + 61 f(Tiv) (6.19)

with the coefficients given by

— 2 50 = —2 §:q = 2
N Awl(Axl + Axi-i—l)’ no AZEiAZL’i_H’ o AZEH_l (Al’z + Axi—i—l) .

0i,—1

Let ﬂ;k be the coefficient analogous to f3; ; but in the y direction instead of
X, then the mixed derivative of S and V can be approximated by [9]

02 f

1
m(fﬁuyj) ~ Z BikBirf (Tivk, Yjt)- (6.20)

kl=—1

6.1.3 ADI Scheme

The finite difference discretization of the Heston partial differential equation

yields an initial value problem for a large ODE system of the form
Fi(t7 U) = AIU + b](t) — TU, fO?” 0<t< T, U e §Rm, (621)

where j:0,1,2, F:F0+F1+F2, and A=A0+A1+A2

ou
0s0v”

Ay corresponds to the mixed derivative term

Ay corresponds to the underlying stock price’s first and second derivative

40

oU 92U
terms 52, 5.z

A, corresponds to the variance of the first and second derivative terms -

92U
ov? *

ou
ov?

Let 6 be a given real parameter, then the three ADI schemes for the initial

value problem (6.21) can be written as

Forward Euler Method:
U= Un—l + AtF<tn—17 Un—l)-

Douglas (Do) scheme (Implicit):[11]

UO = Un—l + AtF’(tn—la Un—l);
Uj = Ujfl + eAt(Fj(tm U]) - Fj(tn*h Unfl))a (] =1, 2)7
Un = UQ.

Craig Sneyd (CS) Method:[10]

Uy = Up_1 + AtF(tn 1, Un_1),

Uj = U1 + 0AL(Fj(tn, Uj) = Fj(tn-1,Un-1)), (7 =1,2),
Uo = Up + 5A(Fo(tn, Us) = Fo(tu-1, Un-1)),

Uj = U1 + 0AL(E; (1,U)) = F(tn1,Un)), (G =1,2),
U, = Us.

(6.22)

(6.23)

(6.24)

We will apply forward Euler and Craig-Sneyd methods to price DOC and

DIC barrier options. We will first rewrite these equations so that they can

be coded up in Matlab. For forward Euler method, we do the following

U=U,1+ At(AU,_1 + B —rU,_1).

41

(6.25)

Derivation for Craig-Sneyd can be done as follows

Uo =

U, =

U1 — QAt(AlUl — TUl)

U=
= (I — 0AL(Ay — 1))~

Uy
Uo
Uo
U =

U]Z
U =
U:

Uoia + At(AUgiq + B — 1Upq)

(
(

(I —OAt(Ay —rD))7!
(I —OAL(Ay — 1))

U,

1
= UO + _At(AOUQ - T’UQ -

AoUsiq + 1Uq14)
Uo —+ 9At(A1U1 —+ bl — T’Ul

Up + OAL(A Uy + by — Uy — AyUgg — by + rUga)
= Uy 4 OAL(by — AUpg — by +1Uy)

Up + OAL(— A Upg + 17U oq)

(I — OAt(A; — 1) Uy + 08t (rUpg — A1Usa))

(Ul Jr QAt(rUOld — AgUOld))
1
=Up + §At(A0U2 + by — rUs — (AogUsia + by — 7Uu4))

A1Upg — by +1Uga

(UO + QAt(TUold — Aonld))
([jl + QAt(onld — AgUOld))

Tables below contain a list of DOC and DIC barrier option prices using

the forward Euler and Crag-Sneyd methods respectively. Heston parameters

were kept as in Chapter 5, with strike price of K=55, stock price So=71.2,

risk free interest rate r=0.02, S,,,.=220, V,,..=1.1, and time to maturity

T=1.

Grid Size DIC DOC DIC+DOC | Exact Solution Diff
15x30 0.1813034 | 19.7239852 | 19.9052886 19.7043924 0.2008961
30x60 0.1472834 | 19.6218048 | 19.7690881 19.7043924 0.0646957

60x120 | 0.1685462 | 19.5756501 | 19.7441963 19.7043924 0.0398038

Table 11: The exact and the forward Euler method value for DOC and DIC barrier

options.

42

Grid Size DIC DOC DIC+DOC | Exact Solution Diff
15x30 0.1813032 | 19.7241404 | 19.9054436 19.7043924 0.2010512
30x60 0.1472857 | 19.6217907 | 19.7690764 19.7043924 0.0646840

60x120 | 0.1685463 | 19.5756467 | 19.7441930 19.7043924 0.0398006

Table 12: The exact and the Crag-Sneyd method value for DOC and DIC barrier options.

Case 1

Figure 6.2: DIC option price functions U given by Table 12.

43

Case 1

;
m|
]
i~

180 Lo

qgn oo

)

so .

Figure 6.3: DOC option price functions U given by Table 12.

44

Conclusion

In this paper, we have considered several numerical methods to price down
and out, and down and in barrier options. Firstly, we compared the accuracy
of the standard Monte Carlo and improved Monte Carlo methods applied
to the Black-Scholes model. From our numerical experiment, we can see
that improved MC method is much more accurate than the standard MC.
Secondly, we considered two discretization schemes, Milstein and QE, to be
used in Monte Carlo simulations of Heston models. From our numerical
experiments, we can clearly see that the QE is somewhat slower than the
Milstein method. However, in term of accuracy, the QE scheme performs
much better than Milstein’s.

Finally, we considered the finite difference methods. We used two time in-
tegration schemes: forward Euler and CS. For a given time step, Craig-Sneyd
is unconditionally stable with the order of convergence equal to two. The
forward Euler method seems to be slightly faster in time, but the obtained
solutions are less accurate compare to CS scheme. Interested reader can use
numerical methods described in this paper to price more exotic options such
as double barrier options and digital options. We conclude, that the best
results were obtained by using improved MC of [14] and the QE method [1].
Finite difference discretization provides accurate solutions, but at the price
of large CPU and memory requirements.

45

Appendix

Exact solution for down and out put option using Black-Scholes Matlab
code. All the formulas were obtained from [18].

function [V] = Exact(k,Sd,r,sigma,T)
% this program is written to price down and out barrier put option.

%Input sk sk sk sk sk ok sk sk ok sk sk sk ok sk sk sk ok sk sk ok sk sk ok ok sk sk ok ok
% "k" - Strike Price
% "sd" - Barrier Price
h"r" - Risk Free Interest Rate
% "sigma" - Volatility
% "T" - Time to maturity

U3k sk ok sk ok ok ok sk ok ok o ok ok o ok ok ok ok ok ok ok ok ok Kok ok K ok ok
% Initial stock prices
%So0=[80:2:120] ;
S0=100;
% d1-d8 are formulas describe in the paper
% use to price option value
d1=(log(So./k)+(r+1/2*sigma~2) *(T))/(sigmax*sqrt(T));
d2=(log(So./k)+(r-1/2*sigma~2) *T)/(sigma*sqrt(T));
d3=(1log(So./Sd)+(r+1/2*sigma~2)*T)/ (sigma*sqrt(T));
d4=(log(So./Sd)+(r-1/2*xsigma”~2)*T) /(sigma*sqrt(T));
d5=(log(So./8d)-(r-1/2*sigma~2)*T) / (sigma*sqrt(T));
d6=(log(So./Sd)-(r+1/2*sigma”~2)*T) /(sigma*sqrt(T));
d7=(log((So*k) ./Sd"2)-(r-1/2*sigma~2)*T) /(sigma*sqrt(T));

46

d8=(1log((Sox*k) ./Sd"2)-(r+1/2*sigma~2)*T)/(sigma*sqrt(T));

%Exact formula uses to compute down and out European Put option.
V=kx*exp (-r*T) * (normcdf (d4) -normcdf (d2)-(Sd./So) .~ (-1+(2*r/sigma~2)) .*. ..
(normcdf (d7) -normcdf (d5))) - (So. * (normcdf (d3) -normcdf (d1)-. ..
(8d./So) .~ (1+(2xr/sigma~2)) .* (normcdf (d8) -normcdf (d6)))) ;

% commands use to plot opt price vs stock price
plot(So,V,’--rs’)
title(’Option Price Vs Stock Price’)

xlabel(’Stock Price’)
ylabel(’Option Price’)

end

Improve Monte Carlo Simulation for down and out put option using
Black-Scholes Matlab code.

function [] =StandardMonte(k,Sd,r,sigma,T)
%This program is written to compute down and out barrier put option using
%Improve Monte Carlos Simulation.

% Inputs
U sk sk ok ok ok ok ok ok ok ok sk sk sk sk sk ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok
%"k"- Strike Price
%"8d"-Barrier Price
%'"r"-risk free interest rate
%"sigma"-Volatility
%"T" - Time to maturity
%"Q" - Additional simulation use to improve accuracy
%"m" - #of simulation
%"deltaT" - Step Size
U sk ok ok ok ok ok ok ok ok sk sk sk sk ok sk ok sk ok ok ko ok ok o o ok ok ok ok ok ok ok ok ok ok ok ok
S0=100;
Q=[100];
m=10000;
hold off

%Call Exact function to compute exact
% price for barrier put option

47

Vexact=Exact(k,Sd,r,sigma,T);
% Extract option price for stock price equal to 100 from
% price vector
Vexacti=Vexact(11);
fprintf(® #of simulation M DeltaT Put Price\n’)
% run a loop 10 times to calculate barrier put using 10 different
Jstep sizes
for h=1:3;
% step size
deltaT=(5/(250%2" (h-1)));
% # of sub-interval or the size of the stock price for one
Jitrajectory path
N=ceil(T/deltaT);
% loop to run addition simulation to improve accuracy
for j=1:Q(1)
% generating size m zero vector
payoff=zeros(1l,m);
% generation Nxm matrix to random #
S=randn(N,m) ;
S= (exp((r-0.5%(sigma~2))*deltaT+sigma*sqrt(deltaT).*S));
% a building function is used to calculate stock prices
S=cumprod(S,1);
% and return N- path stock price and m simulation times
S=S.%100;
Sstore=[ones(1,m)*S0;S];
P=exp(-2.*%((Sd-Sstore(l:end-1,:)).*(Sd-Sstore(2:end,:)))./...
(deltaT.*sigma"2.* (Sstore(l:end-1,:).72)));
% fuction uses to check if each column of contains zero
store=sum(S>Sd) ;
% find the column-index where the stock prices never
% hit the barrier
index=find(store==N);
u=unifrnd(0,1,N,m);

check=sum(P<u) ;

48

for w=1l:m
if sum(S(:,w)>Sd)==N && sum(P(:,w)<u(:,w))==N
payoff (w)=max(k-S(end,w),0);
end
end
% formula uses to calculate current value of
% the down and out put option price
V(j)=exp(-r*T) /m* (sum(payoff));
end
% store DeltaT in a vector to plot
deltaT1(h)=deltaT;
% store option value for different deltaT
VMonte (h)=mean(V) ;
fprintf (°%10.0£f1%17.0f| %13.5f 1%20.7f\n’,Q,m,deltaT,VMonte(h))
end
% commands use to plot opt price vs deltaT
plot(deltaTl,VMonte,’r’)
title(’Option Price Vs DeltaT’)
xlabel(’DeltaT’)
ylabel(’Option Price’)
hold on
Exact(l:length(deltaTl),1) = Vexactl;
plot(deltaTl,Exact,’k-’)
% command uses to label the line
legend(’V-Monte Carlo’,’Vexact’)

49

Standard Monte Carlo Simulationfor down and out put option using
Black-Scholes Matlab code.

function [] =Monte3(k,Sd,r,sigma,T)
%This program is written to compution down and out Barrier put option using
% Standard Monte Carlos Simulation.
% Inputs
Yok kok ok sk sksk sk sk ok ok ok ok ok sk sk sk sk sk sk ok sk o ok ok sk sksksk sk ok ok ok ok
%"k"- Strike Price
%"Sd"-Barrier Price
%"r"-risk free interest rate
%"sigma"-Volatility
%"T" - Time to maturity
%"Q" - Additional simulation use to improve accuracy
%"m" - #of simulation
%"deltaT" - Step Size
%o kokokok sk sk sksk sk sk ok ok ok ok sk sk sk sk skok ok sk ok ok sk sk sksksksk sk ok sk ok ok ok

Q=[100];
m=10000;
hold off
%Call Exact function to compute exact
% price for barrier put option
Vexact=Exact(k,Sd,r,sigma,T);
% Extract option price for stock price equal to 100 from
% price vector
Vexacti=Vexact(11);
fprintf (’ M DeltaT Put Price\n’)
for h=1:3;
% run a loop 3 times to calculate barrier put using
% 10 different step sizes
% step size
deltaT=(5/(250%2"(h-1)));
% # of sub-interval or the size of the stock price for one
% trajectory path

90

N=ceil(T/deltaT);
% loop to run addition simulation to improve accuracy
for j=1:Q(1)
% generating size m zero vector
payoff=zeros(1l,m);
% generation Nxm matrix to random #
S=randn(N,m) ;
S= (exp((r-0.5*(sigma~2))*deltaT+sigma*sqrt(deltaT).*S));
% a building function is used to calculate stock prices
% and return N- path stock price and m simulation times
S=cumprod(S,1);
S5=5.%100;
% fuction uses to check if each column of contains zero
store=sum(S>Sd) ;
% find the column-index where the stock prices never hit
% the barrier
index=find(store==N) ;
% if it doesnt hit the barrier calculate the payoff at time
% T
if find(store==N)
payoff=max(k-S(end,index),0);
end
% formula uses to calculate current value of the down and
% out put option price
V(j)=exp(-r*T) /m* (sum(payoff));
end
% store DeltaT in a vector to plot
deltaT1(h)=deltaT;
% store option value for different deltaT
VMonte (h)=mean(V) ;
fprintf (°%11.0f| %13.5f |%14.7f\n’,m*Q,deltaT,VMonte(h))
end
close Figure 1
% commands use to plot opt price vs deltaT

51

plot(deltaTl,VMonte,’-ro0’)
title(’Option Price Vs DeltaT’)
xlabel(’DeltaT’)

ylabel(’Option Price’)

hold on

Exact(1l:1length(deltaTl),1) = Vexactl;
plot(deltaTl,Exact,’-k’)

% command uses to label the line
legend(’V-Monte Carlo’,’Vexact’)

52

Heston Exact solution for vanilla call option Matlab code. All the
formulas were obtained from [17]

Driver uses to call Heston function to compute call option.

function [Vcall_store]=HesExact_Driver()

% declare global variables to use in other function.

global kappa lamda theta vO rho sigma r ul u2 a bl b2

global SO K T x

para=[0.1237 0.0677 0.3920 1.1954 -0.6133];
%hInitial Values

S0=71.2;
%K=[80:5:120];
K=[40:5:55];
T=1;

JHeston’s Parameters

kappa=para(4);

lamda=0;

theta=para(2);

vO=para(1l);

rho=para(5) ;

sigma=para(3);

r=0.02;

ul=1/2; u2=-1/2;

a=kappax*theta;

bl=kappatlamda-rho*sigma;

b2=kappat+lamda;

% change of variable to avoid negative stock prices.

x=1og(S0);

% Call Heston function to compute call option.

store=size(K,2);

for w=1:store
Vcall = Heston_Exact(S0,K(w),T);
Vcall_store(w)=Vcall(end);

end

53

function[Vcall]= Heston_Exact(S0,K,T)
% function uses to compute call option using stable Heston’s formula

HINPUL kokkokskokskok ok ko ok ok ok ok ok ok Kok Kk ROk R KRR ROk KRR KoK

% SO - Spot price

yA K - Strike price

YA T - Time to maturity

% S Kok koK kKK ok KK oK R KR KKK SRR KR KR KRRk Kok K

% upper bound of the integral
t=[50,100,200,300,400,500,1000] ;
% declare variables globally
global kappa lamda theta vO rho sigma r ul u2 a bl b2
global St1 K1 T1
% loop to calculate call option for different upper bound
for w=1:size(t,2)
St1=S0;
K1=K;
T1=T,;
% complete closed form solution with intergration of function
pl=1/2 + 1/pi*quadl(@pfunc,0,t(w));
p2=1/2 + 1/pi*quadl(@pfunc2,0,t(w));
% compute the call option
Vcall=SO0*pl-Kxexp (-r*T)*p2;
end
function y=pfunc(phi) Y%integrand function
global St1 K1 T1
y=myfunc(St1,K1,T1,phi); Y%calls integrand function
function y=pfunc2(phi) % integrand function
global St1 K1 T1
y=myfunc2(St1,K1,T1,phi); %calls integrand function

function [pl] = myfunc(St,K,T,phi)
% this function uses to compute heston’s probability formula

54

% Input >k >k >k 3k 5k 5k ok 5k 5k ok >k >k >k >k 3k 5k ok ok 5k >k %k >k >k 5k 3k ok ok 5k 5k 5k >k %k 5k >k 5k 5k ok 5k 3k >k %k %k >k %k %k 5k 5k 5k >k %k k %

yA St - Spot price

pA K - Strike price

yA T - time to maturity

pA phi - Unknown variable uses to in the integral

% skskskok sk ok ok ok sk ok ok sk sk sk sk sk sk ok ok ok ok ok ok sksk sk sk sk sk sk sk kok ok sk sk sk sksk sk sk ok ok ok ok ok sk sk ok

global kappa lamda theta vO rho sigma r ul u2 a bl b2 x
% turn off the warning message.

warning off;

s0=St;

% formula 17

dl = sqrt((rho*sigma*phi.*i-bl)." 2-sigma~2*(2*%ul*phi.*i-phi.~2));
gl = (bl-rho*sigma*phi*i + d1)./(bl-rho*sigma*phi*i - di);
Cl = r*xphi.*i*T + (a/sigma”2).*((bl- rho*sigma*phi*i - d1)*T - ...

2xlog((exp(-d1*T)-gl)./(1-g1)));

D1 = (bl-rho*sigma*phi*i + d1)./sigma”2.*((1-exp(d1*T))./ ...
(1-g1.*exp(d1xT)));

f1= exp(Cl + D1xv0 + ixphixx);

%sdefinition of integrand (formula 18)

pl=real (exp(-i*phix*log(K)).*f1./(1li*phi));

end

function [p2] = myfunc2(St,K,T,phi)
% this function uses to compute heston’s probability formula

% Input >k >k >k 3k 5k ok ok 5k 5k >k >k >k >k >k 3k 5k ok ok 5k >k %k >k >k >k 3k ok 5k 5k 5k >k >k >k %k >k >k %k ok 5k 5k >k %k %k %k %k %k >k >k >k >k Xk k %

b St - Spot price

pA K - Strike price

pA T - time to maturity

yA phi - Unknown variable uses to in the integral

% sk sk sk ok ok ok ok ok s ok ook ok sk sksk sk sk ok ok s ko ok ok sk sk sk sk sk sk sk s fok ok sk sk sk sk sk sk sk ok ok ok ok ok sk ok ok

global kappa lamda theta vO rho sigma r ul u2 a bl b2 x
% turn off the warning message.

warning off;

s0=St;

%)

% formula 17

d2= sqrt((rho*sigma*phi.*i-b2) . 2-sigma”2*(2*u2*phi.*i-phi."2));
g2 = (b2-rho*sigma*phi*i + d2)./(b2-rho*sigma*phi*i - d2);

C2 rxphi.*i*T + a/sigma”2.*((b2- rho*sigma*phi*i - d2)*T - ...
2x1log((exp(-d2+T)-g2) ./(1-g2)));

D2 = (b2-rho*sigma*phi*i + d2)./sigma”2.*((1-exp(d2*T))./ ...
(1-g2.*exp(d2xT)));

f2= exp(C2 + D2*v0 + ixphi*x);

Jdefinition of integrand (formula 18 from Steven L Heston’s paper)
p2=real (exp(-i*phixlog(K)) .*f2./(i*phi));

end

Monte Carlo Simulation uses Milstein’s method to discretize Heston
stochastic volatility model for call option Matlab code.

function [] = Milstein(T)
% This function was written to compute value of a call option
% using Milstein’s method for stochastic volatility model.

oA,:]:npu‘t >k 3k 5k >k 3k 5k >k >k 5k >k >k 5k 5k >k 5k 5k >k 3k 3k >k 3k 5k >k 5k 5k >k 3k 5k >k >k >k >k 5k >k >k >k 3k 3k >k >k 5k >k >k >k >k %k >k >k >k >k >k *k >k >k

% T - Time to maturity
ok Kok ko sk ok ok ok ok ok sk ok sk ok sk ok ok ok ok o sk ok ok o oK oK oK oK KoK KKK KKK KK KoK KK oK

x=[0.1237 0.0677 0.3920 1.1954 -0.6133];

VExact=HesExact_Driver();

fprintf (°%13s | %12s | %18s | %16s | %18s | %21s\n’,’M’,’N’,’Strike’,...
’Heston Price’,’Exact Price’,’Diff in Price’)

S=71.2; % stock price

r=0.02; % risk free rate

vO=x(1) ; % intial variance

vbar=x(2) ; % long term mean variance

eta=x(3); % volatility of the variance

rho=x(5) ; % correlation between the stock price and volatility
lamda=x(4) ; % speed of reversion

K=[80:5:120]; % Strike Price

o6

% build covariance matrix
e = ones(2,1); em = ones(2-1,1);
Q=diag(l*e,0) + diag(rho*em,1) + diag(rho*em,-1);
% compute cholesky factorization matrix
G=chol(Q);
% # of simulation
M=1000000;
% time step
N=1000;
dt=T/N;
% change of variable to avoid negative stock price
x=log(S) .*ones(1,M);
% vectorize intial variance
v=v0.*ones (1,M);
for i=1:N
% generate random number with correlation rho
Phi=G’*randn(2,M) ;
/» compute the value of x and v. If v is negative ,we take the
% absolute value
x=x+r*dt-v/2.*dt+sqrt (vxdt) .xPhi(1,:);
v=(sqrt(v)+eta/2*sqrt(dt) .*Phi(2,:)) . 2-lamda*(v-vbar) .*. ..
dt-(eta”2/4) .*dt;
% take absolute value of volatility to avoid negative vol
v=abs (v) ;
end
% since x=log(S) , then S= exp~x
S=exp(x);
Store=size(K,2);
% compute call value by calculating the mean of the payoff vector and
% discount back to time zero.
for j=1:Store
Vcall (j)=exp(-r*T) * (sum(max (S-K(j),0)))/M;
Diff=Vcall(j)-VExact(j);
fprintf (°%13.0f | %12.0f | %18.0f | %15.6f | %18.6f | %18.6f\n’,...

o7

M,N,K(j),Vcall(j),VExact(j),Diff)
end
% norm different between exact value and numerical value
Norm_Diff=norm(VExact-Vcall)

Monte Carlo Simulation uses Milstein’s method to discretize Heston
stochastic volatility model for DOC and DIC Matlab code.

function [] = Milstein_exotic(T)
% This function was written to compute value of DOC and DIC using Milstein’s
% method to discretize Heston stochastic volatility model.

%Input >k 3k 3k >k 3k 5k >k >k 3k >k >k 5k 3k >k >k 3k >k 5k 3k >k 3k 3k >k 3k 3k >k 5k 5k >k >k 5k 5k >k 5k 3k >k %k 3k >k %k 3k >k 3k >k >k >k >k >k >k >k >k *k >k %k

% T - Time to maturity

Uk sk sk sk sk ok ok ok ok o o o ok ok sk ok ok ok ok ok ok ok o o ok kKoK ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok o ok o kK ok
%Heston Parameters
x=[0.1237 0.0677 0.3920 1.1954 -0.6133];
% Call a function to compute Exact option price
VExact=HesExact_Driver();
fprintf (°%13s | %12s | %18s | %156s\n’,’M’,’N’,’Strike’,’Heston Price’)

S0=71.2; % Spot price

r=0.02; % Risk free rate

vO=x(1) ; % Intial variance

vbar=x(2) ; 7% Long term mean variance

eta=x(3); % Volatility of variance

rho=x(5); % Correlation between stock price and volatility
lamda=x(4); % Mean reversion speed

Sd=60; % Down Barrier Price

K=[40:5:55]; % Strike Price

% build covariance matrix

e = ones(2,1); em = ones(2-1,1);

Q=diag(1*e,0) + diag(rho*em,1) + diag(rho*em,-1);
% compute cholesky factorization matrix
G=chol(Q);

o8

% # of simulation
M=1000000;
% number of time step
N=100;
% time step
dt=T/N;
J%When w=1 the program will calculate Down and out Call Option
J%When w=2 the program will calculate Down and In Call option
for w=1:2
indexl=zeros(1,M);
index2=[];
index3=zeros(1,M);
% change of variable to avoid negative stock price
x=1og(S0) . *ones(1,M);
% vectorize intial variance
v=v0.*ones (1,M);
if w==
display(’Down and Out Call Option Price’)
else
display(’Down and In Call Option Price’)
end
for i=1:N
% generate random number with correlation rho
Phi=G’*randn(2,M);
% compute the value of x and v. If v is negative ,we take the
% absolute value
x=x+r*dt-v/2.*dt+sqrt (v¥dt) .*Phi(1,:);
% this process uses to check wether the stock hit the barrier
% or not
S=exp(x);
if w==
% down and out
index2=(S<=84) ;
indexstore=[index1+index?2] ;

59

indexl=index2;

else
% down and in
index2=(S<=84) ;
indexstore=[index3+index2] ;
index3=index2;

end

v=(sqrt(v)+eta/2*sqrt(dt) .*Phi(2,:)) . 2-1lamdax*. ..
(v-vbar) . *dt-(eta~2/4) .*dt;
v=abs (v);
end
% since x=log(S) , then S= exp“x
S=exp(x);
if w==1
Jdown and out
S=S.*not (indexstore) ;
else
%down and in
S=S.*not (indexstore==0) ;
end
% find the non zero stock price , and use to calculate option price
Store=size(K,2);
% compute call value by calculating the mean of the payoff vector and
% discount back to time zero.
for j=1:Store
Vcall(j)=exp(-r*T)* (sum(max (3-K(j),0)))/M;
fprintf (°%13.0f | %12.0f | %18.0f | %15.4f\n’,M,N,K(j),Vcall(j))
Vexact (j)=VExact(j);
end
%note that Down and out call plus Down and in call option equal to
%vanilla call option (1)
if w==1
V_out=Vcall;
else

60

V_in=Vcall;

end
end
% compute vanilla call option to verify wether (1) is true
V_Call=V_out+V_in;
Diff=norm(V_Call-Vexact);
display(Vexact)
display(V_Call)
display(Diff)

Monte Carlo Simulation uses QE method to discretize Heston stochas-
tic volatility model for call option Matlab code.

function [] = QE(T)
% This function was written to compute value of a call option using QE
% method to discretize Heston stochastic volatility model.

%Input stk ok o ok sk ok ok o ok sk ok ok o ok skok ok o ok skok ok o ok sk sk ok o ok sk ok ok ok ok sk ok ok o sk sk ok ok sk ok ok o sk ok ok ok
%» T - Time to maturity
U sk sk sk ok sk sk ok o ok sk ok o ok sk ok ok o ok sk ok ok o ok sk sk ok ok ok sk ok ok ok sk sk ok ok ok sk sk ok ok sk ok ok ok ok ok ok
%x=[0.04,0.05,0.1,1,0];
x=[0.1237 0.0677 0.3920 1.1954 -0.6133];
VExact=HesExact_Driver();
S=71.2; % stock price
fprintf (°%13s | %12s | %18s | %16s | %18s | %21is\n’,’M’,’N’,...
’Strike’ ,’Heston Price’,’Exact Price’,’Diff in Price’)

r=0.02; % risk free rate

vO=x(1) ; % intial variance

vbar=x(2) ; % long term mean variance

eta=x(3); % volatility of variance

rho=x(5) ; % correlation between the stock price and volatility
lamda=x(4) ; % speed of reversion

K=[80:5:120]; % Strike Price
% # of simulation
M=1000000;

61

% time step
N=1000;
dt=T/N;
% change of variable to avoid negative stock price
x=log(8S) .*ones(1,M);
% vectorize intial variance
v=v0.*ones(1,M);
alphal=0.5;
alpha2=0.5;
psi_c=1.5;
for i=1:N
%» assume some arbirary level psi_c between[1,2]
% QE Algorithm: 1, Given VO , compute m and s”2
vold=v;
m=vbar+(vold-vbar) . *exp(-lamda*dt) ;
s_square=((vold*eta”2*exp(-lamda*dt))/lamda). ..
*x(1-exp(-lamda*dt))+((vbar*eta~2)/(2xlamda)). ..
*(1-exp(-lamdaxdt)) "2;
% 2,compute psi=s~2/m"2
psi=s_square./m."2;
% 3, draw a uniform random number Uv
U_V = rand(size(vold));
% if psi<=psi_c do the following:
index= find(psi<=psi_c);
% a, compute a and b using 27,28
b_square=2./psi(index)-1+sqrt(2./psi(index)) .*. ..
sqrt(2./psi(index)-1);
a=m(index) ./ (1+b_square);
% b, compute Z_V
Z_V = norminv(U_V(index));
% c,compute Vnew using 23
v(index)=a.*(sqrt(b_square)+Z_V)."2;
hendif
% if psi>psi_c do the following:

62

index2=find(psi>psi_c);
% a, compute beta and p
%p=(psi(index2)-1)./(psi(index2)+1);
p=1-2./(psi(index2)+1);
beta=(1-p)./m(index2) ;
% b, use 26 , where psi inverse is giving in 25
v(index2)=0;
% if U_V > p then do the following:
index4=£find (U_V(index2)>p);
v(index2(index4))=log((1-p(index4))./...
(1-U_V(index2(index4)))) ./beta(index4) ;
%hendif
hendif
%intV_increment = 0.5*xdt*(vold+v);
% parameters use to calculate stock prices
KO=-rho*lamda*vbarxdt/eta;
K1=alphal*dt*(lamda*rho/eta-0.5)-rho/eta;
K2=alpha2*dt*(lamda*rho/eta-0.5)+rho/eta;
K3=alphal*dt*(1-rho"2);
K4=alpha2*dt*(1-rho~2);
% log of stock prices
x=x+r*dt+K0+K1*vold+K2*v+sqrt (K3*vold+K4+v) . xrandn(size(x)) ;
end
% since x=log(S) , then S= exp~x
S=exp(x);
% compute call value by calculating the mean of the payoff vector and
% discount back to time zero.
for j=1:size(X,2)
%VPut (j)=exp (-r*T)* (sum(max (K(j)-S,0)))/NM;
VCall(j)=exp(~r*T)*(sum(max(S-K(j),0)))/NM;
Diff=VCall(j)-VExact(j);
fprintf (°%13.0f | %12.0f | %18.0f | %15.6f | %18.6f | %18.6f\n’...
,M,N,K(j),VCall(j),VExact(j),Diff)
end

63

% norm different between exact value and numerical value
Norm_Diff=norm(VExact-VCall)

Monte Carlo Simulation uses QE method to discretize Heston stochas-
tic volatility model for DOC and DIC Matlab code.

function [] = QE_exotic(T)
%» This function was written to compute value of DOC and DIC using
% QE method to discretize Heston stochastic volatility model.

%Inpu‘t >k >k >k 3k 3k 3k 3k ok 5k 5k >k >k >k >k 3k 3k 5k 5k 3k 5k >k >k %k 5k 5k 3k 3k 5k 5k 5k 5k >k >k >k >k >k 5k 3k ok 5k 5k >k >k %k %k %k %k >k %k >k >k >k k %

% T - Time to maturity

ok sk ok ok sk ok ok ok o ok ok ok ok o ok o ok ok o ok ok ok o ok oK ok o ok oK ok ok ok ok Kok ok ok Kok ok K ok
%Heston Parameters
x=[0.1237 0.0677 0.3920 1.1954 -0.6133];
% Call a function to compute Exact option price
VExact=HesExact_Driver();

S0=71.2; % Spot price

r=0.02; % risk free rate

vo=x(1) ; % intial variance
vbar=x(2) ; % long term mean variance
eta=x(3); % Volatility of variance
rho=x(5) ; % Correlation between stock price and volatility
lamda=x(4); % mean reversion speed
Sd=60; % Down Barrier Price
K=[40:5:55]; % Strike Price

% # of simulation

M=1000000;

% time step

N=100;

dt=T/N;

fprintf (°%13s | %12s | %18s | %16s\n’,’M’,’N’,’Strike’,’Heston Price’)
alphal=0.5;
alpha2=0.5;

64

psi_c=1.5;
for w=1:2
indexl=zeros(1,M);
index2=[];
index3=zeros(1,M);
% change of variable to avoid negative stock price
x=10g(S0) . *ones(1,M);
% vectorize intial variance
v=v0.*ones(1,M);
KO=zeros(1,M);
if w==
display(’Down and Out Call Option Price’)
else
display(’Down and In Call Option Price’)
end
for i=1:N
% assume some arbirary level psi_c between[1,2]
%» QE Algorithm: 1, Given VO , compute m and s°2
vold=v;
m=vbar+(vold-vbar) . *exp(-lamdaxdt) ;
s_square=((vold*eta~2*exp(-lamda*dt))/lamda)*. ..
(1-exp(-lamdaxdt))+((vbar*eta~2)/(2+lamda)) ...
*x(1-exp(-lamdax*dt)) "2;
% 2,compute psi=s~2/m"2
psi=s_square./m."2;
% 3, draw a uniform random number Uv
U_V = rand(size(vold));
% if psi<=psi_c do the following:
index= find(psi<=psi_c);
% a, compute a and b using 27,28
b_square=2./psi(index)-1+sqrt(2./psi(index)) .*. ..
sqrt(2./psi(index)-1);
a=m(index) ./(1+b_square) ;
% b, compute Z_V

65

Z_V = norminv(U_V(index));
% c,compute Vnew using 23
v(index)=a.*(sqrt(b_square)+Z_V) . 2;
% if psi>psi_c do the following:
index2=find (psi>psi_c);
% a, compute beta and p
%p=(psi(index2)-1)./(psi(index2)+1);
p=1-2./(psi(index2)+1);
beta=(1-p)./m(index2) ;
% b, use 26 , where psi inverse is giving in 25
v(index2)=0;
index4=find (U_V(index2)>p) ;
v(index2(index4))=log((1-p(index4))./. ..
(1-U_vV(index2(index4)))) ./beta(index4) ;
% parameters use to calculate stock prices
KO=-rho*lamda*vbar*dt/eta;
K1=alphal*dt*(lamda*rho/eta-0.5)-rho/eta;
K2=alpha2*dt*(lamda*rho/eta-0.5)+rho/eta;
K3=alphal*dt*(1-rho"2);
K4=alpha2*dt*(1-rho~2);
A=K2+0.5%K4;
KO(index)=-A*b_square.*a./(1-2%A*a)+0.5%log(1-2%A*a)-. ..
(K1+0.5%K3)*vold (index) ;
KO (index2)=-log(p+(beta.*(1-p))./(beta-A))-...
(K1+40.5%K3) *vold (index2) ;
Kstar=KO;
x=x+r*dt+K0+K1*vold+K2*v+sqrt (K3*vold+K4*v) . *randn(size(x)) ;
% since x=log(S) , then S= exp~x
S=exp(x);
if w==
% down and out
index2=(S<=84d) ;
indexstore=[index1+index2] ;
indexl=index2;

66

end

else
%hdown and in
index2=(S<=84d) ;
indexstore=[index3+index2] ;
index3=index2;
end
end
% since x=log(S) , then S= exp”x
S=exp(x);
if w==
%down and out
S=S.x*not (indexstore) ;
else
%down and in
S=S.*not (indexstore==0) ;
end
% compute call value by calculating the mean of the payoff vector and
% discount back to time zero.
for j=1:size(X,2)
%VPut (j)=exp (-r*T)* (sum(max (K(j)-S,0)))/M;
VCall(j)=exp(—r*T)*(sum(max (S-K(j),0)))/M;
fprintf (°%13.0f | %12.0f | %18.0f | %15.4f\n’,M,N,K(j),VCall(j))
Vexact (j)=VExact(j);
end
Jsnote that Down and out call plus Down and in call option equal to
%vanilla call option (1)

if w==
V_out=VCall;
else
V_in=VCall;
end

% compute vanilla call option to verify wether (1) is true
V_Call=V_out+V_in;

67

Diff=norm(V_Call-Vexact);
display(Vexact)
display(V_Call)
display(Diff)

Heston’s parameters calibration Matlab code.

%Heston Calibration Driver

clc;

clear;

close all;

% Turn on Jacobian , Display and MaxIter
options=optimset(’Jacobian’,’on’,’Display’,’iter’, ’MaxIter’,20);
% starting point for unknown coefficient x

x0=[0.15665 0.06 0.4356 1.1662 -0.67];

% Call LevenbergMarquardt solver build in function to solve for
% unknown x and residual norm.
[x,resnorm]=lsgnonlin(@myfun,x0, [], [],options)

% compute Call option using Milstein
V_heston=Heston_Calibration(x);

% Market implied volatility for Rimm US Equity (Mat Date: May 2010)
impliedvol_market=[0.9443 0.7656 0.604 0.4552 0.3754...

0.3514 0.3289 0.3285 0.3384 0.3635 0.3944];

%Strike price

K=[40:5:90];

T=1/12; % 1 month to expiry, Maturirty Date :May 2010

hT=1;

r=0.02;

% Spot price

S0=71.20;

% Compute implied vol using blackschole model
impliedvol_heston=blsimpv(S0,K,r,T,V_heston)

%plot the approximate Implied volatility
plot(K,impliedvol_heston);

%plot(T,impliedvol_heston);

68

hold on

plot (K,impliedvol_market,’red’);

%plot(T,impliedvol_market,’red’)
xlabel (’Strike Price’)
% xlabel(’Time to maturity’)

ylabel(’ Implied

Vol?)

title(’ Implied Vol vs Strike Price’)

Jtitle(’ Implied

Vol vs Time to maturity’)

legend (’Heston Model Implied Vol’,’Market Implied Vol’

function [Vcall] =

Heston_Calibration(x)

% This function was written to compute value of a call option using

% Milistein’s method to discretize Heston stochastic volatility model.

%Input >k >k 3k 3k 3k 3k 3k 3k 3k 3k >k >k >k 3k 5k 3k 5k 3k 3k 3k 5k >k >k 3k >k 5k 3k 5k 5k 3k ok >k %k >k K >k 5k 3k 3k 3k 5k >k %k %k k %k k sk sk sk sk sk k %

% x - Heston’s Parameters
O sk sk ke ok sk sk sk ok sk s ok ok sk o ok ok K ok ok sk 3 ok ok sk ok ok oK ok ok sk 3k ok ok ok ok sk ok ok K ok ok ok ok ok ok K ok

S=71.2; yA
r=0.02; b
vO=x(1); b
vbar=x(2) ; b
eta=x(3); b
lamda=x(4); yA
rho=x(5) ; YA

K=[40:5:90]; %
T=1/12; yA

spot price

risk free rate

initial variance

long term mean variance

volatility of variance

mean reversion speed

correlation between stock price and volatility
strike price

Time to maturity

% build covariance matrix

e = ones(2,1); em

= ones(2-1,1);

Q=diag(1l*e,0) + diag(rho*em,1) + diag(rho*em,-1);
% compute cholesky factorization matrix

G=chol(Q);

% # of simulation
M=10000;

% time step
dt=T/1000;

69

% change of variable to avoid negative stock price

S_tran=log(S) .*ones(1,M);

% vectorize intial variance

v=v0.*ones (1,M);

for i=1:1000
% generate random number with correlation rho
Phi=G’*randn(2,M);
% compute the value of x and v. If v is negative ,we take the
% absolute value
S_tran=S_tran+r*xdt-v/2.*dt+sqrt (v*dt) .*Phi(1,:);
v=(sqrt(v)+eta/2*sqrt(dt) .*Phi(2,:)) . 2-1lamdax*. ..
(v-vbar) .*dt-(eta"2/4) . *dt;
v=abs (V) ;
end

% since x=log(S) , then S= exp~x

S=exp(S_tran);

W=size(K,2);

for j=1:W

% compute call value by calculating the mean of the payoff vector and

% discount back to time zero.

Vcall(j)=mean(max(S-K(j),0));

end

Vcall=exp(-r*T)*Vcall;

function [F,J] = myfun(x)

% Function that return the absolute value between the Monte Carlo
% option prices and market prices(F) and Jacobian matrix.
% It takes in Heston’s Paremeters set.

S0=71.2; % Spot price

T=1/12; % time to maturity

r=0.02; % risk free rate

% grid step

dx=10"-2;

% Market Implied volatility

sigma=[0.9443 0.7656 0.604 0.4552 0.3754 0.3514 0.3289...

70

0.3285 0.3384 0.3635 0.3944];
% strike price
K=[40:5:90];
% Call Market Value
V_market=blsprice(S0,K,r,T,sigma);
% Pricing a Call Value using Heston model
V_Heston=Heston_Calibration(x);
% objective function
F=V_Heston-V_market;
% uses to compute DF/DX1 column vector
x1=[x(1)+dx,x(2),x(3),x(4) ,x(5)];
% uses to compute DF/DX2 column vector
x2=[x(1),x(2)+dx,x(3),x(4),x(5)];
% uses to compute DF/DX3 column vector
x3=[x(1),x(2) ,x(3)+dx,x(4) ,x(5)];
% uses to compute DF/DX4 column vector
x4=[x(1),x(2),x(3) ,x(4)+dx,x(5)];
% uses to compute DF/DX5 column vector
x5=[x(1),x(2),x(3),x(4) ,x(5)+dx];
% by checking nargout , we can avoid computing J when Matlab function
% is called with only one output argument
if nargout>1
F_dx1=(Heston_Calibration(x1)-V_market)’;
F_dx2=(Heston_Calibration(x2)-V_market)’;
F_dx3=(Heston_Calibration(x3)-V_market)’;
F_dx4=(Heston_Calibration(x4)-V_market)’;
F_dx5=(Heston_Calibration(x5)-V_market)’;
% compute DF/DX1 using forward difference
DF_dx1=(F_dx1-F’)/dx;
% compute DF/DX2 using forward difference
DF_dx2=(F_dx2-F’)/dx;
% compute DF/DX3 using forward difference
DF_dx3=(F_dx3-F’)/dx;
% compute DF/DX4 using forward difference

71

DF_dx4=(F_dx4-F’) /dx;
% compute DF/DX5 using forward difference
DF_dx5=(F_dx5-F’)/dx;
% Jacobian Matrix
J=[DF_dx1,DF_dx2,DF_dx3,DF_dx4,DF_dx5] ;
end
end

Finite Difference Methods to Price DIC Barrier Option

clear all;

close all;

clc;

% input

Smax=220;

K=55;

B=60;

% number of column of the grid i.e size of S grid is 61
m1=30;

% number of row of the grid, i.e size of S grid is 31
m2=15;

j=[0:m1];

w=[0:m2] ;

V=1.1;

c=K/5;

d=V/500;

% Case 1

T=1;

r=0.02; %rd

q=0; Y%rt

lambda=1.1954;

vbar=0.0677;

sigma=0.3920 ;

rho=-0.6133;

Jx**x non uniform stock grid

72

delta_xi=1/ml1*(asinh((Smax-K)/c)-asinh(-K/c));
xi=asinh(-K/c)+j*delta_xi;
dt=delta_xi~2/100;

nt=T/dt;

% stock grid

s_grid=K+c*sinh(xi)’;

9,k Kk

%index_test=find(s_grid<=B);
index_test=find(s_grid>B);
s_barrier=s_grid;
s_barrier(index_test)=0;

% **x*%x non uniform volatility grid
delta_eta=1/m2*x(asinh(V/4d));
eta=wxdelta_eta;
v_grid=d*sinh(eta)’;

indexS = length(s_grid);

indexV = length(v_grid);

V = repmat(v_grid,1,indexS);

S=repmat(s_grid,1,indexV)’;

Si=repmat (s_barrier,1,indexV)’;

s_vect = reshape(S, indexS*indexV, 1);

v_vect = reshape(V, indexS*indexV, 1);

s_barrier=reshape(S1,indexS*indexV,1);

%initial condition

u_initial=max(s_barrier-K,0);

N=size(s_vect,1);

%u_initial=max(s_vect-K,0);

[A_central_S, A_central_V, A_central_SS,

A_central_VV, A_central_SV] = ...
createlnteriorAMatrices(s_grid, v_grid);

u = u_initial;

current_time = 0;

s_temp=repmat (s_vect,1,N);

v_temp=repmat (v_vect,1,N);

73

AO = rho*sigma*s_temp.*v_temp.*A_central_SV;

A1l = (r-q)*s_temp.*A_central_S + ...

0.5%(s_temp."2) .*v_temp.*A_central_SS;
A2 = 0.5%(sigma”2)*v_temp.*A_central _VV + ...

lambda* (vbar-v_temp) . *A_central_V;
A = A0 + A1 + A2;
I = speye(indexS*indexV,indexS*indexV) ;
theta = 0.5;
t = current_time + dt;
t=0;
[b_S, b_SS] = createBVectorForS(v_grid, s_grid, q, t);
[b_V, b_VV] = createBVectorForV(v_grid, s_grid, q, t);
b0 = zeros(indexV*indexS,1);
bl = (r-q)*s_vect.*b_S + ...

0.5%s_vect. 2.*%v_vect.*b_SS;

b2 = (lambda*(vbar - v_vect)).*b_V + ...

rho*sigma*s_vect.*v_vect.*b_VV;

B =bl + b2 + b0;

htime-stepping

for h=1:ceil(nt)
u0 = u + dtx(Axu+B-r*u);
ul=(I-theta*dt*(A1-r*I))\ (uO-theta*xdt* (Al*u-r*u));
u2=(I-thetaxdt* (A2-r*I))\ (ul-theta*xdt* (A2*u-r*u)) ;
u0_hat=u0+theta*dt* (AO*u2-r*u2-A0*u+r*u) ;
u0_hat=u0_hat+(0.5-theta) *dt* (Axu2+B-r*u2-Axu-B+r*u) ;
ul_hat=(I-theta*dt*(Al-r*I))\(u0_hat+theta*dt*(-Al*u+r+*u));
u2_hat=(I-theta*dt*x (A2-r*I))\ (ul_hat+thetaxdt*(-A2*u+r*u));
u=u2_hat;

end

surf(s_grid, v_grid, reshape(u,indexV,indexS));

xlabel(°V’)

xlabel(’S”’)

ylabel(’V’)

zlabel(°U’)

74

title(’Case 1)
u=reshape(u,indexV, indexS);
price = interp2(S,V,u,71.2,0.1237)

Finite Difference Methods to Price DOC Barrier Option

clear all;
close all;
clc;

% input
Smax=220;
K=5b5;
B=60;

% number of column of the grid i.e size of S grid is 61
m1=30;

J» number of row of the grid, i.e size of S grid is 31
m2=15;

j=[0:m1];

w=[0:m2] ;

V=1.1;

c=K/5;

d=V/500;

% Case 1

T=1;

r=0.02; J%rd

q=0; %rf

lambda=1.1954;

vbar=0.0677;

sigma=0.3920 ;

rho=-0.6133;

Jx**x non uniform stock grid
delta_xi=1/mi1*(asinh((Smax-K)/c)-asinh((B-K)/c));
xi=asinh((B-K)/c)+j*delta_xi;

dt=delta_xi~2/100;

nt=T/dt;

75

% stock grid

s_grid=K+c*sinh(xi)’;
index_test=find(s_grid<=B);
s_grid(index_test)=0;

% **x* non uniform volatility grid
delta_eta=1/m2*(asinh(V/d));
eta=wxdelta_eta;
v_grid=d*sinh(eta)’;
length(s_grid);
length(v_grid);

indexS

indexV
V = repmat(v_grid,1,indexS);
S=repmat(s_grid,1,indexV)’;
s_vect = reshape(S, indexS*indexV, 1);

v_vect = reshape(V, indexS*indexV, 1);

N=size(s_vect,1);

u_initial=max(s_vect-K,0);

[A_central_S, A_central_V, A_central_SS,

A_central_VV, A_central_SV] = ...
createlnteriorAMatrices(s_grid, v_grid);

u = u_initial;

current_time = 0;

s_temp=repmat (s_vect,1,N);

v_temp=repmat (v_vect,1,N);

A0 = rhox*sigma*s_temp.*v_temp.*A_central_SV;

A1 = (r-q)*s_temp.*A_central_S + ...
0.5%(s_temp."2) .*v_temp.*A_central_SS;

A2 = 0.5%(sigma2)*v_temp.*A_central VV + ...
lambdax (vbar-v_temp) . *A_central_V;

A = A0 + A1 + A2;

I = speye(indexS*indexV,indexS*indexV) ;

theta = 0.5;

t = current_time + dt;

t=0;

[b_S, b_SS] = createBVectorForS(v_grid, s_grid, q, t);

76

[b_V, b_VV] = createBVectorForV(v_grid, s_grid, q, t);
b0

zeros (indexV*indexS, 1) ;

bl = (r-q)*s_vect.*b_S + ...
0.5*%s_vect. 2.*v_vect.*xb_SS;
b2 = (lambdax(vbar - v_vect)).*b_V + ...

rho*sigmaxs_vect.*v_vect.*b_VV,

B = Dbl + b2 + b0;

htime-stepping

for h=1:ceil(nt)
u0 = u + dtx(Axu+B-r*u);
ul=(I-thetaxdt* (Al-r*I))\ (uO-theta*dt*x(Al*xu-r*u)) ;
u2=(I-thetaxdt*(A2-r*I))\(ul-thetaxdt* (A2*u-r*u));
u0_hat=ulO+theta*dt* (A0*u2-r*u2-A0*u+r*u) ;
u0_hat=u0_hat+(0.5-theta) *dt* (A*xu2+B-r*u2-A*u-B+r*u) ;
ul_hat=(I-theta*dt*(Al-r*I))\ (u0_hat+thetaxdt*x(-Alxu+r*u));
u2_hat=(I-theta*dt*(A2-r*I))\ (ul_hat+theta*dt*(-A2*u+r*u));
u=u2_hat;

end

surf (s_grid, v_grid, reshape(u,indexV,indexS));

xlabel(’V?)

xlabel(’S?)

ylabel(’V?)

zlabel(°U’)

title(’Case 17)

u=reshape(u,indexV, indexS);

price = interp2(S,V,u,71.2,0.1237)

function [A_S, A_V, A_SS,
A_Vv, A_SV] = ...

createlnteriorAMatrices(s_grid, v_grid)

indexS = length(s_grid);

indexV = length(v_grid);

/» create sparse matrices

A_central_SS

A_central _VV

spalloc(indexS*indexV,indexS*indexV, 3);

spalloc(indexS*indexV, indexS*indexV, 3);

7

A_central_S = spalloc(indexSxindexV, indexS*indexV, 3);
A_central_V
A_backward_V
A_forward_V
A_central_SV = spalloc(indexS*indexV, indexSxindexV, 9);
for k = 1:indexS*indexV

Jcompute rows and columns of initial condition matrix

spalloc(indexS*indexV, indexS*indexV, 3);

spalloc(indexS*indexV, indexSxindexV, 5);

spalloc(indexS*indexV, indexSxindexV, 5);

column_index=ceil (k/indexV) ;

row_index = k - (column_index-1)*indexV;

% check if looking strictly into the interior

if (row_index"=1 && row_index~=indexV &&

column_index”=1 && column_index~=indexS)

S_mid = s_grid(column_index) ;
S_left=s_grid(column_index-1);
S_right=s_grid(column_index+1);
V_mid = v_grid(row_index);
V_left=v_grid(row_index-1);
V_right=v_grid(row_index+1);

delta_mid_S
delta_right_S

S_mid-S_left;
S_right-S_mid;

delta_mid_V
delta_right_V

V_mid - V_left;
V_right - V_mid;

gamma_minus_S=2/(delta_mid_S*(delta_mid_S+delta_right_S));
gamma_mid_S=-2/(delta_mid_S*delta_right_S);
gamma_right_S=2/(delta_right_S*(delta_mid_S+delta_right_S));

gamma_minus_V=2/(delta_mid_V*(delta_mid_V+delta_right_V));
gamma_mid_V=-2/(delta_mid_V*delta_right_V);
gamma_right_V=2/(delta_right_Vx(delta_mid_V+delta_right_V));

% second derivative for V and S using central difference

78

A_central _VV(k,k)=gamma_mid_V;
A_central _VV(k,k-1)=gamma_minus_V;
A_central VV(k,k+1)=gamma_right_V;

A_central_SS(k,k)=gamma_mid_S;
A_central_SS(k,k-indexV)=gamma_minus_S;

A_central_SS(k,k+indexV)=gamma_right_S;

% beta coefficients

delta_mid = S_mid-S_left;
delta_right = S_right-S_mid;
beta_zer0_S = (delta_right-delta_mid)/(delta_mid*delta_right);

beta_minus_S (-delta_right)/(delta_mid*(delta_mid+delta_right));

delta_mid/(delta_right*(delta_mid+delta_right));

beta_plus_S

delta_mid_V
delta_right_V
beta_zerO_V c.
(delta_right_V-delta_mid_V)/(delta_mid_V*delta_right_V);
beta_minus_ V = ...
(-delta_right_V)/(delta_mid_Vx(delta_mid_V+delta_right_V));
beta_plus_ .V = ...
delta_mid_V/(delta_right_V*(delta_mid_V+delta_right_V));

V_mid-V_left;
V_right-V_mid;

A_central_S(k,k) = beta_zer0_S;
A_central_S(k,k+indexV) = beta_plus_S;
A_central_S(k,k-indexV) = beta_minus_S;

if (v_grid(row_index) < 1)
% first derivative for V and S using central difference
A_central_V(k,k) = beta_zer0_V;
A_central_V(k,k+1)
A_central_V(k,k-1)
end

beta_plus_V;

beta_minus_V;

79

% mixed-derivative matrix

A_central_SV(k,k-1) = beta_zer0O_S*beta_minus_V;
A_central_SV(k,k) = beta_zer0_S*beta_zer0_V;
A_central_SV(k,k+1) = beta_zer(O_S*beta_plus_V;

A_central_SV(k,k-indexV-1)=beta_minus_S*beta_minus_V;
A_central_SV(k,k-indexV)=beta_minus_S*beta_zer0_V;
A_central_SV(k,k-indexV+1)=beta_minus_S*beta_plus_V;

A_central_SV(k,k+indexV-1)=beta_plus_S*beta_minus_V;
A_central_SV(k,k+indexV)=beta_plus_S*beta_zer0_V;
A_central_SV(k,k+indexV+1)=beta_plus_S*beta_plus_V;

% backward differencing for v-derivative when v > 1
if (v_grid(row_index) >= 1)

V_left_left = v_grid(row_index-2);

V_left = v_grid(row_index-1);

V_mid = v_grid(row_index);

delta_v_left = V_left - V_left_left;
delta_v_mid = V_mid - V_left;

alpha_minus_2_V = ...
delta_v_mid/(delta_v_left*(delta_v_left+delta_v_mid));
alpha_minus_1_V = ...

-(delta_v_left + delta_v_mid)/(delta_v_midxdelta_v_left);

alpha_zero_V = ...
(delta_v_left + 2*xdelta_v_mid)/...
(delta_v_mid*(delta_v_mid + delta_v_left));

A_backward_V(k,k) = alpha_zero_V;
A_backward_V(k,k-1)
A_backward_V(k,k-2)

alpha_minus_1_V;

alpha_minus_2_V;

80

end

else
% boundary for du/ds and du/dss
[A_central_S, A_central_SS] = ...

applyBCtoSMatrices. ..

(A_central_S, A_central_SS, v_grid, s_grid, row_index, column_index, k);
% boundary for du/dv and du/dvv
[A_forward_V,A_backward_V,A_central_V, A_central VV] = ...

applyBCtoVMatrices. ..

(A_forward_V,A_backward_V,A_central_V, A_central_VV,

v_grid, s_grid, row_index, column_index, k);

end
end
AV = A_central V + A_backward_V + A_forward_V;
A_S = A_central_S;
A_SS = A_central_SS;
A_VV = A_central_VV;
A_SV = A_central_SV;

function [A_forward_V,A_backward_V,A_central_V, A_central_VV] = ...
applyBCtoVMatrices. ..
(A_forward_V,A_backward_V,A_central_V, A_central_VV,
v_grid, s_grid, row_index, column_index, k)

indexS = length(s_grid);
indexV = length(v_grid);
if (v_grid(row_index) < 1 && row_index "= 1)
pA if (column_index == 1 || column_index == indexS)

V_mid = v_grid(row_index) ;
V_left=v_grid(row_index-1);
V_right=v_grid(row_index+1);

81

delta_mid_V V_mid - V_left;

delta_right_V = V_right - V_mid;
gamma_minus_V=2/(delta_mid_V*(delta_mid_V+delta_right_V));
gamma_mid_V=-2/(delta_mid_Vx*delta_right_V);
gamma_right_V=2/(delta_right_Vx(delta_mid_V+delta_right_V));
A_central _VV(k,k)=gamma_mid_V;

A_central VV(k,k-1)=gamma_minus_V;

A_central _VV(k,k+1)=gamma_right_V;

yA end

V_mid = v_grid(row_index) ;
V_left=v_grid(row_index-1);
V_right=v_grid(row_index+1);

delta_mid_V V_mid-V_1left;

delta_right_V = V_right-V_mid;

beta_zerO_V .
(delta_right_V-delta_mid_V)/(delta_mid_V*delta_right_V);

beta_minus_V = ...
(-delta_right_V)/(delta_mid_V*(delta_mid_V+delta_right_V));

beta_plus .V = ...
delta_mid_V/(delta_right_V*(delta_mid_V+delta_right_V));

A_central_V(k,k) = beta_zer0_V;
A_central_V(k,k+1)
A_central_V(k,k-1)

beta_plus_V;

beta_minus_V;

elseif (row_index == indexV || v_grid(row_index) >= 1)
if ((column_index == 1 ||
column_index == indexS) && ...

row_index < indexV)
V_mid = v_grid(row_index);
V_left=v_grid(row_index-1);
V_right=v_grid(row_index+1);

82

delta_mid_V
delta_right_V

V_mid - V_left;
V_right - V_mid;

gamma_minus_V=2/(delta_mid_V*(delta_mid_V+delta_right_V));
gamma_mid_V=-2/(delta_mid_V*delta_right_V);
gamma_right_V=2/(delta_right_Vx*(delta_mid_V+delta_right_V));

A_central _VV(k,k)=gamma_mid_V;

A_central_VV(k,k-1)=gamma_minus_V;

A_central _VV(k,k+1)=gamma_right_V;
end

if (row_index == indexV)
%happly backward difference on V when S=0.
V_left_left = v_grid(row_index-2);
V_left = v_grid(row_index-1);
V_mid = v_grid(row_index);

delta_v_left = V_left - V_left_left;
delta_v_mid = V_mid - V_left;

alpha_minus_2_V = ...
delta_v_mid/(delta_v_left*(delta_v_left+delta_v_mid));
alpha_minus_1_V = ...
-(delta_v_left + delta_v_mid)/(delta_v_mid*delta_v_left);
alpha_zero_V = ...
(delta_v_left + 2*delta_v_mid)/...
(delta_v_mid*(delta_v_mid + delta_v_left));

A_backward_V(k,k) = alpha_zero_V;

A_backward_V(k,k-1)

A_backward_V(k,k-2)
end

alpha_minus_1_V;

alpha_minus_2_V;

83

elseif (row_index == 1)
V_mid = v_grid(row_index);
V_right = v_grid(row_index+1);
V_right_right = v_grid(row_index+2);

delta_v_right = V_right_right - V_right;
delta_v_mid = V_right - V_mid;

gamma_0_V = (-2*delta_v_mid - delta_v_right)/...
(delta_v_mid*(delta_v_mid + delta_v_right));

gamma_plus_1_V = (delta_v_mid + delta_v_right)/...
(delta_v_mid*delta_v_right);

gamma_plus_2_V = -delta_v_mid/ ...
(delta_v_right*(delta_v_right+delta_v_mid));

A_forward_V(k,k) = gamma_0_V;

A_forward_V(k,k+1)

A_forward_V(k,k+2)
end

gamma_plus_1_V;

gamma_plus_2_V;

function [A_central_S, A_central_SS] = ...
applyBCtoSMatrices. ..
(A_central_S, A_central_SS, v_grid, s_grid, row_index, column_index, k)

indexS = length(s_grid);

indexV = length(v_grid);
% for S and SS, we won’t have to worry when s or v is zero
% so don’t have to worry when row_index or column_index is one
% for when v = V
if (row_index == indexV || row_index == 1)
if (column_index > 1 && column_index < indexS)
S_mid = s_grid(column_index);
S_left=s_grid(column_index-1);
S_right=s_grid(column_index+1) ;

84

delta_mid
delta_right

S_mid-S_left;
S_right-S_mid;

beta_zer0_S

beta_minus_S = ...
(-delta_right)/(delta_mid*(delta_mid+delta_right));

beta_plus_S = delta_mid/(delta_right*(delta_mid+delta_right));

(delta_right-delta_mid)/(delta_mid*delta_right);

gamma_minus_S=2/(delta_mid*(delta_mid+delta_right));
gamma_mid_S=-2/(delta_mid*delta_right);
gamma_right_S=2/(delta_right*(delta_mid+delta_right));

if (row_index == indexV)
%A_central_S(k,k) = beta_zer0_S;
%hA_central_S(k,k+indexV) = beta_plus_S;
%A_central_S(k,k-indexV) = beta_minus_S;

%A_central_SS(k,k)=gamma_mid_S;

%»A_central_SS(k,k-indexV)=gamma_minus_S;

hA_central_SS(k,k+indexV)=gamma_right_S;
end

end
end
% this is to partically take care of the extrapolation
% the other we will include in the b vector
if (column_index == indexS)
S_mid = s_grid(column_index);
S_left=s_grid(column_index-1);

delta_mid_S
delta_right_S

S_mid-S_left;
delta_mid_S;

85

% the location of the ghost cells
% S_right = delta_right_S + S_mid;

gamma_minus_S=2/(delta_mid_S*(delta_mid_S+delta_right_S));
gamma_mid_S=-2/(delta_mid_Sx*delta_right_S);
gamma_plus_S = 2/(delta_right_S*(delta_mid_S+delta_right_S));

A_central_SS(k,k)=gamma_mid_S;
A_central_SS(k,k-indexV)=gamma_minus_S + gamma_plus_S;
end

function [b_S, b_SS] = ...
createBVectorForS(v_grid, s_grid,q,t)

indexS = length(s_grid);

indexV = length(v_grid);

index_BS_V = indexV:indexV:indexS*indexV;

b_S=zeros(indexV*indexS,1) ;
b_SS=zeros (indexV+*indexS,1);

% du/ds |s=smax
b_S(end-indexV+1:end)=exp(-g*t) ;
ds=s_grid(end)-s_grid(end-1);

factor_ = 2/(ds*x(ds+ds));

b_SS(index_BS_V) = 0;
b_SS(end-indexV+1:end)=factor_x*2xds*exp(-qg*t) ;
% take derivative with respect to S.
b_S(index_BS_V) = exp(-g*t);

function [b_V, b_VV] = ...
createBVectorForV(v_grid, s_grid,q,t)

indexS = length(s_grid);

86

indexV = length(v_grid);
index_BS_V = indexV:indexV:indexS*indexV+1;
b_V=zeros (indexV*indexS,1) ;

b_VV=zeros (indexV*indexS,1);

end

87

Bibliography

[1]

2]

L. Andersen. Efficient simulation of the heston stochastic volatility
model. Bank of America Securities, December 12 2006.

F.Coleman and Yuying Li A.Verma, T. S. Reconstructing the unknown
local volatility function. Journal of Computational Finance, 2:77-102,
1999.

F. Black and M. Scholes. The valuation of options and corporate liabil-
ities. Journal of Political Economy, 81:637-654, 1973.

M. Broadie and O.Kaya. Exact simulation of stochastic volatility and
other affine jump diffusion processes. Operations Research, 54(2), 2006.

Marquardt D. An algorithm for least squares estimation of nonlinear
parameters. SIAM J. APPL.Math, 11:431-441, 1963.

D. Dufresne. The integrated square-root process. Working paper, Uni-
versity of Montreal, 2001.

M. Haugh. The Monte Carlo framework, examples from finance and
generating correlated random variables. 2004.

S.L Heston. A closed form solution for options with stochastic volatility

with application to bonds and currency options. The Review of Financial
Studies, 6(2):327-343, 1993.

K.JJIN'T HOUT and S.FOULON. ADI finite difference schemes for op-
tion pricing in the Heston model with correlation. International Journal
Of Numerical Analysis And Modeling, 7(2):303-320, 2010.

38

[10]

[11]

[12]

[13]

[14]

[17]

[18]

[.J.D.Craig and A.D. Sneyd. An alternating direction implicit scheme for
parabolic equations with mixed derivatives. Comp. Math. Appl, 16:341—
350, 1988.

J.Douglas and H.H.Rachford. On the numerical solution of heat conduc-
tion problems in two and three space variables. Trans.A mer. Math.soc.,
82:421-439, 1956.

Levenberg K. A method for the solution of certain problems in least
squares. Quart. Appl. Math, 2:164-168, 1944.

Y. Li. CS 676 March 24 lecture notes. 2010.

K.S. Moon. Efficient monte carlo algorithm for pricing barrier options.
Commun.Korean Mat.Soc, (2):285-294, 2008.

University of Leeds. Computational finance week 5 lecture notes. pages

3-10.

W. Schoutens and Stijn Symens. The pricing of exotic options by Monte-
Carlo simulations in a Levy market with stochastic volatility. pages 67,
2002.

S.L.Heston. A closed form solution for options with stochastic volatility

with applications to bond and currency options. The Review of Financial
Studies, 6(2):327-343, 1993.

Yoon W.Kwon and Suzanne A.Lewis. Pricing barrier option using finite
difference method and Monte Carlo simulation. 2, May 2000.

89

