Matrix-Matrix Multiplications on
GPUs for Accelerating a Parallel
Fluid Dynamics Code

by

Kenneth Webster

A research paper
presented to the University of Waterloo
in partial fulfillment of the
requirement for the degree of
Master of Mathematics
in
Computational Mathematics

Supervisor: Prof. Hans De Sterck

Waterloo, Ontario, Canada, 2012

(© Kenneth Webster 2012

I hereby declare that I am the sole author of this report. This is a true copy of the report,
including any required final revisions, as accepted by my examiners.

[understand that my report may be made electronically available to the public.

i

Abstract

A few approaches are investigated of matrix-matrix multiplication on graphics process-
ing units (GPUs). Aspects of memory management and GPU saturation are described and
discussed. The focus of this paper is to off-load matrix-matrix multiplications to a GPU
in an HPC setting for the purpose of accelerating a parallel fluid dynamics code.

il

Acknowledgements

I would like to thank all the little people who made this possible.

v

Dedication

This is dedicated to the one I love.

Table of Contents

List of Tables
List of Figures
1 Introduction

2 Background

2.1 Motivation
2.2 SHARCNET e
2.3 Monk Cluster e
2.4 CUDA . . . e
2.5 GPUlayout
2.6 Code Layout
2.7 Memory Typesof a GPU

3 Matrix-Matrix Multiplication on GPUs
3.1 Approaches To Matrix-Matrix Multiplication on a GPU
3.1.1 Method 1
3.1.2 Method 2
3.1.3 Method 3
3.1.4 CUBLAS

vi

viii

ix

© O = Ot Ot e W W

3.2 Comparison of Methods 20

3.3 Pinning Memory 23
3.4 CUBLAS for matrix-matrix multiplication 26
3.4.1 Square Matrix Benefits L. 26

3.4.2 Matrices with Padding 28

3.4.3 CUBLAS batched 32

3.5 Overlap of Communication and Computation 36
3.5.1 Opverlap of Transfer and Kernel 36

3.5.2 CaseStudy 36

4 Conclusion 41
References 43

vii

List of Tables

2.1

2.2
2.3

24

3.1
3.2
3.3
3.4
3.5
3.6

Matrix sizes for the various stencils using our standard case of 19 coefficients
and 9 unknowns for the fluid dynamics equations

SHARCNET Monk cluster configuration

Properties of Graphics Card Nvidia Tesla M2070 with Fermi architecture,

448 cores, 1.15 GHz, 6 GB memory, 144 GB/s memory bandwidth and
compute capability 2.0 o

This shows that if the problem is not approached carefully then it could
become IO bound, so we want to reduce all Host memory transactions as
much as possible, followed by fewer global memory accesses. This type of
memory awareness is essential to build fast code in a GPU setting.

Tile statistics of the matrices,
Toy Example
Toy Example
Tiles with the memorybank that each entry is storedin
Shared memory usage for various tilesizes

This is the records of transferring both A and B, but it may be the case
that for our fluid dynamics problem, we may be able to store all the A
matrices on the GPU. So the A matrices would only need to be transferred
once during the initialization of the program.

viil

List of Figures

2.1

2.2
2.3

3.1
3.2
3.3
3.4
3.5

3.6

3.7

3.8

Discretization stencils considered in the three-dimensional fluid dynamics
code from [0]

An illustration of a graphics card setup [17] L.

Distribution of computation within the code from [16]. Not shown is the
copy engine. The copy engine is not accessible by any part of the kernel.
Only the host can access it with a separate call by the CPU code.

A standard approach for matrix-matrix multiplication [9]
Using tiles to saturate the GPU [7]
Using shared memory to reduce global memory accesses. [7]
Square matrices multiplied with Method 3 using various tilesizes

A comparison of the matrix-matrix multiplication methods described previ-
ouslyo

Comparison of efficiency of matrix-matrix multiplication methods described
previously

Transferring ‘pinned’ and ‘unpinned’ memory. The horizontal axis is the
length of a float array being transferred from the Host to the Device. The
vertical axis is the time in milliseconds. The green points represent mem-
ory that was allocated using cudaMallocHost, and the red points represent
memory that was allocated using malloc.

Efficiency of memory transfer methods. The horizontal axis is the length of
the float array being transferred. The vertical axis is the time in milliseconds
divided by the size of the array being transferred. This gives an accurate
estimate of the time it takes to transfer an element in the array. The green

points represent pinned memory and the red points indicate regular memory. 25

1X

3.9
3.10

3.11

3.12

3.13

3.14

3.15

Perfect sizes do not include square matrices

The horizontal axis is /mzn because the number of operations is O(mzn).
The vertical axis represents the time per operation. The blue points rep-
resent the rectangular matrices whose dimensions are not multiples of 16.
The green points represent the matrices whose dimensions are square and
not multiples of 16. The red points represent the matrices whose dimensions
are multiples of 16.

The horizontal axis is /mzn (without padding). The vertical axis is the
recorded time for the multiplication in milliseconds. The green points rep-
resent the matrices without padding. The blue points represent the matrices
with padding.

The horizontal axis is /mzn. The vertical axis is the time taken by each
operation. The green points represent the unpadded matrices and the blue
points represent the padded matrices. It is clear that the padded matrices
are more efficient even though more operations are being performed for the
same number of meaningful operations in the unpadded matrices.

The horizontal axis is /mzn. The vertical axis is recorded time in millisec-
onds. The green points represent the times for the batched version, and the
blue points represent the non-batched version.

The horizontal axis is /mzn. The vertical axis is the recorded time in mil-
liseconds for 1000 matrix-matrix products to be computed. The green points
represent the times for the batched version, and the blue points represent
the non-batched version. L oo

The horizontal axis is /mzn. The vertical axis is recorded time in millisec-
onds for approximately a single operation to be performed. The green points
represent the times for the batched version, and the blue points represent
the non-batched version. oo

3.16

3.17

In the top part, a large set of matrices is transferred over to the GPU (light
red). The kernel is executed for the set of matrices (dark red). Then the
large set of matrices is transferred back to the host (light red). In the bottom
part, the large set of matrices is split into 4 smaller sets. The first smaller set
is transferred to the GPU. When the transfer is complete, the computation
begins on the first smaller set of matrices. While this is happening, the
second small set of matrices is transferred over. This processes repeats itself
until all of the small sets of matrices have been transferred over. The moment
the last set has been sent to the GPU, the results of the first computation
are transferred back while the last computation is occurring. When that
transfer is finished the second set of results is transferred back, and this
process is repeated until all the results have been transferred back.

The values along the horizontal axis correspond to the method used to per-
form the task. The Sync values are the timings for the entire set of matrices
to be transferred, computed, and sent to the host. The Sync values are
repeated on the graph for comparative purposes. The Async indicates the
overlapped timing results. The number above the text on the horizontal
axis is the chunksize, which is the size of the sections that the 1000 matrix
sets (A, B, and C) were divided into, allowing an overlap.

X1

37

Chapter 1

Introduction

In many scientific computing areas, a solution to a problem is obtained through iterative
updates to a set of values. The process of updating the set of values and the necessary
operations to do so can sometimes be posed in such a way that the task of updating is
done with the help of matrix-matrix multiplication. In an HPC setting, the task of per-
forming updates can involve thousands of matrix-matrix multiplications. Several studies,
[1, 3,4, 10, 13, 14, 15], have claimed that using a graphics card to assist with vector arith-
metic can speed up computations by a factor of 100 and more. In practice, the results of
using graphics cards are quite varied, and there is no general answer to the question of
whether or not using a graphics card will be beneficial.

The hardware that performs the computation inside a graphics card is called the Graphics
Processing Unit (GPU). GPUs, like central processing units (CPUs), can be used for com-
putation. The difference between a CPU and a GPU is that a CPU focuses on executing
one thread very quickly over a small amount of data whereas a GPU focuses on executing
many concurrent threads over a large amount of data. The GPU sacrifices speed in com-
pensation for the ability to handle many threads running concurrently. The whole idea of
the GPU is to flood it with many identical and simple operations on data in parallel. So
when a program is known to fit this data parallel pattern, the GPU is well suited to the task.

For the parallel fluid dynamics code described in [0], the task of performing thousands
of matrix-matrix multiplications at each iteration was pinpointed as a bottleneck in the
code. One approach to reducing the bottleneck is to use graphics cards for the matrix-
matrix multiplications. This paper investigates the various techniques needed to offload
this computation to a graphics card while other independent computations are performed

on the CPU.

Chapter 2

Background

2.1 Motivation

The paper [0] describes a parallel framework for computing the solution of hyperbolic con-
servation laws in domains between two concentric spheres. The specific conservation laws
that were considered are related to fluid dynamics. The equations were discretized using a
Godunov-type finite-volume scheme. The solution is obtained iteratively and within each
iteration, solution values are updated. These computations can be done in parallel. One
component of the computations is a large amount of matrix-matrix multiplications.

Consider matrix-matrix multiplication C' = A~'* B, where C'is an m x n matrix, A~! is an
m x z matrix, and B is a z x n matrix. A~! is a pseudo-inverse of A as explained in [0]. The
matrices result from the discretization of the PDEs and from the current solution values
of physical aspects such as pressure density, etc. In [6], various discretization stencils were
used. In 3D, the stencils considered are shown in Figure 2.1

The stencils in Figure 2.1 determine the sizes of the matrices in the matrix-matrix prod-
ucts, specifically the number of cells in the stencil is the z from Ci,ypn = AL, * B.yy.
The size of m is the number of polynomial coefficients for the required order of accu-
racy of the reconstruction. The size of n is the number of unknowns in the system of
equations being used: Euler has 5 in 3D, magnetohydrodynamics (MHD) has 8 in 3D. Our

standard case has a reconstruction order of 3 so there will be 19 coefficients and 9 variables.

125 Cells 57 Cells 33 Cells 25 Cells

Figure 2.1: Discretization stencils considered in the three-dimensional fluid dynamics code
from [0]

Cells in Stencil | size of A | size of B | size of C
125 19x124 | 124x9 19x9
57 19 x 56 56 x 9 19x9
33 19 x 32 32x9 19x9
25 19 x 24 24x9 19x9

Table 2.1: Matrix sizes for the various stencils using our standard case of 19 coefficients
and 9 unknowns for the fluid dynamics equations

From this point onwards the matrix-matrix multiplication equation C' = A~! x B will
be defined as C' = A x B to make the notation easier.

2.2 SHARCNET

SHARCNET stands for Shared Hierarchical Academic Research Computing Network. It is
a consortium of Canadian academic institutions who share a network of high performance
computers. “HPC is the use of high-end computing resources (computers, storage, net-
working and visualization) to help solve highly complex problems, perform business critical
analyses, or to run computationally intensive workloads that are, in scale, far beyond the
tasks that could be achieved on today’s leading desktop systems”. [11]

2.3 Monk Cluster

Monk is the newest graphics card cluster in SHARCNET. It is the system that was used to
run tests for all results in this paper. Unless otherwise specified, all tests were performed
on 15 nodes, using 1 graphics card per node, with the timed calls being repeated in code
10 times. This means that 150 samples were taken for each test and the average times
were reported. Table 2.2 gives some information on the Monk cluster, and Table 2.3 gives
some specifics of the graphics card itself.

Description Value
Number of Cores 432
Number of Nodes 54
Interconnect QDR InfiniBand
Cores per Node 8
CPUs per Node 2
Graphics Cards per Node 2
Memory per Node 48 GB
CPU Intel E5607 4 cores @ 2.26 GHz

Table 2.2: SHARCNET Monk cluster configuration

2.4 CUDA

In this and the following sections we describe the Compute Unified Device Architecture
(CUDA), typical GPU layout, typical code layout, and GPU memory types, summarizing
the detailed information available in, for example, [9]. CUDA was developed by Nvidia
for the purpose of being a parallel computing architecture for graphics processing. Nvidia
GPUs all use CUDA as the computing engine. CUDA is accessible through the program-
ming language C, via an extension. Through the use of CUDA, GPUs can be used for
computation as CPUs are. But the architecture of the GPU emphasizes running many
threads concurrently whereas the CPU emphasizes running one thread very quickly. Since
the design of the CPU concentrates on running one thread it has also been designed to be

5

Description Value
CUDA Driver Version / Runtime Version 41 /4.1
CUDA Capability Major/Minor version number: 2.0

Total amount of global memory:
(14) Multiprocessors x (32) CUDA Cores/MP:
GPU Clock Speed:
Memory Clock rate:
Memory Bus Width:
L2 Cache Size:
Max Texture Dimension Size (x,y,z)

Max Layered Texture Size (dim) x layers

Total amount of constant memory:
Total amount of shared memory per block:
Total number of registers available per block:
Warp size:

Maximum number of threads per block:
Maximum sizes of each dimension of a block:
Maximum sizes of each dimension of a grid:
Maximum memory pitch:

Texture alignment:

Concurrent copy and execution:

Run time limit on kernels:
Integrated GPU sharing Host Memory:
Support host page-locked memory mapping:
Concurrent kernel execution:
Alignment requirement for Surfaces:
Device has ECC support enabled:
Device is using TCC driver mode:
Device supports Unified Addressing (UVA):

5375 MBytes (5636554752 bytes)
448 CUDA Cores
1.15 GHz
1566.00 Mhz
384-bit
786432 bytes
1D=(65536)
2D=(65536,65535)
3D=(2048,2048,2048)
1D=(16384) x 2048
2D=(16384,16384) x 2048
65536 bytes
49152 bytes
32768
32
1024
1024 x 1024 x 64
65535 x 65535 x 65535
2147483647 bytes
512 bytes
Yes with 2 copy engine(s)
No
No
Yes
Yes
Yes
Yes
No
Yes

Table 2.3: Properties of Graphics Card Nvidia Tesla M2070 with Fermi architecture, 448
cores, 1.15 GHz, 6 GB memory, 144 GB/s memory bandwidth and compute capability 2.0

more versatile than the GPU, but when handling many threads its performance suffers.

The GPU processors are far less versatile than the CPU processors and are slower when
performing operations that do not fit into the data-parallel mold. When general-purpose
problems are approached this way using GPUs, it is known as GPGPU computing. [5]

The CUDA programming framework was selected to be used for our problem instead of the
more general OpenCL standard for a few reasons. It exposes double precision accuracy on
the graphics cards in the Monk cluster. It allows individual threads to read from arbitrary
addresses in the memory. It exposes on-chip memory, which is several times faster than
the global memory. It boasts full support for integer and bitwise operations, and is also
the proprietary computing engine for the Nvidia graphics cards in Monk.

2.5 GPU layout

The layout of the GPU greatly affects the performance of an algorithm running on it.
Knowledge of a GPU layout helps to understand why some algorithms perform better
than others. The GPU is separate from the main computer entirely. It has its own mem-
ory, processors, and runs at a different clock speed than the CPU. A GPU is a collection
of Streaming Multiprocessors (SMs), memory and a few other valuable units. Figure 2.2
shows the layout of the GPU and how the various components are connected.

Each SM is a multicore processor with several cores. The SM differs from a CPU in that the
SM usually has more cores than a CPU but the cores cannot operate independently. Each
core in an SM must execute the same set of instructions but it can do this on different data.

Like a CPU an SM has on-chip memory. Registers are a very limited form of memory
that can only be used for individually named variables with only one value, and they are
only accessible by the processor that declared them. Also on-chip is an L1 cache which acts
exactly like the L1 cache on a CPU. Another type of on-chip memory is the shared memory.
Within the set of instructions running on the SM, memory can be allocated on-chip using
the shared memory. For data that is generated by and/or shared among the cores of an
SM, it is better to use shared memory instead of global memory because it reduces the
waiting time of read/write operations.

The shared memory in a GPU is very small and is unsuitable for long-term storage of

Figure 2.2: An illustration of a graphics card setup [17]

data. Since shared memory is located on-chip, all the cores in the SM can access it, but
cores from other SMs cannot access it. There is also the global memory on the device,
which is off-chip but is much larger. This space can be accessed by all processors in the
GPU. These two aspects make the global memory suitable for long-term storage of data.
A negative aspect is that it has much slower access times than on-chip memory, usually
about 100 times slower. However, if the code is programmed well some threads will run
while other threads wait for memory retrieval.

A GPU also has a copy engine. The copy engine is a dedicated processor that only handles
data transfers between the host CPU and the GPU. This unit functions entirely separately
from SMs and as such, does not affect computation. This recent developement allows code
to be running while data is being transferred from the host to the device. More recently,
GPUs are beginning to have multiple copy engines. The additional engines allow a stream-
ing approach to the transfer of data, which is helpful for video processing and continuous
transmission.

2.6 Code Layout

Programming for the GPU is quite different from programming for the CPU. The method
that exccutes on the GPU is called the Kernel. Every processor on the GPU will execute
this exact same kernel if no other concurrent kernels are running. If other kernels are
running, then all the processors in an SM will execute the same kernel although different
SMs can execute different kernels. Data has to be mapped out in a certain way so that the
GPU can run the kernel. There are two levels to this mapping. The first level is called a
grid. A grid is a multidimensional array where each element corresponds to an SM. These
elements are the second level and are called blocks. A block can also be multidimensional.
Each entry in the block will be a thread that runs on the SM. When a thread requests
data from any type of memory the core running that thread will begin another thread.
Doing this keeps the cores busy while data is being retrieved. Eventually an entire block
finishes and another block is assigned to the SM. Depending on the memory usage of each
block, the GPU may assign multiple blocks to run simultaneously on the same SM. Grids
and blocks have hardware-defined maximum sizes and a maximum number of dimensions,
usually 3. The reason for this two level setup is that it allows multiple kernels to run
simultaneously if a kernel is not using all the SMs. It forces the program to be set up in
such a way that each block is independent of other blocks.

Figure 2.3 shows what types of memory each part of the two-level system can access.
Blocks have their own shared memory which each thread can access. Each thread has its
own set of registers, stored on chip, and its own local memory, stored in the global memory.
Everything in the grid can access the global memory. Each thread that is executed is given
a set of individual parameters, which describe which block it is in and where in each block
it is. This is what allows the kernel to actually process different values for different threads.

2.7 Memory Types of a GPU

There are several types of memory that a GPU interacts with throughout a program’s life-
time and they all have various speeds and sizes. The amount of memory that is available
on the host CPU system is limited by the computer itself. It is the slowest memory to
access, because it has to be transferred from the CPU host random access memory (RAM)
to the GPU device RAM over a peripheral component interconnect express (PCle) slot.

Grid

Block (0, 0) Block (1, 0)

|

Thread (0, 0) || Thread (1, 0) Thread (0, 0) | Thread (1, 0)

¥y L A A s YV¥3

Figure 2.3: Distribution of computation within the code from [16]. Not shown is the copy
engine. The copy engine is not accessible by any part of the kernel. Only the host can
access it with a separate call by the CPU code.

In addition to being slow, only the CPU can initiate memory transfer. The benefit of the
CPU host memory is that its size is usually several times greater than the size of RAM
available on the GPU. Global memory is the RAM in the GPU device itself. It is much
faster than CPU host memory and the GPU can initiate memory operations. There is also
shared memory on the GPU which is again many magnitudes smaller than the global GPU
memory, so it has to be managed by the programmer. Table 2.4 illustrates an approxima-
tion of the various speeds associated with each memory type.

10

Name Location Size Cycles Speed

Host CPU host 48 GB N/A 8 GB/s

Global DRAM on GPU | 6 GB 400-800 144 GB/s
Shared (per SM) || on-chip on GPU | 48/16 kB | 8-20 cycles | 2.81-14.1 TB/s
L1 cache (per SM) || on-chip on GPU | 16/48 kB | 8-20 cycles | 2.81-14.1 TB/s

Table 2.4: This shows that if the problem is not approached carefully then it could become
1O bound, so we want to reduce all Host memory transactions as much as possible, followed
by fewer global memory accesses. This type of memory awareness is essential to build fast
code in a GPU setting.

11

Chapter 3

Matrix-Matrix Multiplication on
GPUs

3.1 Approaches To Matrix-Matrix Multiplication on
a GPU

We begin by describing several approaches for computing the matrix-matrix multiplication
of two matrices C' = A x B, where C' is an m X n matrix, A is an m X z matrix and B is a
z x n matrix.The three methods are described in [9] and [7]. The final method is contained
in the Nvidia CUDA Basic Linear Algebra Subroutines (CUBLAS) library. According to
the manufacturer in [3], “It is a GPU-accelerated version of the complete standard Basic
Linear Algebra Subroutines (BLAS) library that delivers 6x to 17x faster performance than
the latest Math Kernel Library (MKL) BLAS”.

3.1.1 Method 1

The first method of matrix-matrix multiplication on the GPU is a standard algorithm of
complexity O(n?). On the GPU, each block of the grid is 1 x 1 and the grid is defined to
be the size of the C' matrix. This approach limits the matrix size to 65535 x 65535. The
matrices that are required for the fluid dynamics application are all smaller than 128 x 128.

The idea is that an SM computes a single entry of the resulting C' matrix (The shaded
region of C' in Figure 3.1) by performing a dot product of the corresponding row in A

12

(The shaded region of A in Figure 3.1) and the column in B (The shaded region of B
in Figure 3.1), reading each entry from A and B from the global memory one entry at a
time and accumulating the products to get the entry of C'. This approach is very slow
and not recommended due to the extremely high number of global memory accesses re-
quired. However, it should be noted that recently GPUs are beginning to have caches for
the global memory. This would speed up the calculation, but not enough for this method
to be efficient. Since each SM is only computing a single element of C', the other cores are
not being used. So the algorithm does not saturate the GPU at all.

Figure 3.1: A standard approach for matrix-matrix multiplication [9]

3.1.2 Method 2

This method has each multiprocessor simultaneously compute a tile of entries of C' (The
shaded region of C' in Figure 3.2). This saturates the multiprocessor so that all cores are
being used at least some of the time. The multiprocessor still has to read entries of A and
B from global memory. This method is better than Method 1.

13

tx
012 TILE WIDTH-1
(I —

=

‘ A C

a
1

ty - %

|

TILE WIDTH}

Figure 3.2: Using tiles to saturate the GPU [7]

3.1.3 Method 3

Here the three matrices are divided into smaller submatrices which are called tiles, and
these tiles are multiplied together and accumulated in the manner of block-matrix multi-
plication. In block-matrix multiplication, the same number of operations are performed
as in ordinary matrix-matrix multiplication. Partioning the matrices into tiles allows the
individual tiles of A, B, and C' to be stored in the shared memory, so that the cubic opera-
tion of matrix-matrix multiplication that is performed on the tiles is calling data from the
shared memory instead of the global memory. This change in location results in a much
faster method.

men = Am><z * BzXn

If the tiles have dimensions 1 x 1 then this method becomes the first method. The size of
the tile decides how many global memory accesses there will be, so having a tile the size
of the matrices would be optimal because everything would be in the much faster shared

14

tx
012 TILE WIDTH-1
(AN —

A C

—

.|

— 2

(
1

:

TILEWIDT

ty

Figure 3.3: Using shared memory to reduce global memory accesses. [7]

memory of the device. This is not done because the shared memory is normally too small
for a whole matrix to be copied to it. But choosing the largest tile size possible is the best
option.

Recall that our matrix-matrix multiplication is C' = A x B where C is an m X n ma-
trix, A is an m X z matrix, and B is a z X n matrix. So if m, z, and n are divided up into p,
q, and r tiles respectively, where the tilesize is ¢t then the number of times that the global
memory is accessed by Method 3 is O(pgrt?) instead of O(mzn), like Methods 1 and 2.
In all three methods the number of times that C' is accessed is O(mn) so it is not shown
in the order of accesses. Since the tilesize divides m, z, and n the number of accesses can
be written in other ways. Here is one such way that also helps us see the reduction in the
number of accesses. pgrt? = pqrtt = pqr(g) (%) = pzn = (%)zn = %mzn. So Method 3
has the same order of accesses but it is less than the other methods by a factor that is the
tilesize t. Table 3.1 shows explicitly the sizes, where NT'T represents the number of times

a tile from the matrix is accessed from the global memory.

In Methods 1 and 2, computing a single entry of the C' matrix requires O(z) accesses to
the global memory. Since C' has mn entrys the total number of global accesses is O(mzn)

15

Matrix | Number of Entrys | Number of Tiles | NTT

A m X z P Xq r
B ZXn qgxr P
C mXxXn pXT 1

Table 3.1: Tile statistics of the matrices

for all three methods. Table 3.1 shows that when computing all the tiles of the C' matrix,
there are pq tiles in the matrix A with each one being accessed r times, and that there are
gr tiles in the matrix B with each one being accessed p times. There are pr tiles in C' with
each one only being accessed once. So the whole calculation requires O(pg * 1+ qr*p+ pr)
accesses to tiles from memory which is O(pgr), then with each tile having a size of ¢ X t the
global accesses become O(pqrt?) As the tile sizes are fixed for all matrix sizes, the number
of memory accesses is cubic for both methods, but this method has a large constant factor
difference in the number of global accesses. This factor is % For instance, if the tiles are all
square and contain 32 by 32 entries then the ratio of global memory accesses between this
method and the first method is 3—12, which is a significant difference. In the end, the same
cubic number of matrix element accesses are occuring except that they are only going to
the shared memory which is much faster than the global memory.

Tables 3.2 and 3.3 outline the various global accesses of a toy example, where A, B,
C are square matrices of size N x N. We count the number of times that the matrix A
is accessed in global memory in the third column. The far right column shows the ratio
between the third column and the first entry in the third column.

Choosing Tilesize

Selecting an unfavourable tilesize can result in large increases in computational time. So
it is important to select a tilesize that is favourable for most situations or for the situa-
tions that apply to the specific problem. If there are too many global memory accesses in
the code then the problem shifts to being IO bound, which is not desirable. So choosing
the largest tilesize possible may be the best solution to the problem. However, there is a
limit on the tilesize that is determined by the hardware itself. In the case of the Monk
cluster, the multiprocessors on the GPU have a shared memory size of 49152 bytes, but
there are also additional considerations. Shared memory is sometimes set to be used by

16

| N | Tile size | Accesses | Ratio |

256 256 65536 1

256 128 131072 2

256 64 262144 4

256 32 524288 8

256 16 1048576 16

256 8 2097152 32

256 4 4194304 64

256 2 8388608 128

256 1 16777216 | 256

Table 3.2: Toy Example
| N | Tilesize | Accesses | increase |

6561 6561 43046721 1
6561 2187 129140163 3
6561 729 387420489 9
6561 243 1162261467 27
6561 81 3486784401 81
6561 27 10460353203 243
6561 9 31381059609 729
6561 3 94143178827 2187
6561 1 282429536481 6561

Table 3.3: Toy Example

the compiler so the whole shared memory space is not always available. Anytime a shared
array is accessed with a variable position identifier, it uses shared memory for each thread
to remember the pointer. This effectively doubles the shared memory required by each
multiprocessor to access arrays. The more important aspect taken into consideration when
selecting a tilesize is the banksize of the hardware. If the tilesize is not chosen to be the
banksize then the threads will try to access data which is stored in the same bank causing
multiple threads to be serialized in accessing the data. The tilesize should be some multiple
of the banksize and then should be offset by 1 so that bank accesses never overlap ([2] page
24). On Monk the banksize is 32, so any shared arrays should be of sizes [32x][32y]...[322
+ 1].

Table 3.4 illustrates the kernel’s access pattern in the memorybanks when the banksize

17

is 4 and the SM has 4 cores. The left part of the table shows an undesirable tilesize while
the one on the right is a preferable size. The red box indicates which entries of the tile the
first 4 threads access, 1 thread being executed by 1 of the 4 cores in the SM. Each position
in the tile has the number of the memorybank where the value of the tile at that position
is stored.

112 3 4 112 3 4 1
112 3 4 213 41 2
112 3 4 3141 2 3
112 3 4 411 2 3 4

Table 3.4: Tiles with the memorybank that each entry is stored in

3 Flot of VariousTILESIZES

Time in millizeconds

10 0 5 10 15 20 25 a0 ki

TILESIZES

Figure 3.4: Square matrices multiplied with Method 3 using various tilesizes

The size of the matrix being multiplied can also be a factor in choosing the appropri-
ate tilesize. For instance, Figure 3.4 shows that a tilesize of 24 is the best size to choose
for that matrix. This is merely because 24 is the largest factor of 456 that is less than 32.
This happens for all the matrices and 32 is the consistently best across all sizes. It should
also be noted that there is very little improvement after the tilesize is exceeds 16. The

18

tilesize of 16 appears later in this paper as is discussed there.

Care should be taken when selecting a tilesize due to the way CUDA accesses arrays
in shared memory. Say an array is stored in shared memory and then an entry of the
array is specified by a dynamic variable. This will use additional shared memory. But if
the position in the array is a constant known at compile time, then no additional shared
memory will be used. Table 3.5 shows the amount of memory required in bytes to store
tiles if the matrix is single precision. MNFDYV is the amount of shared memory used by the
tiles and the shared memory that is used when accessing the tiles dynamically. It should
also be noted that the total amount of shared memory available is 49152 bytes, for the
GPUs in Monk.

Tilesize || 2 tiles | 2 tiles MNFDV | Available
8x 8 512 1024 49152
16 x 16 || 2048 4096 49152
32 x 32 || 8196 16384 49152
64 x 64 || 32768 65536 49152

Table 3.5: Shared memory usage for various tilesizes

Table 3.5 shows that the largest tilesize we can choose is 32 times32. ldeally we always
choose the largest tilesize possible. If we declare two tiles of size 64 x 64 we calculate that
it will not use all of the shared memory. But if we want to access elements in the tile,
where the position is referenced using a dynamic variable, then it uses 65536 bytes which
is more than is available. This is how we are restricted in choosing our tilesize.

3.1.4 CUBLAS

CUBLAS is a C extension library that performs basic linear algebra operations using an
Nvidia GPU. This library is updated frequently and is highly optimized, taking into con-
sideration various aspects of individual graphics cards. A problem with CUBLAS is that
it is not open source, so checking for an exact reason why something is happening faster or
slower is not entirely possible. Amongst its many functions there is one for matrix-matrix
multiplication.

19

The multiplication method that CUBLAS uses is the same as Method 3, but it uses many
fine-tuned optimizations that use registers as well as shared memory for the tiles. This
is why CUBLAS performs better than the previously described methods. Also note that
CUBLAS is actually doing C' = «-ops(A) - ops(B) + 5 - C' where ops(X) is a function that
either uses X or X', and a and 3 are constants.

On the surface it appears that making a function that does matrix-matrix multiplica-
tion with neither the ops(X) operation nor the addition of 8- C should beat CUBLAS, but
a closer inspection reveals otherwise. As it turns out, the ops(X) function does not incur
any significant computational expense because when the tiles are being read in from global
memory, it does not take any more time to read them in transposed form. Reading in a tile
from C' does not incur extra waiting time because the cycles spent waiting overlap with the
time waiting to get the tiles from A and B numerous times. The multiplications by a and 3
are just two multiplications in a thread, and are insignificant compared to accessing global
memory. In consideration of these details, it is actually not significantly more expensive
to perform a matrix-matrix multiplication with these additional arguments.

3.2 Comparison of Methods

The various methods were implemented and tested on square matrices of increasing sizes.
The results were as expected. In the chart below, all four methods are shown in a log-log
plot.

In Figure 3.5, N = m = z = n for our matrix sizes from C = A % B. Note that the
number of operations in these methods are O(N?). The horizontal axis is the cube root
of N3. The vertical axis is the time in milliseconds. The red points represent Method 1,
which only used 1 core per SM. The blue points represent Method 2, where all cores in
an SM were used but all memory accesses are global. The green points represent Method
3, where tiles were read into the shared memory to minimize the total number of global
memory accesses. The cyan points represent the CUBLAS library function cublasSgemm.

As expected, Method 1 is slow when compared with the others. Method 2 performs bet-

ter than expected when compared with Method 3. Since Method 3 minimizes the global
memory accesses by using tiles, we expected a great difference between it and the previous

20

5 Loglog Plot of the Matrix-Matrix Multiplication Methods

1':' E I s L5 | I 'E
F| —*HMethod 1]
4 F| —*Method 2]
10 E Method 3 £
: CUBLAS]
3 L -
8 f :
=] 2 B 7
B0 ¢
=0y B]
2]
|: |:| - —
10 F 3
_1 B . 7
i 3
1[:]_2 I L L N | 1 IR T B B I A N | 1 L TR R | L TR TR A |_
i 1 2 3 4
10 10 10 10 10

M from Matrices with Dimenzions M x N

Figure 3.5: A comparison of the matrix-matrix multiplication methods described previously

methods. The explanation of this behaviour is due to the L1 cache: the first memory
access into the A and B matrix is global, but the next thread that accesses the row in A
or column in B already has the value stored on chip. This greatly increases the perfor-
mance of the method. Since Method 2 does not use tiles for the matrices A and B, the
automatic caching that is performed makes Method 2 almost as good as Method 3. This
indicates that for more than a small increase in performance, optimizations must be very
well planned because CUDA is not well enough exposed for developers to see how the cache
and threads will be handled.

CUBLAS performed better than the other methods. This result is good because in using

21

CUBLAS we know that in the future it will be competitive and kept up-to-date, whereas
a method designed now may not work well in the future or with other graphics cards.

In Figure 3.6, the efficiency of the methods are compared by dividing the time by the

number of operations in a matrix-matrix multiplication. This allows us to see when the
GPU becomes saturated and most efficient.

10—1 Loglog Plot of the Matrix-Matrix Multiplication Methods Efficiency

—*— HMethaod 2
Method 2
CLUELAS

2N

0 N

=}
10"k

Ll
10k

—5: ,

10k %
B} \

10k

7|
10

Time in milliseconds # (N x N x N)

gt
10k

af

10 1 TN T T N W W | 1 TR T T T A | 1 1 [| 1 I T T I

0 1 2 3 4
10 10 10 10 10

M from Matrices with Dimensions M = N

Figure 3.6: Comparison of efficiency of matrix-matrix multiplication methods described
previously

22

In Figure 3.6, N = m = z = n for our matrix sizes from C' = A% B. Note that the number
of operations in these methods are O(N?3). The horizontal axis is the cube root of N3. The
vertical axis is the time in milliseconds it takes for a single operation in the O(N?) method.

It seems that Method 2 and Method 3 plateau when N = 128. For CUBLAS, its plateau
occurs at 1024, which means the matrices are large in comparison to those of our problem.
In the setting of our problem, a single matrix-matrix multiplication will not be ecnough
to saturate the GPU, because our matrices are quite small compared to a matrix with
dimensions 1024 by 1024. So we have to explore other ways to use the CUBLAS library
to saturate the GPU.

This section contains results that suggest that using CUBLAS is the best way to ap-
proach our problem. It also has the benefit of being updated by the GPU producer so it
seems likely that it will remain competitive in the future. Also since CUDA is guaranteed
to be backwards compatible with previous versions, any future changes in the CUBLAS
library, will affect our code. It seems that using the GPU manufacturer’s library has many
benefits.

3.3 Pinning Memory

One technique for transferring data to the GPU faster is ‘pinning the memory’. Usually,
when memory is requested by a process, the operating system (OS) allocates it in the first
available spot that is large enough. It may then be moved around for the convienence of
the OS. This is not convienent for CUDA, so there is a more suitable way to declare the
memory: cudaMallocHost function, as described in [2], is the way to declare memory that
is ‘pinned’ to a fixed location in the CPU host memory. It takes much longer to allocate
because the OS tries to find the most convient spot for it to have memory unavailable until
the process releases it. Because the location of the memory is pinned, it can be copied
or transferred through connections on the motherboard much faster. Since the GPU is
accessed through a PCle slot, having the memory pinned allows data transfer to be unhin-
dered and reach optimal transfer rates. The negative aspect of using the pinned memory is
that it takes much longer to allocate than unpinned memory. If the program is repeatedly
declaring memory and then transferring it, it could be faster to have it unpinned. In our
case, it is preferable to have pinned memory because the memory is declared once, but
repeatedly transferred. The speedup of transferring data using this is roughly 2x. Figure
3.7 shows the time required to transfer the data over the PCle 2.0 connection on Monk

23

nodes.

103 Loglog Plot of HostTollewice Array Copy
: cudaMallocHost E
| — " malloc .
5 4
10 .
" i
.1
o 10 .
ki :
E i
g 0
e 10 ?
=]
_1 [T
10 .
_2 | i
10 1 | 1 1
0 2 4 B a 10
10 10 10 10 10 10

Size of Array

Figure 3.7: Transferring ‘pinned’ and ‘unpinned’” memory. The horizontal axis is the
length of a float array being transferred from the Host to the Device. The vertical axis
is the time in milliseconds. The green points represent memory that was allocated using
cudaMallocHost, and the red points represent memory that was allocated using malloc.

What is noticeable is that there is a base cost for calling the memory transfer opera-
tion. For the small sizes of arrays up to 10* there is a plateau in the timings. After that,
the cudaMallocHost memory transfer takes half the time of transferring memory declared

24

with malloc. The plateau represents an area of inefficient which needs to be avoided when
transferring the data. Figure 3.8 describes the efficiency.

10—1 Loglog Plot of HoztTolevice Array Copy Efficiency
‘ cudaMallocHost
—*—malloc]
-2
~ 10 F 4
ey o]
g - .
& [|
& =
Tl
& i]
- -4 [1
21w F =
= o]
a s]
B [|
= 5
El
£ - .
n []
E -k
C10E 3
7| T
10 1 1 | |
0 2 4 B a 10
10 10 10 10 10 10

Size of Array

Figure 3.8: Efficiency of memory transfer methods. The horizontal axis is the length of
the float array being transferred. The vertical axis is the time in milliseconds divided by
the size of the array being transferred. This gives an accurate estimate of the time it takes
to transfer an element in the array. The green points represent pinned memory and the
red points indicate regular memory.

The plateau in Figure 3.8 indicates that the optimal speed for transferring elements has

25

been reached. This means that transfers should ideally be done in lengths of at least 10*
for float arrays.

The use of pinned memory can be regulated by the user. As noted in [2] “Pinned memory
should not be overused. Excessive use can reduce the overall system performance because
pinned memory is a scarce resource. How much is too much is difficult to tell in advance,
so as with all optimizations, test the applications and the systems they run on for optimal
performance parameters” Declaring many arrays and allocating them with pinned memory
may not work if the OS places them apart so that other arrays cannot fit between them,
because this may use much more memory. Since array storage is contiguous, placing a
pinned array of length 10 at position 0 and then another one at position 19 may be waste-
ful if trying to pin another array of length 10. The 9 spaces from position 10 to position
18 can not be used by the array of length 10. The way around this is to have all the small
arrays stored in one large array allowing the OS to pin all of the arrays in one section of
contiguous memory.

3.4 CUBLAS for matrix-matrix multiplication

3.4.1 Square Matrix Benefits

The CUBLAS library may have hidden properties which allow matrix-matrix multiplica-
tion to be performed faster if the matrices are square. In Method 3, we observed that the
matrix-matrix multiplications performed faster when the matrices were accessed in tiles.
That observation together with [9] suggest that multiplying square matrices may be faster
than rectangular matrices. To investigate this, all square matrix-matrix products and all
non-square matrix-matrix producs were timed and recorded for matrices with all dimen-
sions less than 128.

The figure below is the results of this investigation of the C' = A % B where C is an
m X n matrix, A is an m X z matrix and B is a z X n matrix. A matrix-matrix product
consists of O(mzn) operations so the cube root of mzn can be thought of as the dimension
of one side of the matrix. There are many matrices of different sizes but they have been
grouped by this cube root so that they are being averaged with matrix-matrix products
with the same number of operations. The cube root is along the horizontal axis and the
recorded time of the product is along the vertical axis in milliseconds. Green points in-
dicate square matrix-matrix products and blue points indicate non-square matrix-matrix

26

products. The red points indicate an observed curiosity that will be discussed later in this
subsection.

Square, Rectangular, Perfect Sizes
|:|+|:|? 1 1 1 1 I I

— Square
—*——Rectangqular
0,06 | —*—Perfect 45 .

0,05

0,04

0,02

Time in milliseconds

0.0

0,01

l::l 1 1 1 1 | |
0 20 40 B0 a0 100 120 140

cube ract of mx z ¥ n

Figure 3.9: Perfect sizes do not include square matrices

From Figure 3.9, it is apparent that CUBLAS can perform matrix-matrix multiplications
faster when the matrices are square rather than when they are rectangular.

Also noticeable is a pattern of consistent sharp downward spikes among the green points.
They occur evenly at intervals of 16. This regular behaviour suggests that certain square

27

matrix sizes can perform significantly better than other shapes. These intervals of 16 sug-
gest that perhaps matrices whose dimensions divide evenly into 16 perform better than
those matrices that do not, regardless of being square or non-square. The matrix-matrix
products whose matrix dimensions divided evenly into 16 were averaged separately and
are the red points on Figure 3.9, they are labelled as perfect. It is apparent that matrices
whose dimensions divide evenly into 16 perform significantly better than those whose di-
mensions do not.

The matrices that divide evenly into 16 may also plateau before the other matrices in ef-
ficiency, which may partially explain the better run times. Below is a chart of the efficiency.

Figure 3.10 shows that matrix-matrix multiplication is performed faster when the matrices
have dimensions that are multiples of 16. The difference is not due to faster saturation of
the GPU for matrices wih dimensions that are multiples of 16. The code is simply faster
for these matrices.

3.4.2 DMatrices with Padding

To pad a matrix is to increase the size of the matrix by adding more rows and columns that
are filled with zeros. In the previous section, it was shown that matrix-matrix multiplica-
tion is performed faster when the matrices have dimensions that evenly divide into 16. It
is also suggested in [2] and [9] that sometimes padding may increase performance. Padding
the matrices to these sizes may actually decrease the time required for the matrix-matrix
multiplication. When dealing with the padded matrices, the same number of meaningful
operations are being carried out, even though more actual operations are being performed.
To actually pad the matrix itself requires time since allocated memory is not, by default,
zero in the memory type of the array, so it needs to be manually set to zero. If the matrices
are being allocated to memory repeatedly, setting the entries to zero may potentially incur
more time than is gained by the faster matrix-matrix multiplication.

There are many costs associated with padding the matrices. More memory is being taken
up on both the GPU device and the CPU host. Depending on the system, this additional
memory usage may be prohibitive, either on the device or possibly on the host. Transfer-
ring the matrices will take more time because the matrix has become larger, even though
the same amount of useful data is being transferred.

28

-2 Square, Rectangular. Perfect Sizes: Efficiency

1':' E I 1 1 1 1 1 E

B — Sguare :

i —*—Rectangular |]
=3[} ——

10 : Ferfect !
= F 3
» i i
b -4
=10 F -
= : ;
N - N
5 -5
510 F 5
] E 3
_ﬁ r]
i T
=
=4 E
A 5
I:| -7 B E

10 F E

-0 1 $]

10 | 1 1 1 | |

] 20 40 B i 100 120 140

cube root of mx z ¥ n

Figure 3.10: The horizontal axis is ¥/mzn because the number of operations is O(mzn).
The vertical axis represents the time per operation. The blue points represent the rectan-
gular matrices whose dimensions are not multiples of 16. The green points represent the
matrices whose dimensions are square and not multiples of 16. The red points represent
the matrices whose dimensions are multiples of 16.

In Figure 3.11, padded matrices are compared with unpadded matrices.

Clearly it is better to pad the matrices with zeros, so that the dimensions divide evenly

29

Fadded Against UnFadded
|:|+|:|? 1 1 1 1 I I

UrnPadded
—*— Padded E

T
5
|

0,05

0,05

0,04

0,03

Time millizeconds

0.0z

AR

I:I 1 1 1 1 | |
0 20 40 B0 =11 100 120 140

cube root of mx z ¥ n

Figure 3.11: The horizontal axis is /mzn (without padding). The vertical axis is the
recorded time for the multiplication in milliseconds. The green points represent the ma-
trices without padding. The blue points represent the matrices with padding.

into 16. The padded matrix-matrix multiplications take approximately half the time of
the unpadded matrix-matrix multiplications.

Figure 3.12 shows an investigation into the efficiency of padding.

30

-7 Fadded Against UnPadded Efficienc

InPadded
—*— Padded

Time millizeconds # (m x =z x n)
T T |||||||

1[:' | 1 1 1 | |
0 20 40 B0 =11 100 120 140

cube root of mx z ¥ n

Figure 3.12: The horizontal axis is ¥/mzn. The vertical axis is the time taken by each
operation. The green points represent the unpadded matrices and the blue points represent
the padded matrices. It is clear that the padded matrices are more efficient even though
more operations are being performed for the same number of meaningful operations in the
unpadded matrices.

Looking at the charts, it is clearly far better to pad the matrices with zeros. Even the
transfer times should not suffer greatly because if a matrix of size M x N is being trans-
ferred, then the additional memory that padding needs is O(M + N). So when compared
to the O(M N) needed anyway, it is normally not too much.

31

3.4.3 CUBLAS batched

There is a batched version of most CUBLAS functions, which allows many CUBLAS op-
erations to be combined within a single call, possibly improving performance by better
saturating the GPU. The batched version of matrix-matrix multiplication uses a more
elaborate algorithm than the nonbatched version, so that the GPU is saturated while
performing the computations. This means that the same number of multiplications are
performed in less time. Using the batched version is very beneficial because of this and
also because multiplying many matrices requires a for loop on the CPU and multiple calls
to the GPU. We avoid the calling overhead with this batched version.

Knowing how the batched version compares with the non-batched version may give a
better insight into how the batched version works. Figure 3.13 is the batched version
against the non-batched version for one matrix-matrix multiplication. The results were
generated by averaging the times for all matrices with sizes less than 129 being multiplied
together.

It is curious that the batched method performs better than the non-batched method for
some matrix sizes. For matrix-matrix multiplication where the cube root of the number
of operations is less than 100, it is better to use the batched method, even though there
is only 1 pair of matrices being multiplied. It also suggests that the algorithm that is
implemented in the library may be quite different for the non-batched method.

Figre 3.14 is a comparison of the batched and non-batched methods for 1000 matrices.
There is one call to the batched method and 1000 calls to the non-batched method.

Now, the difference between the batched method and the non-batched method seems to
be rather large, with the batched method performing very well. It seems that using the
batched method is clearly the better option for handling our problem. As the matrices
become larger, the difference between the two methods appears to be shrinking. It is likely
that the difference between the two methods will continue to shrink and become negligible
when the /mzn exceeds 150. In our fluid dynamics problem, /mzn ranges from 10 to 40.
When inspecting that region of the graph it appears that the batched method runs in under
a tenth of the time of the non-batched method. The reason for this behaviour is likely

32

T CUBLAS batched werzus nonbatched depth 1

“Batched
0,12 b “‘*“‘NnnBatched i

0,11 F J _
0,1
0,09

0,03

Time millizeconds

0,07

0,08

0,05

0+|:|4 1 1 1 1 | |
0 20 40 B0 =11 100 120 140

cube root of mx z ¥ n

Figure 3.13: The horizontal axis is /mzn. The vertical axis is recorded time in millisec-
onds. The green points represent the times for the batched version, and the blue points
represent the non-batched version.

due to the small matrices not saturating the SMs completely, whereas the batched version
executes multiple products on the same SM. Therefore, the batched version is probably
approaching its optimal efficiency much faster than the non-batched method as a function
of matrix size.

In Figure 3.15, the times of Figure 3.14 were divided by /mzn to yield the approxi-
mate time taken by an individual operation.

33

2 CUBLAS batched wersus nonbatched depth 1000

“Batched
—*— NonBatched

=]

a0

=
i
)

(]
L
T

Time millizeconds

[J
L
T

10

>
i
b
g
pree i
B i -
e L2

|:| s -w—'—?:'i g 1 1 1 | |
] 20 40 (=14] 20 100 120 140
cube root of mx z ¥ n

Figure 3.14: The horizontal axis is /mzn. The vertical axis is the recorded time in
milliseconds for 1000 matrix-matrix products to be computed. The green points represent
the times for the batched version, and the blue points represent the non-batched version.

There is a plateau that approximately begins when the cube root of the number of oper-
ations reaches 40. It means that the matrix-matrix multiplication is just as efficient at 40
as it is at greater sizes when using the batched method. In our problem, /mzn ranges
from 10 to 40, so for most cases batching 1000 matrix-matrix multiplications is not enough
to saturate the GPU. Looking at the non-batched method shows that it is indeed less
efficient. It also shows that the GPU is not being saturated. The efficiency of the batched

34

-2 CUBLAS batched werszuz nonbatched depth 1000 Efficiency

Bat.ched
—*— NonBatched

Time millizeconds / (mox z x n)

| 1 1
0 20 40 B0 a0 100 120 140

10 | |

cube root of mx Z ¥ n

Figure 3.15: The horizontal axis is «/mzn. The vertical axis is recorded time in milliseconds
for approximately a single operation to be performed. The green points represent the times
for the batched version, and the blue points represent the non-batched version.

method is an order of magnitude better than the non-batched version between 10 and 40
on the horizontal axis. The non-batched version most likely plateaus as well, just beyond
the current range.

The batched version of the CUBLAS matrix-matrix multiplication method is superior to
its non-batched counterpart within the specifications of our problem. It saves CPU time by
using only a single call to the GPU instead of a loop. We saw that for many matrices, the
batched method performed significantly better. There is also evidence suggesting that the

35

batched version saturates the GPU much more effectively than many non-batched calls.
Batching also helps in the following section.

3.5 Overlap of Communication and Computation

3.5.1 Overlap of Transfer and Kernel

In the layout of the GPU, it was shown that there is a separate processing unit, the copy
engine, that only handles the transfer of data. The GPU is able to use the copy engine
and the SMs simultaneously. This allows memory to be transferred to the GPU while it is
performing computations on the data that is already present. This approach to computing
on the GPU is described in [9]. The overlap should reduce the overall time required for
the entire matrix-matrix multiplication result to be given to the CPU.

Ideally, the time of the transfer operations will be hidden in the computation operations.
More generally, one may strive to either hide the compute time in the transfer time, or the
transfer time in the compute time.

Figure 3.16 is a visual representation of what is being attempted with the overlap of
computation and transfer. It shows that 33% of the time can be saved in this manner.

Another method would be to start transferring back the first set of results the moment
they are finished. Unfortunately, this would prevent the third set of matrices from being
sent to the GPU on time. In the case of 4 sets, the actual time for the whole procedure
would still be the same as the original time. But the positions of the computation are
spread out. When dealing with multiple CPUs sharing 1 GPU, this detail needs to be
handled with more elaborate strategies, otherwise the gain from overlapping transfer and
computation may be lost.

3.5.2 Case Study

The situtation of one CPU and one GPU will be considered. The overlapping of transfer
and computation is much more difficult to balance in the setting of our problem because

36

- i w ” - ! - iy ! " n =
memory
operation
Kemel
operation

REGULAR

B | | | [—

Figure 3.16: In the top part, a large set of matrices is transferred over to the GPU (light
red). The kernel is executed for the set of matrices (dark red). Then the large set of
matrices is transferred back to the host (light red). In the bottom part, the large set
of matrices is split into 4 smaller sets. The first smaller set is transferred to the GPU.
When the transfer is complete, the computation begins on the first smaller set of matrices.
While this is happening, the second small set of matrices is transferred over. This processes
repeats itself until all of the small sets of matrices have been transferred over. The moment
the last set has been sent to the GPU, the results of the first computation are transferred
back while the last computation is occurring. When that transfer is finished the second set
of results is transferred back, and this process is repeated until all the results have been
transferred back.

the matrices A and B are bigger than C', not significantly, but just enough to cause prob-
lems. For instance, take m, z, n to be equal to 19, 32, 9. So C'is 19 x 9, A is 19 x 32,
and B is 32 x 9. Then matrix A has 608 elements, matrix B has 288 elements, and matrix
C has 171 elements. Together A and B have 896 elements. These sizes are important
because in this case calc the amount of memory being transferred to the GPU is roughly
5x the size of the amount of memory being transferred from the GPU. A difficulty arises
because the chunksize for transferring A and B at optimal speed may not be the chunksize
for transferring C' at an optimal speed. Knowing how to balance this requires a significant
amount of experimentation. To our advantage is the fact that all of these operations and

37

transfers happen in milliseconds, so a satisfactory balance can be found quickly by checking
many different parameter choices.

Figure 3.17 shows a graph of the total time for a set of matrices to be transferred to
the GPU, to be multiplied together, and to be transferred to the host. The set of matrices
that was transferred to the GPU consisted of one thousand A and B pairs, where A is a
19 x 32 matrix and B is a 32 x 9 matrix. The kernel is a batched CUBLAS matrix-matrix
multiplication function. Then 1000 C' matrices, of size 19 x 9, are transferred to the host.
The graph below shows the timings for this, as the set of 1000 matrices is split up into
chunksizes. This is done in order to find an optimal overlap of memory transfer and com-
putation.

One aspect of this chart does not appear to be correct. The time it takes for the asyn-
chronous method to transfer 1000 matrices all at once, then perform the computation, then
transfer them all back should take as long as the synchronous method, but this is not the
case. This discrepancy can be tracked down to the different functions used to copy the
memory over to the GPU. The asynchronous method uses cudaMemcpyAsync whereas the
synchronous method uses cudaMemcpy. This suggests that if transferring pinned memory,
it may be better to use cudaMemcpyAsync, even when there is no actual overlap taking
place in the code.

Looking at Figure 3.17 shows that the best chunksize to use is 100 followed by 250 then
125. It is strange that there does not seem to be a reason why 100 and 250 are better
chunksizes than 125. This suggests that chunksizes need to be checked for individual prob-
lems. It should be noted that while the difference in time between the 100, 125, 250 is
small, the saturation of the GPU is also a factor when choosing which chunksize to use.
This is important when considering the more general situation of multiple CPUs sharing
one GPU. If a chunksize of 100 did not saturate the GPU but was the fastest method
then it would be the better choice because the GPU could then saturate itself with the
other matrix-matrix multiplications from the other CPUs. The saturation would need to
be measured in a case study of multiple CPUs sharing one GPU.

Individually checking all the sets of matrices we have in this problem did not reveal any
strong connection to suggest a simple rule for calculating an optimal chunksize. Table
3.6 is a summary of many graphs with the various sizes of data being transferred. The
columns are CPU host to GPU device (H2D) consisting of A and B, GPU device to CPU

38

Splitting Memory Transfers and Overlapping Computation
Cmxn = Amxz * Bzxn [m, z, n] = [19, 32, 9] depth of batched matrix array = 1000

¥ ¥ ¥ ¥

s — e — e =
- - = - =

1.7

[y

+

o
T

[y

+

.
T

Overall Time in milliseconds
=
(42}
T

1.3

1.2 + #: =
100 1000 125 1000 250 1000 500 1000 1000 1000
Async Sync Async Sync Async Sync Async Sync Async Sync

Chunk Size of Overlapped Transfer and Computation

Figure 3.17: The values along the horizontal axis correspond to the method used to perform
the task. The Sync values are the timings for the entire set of matrices to be transferred,
computed, and sent to the host. The Sync values are repeated on the graph for comparative
purposes. The Async indicates the overlapped timing results. The number above the text
on the horizontal axis is the chunksize, which is the size of the sections that the 1000
matrix sets (A4, B, and C) were divided into, allowing an overlap.

host (D2H) consisting of C, Total size being A, B, and C. Total Optimal Chunk Size is
the Total Size column multiplied with the Optimal Chunk Length column, to show how
many individual values are being transferred.

39

Matrix H2D | D2H | Total | Optimal | Total Optimal
Chunk Chunk
Code Size | Size | Size | Length Size

9x24x5 | 1344 | 180 | 1524 250 381000
9x24x8 | 1632 | 288 | 1920 125 240000
9x24x9 | 1728 | 324 | 2052 100 205200
9x32x5 | 1792 | 180 | 1972 250 493000
9x32x8 | 2176 | 288 | 2464 125 308000
9x32x9 | 2304 | 324 | 2628 125 328500
9xb6x5 | 3136 | 180 | 3316 125 414500
9x 56 x8 | 3808 | 288 | 4096 100 409600
9x56x9 | 4032 | 324 | 4356 100 435600
19x24x5|2304 | 380 | 2684 250 671000
19x24x 82592 | 608 | 3200 250 800000
19x24x9 | 2688 | 684 | 3372 250 843000
19x32x5|3072 | 380 | 3452 125 431500
19x32x 8| 3456 | 608 | 4064 125 508000
19x32x9 | 3584 | 684 | 4268 100 426800
19x 56 x5 | 5376 | 380 | 5756 125 719500
19 x 56 x 8 | 6048 | 608 | 6656 100 665600
19x56x9 | 6272 | 684 | 6956 100 695600
34x 56 x5 | 8736 | 680 | 9416 100 941600
34 x 56 x 8 | 9408 | 1088 | 10496 100 1049600
34x56x9|9632 | 1224 | 10856 100 1085600

Table 3.6: This is the records of transferring both A and B, but it may be the case that
for our fluid dynamics problem, we may be able to store all the A matrices on the GPU.
So the A matrices would only need to be transferred once during the initialization of the
program.

40

Chapter 4

Conclusion

Implementing the best approaches that were investigated into the existing MPI code from
[6] will require a lot of work. Before doing that, many parts will need to be further tested
individually to see if they are beneficial or not. In terms of adapting the MPI code, the first
step would be to change the arrays of structures into structures of arrays. This allows the
matrices to be transferred contiguously and in user-defined chunk sizes. The best approach
to use pinned memory would be only to only allocate the arrays once for each multi-core
CPU, during the initialization of the program. The function would declare one incredibly
large pinned memory array, divide it up with pointers, and then pass the pointers to all the
processes running on the cores of that CPU. This approach seems quite infeasible because
there is a lot of message passing due to the multiple processes running on each core and
the multiple cores of each CPU. The other reason is that this pinned memory will not be
released until the entire program ends. Pinning the memory does seem like a good idea
when looking back at Figure 3.7 of the difference in transfer times but in practice, it can
be troublesome.

If it is possible to keep all of the A matrices on the GPU, then that would speed up
the transfers. This basically halves the total transfer to the GPU, but it may not be pos-
sible because of memory restrictions.

The matrices should be padded with zeros to the next highest multiple of 16. The perfor-
mance gain is too significant to neglect using the idea, even though it uses more memory.
A possibility to reduce the memory usage, would be to overlap the A and B matrices in
such a way that they share padding. Since A and B are only read, there would be no
problem with this, but CUBLAS does not have an option to state that a matrix is stored

41

starting with the last column through to the first column.

All matrices that reside on the GPU could be copied over with cudaMemcpyAsync be-
cause it was observed that it is faster both in the case of multiple transfers and a single
transfer. This situation requires a more rigorous investigation into the causes of this be-
haviour.

Using CUBLAS’s batched version of matrix-matrix multiply is required to fully saturate

the GPU for small matrices, and is necessary when overlapping data transfer with kernel
computation.

42

References

1]

2]

3]

[4]

[6]

[7]

8]

[9]

Christoph Bennemann, Mark W. Beinker, Daniel Egloff, and Michael Gauckler. Ter-
aflops for Games and Derivatives Pricing. Wilmott Magazine, 4, 2004.

NVIDIA Corporation. NVIDIA OpenCL Best Practices Guide. Technical report,
NVIDIA Corporation, 2009.

Luigi Genovese. Graphic Processing Units: a Possible Answer to High Performance
Computing?, 2009. 4th ABINIT Developer Workshop.

N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli. High Perfor-
mance Discrete Fourier Transforms on Graphics Processors. In In SC 08:Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, pages 1-12, Piscataway, New
Jersey, USA, 2008.

Wikimedia Foundation Inc. CUDA. http://en.wikipedia.org/wiki/CUDA, August
2012.

Lucian Ivan, Hans De Sterck, Scott Northrup, and Clinton Groth. Hyperbolic Conser-
vation Laws on Three-Dimensional Cubed-Sphere Grids: A Parallel Solution-Adaptive
Simulations Framework. Submitted, 2012.

David Kirk and Wen mei W. Hwu. Programming Massively Parallel
Processors. http://courses.engr.illinois.edu/ece498/al/lectures/
lectureb-cuda-memory-spring-2010.ppt, 2010. Accessed using Google cached.

NVIDIA Corporation. CUBLAS. http://developer.nvidia.com/cuda/cublas, Au-
gust 2012.

NVIDIA Corporation. NVIDIA CUDA C Programming Guide. Technical report,
NVIDIA Corporation, April 2012.

43

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Kruger,
Aaron E. Lefohn, and Timothy J. Purcell. A Survey of General-Purpose Compu-
tation on Graphics Hardware. pages 21-51, 2005.

Sharcnet. About Sharcnet. https://www.sharcnet.ca/my/about, August 2012.

Sharcnet. Monk Documentation. https://www.sharcnet.ca/help/index.php/
Monk, August 2012.

Mark Silberstein, Assaf Schuster, Dan Geiger, Anjul Patney, and John D. Owens.
Efficient computation of Sum-Products on GPUs through Software-Managed Cache.

In Proceedings of the 22nd annual international conference on Supercomputing, pages
309-318, New York, New York, USA, 2008.

J. Tolke and M. Krafczyk. TeraFLOP computing on a desktop pc with GPUs for 3D
CFED. International Journal of Computational Fluid Dynamics, 22:443-456, 2008.

F. Vazquez, E. M. Garzon, J. A. Martinez, and J. J. Fernandez. The Sparse Matrix
Vector Product on GPUs. Technical report, University of Almeria, 2009.

Tim Warburton. General Purpose GPU Computing. http://www.caam.
rice.edu/~timwar/RMMC/CUDA.html, 2012. Original source unavailable,
http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_
Programming_Guide_1.1.pdf.

Martin Weigel. Simulating Spin Models on GPUs. In Computer Physics Communi-
cations, volume 182, pages 1833—-1836. 2011.

44

