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Abstract

Understanding the behaviour of cells is an important problem for biologists. Significant
research has been done to facilitate this by automating the segmentation of microscopic
cellular images. Bright-field images of cells prove to be particularly di�cult to segment due
to features such as low contrast, missing boundaries and broken halos. In this paper, we
present two algorithms for automated segmentation of cellular images. These algorithms
are based on a graph-partitioning approach where each pixel is modelled as a node of a
weighted graph. The method combines an e↵ective Region Force with the Laplacian and
the Total Variation boundary forces, respectively, to give the two models. This region
force can be interpreted as a conditional probability of a pixel belonging to a certain
class (cell or background) given a small set of already labelled pixels. For practicality, we
use a small set of only background pixels from the border of cell images as the labelled
set. Both algorithms are tested on bright-field images to give good results. Due to faster
performance, the Laplacian-based algorithm is also tested on a variety of other datasets
including fluorescent images, phase-contrast images and 2- and 3-D simulated images. The
results show that the algorithm performs well and consistently across a range of various
cell image features such as the cell shape, size, contrast and noise levels.
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Chapter 1

Introduction

Image segmentation is a well-developed area in computer vision. It is the process of auto-
matically identifying the location of objects in an image. The objects could be as simple
as the foreground and background or more complex such as the eyes and nose on a picture
of a face. Successfully locating the objects on an image is usually the first step to further
analysis and interpretation of the image. In our research essay, we focus on the segmenta-
tion of cellular images. The goal of cell image segmentation is to locate the cells from the
background medium they are contained in.

1.1 Cellular Images

Cells are the fundamental units of life and understanding their behaviour can give valuable
information to biologists. The study of cells is typically done on time-lapse microscopy
data sets that contain a large number of image frames. This makes manual analysis very
time consuming and error prone, especially in 3-D [17]. Therefore, automatic segmentation
of cellular images becomes a necessary first stage in analyzing the behaviour of cells. There
are three common cellular imaging techniques used; bright-field, fluorescent, and phase-
contrast microscopy, and they all have unique properties that make them more or less
suitable for segmentation. A comparison of a bright-field and fluorescent image of the
same sample of cells is given in Figure 1.1.
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Figure 1.1: A comparison of a bright-field (left) and fluorescent (right) image of the same
sample of cells.

1.1.1 Bright-field Microscopy

Bright-field microscopy is one of the most common microscopy techniques. It involves
transmitting light from the bottom of the sample of cells and viewing the light that emerges
from the top. Because di↵erent parts of the cell and background absorb light to di↵erent
degrees, an image of bright and dark areas is formed. There is usually low contrast between
the background and the centre of the cell, and the most discernible areas are a dark belt
and a bright “halo” surrounding the border of a cell. This is caused by light converging
through the upright cell membranes. However, some cell areas can be flattened along with
their membranes which results in an inconsistent border around the cell and a broken halo.
These inconsistent boundaries and poor contrast are some of the challenges of segmenting
bright-field images [18].

1.1.2 Fluorescent Microscopy

Fluorescent microscopy involves the staining of cells which fluoresce when light of a partic-
ular wavelength is emitted through them. This creates a high contrast between the stained
part of cells and the background– which makes it a good choice for segmentation. However,

2



in most cases, only certain organelles such as the nucleus is stained and captured. This
makes it unsuitable for tasks where the entire cell is to be analyzed. Another issue with
fluorescent imaging is that the stain may influence the way a cell moves, grows or divides
so it might not capture the true behaviour of cells [19].

1.1.3 Phase-Contrast Microscopy

Phase-Contrast microscopy is based on the principle that light passing through an area of
di↵erent refractive index undergoes a phase shift. This change in phase is then translated
into a variation in brightness. Unlike the fluorescent method, cell samples for the phase-
contrast images need not be stained and therefore complete cells can be captured without
altering their true behaviour. However, while the phase-contrast method is better than
bright-field in terms of contrast, it still produces images with artifacts such a halo and a
shadow around the cells [21].

1.2 Cell Image Segmentation

There has been considerable research done on the segmentation of cellular images. The
high-contrast feature of fluorescent imaging makes it a particularly popular choice for ex-
periment. Nevertheless, studies of bright-field image segmentation, although fewer, have
also been done. In [19], Bradbury et al. propose a spectral-k-means clustering algorithm
for segmentation of bright-field cell images. However, the algorithm is made to locate the
boundaries of a cell images with only one cell. When multiple cells are present, it requires
prior information about the location of each cell. Another approach based on using active
contour methods for bright-field image segmentation is given by Tscherepanow et al. in
[20]. The method is successful but is only tested on one type of cell. In [22], Kang et al.
use a graph-partitioning approach combined with a global-local method that fine-tunes the
result by applying segmentation twice. First on the entire image to obtain large “blobs” of
groups of cells, and then again on each blob to obtain a refined segmentation of individual
cells. This means it requires extra information about of the location of each blob. Being
tested on one type of cell, it also leaves some doubt as to how consistently it performs
on other datasets. Finally, a unique cell image segmentation algorithm based on a game
theoretic approach is given by Dimock et al. in [23]. It is tested on a variety of 2-D datasets
to give good results.

The approach to be presented in this paper is based on a graph-partitioning problem

3



which combines a local and a global metric for segmentation. The goal is to segment an
image with multiple cells without user input about the location of each cell or group of
cells. To test consistency and robustness, it will be applied on bright-field images as well
as fluorescent, phase-contrast, and 2- and 3-D simulated images.

In Chapter 2 we give some useful background knowledge about the models and algorithms
that are presented in Chapter 3. The numerical results of applying those models on various
cell images are given in Chapter 4 and the conclusion in Chapter 5.
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Chapter 2

Background

The algorithms presented in this paper rely on a graphical model to represent the image and
it’s characteristics. In this chapter we first define our objective that is image segmentation,
and then move on to give a basic understanding of our graphical model, some useful graph
operators, and the graph partitioning problem. Finally, we present the celebrated Chan-
Vese Model.

2.1 Cell Image Segmentation

Pixels, which are very small boxes of di↵erent intensities, are the building blocks of our
cell images. Many of them put together can be recognized by the human eye as a picture
of cells. Cell image segmentation is the process of automatically identifying which of those
pixels make up the cells and which of those pixels make up the background. This means
we have two clusters ; cell and background, that pixels can be labelled as.

The pixel intensity and location can be used to construct a data vector corresponding
to each pixel. These data vectors can then be used to build our graphical model.

2.2 Graphical Model

A weighted undirected graph G = (V,E,w) consists of a set of nodes or vertices V , edges
E that connect those vertices, and a weight function w : E ! R+ defined on those edges.
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We say that a graph is undirected if for a pair of nodes x
i

, x

j

2 V , the edges {x
i

, x

j

} and
{x

j

, x

i

} are considered to be the same. The nodes in the graph can correspond to the pixel
data vectors and the weight function can be defined in such a way that it assigns larger
weights to edges between nodes that are similar and smaller weights to edges between nodes
that are di↵erent. This means that for every edge {x

i

, x

j

} 2 E, the weight w
ij

= w(x
i

, x

j

)
should measure how “close” the nodes x

i

and x

j

are.

There are many popular choices of weight functions to measure the similarity between
a pair of nodes, such as the Radial Basis Function (RBF) [1]

w(x
i

, x

j

) = exp

✓
�d(x

i

, x

j

)2

2!

◆
, (2.1)

where d is a distance metric and ! is a constant, the Zelnik-Manor and Perona (ZMP)
weight function [2]

w(x
i

, x

j

) = exp

✓
�d(x

i

, x

j

)2p
�(x

i

)�(x
j

)

◆
, (2.2)

where � is the local variance, and the Cosine Similarity [3]

w(x
i

, x

j

) = cos(x
i

, x

j

) =
hx

i

, x

j

i
kx

i

kkx
j

k , (2.3)

which is particularly useful in natural language processing.

In practice, this weight is not assigned between all pairs of nodes. The weight matrix
W = (w

ij

), also called a�nity matrix, can instead be constructed by a k-Nearest Neigh-
bour (k-NN) search. That is, for each node, we assign this weight only on the edges
connecting it to it’s closest k number of neighbours. All other edges connected to this
node receive a zero weight. Therefore, it can be assumed that the graph is sparse and that
each node has at most k neighbours.

2.3 Graph Operators

The a�nity matrix W is very important and gives rise to many useful graph operators [4].
Suppose D is a diagonal matrix with the entries on the main diagonal equal to the sum
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across the rows of W . Then the unnormalized graph Laplacian is given by

L = D �W, (2.4)

which is a symmetric matrix since both D and W are symmetric. The Normalized A�nity
Matrix is defined by

Ŵ = D

�1/2
WD

�1/2
, (2.5)

which is also symmetric. Similarly, the Normalized graph Laplacian is given by

L

s

= D

�1/2
LD

�1/2 = I � Ŵ . (2.6)

If u 2 L

2(V ) is a function defined on the node set of a graph, then the gradient operator
r : L2(V ) ! L

2(V, L2(V )) is given by [5, 8]

ru(x
i

)(x
j

) = w

ij

(u(x
j

)� u(x
i

)). (2.7)

So ru(x
i

) is a graph function for each x

i

2 V . Since G is a sparse graph with at most
k neighbours for each node x

i

, ru(x
i

) can be seen as a vector with at most k non zero
elements which are in the neighbourhood of x

j

. That is,

ru(x
i

) = (w
ij

(u(x
j

)� u(x
i

)))
xj2N (xi), (2.8)

where N (x
i

) is the set of neighbours of x
i

. Furthermore, the divergence operator div :
L

2(V, L2(V )) ! L

2(V ) is defined by

div(f)(x
i

) =
X

xj2N (xi)

w

ij

(f(x
j

)(x
i

)� f(x
i

)(x
j

)). (2.9)

2.4 Graph Partitioning Problem

The objective of cell image segmentation is to label each pixel of a cell image as either cell
pixel or background pixel. If each pixel corresponds to a node, then partitioning the node
set V of the graph into two disjoint sets is equivalent to labelling each pixel as either cell
or background. However, image segmentation and graph partitioning is not limited to only
two clusters so we will present the generalized case of K clusters. Graph partitioning is
the process of dividing the node set of a graph into disjoint subsets or clusters by removing
some edges in such a way that there are no edges that connect a node from one subset to
another. A cut C is the set of edges that were removed in making this partition. The cost
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of a cut |C| is the sum of the weights of the edges in C. Therefore, to partition a graph
into K clusters V1, ..., VK

, the cost function is given by

|C| =
KX

k=1

X

xi2Vk,xj2V/Vk

w

ij

. (2.10)

In Section 2.2, we saw that edges between nodes that are closer together have larger
weights than those that are further apart. So, to partition the graph into nodes of di↵erent
characteristics or classes, the sum of the weights of the edges that are removed, or the
cost of the cut, should be minimized to obtain an optimal partition. This gives the graph
partitioning problem

{V
k

} = argmin
{Vk}

KX

k=1

X

xi2Vk,xj2V/Vk

w

ij

. (2.11)

This term is known as the boundary force in the context of image segmentation. It works
to separate nodes that are su�ciently further apart into di↵erent clusters and keep nodes
that are su�ciently close together in the same cluster. Therefore, it can be said that
boundary forces penalize the discontinuity between neighbouring nodes. Equation (2.11)
can be reformulated in terms of a partition matrix � = (�

ik

) defined by

�

ik

=

(
1 if x

i

2 V

k

0 otherwise.

If we have n number of nodes then this matrix has dimensions n⇥K. The partition matrix
is a way of representing which cluster each node in the graph belongs to. That is, column
k of row i of the partition matrix takes on the value of 1 if x

i

belongs to cluster k and all
other columns of this row take on the value 0. It can also be seen that if nodes x

i

and
x

j

belong to the same cluster k, then �

ik

= �

jk

= 1 and �

ik

� �

jk

= 0. If they belong
to di↵erent clusters, �

ik

� �

jk

= 1 or� 1. Since a cut edge between two nodes puts those
nodes into di↵erent clusters, we can simplify (2.11) to [9, 10]:

� = argmin
�

KX

k=1

X

{xi,xj}2E

w

ij

|�
ik

� �

jk

| or (2.12)

� = argmin
�

KX

k=1

X

{xi,xj}2E

w

ij

(�
ik

� �

jk

)2. (2.13)
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This is because the terms |�
ik

� �

jk

| and (�
ik

� �

jk

)2 simplify to zero if two nodes belong
to the same cluster or to one if they belong to di↵erent clusters. The same can be said for
(�

ik

� �

jk

)p where p is any multiple of 2. However, we only consider the two cases defined
above because it will be seen further on that they can be simplified into forms that allow
us to e↵ectively formulate and solve the problems. Moving on, since each node can only
belong to one cluster, each row of � must add up to one. This gives the constraint

�1 = 1. (2.14)

Simplifying equation (2.12) gives us:

� = argmin
�

KX

k=1

X

{xi,xj}2E

w

ij

|�
ik

� �

jk

|

= argmin
�

KX

k=1

X

{xi,xj}2E

|w
ij

((�
k

)
i

� (�
k

)
j

)|

= argmin
�

KX

k=1

kr�
k

k1, (2.15)

where �
k

is the k-th column of �. When combined with the constraint (2.14) it gives us
the Total Variation (TV) formulation for graph-partitioning,

� = argmin
�

KX

k=1

kr�
k

k1

s.t. �1 = 1.

(2.16)

The Total Variation of a function is generally defined as the integral of the absolute gradient
of the function. We will also simplify equation (2.13). Let d

i

denote the elements on the
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diagonal of matrix D, then

� = argmin
�

KX

k=1

X

{xi,xj}2E

w

ij

(�
ik

� �

jk

)2

= argmin
�

1

2
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k=1

X
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w

ij
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k

)
i

� (�
k

)
j

)2

= argmin
�

1

2
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k=1
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✓
w

ij
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� 2(�
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i

(�
k

)
j

w

ij

+ w

ij

(�
k

)2
j
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= argmin
�

1

2

KX

k=1
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� 2
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w

ij
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nX
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d
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j
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= argmin
�

KX

k=1

✓
nX

i=1

d

i

(�
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i

�
nX
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(�
k

)
i

(�
k

)
j

w

ij

◆

= argmin
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KX
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✓
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k

D�
k

� �T

k

W�
k

◆

= argmin
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KX

k=1

�T

k

L�
k

. (2.17)

Similarly, combining it with the constraint gives us the Laplacian-based formulation for
graph-partitioning,

� = argmin
�

KX

k=1

�T

k

L�
k

s.t. �1 = 1.

(2.18)
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2.5 The Chan-Vese Model

The well known Chan-Vese Model [6] for graph partitioning combines the TV boundary
force defined in (2.16) with another term called the region force. It is defined as [7]

� = arg min
�ik2[0,1]

KX

k=1

X

xi2V

(g
k

(x
i

)kr(�
k

)
i

k+ µ�

ik

kx
i

� c

k

k2)

s.t. �1 = 1,

(2.19)

where µ is a constant and g

k

(x
i

) is the edge detector function which, for the application
considered in this paper, can be simplified to 1. Here, the elements of the partition matrix
can take on values within the range [0, 1]. The region force term uses centroids c

k

that
are calculated for each cluster by finding the weighted average of the data points within
that cluster. These centroids are then updated iteratively based on the current labelling.
Therefore, the region force term kx

i

� c

k

k2 is smaller if a node x

i

is closer to the centroid
c

k

of a cluster and larger if it is further away. This forces the model to choose smaller �
ik

if
x

i

is far from cluster c
k

or larger �
ik

otherwise. Thereby assigning nodes to clusters whose
centroids they are su�ciently closer to.

However, in some cases, using centroids may not be very successful because the centroid
of a cluster of data points may not always lie near that cluster. For example, the two
moons dataset 1 in Figure 2.1 has two clusters, red and blue, and the centroids of each
lie outside their respective clusters. In the next chapter we outline a di↵erent region force
term without defining centroids.

1
By courtesy of Prof. Ali Ghodsi, University of Waterloo.
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Figure 2.1: Two-Moons Dataset
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Chapter 3

Methodology

In this chapter we present the main models and algorithms that we use to segment cellular
images. We follow the approach given in [8] which defines a new region force term to be
combined with the TV and Laplacian graph partitioning problems to give two versions of
the model. This region force term can be interpreted as a conditional probability for a
node to belong to a certain cluster given a small set of labelled nodes. This means the
models require a small set of already labelled nodes. In section 3.3 we show how to use
a small set of only background pixels from the border of the cell images as the labelled
nodes.

3.1 Boundary and Region Forces

Our image segmentation model can be expressed as a sum of boundary forces B(�) and
region forces R(�)

� = arg min
�ik2[0,1]

(1� ⌧)B(�) + ⌧R(�)

s.t. �1 = 1.

(3.1)

where 0  ⌧  1 is a constant specifying the relative importance of each term. Since the
elements of � can take in values within the range [0, 1], the label for a node x

i

is chosen
as the cluster whose column holds the maximum value in row i of �. A combination of
boundary and region forces are often taken because they both work in di↵erent ways to
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partition a graph. Boundary forces, because they are the weights between neighbouring
nodes, penalize the discontinuity between those neighbouring nodes. That is, they prefer
to keep similar nodes within the same cluster and separate dissimilar nodes into di↵erent
clusters. Region forces, on the other hand, penalize the inhomogeneity between clusters
themselves. They can be thought of as global metrics whereas boundary forces are local
metrics.

3.1.1 Boundary Force

For our boundary force term, we use the TV expression given in (2.16)

B(�) =
KX

k=1

kr�
k

k. (3.2)

The gradient operator here uses the normalized a�nity matrix Ŵ which is derived from
the a�nity matrix W (Section 2.3). We construct W by assigning weights between nodes
using a k-Nearest Neighbour search and the Radial Basis Function defined in equation
(2.1), where the distance metric used is the Euclidean distance.

3.1.2 Region Force

The region force term given in [8] is also based on the normalized a�nity matrix Ŵ and
can be written as

R(�) =
KX

k=1

X

xi2V

p

k

(Ŵ , x

i

)(1� �

ik

) + (1� p

k

(Ŵ , x

i

))�
ik

, (3.3)

where p

k

(Ŵ , x

i

) is the conditional probability of node x

i

belonging to cluster k given the
labelled nodes. It is based on the idea that nodes closer to the labelled nodes should have
a higher probability of having those labels. When p

k

(Ŵ , x

i

) is high, the first term of the
region force becomes larger and in an e↵ort to minimize this, �

ik

takes on a larger value
closer to one.

To define p

k

(Ŵ , x

i

), suppose S1, ..., SK

are sets of labelled nodes in each cluster and

Ŵ

2 = (ŵ(2)
ij

) is the second power of the normalized a�nity matrix given in equation (2.5).
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Then p

k

(Ŵ , x

i

) can be defined as

p

k

(Ŵ , x

i

) =
1

|Sk|
P

j2Sk
q

ij

P
K

r=1
1

|Sr|
P

j2Sr
q

ij

, (3.4)

where

q

ij

=
(ŵ(2)

ij

)2

ŵ

(2)
ii

ŵ

(2)
jj

. (3.5)

In the case when any one of ŵ(2)
ii

or ŵ(2)
jj

is zero, we set p
k

(Ŵ , x

i

) to be equal to 1/K. We

may represent p
k

(Ŵ , x

i

) by an n ⇥K matrix P such that P
ik

= p

k

(Ŵ , x

i

). Also, we will
denote the k-th column of P by P

k

.

Combining our region and boundary forces gives our first model, the Total Variation-based
model with a region force,

� = arg min
�ik2[0,1]

KX

k=1

(1� ⌧)kr(�
k

)k+ ⌧(P
k

(1� �
k

) + (1� P

k

)�
k

)

s.t. �1 = 1.

(3.6)

Applying a quadratic relaxation on (3.6), that is, squaring the boundary term gives us

� = arg min
�ik2[0,1]

KX

k=1

(1� ⌧)

2
kr(�

k

)k2 + ⌧(P
k

(1� �
k

) + (1� P

k

)�
k

)

s.t. �1 = 1,

(3.7)

which can also be written in terms of the Laplacian (2.17) as follows

� = arg min
�ik2[0,1]

KX

k=1

(1� ⌧)

2
�T

k

L�
k

+ ⌧(P
k

(1� �
k

) + (1� P

k

)�
k

)

s.t. �1 = 1.

(3.8)

This is our second model, the Laplacian-based model with a region force. The graph
Laplacian L can also be replaced with the normalized graph Laplacian L

s

which is what
we have used in the algorithms defined in the next section. It can be seen that the objective
function of this problem is di↵erentiable. For convenience, we divide the boundary term
by 2 so that it cancels out when have to calculate it’s derivative in the next section.
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3.2 Algorithms for Graph Partitioning with a Region

Force

In this section we outline the algorithms for solving the Laplacian-based and TV-based
graph partitioning problems with the region force.

3.2.1 Laplacian-Based

The objective function of equation (3.8) is di↵erentiable and has a convex constraint. This
can be solved by a projected gradient method with Barzilai-Borwein type step sizes [12].
We denote the objective function by J(�). Then one iteration of the projected gradient
method is given by

�(j+1) = ⇧�(�
(j) � ↵

(j)
@J(�(j))⇤(j)) (3.9)

where ↵

(j) = 1 initially and ⇤(j) is a diagonal matrix with entries on the main diagonal
equal to (�(j)

1 , ...,�

(j)
K

). These are the step sizes for the gradient descent directions and they
alternate between the two choices

�

(j)
k

=
ks(j�1)

k

k2

hs(j�1)
k

, y

(j�1)
k

i
, (3.10)

and

�

(j)
k

=
hs(j�1)

k

, y

(j�1)
k

i
ky(j�1)

k

k2
, (3.11)

where s(j�1)
k

and y

(j�1)
k

are the kth columns of s(j�1) = �(j)��(j�1) and y

(j�1) = @J(�(j))�
@J(�(j�1)), respectively. The operator ⇧� is a projection onto the feasible domain for �,

� = {� 2 Rn⇥K : �1 = 1}, (3.12)

and it is implemented by the projection onto a simplex algorithm in [11]. This projected
gradient method does not guarantee the decreasing of the objective function. So to ensure
su�cient decreasing, a non-monotone line search is taken by decreasing the parameter ↵(j)

in equation (3.9), based on an Armijo-type acceptability test [12]

J(�(j+1))  J(�(j)) + ✓Tr(@J(�(j))T s(j)), (3.13)

for some small constant ✓ > 0. The stopping criterion is chosen such that two consecutive
objective function values are close enough

|J(�(j+1))� J(�(j))|  ✏J(�(j)), (3.14)
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where ✏ > 0 is a small constant. A summary of the algorithm, called LapRF, is provided
in Algorithm 1. It is to be noted that we use the normalized graph Laplacian L

s

in the
computation.

Algorithm 1 Laplacian-based multi-class graph partitioning with a region force (LapRF)

Require: L

s

, P = (p
ik

), ⌧
Ensure: �
1: procedure LapRF
2: while (3.14) is not satisfied do
3: ↵ = 1;
4: calculate � by (3.9)
5: while (3.13) is not satisfied do
6: ↵ = 0.8↵;
7: recalculate � by (3.9)
8: end while
9: end while
10: return �
11: end procedure

3.2.2 TV-Based

Next we outline the algorithm for solving equation (3.6). By noting the variational formu-
lation for total variation

k�
k

k1 = max
qk2Rn⇥n

,kqkk11
h�

k

, divq

k

i, (3.15)

the minimization problem can be expressed as a saddle-point problem,

min
�2�

max
kqkk11

KX

k=1

(1� ⌧)h�
k

, divq

k

i+ ⌧(P
k

(1� �
k

) + (1� P

k

)�
k

). (3.16)

It can be solved by a primal-dual hybrid gradient method which alternates between gradient
ascent for the dual variable q

k

and gradient descent for the primal variable �
k

[13]. The
steps are defined as

q

(j)
k

= ⇧kqkk11(q
(j�1)
k

� �

(j�1)r�(j�1)
k

) for k = 1, ..., K, (3.17)
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�(j) = ⇧�(�
(j�1) � �

(j�1)((1� ⌧)divQ(j) + ⌧(1� 2P ))), (3.18)

where � and � are step sizes following the theoretical analysis in [14] and Q = [q1, ..., qK ].
The projection ⇧kqkk11 onto kq

k

k1  1 is done by hard thresholding and ⇧� is the
projection onto a simplex given in [11]. The stopping criterion is the same as (3.14). A
summary of the algorithm, TVRF, is given in Algorithm 2.

Algorithm 2 TV-based multi-class graph partitioning with a region force (TVRF)

Require: P = (p
ik

),W, {�
l

= 0.2l}, {�
l

= 0.1l
(1+0.1l)}, ⌧

Ensure: �
1: procedure TVRF
2: l = 0
3: while (3.14) is not satisfied do
4: for k=1,..., K do
5: calculate r�

k

,

6: q

k

= ⇧kqkk11(qk � �

l

r�
k

),
7: end for
8: calculate divQ,

9: � = ⇧�(�� �

l

((1� ⌧)divQ+ ⌧(1� 2P ))),
10: l = l + 1,
11: end while
12: return �
13: end procedure

3.3 Cellular Image Considerations

As discussed earlier, the probability matrix P requires a set of labelled nodes from all clus-
ters. In the case of cell images, it is usually not practical to have a set of labelled cell and
background pixels to start o↵ with. However, it is possible to have only the background
on a thin border around the image. This can be done taking the image of a sample of cells
in such a way that the cells are positioned within a thin border of only the background
substance they are suspended in. This border can be taken as our labelled set of pixels S

B

.
Since the labelled set is only on the border of the image, we choose to first calculate W

by only taking the pixel intensities in the data vectors, not locations. We then calculateP
j2SB

q

ij

for each node. If it is zero, we label the node as cell and if it’s not, we label it as
background. This gives us an “extreme” labelling in which only those pixels that are very
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di↵erent in intensity from the labelled background pixels are labelled as cell. Now that
we have a set of labelled background and cell pixels, we use half of these to calculate P ,
this time with W constructed by taking both pixel intensities and locations. We use half
because experimentally we found it produced best result. Finally, this P and W is used
for graph-partitioning.

It can be seen from (3.9) and (3.11) that for initialization of �, LapRF requires two
initial partition matrices. We choose �0 to be all background nodes and �1 to be all cell
nodes. TVRF requires a single initial partition matrix ((3.17), (3.18)) which we chose to
be all background nodes.

19



Chapter 4

Numerical Results

In this chapter, we illustrate the numerical results of the algorithms discussed in Chapter 3.
We apply those algorithms to various cell images including bright-field images and 2- and
3-D fluorescent cell images. Labelled pixels were obtained from the border of the images
and in cases when the borders contained cell pixels, they were manually removed.

While there are a number of parameters, not all of them were required to change for
di↵erent types of images. We fixed ✏ = 10�6 (3.14) for the stopping criteria and ✓ = 10�6

(3.13). The remaining parameters ! (2.1), ⌧ (3.1), and the number of neighbours k used
to construct W (Section 2.2), will be given with the results. After obtaining the initial
segmentation results, we post-process them by bridging unconnected cell pixels [15], filling
in holes within the cells and removing small cell fragments from the background. The
results were obtained using MATLAB on a MAC machine with a 2.5GHz processor.

4.1 Bright-Field Images

The bright-field images are 512 ⇥ 512 pixel frames of C2C12 (muscle) cells obtained from
the Department of Medicine and Human Genetics at McGill University. Our parameters
here are ! = 50, k = 40, ⌧ = 0.1 for LapRF, and ⌧ = 0.3 for TVRF. Figure 4.1 shows the
original bright-field image and Figure 4.2 shows the segmentation results using our Lapla-
cian and TV-based algorithms with Region Force. The first row of Figure 4.2 shows the
raw results before any post-processing is applied. The second row shows the final results
after post-processing and the third row is a visualization of the final segmentation result
on the original image. The segmentation results given by the Laplacian and TV models are

20



shown on the left and right columns, respectively. We can see from the raw segmentation
results that the TV model captures more of the cells as compared to the Laplacian model.
However, it also under segments in some areas, for instance, the left leg of the bottom left
cell. The Laplacian-based model, on the other hand, captures more of the fine details in the
shape of the cell, as can be seen in the top right cell. It produces results with more “holes”
but they can be easily filled in by a simple post-processing step. Therefore, in the final
segmentation results, Laplacian slightly over-segments and TV slightly under-segments but
both results are very much comparable.

Their running times, however, di↵er considerably and are shown in Table 4.1. When
applied on our bright-field image, LapRF took 23.8 seconds and TVRF 25110.3 seconds,
about a thousand times longer than LapRF. This is due to the computational complexity
of calculating the gradient and divergence in (3.17) and (3.18), respectively.

Time

Constructing W and P 118.2 sec
LapRF 23.8 sec
TVRF 25110.3 sec

Table 4.1: The time comparison of our algorithms tested on a bright-field image.

4.2 ISBI 2013 Cell Tracking Challenge Datasets

The IEEE International Symposium on Biomedical Imaging 2013 Cell Tracking Challenge
[16] was established to evaluate di↵erent automated cell tracking and segmentation algo-
rithms. In this section, we apply our algorithm on their datasets and compare our results
with the other algorithms given in [16]. The evaluation metric used for segmentation is
the Jaccard Similarity Index given by

J(A,B) =
|A \B|
|A [B| , (4.1)

where A is the set of pixels in the ground truth and B is the set of pixels in the seg-
mented result. We can see that if the segmentation matches the ground truth exactly
then |A \ B| = |A [ B| and J(A,B) = 1. Similarly, if there is no overlap between them,
|A \ B| = 0, and J(A,B) = 0.
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Figure 4.1: A bright-field image of C2C12 cells.

The datasets are cell videos made up of a number of still images. Due to faster performance,
we tested only the Laplacian-based algorithm on six videos of the N2DH-SIM simulated
fluorescent images. Table 4.2 shows the comparison of LapRF with the algorithms/teams
of the ISBI 2013 Cell Tracking Challenge. It can be seen that LapRF performs better
than or as well as others on videos 02, 04 and 05 and has comparable results on the other
videos as well. Sample images and our segmentation results of each video are also shown
in Figures 4.3 to 4.8.

4.3 Cell Tracking Challenge 2017 Datasets

Finally, we test our Laplacian-based algorithm on two and three-dimensional images from
the 2017 Cell Tracking Challenge1. We perform tests on various cell datasets with di↵erent
properties to evaluate the strengths and weaknesses of our algorithm.

1
Challenge Website: http://www.codesolorzano.com/Challenges/CTC/Datasets.html
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(a) Raw segmentation results

(b) Final Segmentation after post-processing

(c) Visualization

Figure 4.2: Bright-field image segmentation given by (left column) Laplacian-based model
and (right column) TV-based model.
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Figure 4.3: Segmentation on an image from N2DH-SIM dataset – video 01. Top row:
original image, ground truth. Bottom Row: final segmentation, visualization. ! = 10,
k = 40, ⌧ = 0.1.
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Figure 4.4: Segmentation on an image from N2DH-SIM dataset – video 02. Top row:
original image, ground truth. Bottom Row: final segmentation, visualization. ! = 10,
k = 40, ⌧ = 0.1.
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Figure 4.5: Segmentation on an image from N2DH-SIM dataset – video 03. Top row:
original image, ground truth. Bottom Row: final segmentation, visualization. ! = 10,
k = 40, ⌧ = 0.1.
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Figure 4.6: Segmentation on an image from N2DH-SIM dataset – video 04. Top row:
original image, ground truth. Bottom Row: final segmentation, visualization. ! = 10,
k = 40, ⌧ = 0.3.
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Figure 4.7: Segmentation on an image from N2DH-SIM dataset, – video 05. Top row:
original image, ground truth. Bottom Row: final segmentation, visualization. ! = 10,
k = 40, ⌧ = 0.1.
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Figure 4.8: Segmentation on an image from N2DH-SIM dataset – video 06. Top row:
original image, ground truth. Bottom Row: final segmentation, visualization. ! = 10,
k = 20, ⌧ = 0.3.

29



Video 01 02 03 04 05 06

COM-US 0.75 0.77 0.65 0.64 0.64 0.75
HEID-GE 0.91 0.9 0.82 0.83 0.81 0.89
KTH-SE 0.91 0.89 0.84 0.83 0.8 0.83
LEID-NL 0.93 0.91 0.83 0.84 0.84 0.91
PRAG-CZ 0.8 0.8 0.75 0.78 0.76 0.79
UPM-ES 0.91 0.89 0.81 0.82 0.77 0.86
LapRF 0.90 0.91 0.83 0.86 0.89 0.88

Table 4.2: A comparison of the segmentation scores of ISBI 2013 Cell Tracking Challenge
algorithms and LapRF. Bolded entries are the highest scores for that video.

4.3.1 2-D Images

The first image we test our algorithm on is a 839⇥ 992 pixel image from the Fluo-C2DL-
MSC dataset. These are fluorescent images of rat mesenchymal stem cells. The original
image and our segmentation results are given in Figure 4.9. It can be seen that the algo-
rithm is able to e↵ectively segment cells that are irregularly shaped, as opposed to most
other images which contain more rounded, convex shaped cells. Another fluorescent image
is from the Fluo-N2DH-GOWT1 dataset which is a 1024⇥1024 image of mouse stem cells.
The segmentation results are given in Figure 4.10. The cells here are much more uniform
but vary greatly in intensity. For example, the pair of joined cells in the bottom right
are almost too dark to be noticeable from the background, but the algorithm successfully
captures them along with the brighter cells. The last fluorescent image is a 700 ⇥ 1100
pixel image from the Fluo-N2DL-HeLa dataset and the segmentation results can be seen
in Figure 4.11. These HeLa cells are very densely packed and our algorithm struggles to
correctly identify individual cells in some areas.

Our next two datasets are obtained by Phase-Contrast microscopy. The first are 520⇥696
images of Glioblastoma-astrocytoma U373 cells from the PhC-C2DH-U373 dataset. The
results are shown in Figure 4.12. While the algorithm is able to identify the general loca-
tion of each cell, the inconsistent halos surrounding the cells makes it di�cult to accurately
determine the boundaries of cells. Our final 2-D image is from the PhC-C2DL-PSC dataset
which contains 576⇥ 720 pixel images of pancreatic stem cells. The image and results are
given in Figure 4.13. It can be seen that the background of this cell image is very incon-
sistent and merely taking the border as the labelled background pixels does not work very
well in this case. Therefore, to obtain a reasonable result, we had to take an additional
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small sample of background pixels from the centre of the image.

4.3.2 3-D Images

The three-dimensional images are from the FLUO-N3DH-SIM+ simulated dataset which
consist of 59 slices, where each slice is a 350⇥640 two-dimensional image. Figure 4.14
shows some of the slices of one 3-D image. In order to work on 3-D images, our algorithm
is modified to include the 3-D location of pixels in the data vectors when calculating the
a�nity matrix W . We compare the result of this 3-D segmentation with the result of
performing 2-D segmentation on each slice. For computation within a reasonable amount
of time, we have resized each slice to 233⇥426 pixel. Figure 4.15 shows the results which
are very much comparable. However, upon closer inspection of a single slice in Figure
4.16, it can be seen that 3-D segmentation is able to capture more cell pixels that are of
especially low contrast. This could be due to extra information from neighbouring slices.
The running time for 3-D segmentation is also less than that of 2-D segmentation, given
in Table 4.3.

Time

2-D segmentation on each slice 1859.8 sec
3-D segmentation on whole image 1017.3 sec

Table 4.3: A time comparison of 2- and 3-D segmentation on 3-D image.
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Figure 4.9: Top: Fluo-C2DL-MSC original image. Bottom: (left) final segmentation result,
(right) visualization. ! = 10, k = 40, ⌧ = 0.1.
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Figure 4.10: Top: Fluo-N2DH-GOWT1 original image. Bottom: (left) final segmentation
result, (right) visualization. ! = 1, k = 40, ⌧ = 0.005.
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Figure 4.11: Top: Fluo-N2DL-HeLa original image. Bottom: (left) final segmentation
result, (right) visualization. ! = 10, k = 40, ⌧ = 0.005.
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Figure 4.12: Top: PhC-C2DH-U373 original image. Bottom: (left) final segmentation
result, (right) visualization. ! = 10, k = 40, ⌧ = 0.005.
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Figure 4.13: Top: PhC-C2DL-PSC original image. Bottom: (left) final segmentation
result, (right) visualization. ! = 10, k = 25, ⌧ = 0.005.
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Figure 4.14: From top left to right then next rows: slices number 8, 11, 14, ..., 59 of a
FLUO-N3DH-SIM+ 3-D image.
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(a) 2-D Segmentation on each slice. ! = 1, k = 70, ⌧ = 0.1.

(b) 3-D Segmentation on whole image. ! = 10, k = 10, ⌧ = 0.1.

Figure 4.15: Results of 2- and 3-D segmentation applied on a FLUO-N3DH-SIM+ 3-D
image.
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Figure 4.16: Top: Slice number 52 of 3-D image. Second row: 2-D segmentation result,
3-D segmentation result. Third row: 2-D segmentation visualization, 3-D segmentation
visualization.
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Chapter 5

Conclusion

In this work we presented two algorithms for segmentation of cellular images using a graph-
partitioning approach. The first, a Laplacian based model, was shown to give good results
on the challenging bright-field images as well as other datasets within a reasonable amount
of time. The second model, based on the Total Variation, was shown to give equally good
results on bright-field images but was very computationally expensive. Furthermore, both
models were capable of successfully segmenting images containing multiple cells with min-
imal parameter tuning.

The Laplacian-based algorithm was also tested on six datasets from the ISBI 2013 Cell
Tracking Challenge and six datasets from the Cell Tracking Challenge 2017. For the first
six datasets, we evaluated the segmentation accuracy using the Jaccard Similarly Index.
Our algorithm was seen to perform the best on three of the datasets and produced compa-
rable results on the other three as well. For the last six datasets, we carefully picked unique
types of cells and cell images to determine the strengths and weaknesses of our algorithm.
Our results on the Fluo-C2DL-MSC and Fluo-N2DH-GOWT1 datasets demonstrate that
the algorithm is able to e↵ectively segment irregularly shaped cells as well as extremely
low intensity cells. Furthermore, we showed that the algorithm is faster and better able to
segment 3-D images as a whole than segmenting each slice separately.

A couple of limitations of the algorithm were discovered by testing on the Fluo-N2DL-
HeLa dataset where cells were very densely packed together and resulted in joined cells,
and the PhC-C2DL-PSC dataset where the background is very inconsistent. Further work
can be done in the investigation of under-segmentation on densely packed cell images as
well as methods to extract an accurate background labelling when backgrounds are incon-
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sistent. Another area for investigation could be in reducing the computational complexity
of the Total Variation based model so that it can be tested on more data sets in less time.
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