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Abstract

Deep generative dialogue models have been a site of considerable research in recent
years. The current state of the art is the "sequence to sequence" model, which uses a
recurrent encoder-decoder architecture to construct a response to a given input message.
These models are powerful, but condition their responses only on the previous utterance,
rather than the entire conversation history. This paper explores the use of an attention
mechanism over encoded conversation history to provide the model with context to improve
its responses. We propose a computationally efficient variation of the memory network
developed by Sukhbaatar et al. [14] which reduces the training time and requires fewer
encoder evaluations during training and inference.
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Chapter 1

Introduction

Conversational agents are an extremely important application of artificial intelligence.
They have applications in customer service, mobile applications, computer assistants (such
as Alexa or Siri), and many other regimes. Most conversation models fall into one of two
categories: retrieval-based models and generative models. Retrieval-based models use algo-
rithms to match the user input or current conversation context to a pregenerated response
from the model’s database. As a result, these models cannot innovate, but are very reliable
and thus widely used in industry. Generative models forego pregenerated responses and
instead generate their own responses from scratch. This makes these models a site of great
theoretical interest due to their capacity to innovate, but also means that these models
must solve a much more difficult task. Generative models are thus less reliable, and still
an area of active development. The majority of generative conversational agents rely on
a "sequence to sequence" architecture using recurrent neural networks. These architec-
tures are powerful, but also extremely limited in that they construct a response to a query
based solely on the query itself, and no other context. This thesis will explore the basics
of sequence to sequence models as generative conversational agents, and explore ways to
augment these models with a capacity to understand and use conversation history when
constructing responses.
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Chapter 2

Background

2.1 Recurrent Neural Networks

The current gold standard for generative conversational models is the Recurrent Neural
Network (RNN) architecture. RNNs are a generalization of the neural network paradigm
that has recently engulfed the machine learning community at large, and produced revo-
lutionary results in a wide swath of domains. A neural network, as a black box, is simply
an approximation to some unknown function y = f(x). It parameterizes this function by
layers of "neurons", with weights connecting each neuron in a layer to each neuron in the
previous layer. Each neuron within a layer has a real-numbered output, or "activation",
and each connection from a neuron in one layer to a neuron in the next layer has a real-
numbered weight. Given the activations of a single layer, at, the next layer’s activations
are computed by

at+1 = σ(Wtat + bt) (2.1)

where Wt is the matrix of weights, bt is a vector of constant "biases", and σ is some
nonlinear "activation function" - common choices include the logistic function, the tanh
function and the "rectified linear unit", or ReLU. The first "layer" of the network is said
to be the input layer, and its activations are simply set to be the values of the input vector
to the network. The final layer is the "output" layer, and its activations are taken to be
the output vector of the function. See fig. 2.1 for an example.

Neural network models are commonly used to solve supervised learning problems -
i.e. problems where the goal is to learn a function y = f(x) to approximate some given
labelled dataset (Y,X) (often called the "training set"), and generalize the results to
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Figure 2.1: A simple feedforward neural network with two hidden layers.

unlabelled data (referred to as the "test set"). Often a third "validation" set is included
for hyperparameter tuning and intermediate testing. The network is initialized randomly,
then exposed to data from the training set. The network computes

ŷ = f(x) (2.2)

and these predictions ŷ, alongside the true labels y, are fed to a "loss function". This
"loss function" is a function `(ŷ,y) which computes a real-valued "loss" for each output
(commonly used loss functions include squared error and cross-entropy loss). This is now
formulated as an optimization problem, with the goal of finding the weights and biases for
the network which minimize the loss summed over all training examples. The backpropa-
gation algorithm is used to compute the gradients of the loss with respect to all weights
and biases in the network. It does so by using the multivariate chain rule to compute the
gradient at each step of the network, conditioned on the gradients at the next layer after
it. This then "propagates" the gradients backward through the network, hence the name.
Once these gradients are computed, a simple gradient descent pass is used to update the
network’s parameters - i.e.

θt+1 = θt − η
∂`

∂θ
(2.3)

In general, rather than performing full gradient descent on the entire training set (since
the training set can be quite large in principle), mini-batch Stochastic Gradient Descent is
used. A fixed number of samples are randomly selected and assembled into a "mini-batch",
then the gradients with respect to the loss calculated over only those samples are used to
update the network’s parameters. There is a great deal more that could be said about the
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architecture and design of such neural network models, but the only case that is relevant
to this project is the case of recurrent neural networks.

Recurrent neural networks deviate from the vanilla architecture presented above in
that they are specifically designed to process sequential data. To do this, the network’s
evaluation of a given element of the sequence must depend on the previous elements of
the sequence. As such, the network stores a "hidden state" - a vector summarizing the
current state of the computation - and updates this state as it passes through the sequence.
Information about the previous elements can then be stored in this state vector, allowing
the network to make decisions in a temporal fashion.

Figure 2.2: A recurrent neural network "unrolled" through time.

Recurrent neural networks are (in their simplest form) parameterized by three matrices:
Wxh, Whh, and Why. They begin by receiving an initial state h0 and initial input x1, then
predicting h1 and y1 from these. h1 is then passed to the next step of the RNN, along
with the second input x2, and this repeats until the end of the sequence. At each step t,
the RNN computes:

ht = f(Wxhxt + Whhht−1) (2.4)
yt = g(Whyht) (2.5)

Where f and g are generally some form of nonlinearity - commonly a tanh function. The
three weight matrices Wxh, Whh, and Why are trained via an algorithm called backprop-
agation through time, where the network is "unrolled" backwards through time (see fig.
2.2), and then trained via the standard NN backpropagation algorithm. Sometimes this
unrolling is truncated early after a certain number of steps to maintain computational
efficiency.

These "vanilla" RNNs are interesting and effective, but suffer from a number of prob-
lems. First, these RNNs often have difficulty maintaining causal relationships over long
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periods of time. For very long sequences, they can sometimes lose the ability to learn
relationships between sequence entries. Second, they are prone to problematic issues with
gradients - namely vanishing gradients and exploding gradients. These refer to scenarios
where the gradients either converge rapidly to zero or diverge rapidly to infinity as the RNN
is unrolled backward through time. These problems can be mitigated through the use of
activation functions such as ReLU, gradient clipping (in the case of exploding gradients),
or the use of more complicated update functions.

Long short-term memory units, (or LSTMs) were introduced to solve the second prob-
lem - and as a result of addressing the vanishing gradient issue, also significantly improve
the ability of the network to learn long-term sequential relationships [7]. LSTMs introduce
a more complicated update structure, and maintain two hidden states - the outward-facing
hidden state at a given time step, as per usual (often denoted s or h), as well as an ad-
ditional internal "memory" vector (often denoted c). The LSTM computation consists of
applying a number of "gates" of the following form (note the similarity to the vanilla RNN
update):

vφt = g(Uφxt + Wφht−1 + bφ) (2.6)

Here g is again a nonlinearity such as a sigmoid or tanh, and φ is an indexing variable that
runs over all the gates. In the LSTM formulation, there are three gates: i, o, and f, referred
to as "input", "output", and "forget", as well as a fourth gate-like structure g. The output
of a the "forget" gate is a vector of weights between 0 and 1 to be multiplied element-
wise (this operation is denoted below by ◦) by the cell state ct−1. This has the effect of
"forgetting" information from the old cell state. g creates a candidate state vector through
the same basic structure as the gate computation. The "input" gate then constructs a
vector of weights similar to the "forget" gate which are multiplied by the candidate state
vector. Intuitively, this corresponds to choosing which parts of the state we want to update.
This vector is then added to the cell state ct−1 to produce ct. Once ct is computed, ht is
then simply computed via the same mechanism of using a gate (this time the "output"
gate) to create a vector of weights, then pointwise multiplying the cell state. Thus, the
final update is:
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ft = σ(Ufxt + Wfht−1 + bf ) (2.7)
it = σ(Uixt + Wiht−1 + bi) (2.8)
gt = tanh(Ugxt + Wght−1 + bg) (2.9)
ct = ct−1 ◦ ft + gt ◦ it (2.10)
ot = f(Uoxt + Woht−1 + bo) (2.11)
ht = tanh(ct) ◦ ot (2.12)

Note that the activations for the three gates are generally sigmoids, whereas the acti-
vations for the state vectors are always tanh units.

A "Gated Recurrent Unit", or GRU, is similar in concept to an LSTM, but uses a
slightly simplified architecture. It computes only two intermediate gates, and does not
store the cell state in memory. The GRU update is as follows:

zt = σ(Uzxt + Wzht−1 + bz) (2.13)
rt = σ(Urxt + Wrht−1 + br) (2.14)
gt = tanh(Ugxt + Wg(ht−1 ◦ rt) + bg) (2.15)
ht = (1− zt) ◦ gt + zt ◦ ht−1 (2.16)

The GRU was introduced by Cho et al in 2014 [3], and has since become the main
competitor to the LSTM unit. Notably, the paper which introduced the GRU was also one
of the primary works leading up to the invention of the sequence to sequence architecture,
and first popularized the RNN encoder-decoder structure.

2.2 Sequence to Sequence

Sequence to sequence models were pioneered by Ilya Sutskever in 2014 [15] and have since
become the dominant architecture for neural machine translation and neural conversational
models. These models consist of two recurrent neural networks: an "encoder" and a
"decoder". The input sequence is fed into the encoder RNN, which learns to "encode"
a fixed-size vector representation of the input in the form of its final hidden state. This
hidden state then becomes the initial hidden state for the decoder RNN. The decoder’s
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initial input is simply a predefined token referred to as the "start of sequence" token, or
SOS. Using the information from the encoder, the decoder then produces a probability
distribution over all the words in its vocabulary. The top word is then selected as the
output, and this output becomes the input to the next iteration of the decoder. This
process continues until the decoder outputs the "End of Sequence" token, or EOS, or until
a fixed maximum length is reached.

Sequence to sequence (or Seq2Seq) models are appealing for multiple reasons. The
initial motivation for sequence to sequence models was that they avert the need for a fixed-
length RNN input and output. A sequence of any length can be mapped to a fixed-size
encoding by the encoder, and the decoder simply starts with SOS and continues until it
detects EOS. This averts the need to "pad" inputs and outputs to bring them all to equal
fixed length. While this did serve as one of the initial impetuses for the Seq2Seq architec-
ture, it is not one of the major draws in practice, as using a minibatch training approach
requires padding and masking anyways. Once these models were implemented, however,
it was found that they performed exceptionally well for Neural Machine Translation tasks,
and exceeded the state of the art for generative conversational agents as well.

2.3 Attention

A major advance in the use of sequence to sequence models was the idea of "attention",
introduced first by Bahdanau in 2014 [1] and then refined by Luong [9] in 2015. The moti-
vation behind the attention model is to allow the network to "attend" to particular sections
of the input sequence more than others. For example, consider the task of translation. In
translating "I love my cat" to "J’aime mon chat", the words "I love" and "J’aime", "my"
and "mon", and "cat" and "chat" are direct translations of each other; it would be helpful,
for example, for the network to learn to pay attention primarily to "cat" when producing
the last word in the sequence. More generally though, the concepts behind attention can be
used to compute alignments between any candidate object and a set of reference objects.

Viewed in this general fashion, the attention mechanism is essentially a mapping from
an input vector x and a set of reference vectors Q = {qi} to a context vector c. The
mapping is computed as follows:

1. A scoring function s(x,y) computes a vector of attention "energies" e, measuring
the similarity between x and each vector qi:

ei = s(x,qi) (2.17)
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Common scoring functions used include [9]:

s(x, y) = yTx (dot)
s(x, y) = yTAx (general)
s(x, y) = vT tanh(A1x + A2y) (concat)

2. These "energies" are then normalized to produce the attention weights w:

wi =
exp(ei)∑
j exp(ej)

(2.18)

3. From the weights, the context vector c is then constructed as a weighted sum:

c =
∑
i

wiqi = Qw (2.19)

In a sequence-to-sequence model, as mentioned previously, the attention mechanism is
generally introduced to allow the decoder to focus on certain parts of the input more than
others. Thus, the encoded representations of each token in the input (i.e. the encoder
hidden states after the RNN acts on that token) are used as the reference vectors, and the
decoder’s hidden state is used as the input vector. In the Bahdanau attention model, the
input hidden state to the decoder at the current stage of the computation is used as the
candidate, and the context vector is simply concatenated with the input to the decoder. In
the Luong attention model, the output hidden state of the decoder is used as the candidate
vector, and the context vector is concatenated with the decoder RNN’s output, then passed
together into further linear layers, eventually leading to the output.
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Chapter 3

Related Work

Sequence to sequence models (and variations thereof) have been studied extensively in
recent years, and many different attempts have been made to incorporate "context" or
"history" into these models. One approach to incorporating history into a generative
language model was pioneered by Sordoni et al in 2015[13]. They used a hierarchical
encoder-decoder structure with two encoders: one to compute the phrase representations
at the level of individual tokens in a sentence (as is standard for a sequence to sequence
model), and another which acts over a sequence of phrase representations (encoded by the
first encoder) over a corpus. The decoder is then conditioned on a history consisting of
multiple phrases, rather than just the previous phrase.

Another class of approaches has been to use memory networks, first suggested by We-
ston, Chopra and Bordes [16]. This framework introduces a memory M = {mi}, along
with feature maps {I, G, O, R }. Given an input x, the model acts as follows:

1. Convert x to internal feature representation I(x)

2. Update the memory based on I(x):

m′i = G(mi, I(x),M) (3.1)

3. Compute output features based on x and the updated memory:

o = O(I(x),M′) (3.2)

4. Decode output features to produce the response:

r = R(o) (3.3)

9



The authors give a sample framework for text that they call "MemNN". This network
uses very simple input and generalization maps: I reads in a textual input and G simply
stores the input in the first available slot - it does not update old memories based on new
information. O then finds the top-k most relevant memories using a scoring function, and
R generates a response based on these top-k memories. The R function here employs some
sort of argmax over a scoring function that scores the alignment between the output word
and the input and memories. The training is performed with supervision at every step -
i.e. there is a known correct choice for each max function for every training iteration.

This model was later extended by Sukhbaatar et al [14] to a fully end-to-end approach,
without relying on supervision during intermediate training steps. They propose an archi-
tecture in which memory inputs vi are stored as embedded vectors vi of dimension d (using
some sort of embedding map - in the simplest case a matrix of dimension d×V , where V is
the vocabulary size). The query x is similarly embedded as some vector x of dimension d;
the query can either use the same embedding map as the memory or a distinct map, but
they should have the same dimension. Alignments are then computed between the query
vector x and the memory vectors vi through a dot product, and normalized to produce
weights wi through a softmax.

w = softmax(VTx) (3.4)

The memory’s output vector is then computed using embedded output vectors ci corre-
sponding to each memory vi:

o =
∑
i

wici (3.5)

The embedded input state x and the memory output o can then be summed and passed
into some further model to produce an output. This approach is fully differentiable, and
can thus be trained end-to-end with backpropagation without requiring intermediate su-
pervision. See fig. 3.1 for details.

Ghazvininejad et al then use this model as the basis for their knowledge-based con-
versation model [5]. They adapt this memory architecture to use a sequence to sequence
structure with a recurrent decoder, along with a memory of "facts" which are encoded
through a bag-of-words model into continuous embedded representations. They then use
the model in Sukhbaatar et al to compute a memory context vector, which is passed into
the RNN decoder to generate output tokens. See fig. 3.2 for details.
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Figure 3.1: The model from Sukhbaatar et al.

Figure 3.2: The model from Ghazvininejad et al.
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Chapter 4

Methodology

4.1 A Scalable Memory Architecture

4.1.1 Motivation

We use a model very similar to the memory network suggested by Ghazvininejad et al
[5], save for certain key modifications. Our memory is defined over previous conversation
entries, using the same encoder for the memory as for the input sequence. Our goal is
to train this model in a way that is both effective and scalable, even when the memory
is potentially very large. As such, it is not feasible to train the model while fully back-
propagating over the encodings of all entries in the memory pad each step, as this requires
O(n2) passes through the encoder (both forward and backward) for a conversation with n
entries. Instead, the memory vectors are encoded using a fixed encoder which is simply
updated using the current version of the trained encoder at the beginning of each epoch
(and update the encoded memories accordingly). These embedded representations are pre-
computed every epoch of training by passing the raw messages and responses through the
same encoder that is used to encode the inputs. The input encoder already learns to map
the input sequence to an embedding space that encodes the semantics of the sentence. As a
result, the memory alignments using these encodings should still be sensible, even without
explicitly training the encoder for this task.

This simplification saves tremendously on computation time compared to computing
the embeddings anew with each training pass, as we do not need to re-compute the encoded
memory vectors for each new conversation entry. This also means that gradients are not
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propagated from the memory pad to the encoder. With large memory sizes (∼ 10,000 -
100,000), such a training regime could become prohibitively expensive in both memory and
computation time (see 5.2 for details).

4.1.2 Architecture

We begin with a naive sequence to sequence model, using one-layer GRUs for both the
encoder and decoder, with a bidirectional encoder and a uni-directional decoder. Experi-
ments were performed using each of:

(a) a "Luong-style" attention mechanism over the input tokens [9]

(b) a "Bahdanau-style" attention mechanism over the input tokens [1]

(c) no base attention mechanism over the input tokens

We use a vocabulary size of approximately 25,000, with hidden size 1024. This will be
referred to henceforth as the "base model", or "naive model".

We then augment this model with a simplified form of the memory network architecture
proposed in Sukhbaatar et al [14]. Given a conversation history of pairs {mi, ri}, where
mi and ri are the i-th message and response respectively, the model creates a memory pad
containing the embedded representations mi and ri.

During the forward pass of the model, the final hidden state of the encoder, h, is passed
to the memory module, which computes the attention weights

w = softmax(MTAh) (4.1)

where M is the matrix of embedded memory vectors, and A is a learned transformation.
The matrix ’A’ can be included or omitted. The models where A is omitted are referred
to as using ’dot’ attention over the memory (i.e. the dot product directly between the
memory vectors and the hidden state), and the models where A is included as using
’general’ attention (i.e. including a generalized transform). From these calculated weights,
a context vector is computed through a weighted sum of the encoded response vectors:

c =
∑
i

wiri = Rw (4.2)

In the case of Bahdanau attention or no attention, the memory context vector is concate-
nated to the input of the decoder at each step. In the case of Luong attention, the memory
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context vector is concatenated to the output of the decoder, then passed into further linear
layers at the end of the network. From there, the remainder of the decoding proceeds in
the same way as the naive case.

This computation is linear in memory size for the forward pass, and does not have
any dependence at all on memory size during the backward pass of training. Since the
encoder is updated only at the end of each completed training conversation, the memory
pairs can be stored in encoded form, and thus the encodings for a given pair need only
be computed once for the entire conversation. As a result, the model requires only O(n)
encoder evaluations per N conversation entries, rather than O(n2).

Figure 4.1: The architecture of the model.

4.2 Incorporating Confidence Scores

This mechanism allows alignments to be computed between the current input phrase and
previous inputs in memory, and uses these alignments to construct a "context vector"
summarizing the relevant information in memory. One difficulty with this procedure,
however, is that it does not permit the model to express a "confidence" in the alignments
it computes. Consider the following two hypothetical scenarios. In the first, the memory
computes a very high degree of alignment between the current input message and a message
in memory. In the second case, the memory finds no particularly strong alignments. Ideally,
the model should attend closely to the high-scoring message in the first case, and base its
output heavily on the corresponding response to that message. With the given model,
however, that may not be the case, as there is no mechanism for the model to convey
a "confidence" in the relevance of the context vector. With that in mind, we propose a
second variant of the above algorithm.

In addition to computing a context vector, the model will also compute a scalar ’con-
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fidence’ value according to the following algorithm:

cm =
∑
i

wimi = Mw

α = σ(cTmBh)

This computes a message context cm with the calculated weights and the encoded messages
in the same way the final context vector is computed using the encoded responses. This
"message context" is then multiplied by the input hidden state (along with a learned trans-
formation B), then passed into a sigmoid to compute the confidence on the interval [0, 1].
Once the confidence is computed, the confidence value is used to modify how the memory
context is integrated into the original model. No matter which attention model is under
consideration, the integration of the memory context into the base model is performed
through a concatenation and a following linear layer, like so:

vout =
[
Lnaive Lmem

] [vnaive

vmem

]
(4.3)

= Lnaivevnaive + Lmemvmem (4.4)

To introduce the confidence α, this is simply modified to become:

vout = (1− α) · Lnaivevnaive + α · Lmemvmem (4.5)
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Chapter 5

Experiments

5.1 Experimental Design

All models were trained and evaluated using the PyTorch framework (version 0.4.0), with
training examples drawn from the Cornell Movie Dialogue Corpus [4]. This corpus is a
set of lines of dialogue drawn from transcriptions of 617 movies (see addendum at the end
of this report for some important notes about this dataset). Each movie was sorted into
tuples of (message, response), then organized into training and validation sets and fed into
the model. 10% (or 61) movies were withheld as validation data. For the "naive" model,
training was performed upon randomly selected batches of lines drawn from anywhere in
the data-set. The memory model required a more sophisticated training setup. Given pair
number N from movie M , training (and evaluation) was performed with pairs 0-(N -1)
from movie M in the memory bank, and no pairs from any other movie. The model was
thus able to see any previous dialogue from the same movie in its memory, but no pairs
from further on in the movie than the current line of dialogue, and no pairs from any other
movie, thus simulating real conversation. The memory model’s encoder was initialized
using the encoder from the trained naive model, so as to give the memory a headstart in
learning meaningful representations to select good memory alignments.
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5.2 Scalability

The most critical test for the model is whether it indeed scales better with a large memory
pad than previous proposed architectures. To demonstrate this, consider the toy task of
training for a single epoch on a dataset containing the first n pairs from one movie. The
model presented in this thesis will be referred to as the "simplified" model, whereas the
model which propagates gradients through the memory pad to the encoder will be referred
to as the "full" model. Experiments were run using a batch size of 25. The time to train
all batches was recorded, as was the maximum memory used (excluding the memory used
to store the model itself or the training data). As shown in Table 5.1, the "simplified"
model requires a relatively flat amount of memory, with the bulk of the memory taken up
by the constant amount necessary to store gradients for the model parameters. The "full"
model on the other hand, requires a large amount of memory to store the gradients with
respect to the memory entries - and this scales rapidly with the size of the memory pad.
Similarly, the computation time for the "full" model is similar to the "simplified" model
for a small memory pad, but grows far more steeply as the memory size increases.

Simplified Full

n Time (s) Memory (MB) Time (s) Memory (MB)

100 1.293 1530 1.488 1516
200 2.427 1554 2.947 1860
400 5.156 1562 6.777 1880
800 10.477 1566 16.536 2535

Table 5.1: Time and memory usage for each of the "Simplified" and "Full" models on a
toy task with n training pairs
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5.3 Evaluation Metrics

5.3.1 BLEU

The primary quantitive metrics used to assess the model’s results were BLEU scores [11].
BLEU scores are calculated using a weighted geometric average of modified n-gram pre-
cisions. The modified n-gram precisions are calculated as the number of n-grams in the
hypothesis which appear in the reference, clipped to the maximum number of occurrences
in the reference - i.e. if Nn = {g} is the set of all unique n-grams in the hypothesis, and
M is the total number of n-grams in the hypothesis then

pn =
1

M

∑
g∈Nn

Count(g) (5.1)

where Count(g) refers to the number of times n-gram g occurs in the reference. More
sophisticated definitions exist for the case of multiple candidates and multiple references,
but they are not needed in our case. Given a set of weights w, the BLEU score is computed
as:

BLEU = BP · exp

(∑
wn∈w

wn log pn

)
(5.2)

whereBP is a brevity penalty which serves to penalize overly short sentences. The standard
N-th order BLEU scores use weights wn = 1

N
∀n ∈ {1...N}. We use BLEU-2 scores for

our model, as they show the highest correlation with human evaluations of the BLEU-N
metrics [8]. BLEU scores were originally developed for Neural Machine Translation, and
have often been criticized as a metric both in that domain and in the domain of dialogue
agents [2] [8]. Unfortunately, as even many of these papers admit [8], few if any other
good quantitative metrics exist for this domain, and BLEU scores are widely used in the
literature.
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5.3.2 Word2Vec Embedding Similarity

The second quantitative metric we used to assess the model was a cosine similarity metric
using word embeddings from Google’s pretrained Word2Vec model [10]. The embedding
vector for each word in the output sentence is computed using the Word2Vec model, then
the vectors for each word in the sentence are summed to obtain the embedding for the
sentence as a whole. The same procedure is performed to obtain the embedding for the
ground truth output, and the score is computed by the cosine similarity between the two
embedding vectors.

5.3.3 Perplexity/Validation Loss

Another common metric used in language modelling is the perplexity - the model’s esti-
mated probability of producing the ground truth output. Using a cross-entropy loss, this
is effectively equal to the exponential of the validation loss. We omit this measure, as it
is not a particularly strong measure of the model’s success; during training, the model’s
validation loss often rises significantly (from approx. 5 to approx. 8 or sometimes higher)
without becoming noticeably worse in output quality or BLEU score. In fact, the model
often learns to perform better across other metrics during periods where the validation
loss rises. See fig. 5.1, for instance, in which the BLEU-2 score and embedding score rise
during training while validation loss increases.
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Figure 5.1: Losses and evaluation metrics as a function of epoch for the base memory
model with ’dot’ attention. Evaluation metric scores were averaged over all validation set
movies using model checkpoints saved every 5 epochs.

(a) Training and validation losses

(b) BLEU-2 and Word2Vec embedding scores
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5.4 Results

5.4.1 Scores

When training the models, checkpoints were saved every 5 epochs, and the models were
evaluated using the above metrics averaged over all movies from the validation set. The
memory models were initialized using the weights from the encoder of the top naive model.

BLEU-2 W2V

Epoch Luong Bahdanau No-Attn Luong Bahdanau No-Attn

5 0.428 0.457 0.469 0.420 0.383 0.400
10 0.524 0.521 0.666 0.390 0.379 0.397
15 0.733 0.571 0.963 0.409 0.395 0.420
20 1.09 0.689 1.74 0.425 0.400 0.451
25 1.60 1.24 1.99 0.446 0.420 0.447
30 1.60 1.85 2.68 0.438 0.436 0.460
35 2.04 1.95 2.39 0.461 0.432 0.454
40 2.21 2.46 2.55 0.464 0.454 0.452
45 2.17 2.57 2.74 0.459 0.455 0.476
50 2.35 2.85 2.63 0.474 0.475 0.464
55 2.54 2.76 2.61 0.479 0.479 0.468
60 2.48 2.51 2.49 0.479 0.473 0.462

Table 5.2: BLEU-2 and W2V embedding scores for the naive models by training epoch.
Top results are bolded.
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BLEU-2 W2V

Epoch Luong Bahdanau No-Attn Confidence Luong Bahdanau No-Attn Confidence

5 2.20 1.90 1.23 2.25 0.453 0.443 0.434 0.419
10 1.89 2.03 1.74 2.33 0.417 0.435 0.442 0.458
15 2.32 2.22 1.69 2.35 0.456 0.449 0.406 0.483
20 2.45 2.47 2.54 2.33 0.483 0.466 0.498 0.468
25 2.41 2.58 1.97 2.35 0.480 0.473 0.441 0.486
30 2.53 2.58 2.48 2.71 0.479 0.467 0.444 0.503
35 2.28 2.61 2.14 2.33 0.489 0.485 0.446 0.483
40 2.34 2.43 2.48 2.28 0.479 0.478 0.465 0.481
45 2.48 2.41 2.38 2.40 0.494 0.472 0.474 0.488
50 2.37 2.60 2.42 2.40 0.489 0.479 0.457 0.483

Table 5.3: BLEU-2 and W2V embedding scores for the memory models using ’general’
attention by training epoch. Top results are bolded.

BLEU-2 W2V

Epoch Luong Bahdanau No-Attn Confidence Luong Bahdanau No-Attn Confidence

5 2.10 1.86 1.76 1.72 0.447 0.401 0.426 0.441
10 2.18 2.75 2.05 2.13 0.437 0.473 0.443 0.453
15 2.37 2.45 2.02 2.23 0.482 0.462 0.390 0.469
20 2.37 2.44 2.38 2.18 0.475 0.447 0.475 0.436
25 2.50 2.54 2.50 2.21 0.480 0.461 0.442 0.444
30 2.36 2.40 2.57 2.15 0.483 0.469 0.452 0.455
35 2.45 2.46 2.42 2.32 0.471 0.474 0.468 0.458
40 2.35 2.48 2.68 2.42 0.472 0.478 0.468 0.474
45 2.43 2.45 2.82 2.31 0.486 0.492 0.445 0.466
50 2.54 2.31 2.58 2.47 0.490 0.477 0.461 0.475

Table 5.4: BLEU-2 andW2V embedding scores for the memory models using ’dot’ attention
by training epoch. Top results are bolded.
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5.4.2 Scores by Memory Size

Given that the memory models can utilize the conversation history in constructing re-
sponses, we would expect that these models would perform better as the number of entries
in memory increases. See plots in figs. 5.2 and 5.3 for average BLEU-2 and Word2Vec
embedding similarity scores over the validation set for one of the top-scoring models as a
function of number of entries in memory.

Figure 5.2: Validation BLEU-2 scores for the base memory model with ’dot’ attention as
a function of the number of entries in memory. Scores were computed separately for each
movie in the dataset, then summed together and averaged.

Figure 5.3: Validation Word2Vec embedding similarity scores for the base memory model
with ’dot’ attention as a function of the number of entries in memory. Scores were computed
separately for each movie in the dataset, then summed together and averaged.
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5.4.3 Memory Alignments

This section shows a selection of example alignments computed by the model between
sample queries and phrases in memory. In each case, the alignments were computed by
adding all lines from the first 20 movies in the validation set to the memory pad, then
taking the memory entries with the 5 highest weights. The tables show the user’s message
and model’s response, followed by the top 5 (message, response) tuples in the memory pad,
shown with their corresponding weights.

General Model

Message hello.
Response [’hello’, ’.’]

Weight Message

0.0309214 [’so’, ’there’, ’it’, ’is’, ’.’, ’you’, ’got’, ’that’, ’big’, ’itch’, ’<eos>’]
0.0170202 [’if’, ’stage’, ’two’, ’was’, ’completed’, ’it’, ’was’, ’underground’, ’she’,

’said’, ’<eos>’]
0.0168152 [’say’, ’baxter’, ’the’, ’way’, "you’re", ’<unk>’, ’that’, ’stuff’, ’you’,

’must’, ’<eos>’]
0.0145271 [’chin’, ’you’, ’have’, ’been’, ’ordered’, ’by’, ’the’, ’ministry’, ’of’, ’public’,

’<eos>’]
0.0141344 [’i’, ’had’, ’an’, ’unfortunate’, ’little’, ’run’, ’in’, ’with’, ’him’, ’today’,

’<eos>’]

Weight Response

0.0309214 [’no’, ’i’, ’want’, ’my’, ’cut’, ’ !’, ’<eos>’]
0.0170202 [’stage’, ’two’, ’of’, ’what’, ’?’, ’<eos>’]
0.0168152 [’oh’, "that’s", ’not’, ’me’, ’.’, "it’s", ’just’, ’that’, ’once’, ’in’, ’<eos>’]
0.0145271 [’this’, ’is’, ’still’, ’hong’, ’kong’, ’.’, ’<eos>’]
0.0141344 [’you’, ’better’, ’not’, ’mess’, ’with’, ’me’, ’rhodes’, ’.’, "i’d", ’love’,

’<eos>’]
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Message what’s your name?
Response [’i’, ’.’]

Weight Message

0.0282931 [’now’, "let’s", ’talk’, ’about’, ’you’, ’chaps’, ’.’, ’<eos>’]
0.0214106 [’i’, ’saw’, ’you’, ’go’, ’up’, ’from’, ’the’, ’<unk>’, ’working’, ’that’,

’<eos>’]
0.0177163 [’ronald’, ’here’, ’likes’, ’telephones’, ’.’, ’used’, ’to’, ’tape’, ’wooden’,

’matches’, ’<eos>’]
0.0147374 [’so’, ’much’, ’for’, ’honor’, ’among’, ’thieves’, ’.’, ’you’, ’would’, ’have’,

’<eos>’]
0.0127931 [’then’, ’there’, ’it’, ’is’, ’.’, ’ashby’, ’gets’, ’the’, ’itch’, ’.’, ’<eos>’]

Weight Message

0.0282931 ["we’d", ’rather’, ’stay’, ’.’, ’<eos>’]
0.0214106 ["can’t", ’say’, ’.’, ’<eos>’]
0.0177163 [’did’, ’he’, ’tell’, ’you’, ’how’, ’we’, ’finally’, ’met’, ’?’, ’<eos>’]
0.0147374 [’i’, ’was’, ’doing’, ’it’, ’for’, ’them’, ’.’, ’<eos>’]
0.0127931 [’the’, ’standard’, ’ten’, ’.’, ’<eos>’]
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’Dot’ Model

Message hello.
Response [’hi’, ’.’]

Weight Message

0.312987 [’hello’, ’.’, ’<eos>’]
0.312987 [’hello’, ’.’, ’<eos>’]
0.312987 [’hello’, ’.’, ’<eos>’]
0.00864437 [’hello’, ’lloyd’, ’.’, ’<eos>’]
0.00569477 [’hello’, ’thomas’, ’.’, ’<eos>’]

Weight Response

0.312987 [’hi’, ’.’, ’<eos>’]
0.312987 [’uh’, ’oh’, ’hi’, ’ !’, ’my’, ’name’, ’is’, ’brad’, ’majors’, ’.’, ’<eos>’]
0.312987 [’how’, ’you’, "doin’", ’?’, ’<eos>’]
0.00864437 [’hello’, ’.’, ’heard’, ’about’, ’that’, ’graduation’, ’present’, ’.’, ’really’,

’quite’, ’<eos>’]
0.00569477 [’i’, ’just’, ’this’, ’minute’, ’got’, ’the’, ’baby’, ’to’, ’sleep’, ’.’, ’<eos>’]

Message what’s your name?
Response [’jacob’, ’.’]

Weight Message

0.672749 ["what’s", ’your’, "friend’s", ’name’, ’?’, ’<eos>’]
0.121251 [’name’, ’?’, ’<eos>’]
0.105954 [’tell’, ’me’, ’again’, "what’s", ’my’, ’name’, ’?’, ’<eos>’]
0.0286244 ["what’s", ’her’, ’name’, ’?’, ’<eos>’]
0.0126811 [’this’, ’is’, ’travis’, ’and’, ’bob’, ’<elp>’, "what’s", ’your’, ’last’, ’name’,

’<eos>’]

Weight Response

0.672749 [’baxter’, ’.’, ’<eos>’]
0.121251 [’gus’, ’gorman’, ’.’, ’<eos>’]
0.105954 [’dr’, ’.’, ’dreyfuss’, ’.’, ’<eos>’]
0.0286244 [’miss’, ’kubelik’, ’fran’, ’.’, ’<eos>’]
0.0126811 [’uh’, ’<elp>’, ’head’, ’?’, ’huh’, ’huh’, ’.’, ’my’, ’first’, "name’s",

’<eos>’]
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5.4.4 Sample Conversations

This conversation was carried out with the base memory model using ’dot’ attention. The
memory was empty to begin, and each message-response pair in the conversation was added
to the memory as the conversation unfolded. After each message save the first (since the
memory is empty for the first response), the weights of the top 5 entries will again be listed.

Message hello there.
Response [’where’, ’are’, ’you’, ’?’]

Message i am at home.
Response [’where’, ’is’, ’this’, ’?’]

Weight Message

1.0 [’hello’, ’there’, ’.’, ’<eos>’]

Weight Response

1.0 [’<sos>’, ’where’, ’are’, ’you’, ’?’, ’<eos>’]

Message my apartment.
Response [’i’, ’told’, ’you’, ’i’, ’had’, ’to’, ’.’]

Weight Message

0.756646 [’i’, ’am’, ’at’, ’home’, ’.’, ’<eos>’]
0.240464 [’hello’, ’there’, ’.’, ’<eos>’]
0.00289034 [’<sos>’, ’where’, ’are’, ’you’, ’?’, ’<eos>’]

Weight Response

0.756646 [’<sos>’, ’where’, ’is’, ’this’, ’?’, ’<eos>’]
0.240464 [’<sos>’, ’where’, ’are’, ’you’, ’?’, ’<eos>’]
0.00289034 [’i’, ’am’, ’at’, ’home’, ’.’, ’<eos>’]
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Message what is your name?
Response [’my’, ’name’, ’.’]

Weight Message

0.886455 [’<sos>’, ’where’, ’is’, ’this’, ’?’, ’<eos>’]
0.0902068 [’hello’, ’there’, ’.’, ’<eos>’]
0.0165442 [’<sos>’, ’where’, ’are’, ’you’, ’?’, ’<eos>’]
0.00545995 [’my’, ’apartment’, ’.’, ’<eos>’]
0.00133363 [’i’, ’am’, ’at’, ’home’, ’.’, ’<eos>’]

Weight Response

0.886455 [’my’, ’apartment’, ’.’, ’<eos>’]
0.0902068 [’<sos>’, ’where’, ’are’, ’you’, ’?’, ’<eos>’]
0.0165442 [’i’, ’am’, ’at’, ’home’, ’.’, ’<eos>’]
0.00545995 [’<sos>’, ’i’, ’told’, ’you’, ’i’, ’had’, ’to’, ’.’, ’<eos>’]
0.00133363 [’<sos>’, ’where’, ’is’, ’this’, ’?’, ’<eos>’]

Message my name is kira
Response [’what’, ’?’, ’.’]

Weight Message

0.345566 [’what’, ’is’, ’your’, ’name’, ’?’, ’<eos>’]
0.273278 [’<sos>’, ’where’, ’is’, ’this’, ’?’, ’<eos>’]
0.163733 [’my’, ’apartment’, ’.’, ’<eos>’]
0.0940137 [’i’, ’am’, ’at’, ’home’, ’.’, ’<eos>’]
0.0865199 [’hello’, ’there’, ’.’, ’<eos>’]

Weight Response

0.345566 [’<sos>’, ’my’, ’name’, ’.’, ’<eos>’]
0.273278 [’my’, ’apartment’, ’.’, ’<eos>’]
0.163733 [’<sos>’, ’i’, ’told’, ’you’, ’i’, ’had’, ’to’, ’.’, ’<eos>’]
0.0940137 [’<sos>’, ’where’, ’is’, ’this’, ’?’, ’<eos>’]
0.0865199 [’<sos>’, ’where’, ’are’, ’you’, ’?’, ’<eos>’]
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Message what is my name?
Response [’my’, ’name’, ’is’, ’.’, ’.’]

Weight Message

0.997059 [’what’, ’is’, ’your’, ’name’, ’?’, ’<eos>’]
0.00202852 [’<sos>’, ’my’, ’name’, ’.’, ’<eos>’]
0.00040756 [’<sos>’, ’where’, ’is’, ’this’, ’?’, ’<eos>’]
0.000350248 [’my’, ’name’, ’is’, ’<unk>’, ’<eos>’]
0.000107462 [’my’, ’apartment’, ’.’, ’<eos>’]

Weight Response

0.997059 [’<sos>’, ’my’, ’name’, ’.’, ’<eos>’]
0.00202852 [’my’, ’name’, ’is’, ’<unk>’, ’<eos>’]
0.00040756 [’my’, ’apartment’, ’.’, ’<eos>’]
0.000350248 [’<sos>’, ’what’, ’?’, ’<eos>’]
0.000107462 [’<sos>’, ’i’, ’told’, ’you’, ’i’, ’had’, ’to’, ’.’, ’<eos>’]

Message where is this?
Response [’i’, "don’t", ’know’, ’.’]

Weight Message

0.999923 [’<sos>’, ’where’, ’is’, ’this’, ’?’, ’<eos>’]
2.95377e-05 [’what’, ’is’, ’your’, ’name’, ’?’, ’<eos>’]
2.06299e-05 [’what’, ’is’, ’my’, ’name’, ’?’, ’<eos>’]
1.73101e-05 [’<sos>’, ’where’, ’are’, ’you’, ’?’, ’<eos>’]
7.58477e-06 [’<sos>’, ’what’, ’?’, ’<eos>’]

Weight Response

0.999923 [’my’, ’apartment’, ’.’, ’<eos>’]
2.95377e-05 [’<sos>’, ’my’, ’name’, ’.’, ’<eos>’]
2.06299e-05 [’<sos>’, ’my’, ’name’, ’is’, ’.’, ’.’, ’<eos>’]
1.73101e-05 [’i’, ’am’, ’at’, ’home’, ’.’, ’<eos>’]
7.58477e-06 [’what’, ’is’, ’my’, ’name’, ’?’, ’<eos>’]
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Chapter 6

Conclusion

The memory models performed poorly according to the BLEU-2 scores, but well accord-
ing to the embedding cosine similarity scores. The BLEU scores also did not noticeably
increase as the memory size did, but the embedding scores increased quite noticeably.
Unfortunately, since metrics in the field of dialogue models are so poor compared to hu-
man assessment, it is difficult to say exactly what this means. It is possible that this
simply means that the memory models are not a significant improvement over the naive
model. It is also possible, however, that the lower BLEU score represents a low ability
to exactly reproduce the (often questionable) responses from the script, and the higher
embedding scores signify that the memory models instead reproduce phrases that are con-
ceptually similar to the desired response, even if they are not necessarily using the exact
same words.

The alignments computed by the ’general’ attention models were not reasonable, but the
’dot’ attention models provided much better alignments. The ’dot’ model also provided
generally good responses to queries, and did attend to the correct statements in short
conversations - though it did not utilize them enough to create the best responses. When
asked "where is this?", for instance, the model correctly attended to the pair ("where is
this?", "my apartment.") but replied "i don’t know" instead of "my apartment". This is
still a perfectly valid response, but ideally the model should incorporate the contextual
information from the previous pair in memory.

Many of the issues with the results may be caused by problems with the data. The
Cornell Movie Dialogue Corpus is a relatively standard dataset for dialogue models, but
it has a critical flaw: while training this model, it was discovered that the corpus contains
duplicates of several movies. This creates the possibility for contamination between the
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training and validation sets, and led to massively inflated results until the issue was found
and corrected. This also calls into question the results of all other models and papers
trained on this corpus, as they will also benefit from this inflation. Even once this issue is
corrected, however, there are difficulties associated with using this data. Since the Cornell
dataset is composed of movie transcriptions, the dialogue is grounded in visual context that
is not available to the model. As a result of this missing context, it is difficult to accurately
predict the expected response to a query. This can easily be seen simply from the sample
data above - many of the responses from the dataset are not intuitive or obvious, even to
a human.

6.1 Future Work

In order to try to improve the model, there are a number of further extensions to con-
sider. First, one mechanism that might improve the model’s computed alignments would
be the use of autoencoders. Since the functionality of an autoencoder is to learn a dense,
information-rich encoding of a given input, encoded states computed using an autoen-
coder might produce more accurate alignments than the standard sequence to sequence
encodings. In the simplest case, the model’s encoder could simply be initialized using
an autoencoder. The model could also make heavier use of autoencoders, however. If
the model used an autoencoder to generate both the message and response encodings in
memory, then it could use the autoencoder’s decoder to essentially produce some sort of
decoded combination of the aligned responses. This might be an interesting avenue of
study to pursue with this framework.

Another approach to extending the model would be to try to solve the "out of vocab-
ulary" (or OOV) issue. Currently, the model relies on a fixed dictionary, which cannot be
expanded. As a result, it cannot handle simple examples such as retrieving a name from
memory - as the name might not appear enough times in the training corpus to be worth
including in the model’s vocabulary. One solution to this issue would be to build on the
"Copynet" proposal of Gu et al [6]. This paper uses intermediate encoded states to not
only compute alignments, but also "copy" portions of the input sequence. This could be
extremely useful in the context of memory, and could allow the model to avoid the OOV
issue by copying relevant portions of memory phrases directly.
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