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Abstract

Image segmentation is a complex problem with many practical applications.
In particular segmenting images of cells and tracking each cell through a series of
images has the potential to increase the throughput of cell experiments. Bright-
field images present many challenges to segment due to their poor contrast with the
image background, broken boundaries, partial halos and overlapping cells. In this
paper I present three solutions for the bright-field cell image segmentation problem.
The first solution is based on a multiphase level set segmentation technique and
the watershed method, the second is based on the minimization of a statistical
energy function by using a level set function, while the third is based on K-Means
segmentation, spectral partitioning and separation of variances. The first technique
and the third technique produce good segmentation results of individual cell images,
as well as fit into the proposed multiple cell segmentation framework.
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Chapter 1

Introduction

Image segmentation is a key part of many applications. It allows traffic cameras to
read license plates, it allows cameras in casinos to monitor play, it can be used to
detect masses in breast tissue or the prostate and it can also be used by biologists to
locate the boundary of cells in an image. Cell biologists run hundreds of experiments
on thousands of cells, experiments to learn more about how our bodies work and
why diseases like cancer and aids occur. These experiments often involve an image
being acquired at regular intervals in time. A single experiment can result in
hundreds of images, each containing hundreds, if not thousands of cells. Currently
many of these images are processed by hand. That is, given a sequence of images,
a technician must track each cell though the images, noting how fast it moves,
how often it divides, its volume and any other pertinent details. The focus of this
project is to develop a technique that can segment bright-field images of cells to be
part of an automatic tracking algorithm for a series of images.
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Figure 1.1: An optical illusion illustrating the ability of the human eye

Image segmentation is the process of locating the boundaries of objects in an
image. This is easy for the human eye. The human eye and brain can process huge
amounts of information almost instantaneously. Humans have the ability to infer



information from images, to see edges that are not really there and to complete a
broken boundary in a natural way. For example, in Figure 1.1, we easily see the
white triangle in the image, despite the fact that most of its boundary is missing.
Computer vision algorithms are no where close to matching the natural ability
of the human eye, and therefore tasks that are simple for a human to complete
are extremely difficult to automate. The solutions presented in this paper use
techniques primarily based on the intensity values of each pixel in the image to
segment bright-field images of cells.

1.1 Eukaryotic Cells

There are two types of cells, prokaryotic and eukaryotic, which differ due to their
size and internal structures. Prokaryotic Cells are simpler cells such as bacteria cells,
while eukaryotic cells include plant and animal cells [9]. This project concerns the
imaging of eukaryotic cells.

The (eukaryotic) cell is a transparent object that contains different organelles
and structural elements suspended in the cell’s cytoplasm. The cytoplasm is essen-
tially the body of the cell, it is enclosed in a plasma membrane (a semipermeable
lipid bilayer). In eukaryotic cells, the cytoplasm contains organelles such as mi-
tochondria and ribosomes, which are all separated from the rest of the cytoplasm
by biological membranes. The nucleus is also considered to be an organelle. It is
separated from the rest of the cell by a semi permeable membrane and contains the
genetic material, deoxyribonucleic acid (DNA), for the cell. A typical human cell,
while only 10um contains nearly 2.5m of DNA. The cell also changes its appearance
rapidly at times. Most types of cells progress through the cell cycle, which includes
reproduction through mitosis. Mitosis is process of cell division and includes five
stages: Prophase, Pro-metaphase, Metaphase, Anaphase and Telophase. During
this time the form of the DNA is changing, and duplicating, and the cell changes
shape to assist, becoming small and round. Finally the cell pulls apart during cy-
tokinesis, resulting in a figure eight shape until the two daughter cells separate.
The new daughter cells then enter interphase where the cell is often spread out and
irregular in shape [9].

1.2 Bright-field versus Fluorescent Microscopy

There are many types of microscopy used by cell biologists [9]. Bright-field mi-
croscopy is the simplest of all optical microscopy techniques. The sample is illumi-
nated from below using white light. Fluorescent microcopy is more complicated.
The cells are tagged with a compound that will fluoresce under certain light condi-
tions. This means that a gene to produce a fluorescent protein may be introduced
into the genome of the cell, tagged DNA markers may be used or the proteins



that the cell needs to function may include amino acids that are tagged to be flu-
orescent. The fluorescent cells will emit a certain wavelength of light. Images are
taken to capture this specific wavelength. Both imaging types are important to cell
biologists.

Figure 1.2: The same cells with different imaging types (Left: Fluorescent, Right:
Bright-field)

There are advantages and disadvantages to each type of microscopy. Images
from fluorescent microscopy are easily segmented [18]. This is because the region
of interest is a bright, convex shape that is well separated from the background
and the objects of interest do not overlap, as shown in Figure 1.2 (left). However,
fluorescent images often capture only the nucleus of the cell. If the experiment
requires data such as the area of the cell than this type of imaging will not work
alone. Furthermore, it is possible that the agent used to cause the cell to fluoresce
will change the behaviour of the cell, i.e. how fast the cell grows and divides, or
how fast the cell moves. Another known issue with fluorescent imaging is that the
cell may disappear for a few frames and then reappear. This can cause problems
when a cell reappears since the biologists do not know if the new cell is the same
cell from before or the result of cell division. Images from bright-field microscopy
provide a much better image of the cell, as it includes both the cytoplasm and the
nucleus which provide more information for the biologists, which can be seen in
Figure 1.2 (right). However the image quality creates problems for segmentation,
the overall intensity of the background is approximately the same as the intensity
of the cell. Also, since the image is formed from light transmission, the gray level of
each pixel incorporates information form all depths of the cell in that location [10].
The cytoplasm absorbs some of the light, and the organelles absorb light to various
higher degrees than the cytoplasm. For this reason the cell body is not uniform in
intensity in the grey-level images. The brighter spots occur because some of the
cellular structures behave as converging lenses or there is light reflecting on the cell
surface. Furthermore the cell often as a bright white area surrounding it know as a
halo. Unfortunately the halo is not easily used to produce a segmentation as it is



often broken or can be missing altogether. The cell itself often has a poorly defined
boundaries, which makes edge stopping techniques for segmentation difficult to use
for this application. The dark outline is present due to light reflection or distortion
on as light passes through the part of the cell membrane that is not parallel to
the plane. The parts of the cell that have poor boundaries with the background
occur because the slope of the cell membrane is gentle, thus round cells have good
contrast with the background, while flattened cells have a poorer contrast. Another
known issue is the cytoplasm of cells overlaps so cells are often occluded. Finally,
the cell can change appearance rapidly as it moves through the cell cycle so it is
not possible to search for the image of the cell from the previous frame in the new
frame.

The segmentation problem for fluorescent images has been solved, many differ-
ent approaches are used with a strong degree of success. These methods do not
work well for the corresponding bright-field cell images because of the different na-
ture of the images. These algorithms and their results will be discussed further in
Chapter 3.

1.3 Problem to be Solved

The goal of this project is to be able to segment images of bright-field cells that are
close together (but not overlapping) and cells that divide. The final version of the
algorithm should be adjustable by means of parameters to other image sets, but for
a single set of images form a single experiment, the parameters should not require
adjustment. The first image in a sequence may require some manual work to start
the segmentation, but from that point on the algorithm should run automatically
without human input. This problem is designed to be offline, that is not completed
in real time, so time constrains will not be considered at this time.

1.4 Remainder of Paper

The remainder of the paper is organized as follows: Chapter 2 contains the back-
ground information on a variety of common segmentation and clustering algorithms;
Chapter 3 contains a literature review of other cell segmentation algorithms; Chap-
ter 4 contains a description of the algorithms which have results in this paper;
Chapter 5 has an algorithm for a multiple cell segmentation; Chapter 6 has the
results for all algorithms presented and finally Chapter 7 is the conclusion of this

paper.



Chapter 2

Background

There are many approaches to solve segmentation problems: level set methods rely
on PDE’s, spectral clustering is based on graph theory and eigenvalues, while the
watershed method treats the image as a topography. This chapter discusses some
active contour methods for segmentation, the watershed method, spectral clustering
and the K-Means algorithm.

2.1 Level Set Segmentation

Level set methods were introduced by Osher [12] and Sethian [13]. The goal of a
level set segmentation method is to find a curve that describes the boundary of the
object of interest. This is accomplished in 2D by a propagating a 3D function. The
zero level set of the the 3D function describes the 2D boundary of the object of
interest. Level set methods are used for applications such as image segmentation,
optimization, computational geometry and computational fluid dynamics.

In image segmentation, level set methods are part of a class of methods known
as active contour methods. Another active contour method is called snakes. In the
snakes method the curve is represented as a parametrized set of points, as the points
move, so does the curve. Level set methods have an advantage over other active
contour methods such as snakes because a level set method can automatically split
or joint regions. Also complex topologies such as three way junctions and rings are
easily managed with a level set method, however with a method like snakes it is
difficult to know when to split or join regions, or if it is necessary to introduce a
new boundary.

The basic idea for any active contour method (snakes or level set for instance)
is to evolve a curve over time so that the curve moves towards its interior normal
and when the stopping conditions are met the curve forms an outline around the
object of interest. If 2 is an open bounded set in R? with a boundary 9 then the
level set function ¢ evolves such that the set {(x,y)|¢(x,y) = 0} defines 0. The



Figure 2.1: Example of a 3D Level Set Function giving a 2D curve!.

general level set equation is given by:

¢
ot

where F' is the speed term, which dictates how fast the curve moves at each point
in the image, while ¢y is the zero level set of the function ¢ and represents the
boundary of the current segmentation. Figure 2.1 shows how the zero level set of
the function ¢ forms the curve in 2D.

- F|V¢| ¢(O T y) ¢0($7y)7 (21)

The level set function ¢ has the following properties:

o(x,t) >0 forx e
p(x,t) <0  for x € R"\Q
d(x,t) =0  for x € 00 =T'(t)

The following are terms that are useful for describing level set methods:

1. The unit normal N to 9 is given by ~ ol ¢‘

2. The mean curvature x of 0f) is defined by xk =

\Wﬂ)

O»—l/\

3. The one-dimensional Heaviside function {

4. The one-dimensional dirac delta function é(x) = {

'Source: Wikimedia Commons, Oleg Alexandrov, 2004
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The solution of (2.1) usually develops kinks or discontinuities. Because of these
discontinuities special numerical methods to calculate the solution must be used.
For example the schemes generally need to be monotonic and use up-wind differ-
encing, otherwise numerical instability appears.

The level set equation (2.1) can be used for image segmentation by defining F
as in the anisotropic diffusion approach:
99

\Y
5 = a(Tu Vol

where the function ¢ is a function that is large when |Vuy| is small and large when
|Vug| is small. By using this as the speed term the curve will stop when it reaches
a sharp change in pixel intensity (an edge). Finally v is a constant that is part of
the the curvature term.

) +v), (2.2)

Figure 2.2 shows a level set function evolving from its initial state to its final
position. This image uses (2.2) to propagate the curve. The speed term used is
g(luw]) = m. The PDE is solved using a finite difference method with an

2

up-winding scheme.

Figure 2.2: Example of a level set segmentation based on the anisotropic diffusion
model

2.1.1 Active Contours Without Edges

In [4], Chan and Vese propose a new model for active contours to detect objects
in a given image. The method is based on of the Mumford-Shah functional for
segmentation and level sets. The method uses minimization of energy to segment
the image. In the simple case, assume that an image ug is formed from two regions
of approximately piecewise constant intensities of distinct values u* and ug"*. Fur-
thermore assume that the intensity of the object to be detected is uf*. If Cj is the

boundary of the object to be detected then uy ~ wuj* inside the object (or inside



Co) and ug ~ ud™ outside the object (or outside Cp). The fitting terms considered
are:

FO+RC) = [ (wfay) - )dody
inside(C')
[ ey - eodady, (2.3)
outside(C)

In (2.3), C is a variable curve on the image, the constants ¢; and ¢y are the mean
intensities of ug inside and outside C respectively. In this case it is clear finding
the boundary of the object is the same as finding the curve C' that minimizes the
fitting term:

Figure 2.3 shows how the curve minimizes (2.4) .

Figure 2.3: Four examples showing how the curve minimizes (2.4), [4]. Top left:
Fi(C) >0, F5(C) ~ 0, Fitting > 0. Top right: Fi(C) =~ 0, F»(C) > 0, Fitting
> 0. Bottom left: Fy(C') > 0, F5(C) > 0, Fitting > 0. Bottom right: F;(C) ~ 0,
F,(C) = 0, Fitting ~ 0.

Chan and Vese propose a method to minimize this fitting term and add some
regularization terms such as the length of the curve or the area inside the curve.
This leads to the energy functional in (2.5), where p > 0, v > 0, A;, Ay > 0 are
fixed parameters:

F(e1,00,C) = p- Length(C) + v - Area(inside(C'))
+)\1/ (uo(z,y) — c1)*ddy
inside(C)

+&/ (t0(, y) — ca)?dady. (2.5)
outside(C)



In most of their numerical simulations Chan and Vese fix A\ = Ay = 1 and v = 0.
Thus they consider the minimization problem:

inf F(c,co,C). (2.6)

c1,c2,C

The level set of the function can be seen in Figure 2.4. The boundary represents
the function ¢ = 0 in the domain ).

. Ou \éul]);,

N _—

\~ TTN=0
,* clpn -ﬁcl-. ¢ 4—--
AuN
Outctde

Figure 2.4: Zero level set of a function ¢ and the values of ¢ inside and outside the
level set curve, [4]

In order to deduce the Euler-Lagrange formula for the numerical approxima-
tions a regularized version the heaviside function,H,, and dirac delta, d., are used.
The Euler-Lagrange equation for ¢ is given by (2.7). The descent direction is pa-
rameterized by an artiﬁcial time, t > 0. The value 7 is the normal derivative of ¢
at the boundary 0f) and is the normal derivative of ¢ at the boundary.

?)—f =3(9) [H’ aw <|V¢|> v—Ai(uo — 1)’ + Xauo — e2)*| =0, (2.7)
(0, z,y) = ¢o(x,y) in Q, (2.8)
Oc(¢) 0p _
S 0 on 0. (2.9)
One regularization of H is:
H. = % <1 + %arctan (f)) : (2.10)

Some results from [4] are shown in Figure 2.5 which shows that the method is
successfully able to find non-convex shapes in a noisy image.



Figure 2.5: Results for [4] on a noisy, non-convex image
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2.1.2 A Multiphase Level Set Framework for Image Seg-
mentation Using the Mumford and Shah Model

Chan and Vese introduce another method, [17], for image segmentation that extends
[4] to segment images that have more than two regions, the goal of this paper is
to include images that contain more than two segments and images with complex
topologies such as triple junctions. This method also removes other problems such
as vacuum and overlap since it naturally produces a set of disjoint regions that span
all of €2. Using the proposed model only log, n functions are needed to represent n
image segments.

First consider m = log,n level set functions ¢; : 2 — R. The union of the
zero level sets of the functions ¢;, ¢ = 1,...,m will form the edges for the image
segments. the authors define the following equations:

D = (f1,.s Om), (2.11)
H(®) = (H(¢1), ..., H(dm))- (2.12)

H(¢) may take on values of only 0 or 1. The segments of the domain 2 can now
be defined in the following way: two pixels (z1,y1) and (z2, y2) belong to the same
segment if and only if H(®(z1,y1)) = H(P(22,y2)). Since there are 2™ possibilities
for the value of H(®) so in this way up to 2 = n segments in the image are defined.

Some notation to be introduced. The classes are labeled by 1 < I < 2™ = n.
A constant vector of averages ¢ = (cy, ..., ¢,), where ¢y = mean(uyg) in class I. The
characteristic function is defined as:

(1 ifgr>0
XI_{O if ¢y < 0. (2.13)

This allows the reduced Mumford-Shah energy to be written as:

FMS(c, ¢) = z /Q(uo(fv,y)—clfxfdmdy-l—i/% Z /Q|X1dxdy|. (2.14)

1<I<n=2m 1<I<n=2m

by simplifying the length term >, om Jo, Ixzl to Z1<i<m’/f9 |\VH(¢i)| (the
sum of the length of the level sets of ¢;). This causes some parts of the curve to be
counted more than once, thus giving some boundaries a higher weight than others.
The authors found that this simplification still produced satisfactory results. This
gives the energy to be minimized as:

Red= 3 [w-aruddys Y v [ (V@)L @15)

1<I<n=2m 1<i<m

Figure 2.6 Shows how log, n level set functions can be used to form n segments.
The energy functional from (2.15) is shown in (2.16) for the case where n = 4,

11
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Figure 2.6: Examples of 4 or 8 regions using 2 or 3 level set functions, [17]

which can also be seen in Figure 2.6:

Fie.®) = [ (o= e Ho)H(ddy+ [ (w0~ el Hén)(1 - H(oa))dody
+ [ (= (1 = Ho1)) H()dady
= can)(1 = H(01))(1 = H(on)ddy
+V/Q|VH(¢1)|+U/Q|VH(¢2)|. (2.16)

where:

t,x,y) >0, g2t x,y) > 0},

) >0, ¢a(t,w,y) <0},
t,x,y) <0, ¢ao(t, ,y) > 0},
t,x,y) <0, g2t z,y) < 0}.

t,x,y
Co1 0]

Coo

() = ( (z,y):
c10(P) = mean(ug) in {(z,y):
(®) ( (
(?) ( (

@@g%

and ® = (¢1, ¢2). This allows us to express the image as:

u = cnH(¢1)H(p2) + croH (¢1)(1 — H(d2))
+co1(1 — H(¢1))H(¢2) + coo(1 — H(¢1))(1 — H(ga)). (2.17)

The Euler-Lagrange equations obtained by minimizing (2.16) with respect to
¢ and ®, embedded in a dynamical scheme, are given ¢1(0,2,y) = ¢10(z,y),

¢2(07 T, y) = ¢2,0(£L‘, y):

12



261 vor

Tl be(p1){vdiv( Vo |) [((uo — e11)? = (uo — co1)*) H(¢2)
| +((uo — ¢10)* = (uo — co0)*)(1 — H(¢2))]}, (2.18)

% = Je(pa){vdiv( |V¢2|) — [((uo — c11)* = (uo — c10)*) H(¢1)
+((uo — co1)® = (uo — co0)?)(1 — H(¢1))]}- (2.19)

In Figure 2.6 it can be seen how the problem extends to partition the domain 2
into eight segments.

2.1.3 A Fully Global Approach to Image Segmentation via
Coupled Curve Evolution Equations

In [21], Yezzi et al. develop a region based active contours segmentation technique
to separate the values of certain image statistics over a known number or region
types. The algorithm tries to pull apart the values of one or more image statistics
(mean, variance, texture, etc).

The authors start by considering an image that consists of just two region types,
for example an image that consists of a foreground region R with intensity I” and
background region R® with intensity ¢ # I". They wish to determine an evolution
that will attract an initial closed curve C' toward the boundary, OR, of R. Given that
the initial curve will likely contain part of R and part of R® the average intensities,
u and v of R and R° respectively are bounded above and below by I™ and I¢. This
means that the distance between u and v can be used to to determine how well the
curve have separated the two regions and their is a an upper bound of |I” — | that
is uniquely obtained when C' = OR. A related strategy which assumes no previous
knowledge of I" or I is to minimize the following energy:

o —%(U—U)Q. (2.20)

It can be shown that the gradients of v and v are:

I—u -
= N 2.21
Vu R ( )
I—v -
— 2.22
Vo iV ( )

where A, is the area of R and A, is the area of R and N is the outward normal
to OR. These equations can be used to compute the gradient flow of E:

ac I—u IT—-v)\ =

13



which optimally separates the mean intensities inside and outside C.

This model can be generalized by letting v and v be statistics other than the
mean of the regions. For example if you have two areas with the same mean, but

different variances you could use the following energy functional:
1
E = —5(05 — 022 (2.24)

Again gradient of the two statistics is derived as:

(I —u)?—o;

Vo? = y N, (2.25)
I — 2 _ 52
Vo = _%#N’ (2.26)
which gives the curve evolution of
ac s o ((I—u)*—02 (I—v)?>—-02\ =
— = — i ] N. 2.2
i = o-on (P (227)

A problem that can be encountered in this type of method is that as the curve
evolves past the boundary of the object, it is possible for both statistics to move in
the same direction, but the distance between them continues to grow. This is not
the desirable behaviour and Yezzi et al. propose the following solution.

First define the following inner product:

dC dC" ac- dc"

The time derivatives of the statistics v and v under a binary flow are as follows :

v = (Vu,—VE), (2.29)
v = (Vu,—-VE), (2.30)

where —V E denotes the gradient descent flow.

The authors note that the statistics © and v move in opposite directions when

v/ < 0. If one of the statistics is moving in the wrong direction, the statistic that

is moving in the wrong direction is kept fixed by subtracting from the evolution the

component along the gradient direction for that statistic, as shown in the equations
below that preserve u or v respectively.

dc (VE, Vu)
-~ — _VE 2.31
d VE v (231)
ac (VE, Vo)
E = —VE + WVU (2.32)

This allows for an evolution such that the statistics should always move in opposite
directions.

14



2.2 Watershed Method

The watershed method is a segmentation algorithm that is often used on images
[14]. Tt can be thought of as a flooding process. A 2D image can be thought of as
a topography with the pixel intensity describing the height. If “water sources” are
placed at various locations and then allowed to “flood” the image, the water coming
from different water sources will meet along watershed lines. These watershed lines
form the boundaries for the different regions.

First the seeds for each of the regions are selected. The seeds do not need to be
a single point or a minimum of a particular area. All seeds have a unique identifier.
These are the areas where the water originates from in the flooding analogy. The
water continues to flood the area, eventually neighbouring regions will join unless
a dam (watershed line) is erected between them. For the watershed method the
dams are considered to be infinitely tall. When a new region floods it will be given
the same label as its neighbouring region that caused the flooding. Eventually the
image is divided into non-intersecting regions that are referred to as catchment
basin and are bordered by the watershed lines. There are exactly the same number
of basis as types of seeds. The algorithm is sensitive to the number of initial seeds
as too many will result in an over segmentation of the image, while too few will
result in different regions being joined together. The algorithm is also sensitive to
where the seeds are placed, as this will determine how the image “floods.” Good
seed selection is very important to the outcome of the algorithm.

The algorithm is as follows:

1. Select the seeds for each region, place seeds into a FIFO queue according to
the value of the seed.

2. Dequeue the next seed.

3. All pixel neighbours are retrieved from the image. All neighbouring pixels
without an ID are given the ID of the current seed and placed in the queue
according to their pixel value. All neighbouring pixels that alrcady have an
ID are ignored.

4. Return to step 2.

2.3 Spectral Graph Partitioning

Spectral graph partitioning is the segmentation of a graph into two pieces based on
the the eigenvectors and eigenvalues of the Laplacian matrix for the graph [16], [5].

First some terms are needed to describe graph G = (V, E,w) where G is an
edge weighted, undirected graph with no self loops. V' is a set of n vertices labeled
1,...,n, E is a set of m edges and w is an edge weighting € [0, 1].
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wj; is the weight between edges ¢ and j

W, weighted adjacency matrix:

Wij_{ wij:w(zuj) if (l,])EE

0 otherwise

d;, The weighted degree of a vertex:

n
di: E wij
=1

D, the weighted degree matrix

Y10 otherwise

Generalized Laplacian of Gis L=D — W
Normalized Laplacian of G is £ = D~'/2LD~1/2

To cut this graph into two pieces A and B, a measure is needed to determine
the quality of the cut. A normalized cut is measured as follows, where assoc(A, V)
is the sum of the weighted degree of the vertices in A and cut(A, B) is the sum of
the weights of the edges joining A and B:

cut(A, B) cut(A, B)
assoc(A, V)~ assoc(B,V)

NCut(A, B) = (2.33)

When a normalized cut is minimized the result is a partition such that there is
high connectivity in the two parts, but low connectivity between them. Through
relaxation of the optimization problem, the normalized cut can be rewritten as:

2T Lx
in —— = N. 2.34
min T2 o] (231

Using the weak duality theorem from optimization, we are able to relax this problem
to the following generalized cigenvalue problem:

Lz = D, (2.35)

(D — W)z = ADx. (2.36)

The smallest solution to (2.36) is trivial, x = 0, so the second smallest solution is
considered. This corresponds to the second smallest eigenvalue/eigenvector pair.
The vertices are split along the zero crossing.

To apply this technique to image segmentation a graph must be formed from
the image. This can be done using decreasing functions that measure the similarity
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in pixel value of any two pixels as well as their distance apart. That is each pixel
in the image becomes a node in the graph. Two pixels are connected by an edge
based on a function such as the one below:

_HEiv)-I@w)3 (@) -(r2.99)13
w=e o1 e oz , (2.37)
where o; and o, are constants based on the expected distribution of the pixel
intensities and distance of related pixles.

This function decays with distance, however to create a sparse graph an addi-
tional constraint of only considering pixels within a certain neighbourhood to have
an edge is used. This will remove edges with a very low weight.

The spectral clustering method using the second smallest eigenvalue/eigenvector
pair naturally gives a partition into two parts, however if to partition the graph
into more pieces other small eigenvectors are considered. The third smallest eigen-
value/eigenvector would split the graph into three pieces, the fourth into four, etc.
Another natural extension is to take several small eigenvectors, say n of them and
form points in R™ from the corresponding entries. A clustering method can then
be used on these points.

2.4 Clustering - K-Means

The K-Means Clustering algorithm is an algorithm to cluster N points into K
distinct groups, Sj, j = 1, ..., K. The algorithm is designed to minimize the distance
between each point and the geometric centroid of the group to which it belongs

K
minz Z |2 — 12 (2.38)

7j=1 nGSj

The data point z, is a vector representing the n'* data point, ;18 a vector
representing the geometric centroid of group j and the euclidian distance is used as
a measure, although other measures (manhattan distance, L; norm, etc) are also
possible depending on the application of clustering. While the algorithm cannot
be guaranteed to find the global minimum it is commonly used due to its case of

implementation. The algorithm is as follows:

1. Randomly assign cach of the N points to a group j.
2. Compute the centre of each group.
3. Assign each point to the centre that it is closest to.

4. Repeat steps 2 and 3 until a stopping criteria has been met (i.e. no points
change groups)
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Figure 2.7: Sample iteration of K-Means algorithm.?

Figure 2.7 shows an iteration of the algorithm. In the leftmost image the centres
arc assigned, in the second image the points are assigned to their closest centres,
the next image shows the recalculation of the centres based on the new groups and
finally the last image shows the partition.

Since the algorithm cannot guarantee global convergence, but is extremely fast
to run in practice, it is common to run the algorithm several times with different
initial centres and then choose the result that resulted in the lowest cost. The num-
ber of groups K is taken by the algorithm as an input parameter. This contributes
to the speed of the algorithm, but is also a drawback of the algorithm since the
wrong K can cause poor clustering results. Other drawbacks include that all of the
attributes are given the same weight. The algorithm is sensitive to its initial start-
ing conditions, especially if there are only a few points. Since a distance metric is
used for clustering, the result is circular clusters. Finally the algorithm is sensitive
to outliers since it relies on a mean of the group.

There are suggested solutions to many of these drawbacks. Random starts
reduce chance of finding only a local minimum and median can be used instead of
mean to reduce the effect of outliers.

The applications of K-means include the unsupervised learning of neural net-
works, image processing, computer vision, artificial intelligence, classification and
more.

2Source: Wikimedia Commons, Wenston Pace, 2007. Distributed under GNU Free Documen-
tation License
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Chapter 3

Literature Review

Most of the current research into the problem of segmenting images of cells is
focused on other types of cell images such as fluorescent, phase contrast or confocal
images. This is because bright-field images show the least amount of detail and are
the hardest to segment.

3.1 Fluorescent Images

The segmentation of fluorescent images is much simpler than the segmentation of
bright-field images because the fluorescent images usually show only the nuclei of
the cells, which are small, convex, bright and do not overlap.

Dzyubachyk et al. [7] present a method to segment and track multiple cells
in fluorescent microscopy images in their paper . The framework they present is
based primarily on a level set segmentation, but also makes use of some other
segmentation techniques. Each object (cell or nucleus) is represented by a level set
function ¢;,i = 1, ..., n where n is the number of objects in the 3D image. The final
segmentation for an image is found by minimizing an energy functional which is
composed of both imaged based and smoothness components. A probability based
approach is used in this paper, where the probability that a pixel belongs to a
particular region is considered in the functional. It is also assumed that all the
regions have Gaussian distributions over the pixel intensities which allows for the
descriptions of the internal energies of both the nuclei and the background shown
in (3.1) where €, is region inside the the i*" level set function:

I — U; 2
e; =logp(I | ) =logo? + % (3.1)
g
Dzyubachyk et al. use some heuristic approaches to improve their algorithm. A
single level set function is evolved on the first image of a sequence to find con-
nected components. A watershed algorithm is then used to separate any cells that

are lumped together. The stopping criterion of the level set algorithm is a sign
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change based criterion, which considers the number of voxels that change sign. A
radon transform based cell separation was used to attempt to prevent the level set
function of one cell to capture part of another cell. Finally the authors run another
segmentation method on the now segmented image to quickly determine if they
believe that any new cells have entered the field of view. The preliminary results
that are presented in [7] show a good segmentation, however the authors do not
discuss how to deal with mitosis which is essential when dealing with sequences of
bright-field cell images. Furthermore a single level set function does not work on
bright-field cell images, which is discussed in chapter 4.

Wang et al. [18] present another approach for segmenting fluorescent images
in their paper. Their approach uses both the intensity and information about the
shape of the cell to segment the image. A binarization is used to segment clusters
of cell from the background. The algorithm used a cubic B-spline to estimate
the background. If obvious differences exist then the pixel is assigned to be cell,
otherwise it is background. The next step is to find the local maxima. A new image
is generated by adding the original image and the image with a distance transform
performed on it. The resultant image has its noise suppressed and local maxima
where there are likely to be cell centres. Finally the local maxima are detected
using thresholding techniques and the watershed algorithm is used with the local
maxima as the seeds. This technique would not work well on bright-field images
since clusters of cells cannot be identified with thresholding.

3.2 Phase Contrast Images

Phase Contrast images are images that are taken to make highly transparent objects
more visible, it is usually used to view intercellular structures [9].

Debeir et al. [6] present a solution in their paper to segment phase contrast
images. A segmentation like the watershed algorithm is used, but used random
markers and perturbations to create several possible solutions that can be combined
to form a better solution. Random noise is added to the markers that are found
for the watershed method. This causes there to be slightly different basins each
time the algorithm is initialized. The image is also perturbed by adding a constant
slope to the image. The value of the slope is set arbitrarily. The slope results in
the different weak gradients being reinforced depending on the slope value. The
segmentation is run several times on the same image with different markers and
slopes, and then a counter for each pixel which counts the number of times that
the pixel is part of the region is used. Pixels that are often counted as cell have a
high count, which allows the cells to be found. Since the main component of this
algorithm is the watershed algorithm, it does not seem to be able to track different
cells from frame to frame which is needed for the bright-field segmentation solution.
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3.3 Confocal Images

Confocal images are images from light microscopes that allow the user to focus and
get crisp images at different specimen depths [9)].

Beaver et al. [3] present a solution for segmenting nuclei using a performance
based thresholding technique in their paper. The segmentation is based on the
finding a threshold for each nuclei for each frame in the stack. The problem is
that the threshold changes from frame to frame and from nuclei to nuclei. Since
the authors are not looking for a global threshold value the problem becomes one
of trying to choose the best threshold for each nuclei. A scoring function is used
to determine the quality of each threshold. This function used features of the
segmented area such as the mean of the two axes, the ratio between them, the
compactness, effective diameter, the convexity, the eccentricity and the circularity,
though the authors point out that this is a subset of possible features that could be
used. A machine learning algorithm is used to to learn how to classify the regions
produced by a given threshold into good, too small or too large. The authors chose
to use adaBoost, a supervised learning algorithm, which has many benefits such as
not over-fitting the data, and it can be improved without retraining as the training
set grows. The method did very well when compared to other thresholding methods
(96% compared to 80% for Otsu).

A technique developed by Marcuzzo et al. [11] is used to segment the cells in the
root of a plant. It consists of three steps, image registration and filtering, watershed
segmentation and finally a classification step. The step of image registration is
necessary due to the fact that the root changes direction as it grows, so all images
arc registered so that the root has the same orientation, this will allow the cells to
be more easily compared. The image is then filtered to removed the noise that is
often present in confocal images. The watershed transform is applied to the filtered
image. Watershed transforms often lead to over segmentation and the images of
the arabidopsis root are no exception. The solution the authors employ is to prune
badly segmented regions after the segmentation step. A discrete cosine transform
is used to describe each region, based on this description a SVM (Support Vector
Machine) cell classification is used to prune the non cell regions.

These algorithms are also not practical for the segmentation of bright-field cell
images because they do not provide a way to track specific cells.

3.4 Bright-field Images

Finally the segmentation solutions to bright-field images are considered.

Korzynska et al. [10] present a semi-automatic solution for the segmentation of
bright-field cell images in their paper. The algorithm exploits three known features
of bright-field cell images. The first feature is that the texture of the cell is different
from that of the background. The second feature is that for most parts of the cell the
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boundary gradient is well defined. Finally consecutive images in a time series are
very similar. The algorithm requires operator input to initialize the segmentation
for each cell and to set several parameters. The operator is also able to go back and
correct segmentations by adjusting parameters. The algorithm seems to be only
defined for cells that are well separated and that are fully inside the field of view.
The algorithm also requires a lot of human interaction.

Rehan et al. [2] present a method for segmenting cells in bright-field images.
This method of segmenting images requires that a derivative image is created across
the focal plane. That is an image is acquired below and another from above the
focal plane. The derivative image is the difference of the two images. A local
phase map that is designed to detect the presence of features is then created using
a mongenic signal with a quadrature triple filter. Unwanted features are removed
by masking them with a threshold variance map of the derivative image. This
new corrected local phase map is thresholded to divide the image into background
and cell regions. A manual step is now required to split touching cells, the user
must click once inside each cell. The ‘clicks’ become the seeds for a region growing
algorithm. A level set method is used next to ensure that all cells are correctly
segmented from their neighbours. This method was able to correctly identify 83%
+ 7% of all cell pixels, which improved on the authors previous work [1]. This
method is not practical for all applications, space wise, since at least 3 times as
many images are required and it also requires the images to be taken in a very
specific way.

Wu et al. [19] present an early solution to the segmentation of unstained living
cells in their paper. The goal of [19] paper is to present a solution to segment living
cells that are a suspended in a 3D gel solution. The segmentation solution works
only on cells that are contained in their own window with no other cells entering
or leaving. The authors present a two stage segmentation in which they first find
an approximate region that the cell resides in by segmenting the cell and near
background from the distant background. The second step is to segment the cell
from the remaining background in the approximate region. The first segmentation
is completed by computing the variance at each pixel (determined by the variance
of a window centered at the given pixel) and then a minimum-error thresholding
method is used to find the approximate region on the “variance” image. The
second step is completed using Otsu thresholding. The authors found their results
to be satisfactory, but the algorithm does not work for multiple cells in an image,
furthermore even with the cell taking up most of the image frame, good results with
thresholding techniques have not been produced for the data set being investigated
in this paper.
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Chapter 4

Algorithms

Several algorithms, based on the background information found in chapter 2, have
been implemented to solve the bright-field cell image segmentation problem. The
details are in the following sections.

4.1 Multiphase and Watershed

The first method considered is a combination of the multiphase active contour [17]
which was discussed in section 2.1.2 and the watershed method [14], [15] discussed
in Section 2.2.

The results from a single level set function or even the multiphase level set
algorithm on a cell image is not enough to use to segment the cells. This was
expected based on the preliminary thresholding attempts (shown in Section 6.1).
The segments that result from using a level set method with three level set functions
arc shown in Figure 4.1. Much of the interior of the cell is still contained within the
same region as the background (see Figure 4.1, second row, last column), but those
regions are disconnected from the region that actually represents the background.
However the level set method was able to produce large regions in the cell interior
to use as markers for the watershed method. The three phase method still places
some crucial regions together, but this is because the intensities are so similar. It
is for this reason that it is not attempted to obtain better results with four level
set functions (i.e. sixteen regions). The information simply is not in the intensity
of the image.

These results are instead used for the the seed for the watershed algorithm, it
can be seen in the sequence of images that the one on the far left contains the halo
for the cell (the brightest region), the other regions contain mostly small dark arcas
on the cell interior, the final segment contains the background and cell interior.
Through heuristic approaches the background component is separated from the
cell component and use the cell component along with the other darker regions to
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Figure 4.1: Regions from multiphase segmentation

form the seed for watershed. By having a variety of intensities in the watershed
seed, the algorithm is able to capture the cell boundary well.

Two methods of extracting seeds for the watershed method were implemented.
The first method is based on using the multiphase level set method to extract
regions that are interior points of the cell. The image set that was used for these
results has the interior of the cells darker than the background and the halo. For
this reason the two regions corresponding to the darkest average intensities were
selected to make the seed. It is common for the background to be included in these
two regions, but in this case there are lighter regions, separating the cell region from
the background region (see Figure 4.1). The binary image formed from choosing
the two regions that contain the darkest regions is then eroded using morphological
operators to take care of the cases where the cell and background are connected by
small threads. This also pushes the seed back from the boundaries of the region in
case the region contained some background. Because the background is separate
from the cell, the algorithm simply removes the pixels from the seed that correspond
to background. This binary image is used to select the pixels that form the seeds
for the interior region for the watershed algorithm from the original image. The
boundary of the image used for segmentation is used as the seeds or the outer region
of the watershed segmentation.

The second method used the results from the multiphase level set segmentation
as well. This time the method is based on the idea of segmenting the background
rather than the cell. Since the multiphase method was used a square region of the
image containing the cell, it is known that the the region containing the background
will contain the most non zero elements. The algorithm selects this region, and then
inverts the binary image, filling any holes in the resulting image. This area is now
an approximation of where the cell is located. It is eroded to be used as a seed for
the watershed algorithm. The seed for the outside area of the watershed is chosen
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to be the same as in the first method.

The watershed algorithm results in a binary image with two regions, cell and
background. A simple level set method is used on this image to extract the the
boundary of the cell. This improves the smoothness of the boundary as the wa-
tershed method often produces a saw-tooth pattern. Furthermore, the level set
method does a better job of detecting cell division, as it is able to ignore thin lines
of pixels connecting two segments.

4.2 Statistical Level Set Approach

The second approach to segmenting the cell images comes from the papers by Yezzi
et al. [21], [20]. Three methods were tested from this paper, a method using the
mean for the statistics, a method using the variance for the statistics and finally
a method that used both the mean and the variance. All of the variations of this
method were implemented with an up-winding, finite difference method to solve
the level set problem.

4.2.1 Segmentation based on Mean

Recall that the goal of Yezzi’s method using the means of the two regions to be
segmented was to minimize the following energy:

1
E = —E(u—v)z, (4.1)
where u is the mean of the foreground of the image and v is the mean of the back-
ground of the image. A level set method was used to accomplish this segmentation
with the speed term F being:

F=VE=—(u—v) (I;u“jt ];U”). (4.2)

Additional constraint were derived to force the statistics to move in opposite direc-
tions using the equations below:

% _ “;U“((f—u)ﬂu(f—v),) (4.3)
dC U—v
(O R A O)! (1.4

where (4.3) is used to prevent the statistic u from moving in the wrong direction
and (4.4) is used to prevent v from moving in the wrong direction. A statistic
moves in the wrong direction if both statistics move in the same direction.
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4.2.2 Segmentation based on Variance

To segment based on variance the following energy equation is minimized:

1 2
E=—=(02-0%)", 4.5
L (o2 o) (w5)
where o2 is the variance of the foreground of the image and o2 is the variance
of the background of the image. A level set technique is used to accomplish this
segmentation with the speed term F being:

F:VE:—(02—02)((I_ZXU_0“+(1_120_01’). (4.6)

Additional constraints were derived to force the statistics to move in opposite di-
rections using the equations below:

dc (03 — 07)

ar A—U(([“)Q — 03 + 7, ((I —v)? = o?), (4.7)
I _ (B0 o
i A—u((]”) —0,) + (I —u)® —0o,), (4.8)

where (4.7) is used to prevent the statistic o2 from moving in the wrong direction
and (4.8) is used to prevent ¢2 from moving in the wrong direction.

4.2.3 Segmentation based on Mean and Variance

Following the work by Yezzi et al. [21], a combined energy function using both
mean and variance was derived:

1
E = —Alﬁ(u —)?

(02— a2 - (o -ty (L= L2 Y 0

where u is the mean of the foreground of the image, v is the mean of the background
of the image, o2 is the variance of the foreground of the image and o2 is the variance
of the background of the image. The constants A; and Ay are used to weight the
importance of the energy of the combined statistics. A level set technique is used
to accomplish this segmentation with the speed term F being:

I—u I—w
F=VE = —Al(u—v)( Tt I )
2 2 (I_U)Q_Ug (1—0)2—03
— — . 4.1
)\2(014 Jv) < Au + Av ( O)
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Table 4.1: Statistic Movement

u v o> o> Equation

True | True | True | True 4.10
False | True | True | True 4.11
True | False | True | True 4.12
True | True | False | True 4.13
True | True | True | False 4.14
False | True | False | True 4.15
False | True | True | False 4.16
True | False | False | True 4.17

True | False | True | False 4.18

Additional constraints were derived to force the statistics to move in opposite di-
rections using the equations below:

% = —VE+%VU7 (4.11)
L - _vm%v (4.13)
% — —VE+%V03, (4.14)
% = —VE—}—% u—l—gfg’,—g?%éVai, (4.15)
% = —VE—i—%V@Jr%Vﬁ. (4.18)

It is more complicated in this case to determine which statistic is moving in the
wrong direction since there are more than two possibilities as shown in Table 4.1.
True indicates that a statistic moved in the proper direction, while false indicates
that it did not and the equation number describes the equation that represents the
speed term in that case. For example, if v and o, both moved in the incorrect
direction, but the other two directions moved correctly, then (4.15) is used.
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4.3 Spectral-K-Means Segmentation

The final approach that will be discussed in this paper is an approach based on the
spectral graph theory [5], [16].

First of all the Laplacian graph representation of the image is found in the fol-
lowing way. A graph, G is created of the image, the weighted adjacency matrix, W
and the weighted degree matrix, D as described in Section 2.3 are found next. The
normalized laplacian £ is then computed as well as the m eigenvectors correspond-
ing to the m smallest eigenvalues of £. Ignoring the eigenvector corresponding to
the smallest eigenvalue since it does not provide any information, a point in R™!
is formed for each pixel that contains its entry from the other m — 1 eigenvalues.
Next K-Means is run using p random starts on this data set. This will divide the
image into k regions. For the experiments in the following section it was found that
m =10, k =9 and p = 10 provided good results in most cases.

The second part of the algorithm is used to determine the approximate area
where the cell is located. The goal is to maximize the difference of the variance
between the two groups of pixels, thus the algorithm starts with an initial partition
and then looks at all the pixels on the inside and outside boundary of this partition.
If the difference in variance between the two regions increases by having the pixel
change groups, then the pixel is placed in the other region. This continues like this
until no more pixels change regions. The restriction that the statistics must move
in opposite directions is also imposed. Thus, even if changing a pixel increases the
difference between the variances of the two groups, the pixel is not moved if both
variances increased or decreased.

The segments from the K-Means partitioning that are contained nearly entirely
within the cell area found by the second part of the algorithm are selected. Theses
segments are then combined as the area where the cell is located. A summary of
the algorithm is below

e Form L based on the image
e Solve for the m eigenvectors that correspond to the m smallest eigenvalues

e Disregarding the smallest eigenvector, form points in R™™! for each of the
pixels in the image.

e Use K-Means to find k regions of these points.
e Find Approximate location of cell

e Locate all regions from K-Means segmentation found primarily within this
area

Unlike the other algorithms presented in this section, the spectral K-Means
segmentation is not a deterministic algorithm. The segmentation depends on the
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placement of initial centres. In practice, by running the K-Means algorithm several
times with random starts, the same segmentation is normally seen each time the
segmentation algorithm is executed.

29



Chapter 5

Multi-cell Segmentation

In order for the segmentation to be useful we need to be able to segment images
that contain more than one cell. The following algorithm shows how we accomplish
this.

Each cell in the image is segmented individually so that they can individually
be tracked through a series of images. This will allow the program to keep track of
cells as the move, grow, divide and die.

In order to segment each cell individually we will use the location of the cell
that was found in the previous frame. We make an assumption here that cells do
not move very far in between frames. This assumption is not unreasonable because
it is possible to increase the rate at which images are taken. Also if the cell moves
too far in between frames even a human will not be able to be sure which cells
are which. All other cells except the one being segmented will be grayed out to
match the background intensity by graying out an area including and around the
last know location of the cell.

We now select the portion of the image where we expect to find the cell. By
using the cell’s previous location and size we select a window that includes the
probable area that contains the cell. We then segment that area to find the cell
using any of the techniques in the previous chapter.

We repeat this for each cell in the image. This method requires that a technician
manually locate approximate location of each cell in the first image so that the
algorithm has a way to segment one cell at a time.

A possible extension to allow this to work for cells that are very close together
or touching is to repeat the segmentation on a single frame several times, each time
(other than the first which is the same as above), the location of the cell found in
the previous segmentation attempt is used to hide the location of the cell in the
next iteration. In this way if the estimate of one cell’s location blocks out another
cell, a tighter and tighter estimate can be used to hide the location of the cells.

30



Chapter 6

Results

The following section presents the results of the algorithms discussed in chapter 4
and chapter 5. All of the following cell images are bright-field cell images from the
C2C12 data set from the Ontario Institute for Cancer Research and the Department
of Medicine and Human Genetics at McGill University.

6.1 Multiphase Watershed Combination

Figure 6.1: Multiphase Segmentation results of a cell nearing division with both
weak boundaries and a broken halo.

Figure 6.1 shows an example of the result of Chan and Vese’s multiphase level
set segmentation algorithm, [17], on a bright-field cell. Three level set functions
were used for a total of eight regions. Figure 4.1 in Chapter 4 shows the individual
regions. It is clear from this image that the cell interior and background are part of
the same region. Many of the other regions are very small and similar in intensity
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so it is unlikely that a fourth level set function (sixteen regions) will produce better
results.

Figure 6.2: Results of Multiphase Watershed Algorithm. Left column used method
one for seed extraction, while the middle column used method two. Right column
shows the results of an Otsu Threshold algorithm.

Figure 6.2 shows the results for the Multiphase Watershed combination algo-
rithm, using two different seed choices for the watershed algorithm based on the
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regions identified from the multiphase step. The left most column of the figure
shows the results when using the two darkest regions as the seed and the middle
column shows the results of using the skeleton of the non background region as the
seed (algorithms described in more detail in Section 4.1). The final column is the
result of ‘graythresh’ in MATLAB, which uses Otsu’s algorithm. It is presented here
to demonstrate that the background and cell are approximately the same intensity,
and that simple thresholding methods do not work with this type of image.

We see from the results that method one gives a more conservative estimation
of the location of the cell than does method two. While the first method is more
likely to miss portions of the cell (row 2 of Figure 6.2), method two more often
includes the background (rows 1 and 5 of Figure 6.2). It is likely that the part
of the cell has been missed in row 2 column 1 because it is much lighter than the
remainder of the cell. If a portion of the light part of the cell was not contained
in the watershed seed, the watershed algorithm will not know to add it to the cell
region as it looks different from the rest of the cell region. For the second method
the background is sometimes included in the cell region because the method for
extracting the seed makes it more likely that a piece of the background is included
in the seed for the cell. If this is the case the cell region will quickly begin to flood
the background area.

6.2 Statistical Level Set Approach

Figure 6.3 show some results from the Statistical Level set method, using the mean
as the the statistics to separate the regions. As we can see from the results, this
algorithm does not do a good job of locating the cell boundary, rather it tends
to find a large area surrounding the cell, but with the cell interior as part of the
background region. As we know from the thresholding example, the interior of the
cell and the background are about the same intensity. For this reason it is not
reasonable to expect that a method based on the mean intensity of a region be able
to segment the image into two regions, cell and background.

Figure 6.4 is the segmentation results of the statistical level set method using a
weighted combination of the mean and the variance of the regions. This algorithm
also is unable to locate the cell boundaries. It instead seems to focus on the halo.
The halo region is different from the rest of the image in intensity and in variance.

The method using just variance to segment the images did not work at all, and
all segmentation attempts seem to reduce down to a single point. A single point
has no variance, while the the rest of the image would have a much higher variance.

6.3 Spectral-K-Means Segmentation

Figures 6.5, 6.6, 6.7, 6.8 show the results of the Spectral-K-Means Segmentation on
a set of cell images. The algorithm is described in detail in section 4.3. The first
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Figure 6.3: Results of the Mean Level Set Method

Figure 6.4: Results of the Mean and Variance Level Set Method
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column shows the results of the K-Means algorithm on the eigenvectors. The second
column is the result of the simple method to maximize the difference in variance
and finally the third column shows the final segmentation result. As we can see

P

F—

Figure 6.5: Results of the Spectral-K-Means segmentation algorithm

in Figure 6.5, this segmentation algorithm does a good job locating the boundary
of cells that are somewhat round in nature, as well as cells that are in the process
of dividing (rows 2 and 3). The algorithm was even able to identify two distinct
segments for the cell in row 2, which indicates the division has occurred. In Figure
6.6 we can see that the algorithm can do a good job of finding small variations along
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Figure 6.6: Results of the Spectral-K-Means segmentation algorithm
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the boundary (row 1), but that it has some trouble with cells that are very close to
the background intensity and was only able to find a portion of the cell boundary in
rows 3 and 4. Figure 6.7 shows that the algorithm has trouble finding the boundary

Figure 6.7: Results of the Spectral-K-Means segmentation algorithm

of the pointy tails of the cells. And finally in Figure 6.8 we see that longer cells
are somewhat of an issue for the algorithm. This may be attributed to the nature
of the distance measure for K-means. The graph generated from the images of the
cells weights the edges based partially on a distance measure. This may naturally
lend itself to round segments when using the K-Means algorithm. Another thing
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Figure 6.8: Results of the Spectral-K-Means segmentation algorithm
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to note is that sometimes a cell is made up of more than one segment from the
K-Means partitioning, as in row 1 of Figure 6.8. This is easily taken care of by the

second step of the algorithm since both segments fall within the approximate cell
area.

6.4 Images Containing Multiple Cells

Figure 6.9: Two Cell Automatic Segmentation using Multiphase Watershed Algo-
rithm
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Figure 6.10: Three Cell Automatic Segmentation using Multiphase Watershed Al-
gorithm

Part of this algorithm is to be able to individually segment cells and to be
able to follow a cell through a series of images. The algorithm is described in
Chapter 5. Figure 6.9 shows a series of images that segment two cells. The windows
containing the cells are calculated manually in the first image (top left), but the
algorithm calculates them automatically after the first image. These images were
generated using the multicell framework and the Multiphase Watershed algorithm
for segmentation. The images run from the top left to the bottom right.

We can see from these images that the algorithm is able to handle two cells that
are contained within the same frame of an image, and is able to keep track of which
cell is which for the duration of the segmentation.

Figure 6.10 shows the results of the same algorithm described above working
on an image of three cells. We notice in this image that the multiphase watershed
algorithm has some trouble with small bright cells, as seen in the cell segmented
with the green boundary.

Finally Figure 6.11 shows an automatic multiple cell segmentation using three
cells and the Spectral-K-Means segmentation algorithm. It also shows that the mul-
tiple cell segmentation framework is able to work well no matter what segmentation
algorithm is used for the segmenting of the cells.

While images containing only two or three cells are shown here, the algorithm
naturally extends to the case where there are more than three cells.
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Figure 6.11: Three Cell Automatic Segmentation using Spectral K-means Algo-
rithm
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Chapter 7

Conclusions

This paper has demonstrated the challenges of segmenting bright-field images of
cells, such as the broken boundary, poor contrast, partial halo and overlapping cells.
These challenges are not all present in other types of cell images such as fluorescent
images.

There are several papers that solve the segmentation problem for other types of
cell images, and some that present a solution for the segmentation of bright-field
cell images. The solutions presented for other cell image types do not work well
for bright-field images due to the complexities that are specific to the bright-field
image. Many of the solutions presented for bright-field images are either only semi-
automatic and require human interaction, require the images to be captured in a
very specific way or are not able to track cells through frames of images.

I presented three possible solutions. The first was based on a multiphase level
set method and the watershed method. The resulting algorithm was able to pro-
vide good segmentations of many of the cell images presented, but required some
huerestic methods to separate the background from the cell for the seed for the
watershed method. The second solution was also based on level set methods, but
concentrated on pulling apart statistics of the two regions (background and object).
This solution was not able to find the cell boundaries in the images. The final solu-
tion was based on spectral graph theory, K-Means and the separation of variances.
This method was also able to segment many complex bright-field images.

Both of the working segmentation algorithms presented were also able to seg-
mented images containing multiple cells working with the presented multiple cell
segmentation framework.

Possible future work includes further testing of the the robustness of both of the
presented methods and extending the multiple cell framework to work with images
of the cells that are touching.
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