
A BLAS based implementation of
nonsingular rational system solving

by

Lawrence G. Barrett

A research paper
presented to the University of Waterloo

in partial fulfillment of the
requirement for the degree of

Master of Mathematics
in

Computational Mathematics

Supervisors: Ilias Kotsireas and Arne Storjohann

Waterloo, Ontario, Canada, 2015

c© Lawrence G. Barrett 2015

I hereby declare that I am the sole author of this report. This is a true copy of the report,
including any required final revisions, as accepted by my examiners.

I understand that my report may be made electronically available to the public.

ii

Abstract

We describe an optimized implementation of the linear X-adic lifting presented by
Moenck and Carter (1979) to compute the solution to a rational system involving poly-
nomial matrices with coefficients from the field of integers modulo a word size prime p.
We optimize the algorithm by reducing polynomial matrix operations to Basic Linear Al-
gebra Subroutine (BLAS) operations on scalar matrices which increases the algorithm’s
efficiency. As an application, we show how to use the optimized lifting algorithm to solve
rational systems involving integer polynomial matrices.

iii

Table of Contents

List of Tables v

1 Introduction 1

2 Lifting 4

2.1 Linear Lifting . 4

3 Standard X-adic Lifting 6

3.1 Condition on Degree of X . 10

4 Optimized Linear Lifting by reduction to BLAS 12

4.1 Evaluation . 14

4.2 Y Basis . 16

4.3 Optimal degree of X . 17

4.4 Standard versus Optimized Timings . 20

4.5 External BLAS Libraries . 21

5 Application 23

6 Conclusion 26

References 27

iv

List of Tables

1.1 Degrees of Variables in the Rational System 2

4.1 Polynomial Matrix operations vs Level 3 BLAS operations (CPU time) . . 13

4.2 Timings for several degX for n = 200 and degA = 5 18

4.3 Timings for several degX for n = 300 and degA = 5 18

4.4 Timings for several degX for n = 200 and degA = 50 19

4.5 Timings for several degX for n = 800 and degA = 5 19

4.6 Standard vs Optimized Algorithm (CPU time) 20

4.7 Maple BLAS vs OpenBLAS matrix-matrix multiplication (CPU time) . . . 22

4.8 Optimized Algorithm with Maple BLAS vs with External Libraries (CPU
time) . 22

v

Chapter 1

Introduction

We develop an algorithm for solving a rational system filled with univariate polynomials
with coefficients from the field of integers modulo a word size prime p. We denote the
field of integers modulo p by Zp, and we let Zp[x] denote the set of polynomials whose
coefficients are elements of Zp. Our algorithm solves the rational system Av = db where
A ∈ Zp[x]n×n and b ∈ Zp[x]n×m. We solve for a solution pair (v, d) such that v ∈ Zp[x]n×m

and d ∈ Zp[x]. For example, the following rational system with p = 113,92x2 + 110x+ 44 95x2 + 5x+ 97 58x2 + 43x+ 99
37x2 + 68x+ 26 95x2 + 16x+ 103 100x2 + 89x+ 33
17x2 + 51x+ 55 42x2 + 82x+ 24 89x2 + 92x+ 59


︸ ︷︷ ︸

A∈Z113[x]3×3

v = d

92x2 + 13x+ 49
46x2 + 7x+ 105
45x2 + 43x+ 8


︸ ︷︷ ︸

b∈Z113[x]3×1

,

which we will use as a running example throughout the paper, has solution

v =

 13x6 + 30x5 + 4x4 + 30x3 + 75x2 + 112x+ 73
101x6 + 58x5 + 39x4 + x3 + 8x2 + 82x+ 84

24x6 + 110x5 + 57x4 + 100x3 + 84x2 + 35x+ 47

 ∈ Z113[x]3×1

d = x6 + 98x5 + 43x4 + 106x3 + 52x2 + 72x+ 27 ∈ Z113[x]

Notice that max(deg v, deg d) = 6 = 3 max(degA, deg b). In general, the degrees of poly-
nomials in the solution (v, d) will grow linearly with the size and maximum degree of the
inputs, where max(deg v, deg d) = nmax(degA, deg b).

1

n max(degA, deg b) max(deg v, deg d)
100 10 1000
100 20 2000
1000 10 10000
1000 20 20000

Table 1.1: Degrees of Variables in the Rational System

Much research has already been done on the subject of rational system solving [4, 5, 6,
7, 8], mostly presented for the case where A ∈ Zn×n and b ∈ Zn×m, which is analogous to
the polynomial case. Our goal is to present an algorithm which solves the rational system
efficiently in the polynomial case.

Solving a rational system problem can be difficult because its solution can have very
large degree even for small degree inputs, as we can see from Table 1.1. To avoid compu-
tation with large degree polynomials, we will follow the definition of linear X-adic lifting
presented in [4] and [7], which is the main procedure in our algorithm. The linear lifting
procedure we will use is based on a linear X-adic lifting algorithm presented by Moenck
and Carter (1979) in [4]. All operations in the Moenck and Carter algorithm bound the
degrees of the polynomials, with which we operate in the lifting procedure, by the maxi-
mum of the degrees of the inputs A and b, max(degA, deg b). Linear lifting requires the
use of a modulus relatively prime to detA. In the polynomial case, we use as modulus a
polynomial X ∈ Zp[x]. We can pick any arbitrary polynomial X as long as X is relatively
prime to detA and degX ≥ degA. The polynomial we will use in our algorithm will be
constructed by randomly picking points αi in our field Zp and constructing the polynomial

X ≡ (x− α1)(x− α2)(x− α3) · · · (x− αdegX) (mod p)

that satisfies the aforementioned conditions, where the degree of X is given as input.

We perform X-adic lifting on A−1b which gives us the following X-adic representation
of A−1b:

A−1b = z0 + z1X + z2X
2 + . . .

We can stop the lifting procedure at some precision k ∈ Z>0 to get

A−1b ≡ z0 + z1X + z2X
2 + · · ·+ zk−1X

k−1 mod Xk,

where each zi ∈ Zp[x]n×m and zi = zi mod X which implies deg zi < degX for all i,
0 ≤ i < k. Using the A and b from our running example and X = (x − 76)(x − 58) ≡

2

x2 + 92x+ 1 mod 113, we have the following:

A−1b =

98x+ 96
54x+ 48
8x+ 40

+

108x+ 56
26x+ 62
75x+ 9

X +

12x+ 49
61x+ 54
x+ 59

X2 +

24x+ 110
13x+ 88
43x+ 76

X3+

+

97x+ 87
45x+ 66
4x+ 87

X4 +

 83x+ 8
40x+ 94
53x+ 14

X5 +

35x+ 15
31x+ 43
45x+ 99

X6 mod X7

Every lifting step increases the power of the modulus, and once we have lifted high enough,
our congruence becomes equality, thus giving us the solution to the rational system.

In Chapter 2, we define some notation and recall the theory of linear X-adic lifting.
We then recall the standard implementation of linear X-adic linear lifting for nonsingular
rational system solving in Chapter 3. The algorithm we present in Chapter 3 is heavily
based on the RationalSolver algorithm presented in [5]. In the standard algorithm, all ma-
trix operations are computed using the Maple package “modp1”, which efficiently performs
operations on univariate polynomials whose coefficients are integers modulo p ∈ Z. We
call these polynomials “modp1 polynomials”.

In Chapter 4, we develop an optimized version of the standard linear X-adic lifting
presented in Chapter 3. We show how to reduce polynomial matrix operations to BLAS
operations on scalar matrices modulo p. In addition, we introduce another polynomial
Y which is used in the lifting phase to decrease the cost from lifting with X, an idea
presented in [7]. Run time comparisons between the standard and optimized algorithms
are presented to show the increase in efficiency of the optimized algorithm.

In Chapter 5, we present an application of the optimized lifting algorithm for solving the
more general system where A ∈ Z[x]n×n and b ∈ Z[x]n×m. With the optimized algorithm,
we can produce many images of our solution modulo different primes, and then use a
combination of Chinese remaindering and rational reconstruction to obtain the solution
pair (v, d).

Finally, we present our conclusions and areas for future work in Chapter 6.

3

Chapter 2

Lifting

We start by introducing some notation before we proceed. For any polynomials q,X ∈ Zp[x]
we let Rem (q, X) be the unique polynomial congruent to q modulo X with degree less
than degX. In other words, Rem (q, X) ≡ q mod X and deg (Rem (q, X)) < degX. We
can extend Rem operation to any matrix Q ∈ Zp[x]m×n by letting Rem (Q, X) denote the
matrix obtained from applying Rem on each entry in Q.

We let A ∈ Zp[x]n×n be non-singular and X ∈ Zp[x] such that X is relatively prime to
detA (denoted by X ⊥ detA). The linear lifting used to compute Rem (A−1, X i) up to
some precision i is similar to the lifting discussed in [7] for A ∈ Zn×n and X ∈ Z>2. In this
chapter we will reiterate the theorems and results from [7] for the polynomial case, which
is analogous to the integer case.

2.1 Linear Lifting

The following is the standard algorithm used for computing the X-adic expansion of A−1

as presented in [7]:

C0 := Rem (A−1, X);
R1 := (1/X)(I − AC0);
for i = 1 to k − 1 do

Ci := Rem (C0Ri, X);
Ri+1 := (1/X)(Ri − ACi);

od;

4

Linear X-adic lifting is based on the identity

A−1 = C0 + C1X + · · ·+ Ci−1X
i−1 + A−1RiX

i

= Rem
(
A−1, X i

)
+ A−1RiX

i

where Ri is equal to
Ri = (1/X i)(I − ARem

(
A−1, X i)

)
As described in [7], the “essence of linear X-adic lifting is that Ci and Ri+1 can be

computed using only A, Ri, and C0: The other coefficients of the X-adic expansion of A−1

are not required.” We present the following theorem from [7] which “captures this essential
idea of linear X-adic lifting,” modified for the polynomial case.

Theorem 1 ([7, Theorem 3]) Let A ∈ Zp[x]n×n be nonsingular and X ∈ Zp[x] be rela-
tively prime to detA. If B,R ∈ Zp[x]n×n satisfy

(i) A−1 = B + A−1RXk

for some k > 0, then for any M ∈ Zp[x]n×n such that M ≡ A−1R (modX l) for some
l > 0, we have

(ii) A−1 = B +MXk + A−1R′Xk+1

where R′ = (1/X l)(R−AM). In particular, we can choose l = 1 and M = Rem (A−1R, X).

5

Chapter 3

Standard X-adic Lifting

The goal for the standard modularized X-adic lifting algorithm is to make use of the X-adic
expansion representation of our polynomial matrices and keep them in this representation
for most of our matrix operations. To represent the X-adic expansion of a polynomial,
we only store the coefficients of the expansion in a table where the i-th term in the table
denotes the coefficient of X i. We can extend X-adic expansion to matrices where the
i-th matrix contains the coefficients of X i for the X-adic expansion of their respective
polynomial entries. We will be working with the modp1 Maple package to efficiently
multiply polynomials with coefficients modulo p in our matrix operations, as described in
the introduction.

The algorithm used in this section is based on the RationalSolver algorithm presented
in [5]. We implement the modified algorithm for the case where A ∈ Zp[x]n×n, b ∈ Zp[x]n×m,
and X ∈ Zp[x] such that X ⊥ detA. The computation costs of the algorithm have already
been analyzed in [5] for both the integer and the polynomial case.

RationalSolver computes the X-adic expansion of A−1b up to the following precision
from [5]:

LiftingBound(N,D) = 2ND

where N and D are pre-computed bounds for the numerator and denominator of our
solution, which are computed using n, degA, and deg b. However, it is possible to compute
the solution to our system after fewer lifting steps than suggested by LiftingBound(N,D).
For simplicity, we only consider one bound for both the numerator and denominator, which
we denote by N .

Our algorithm takes as input A and b for the polynomial case, and initializes a poly-
nomial X such that X ⊥ detA. We wish to find a solution pair (v, d) where v ∈ Zp[x]n×m

6

and d ∈ Zp[x] such that Av = db. We use linear lifting to compute the coefficients zi
in the X-adic expansion of A−1b = z0 + z1X + z2X

2 + . . . up to some precision. Each
lifting step increases the precision incrementally, thus for arbitrary precision k we define
z(k) = z0 + z1X + z2X

2 + · · · + zk−1X
k−1 where z(k) ≡ Rem

(
A−1b, Xk

)
. When k is large

enough, we have the equality A−1b = z(k) mod Xk and we can recover our solution pair
(v, d) with rational reconstruction [10, Section 5.7]. We want to stop performing lifting
steps at some precision j and attempt to recover (v, d) from z(j) by making the algorithm
output sensitive on the rational reconstruction of z(j). If we fail, we perform more lifting
steps and attempt to recover the solution again until rational reconstruction is successful.

Attempting to recover the solution by applying rational reconstruction on all entries of
z(j) after every lifting phase would add too much cost to the algorithm. Instead, we use a
randomization technique similar to the one used for finding the gcd of many polynomials
in [10, Section 6.9]. We start by taking a random combination si = LiziRi, where Li ∈
Z1×n
p and Ri ∈ Zm×1p are random integer matrices, for 0 ≤ i < j. After computing

s(j) = s0 + s1X + · · · + sj−1X
j−1 mod XJ , which in our Maple implementation is stored

as a modp1 polynomial, we can then perform rational reconstruction with the current
numerator and denominator bound, Nc, which we update after every lifting phase. The
theorem [10, Theorem 6.46] tells us that given a field Zp with many elements, or in other
words a large prime p, there is a high probability that we will reconstruct our solution pair
(v, d) if the rational reconstruction on s(j) is successful.

The pseudocode for the algorithm is presented as follows:

RatSolve(A, b, p, dX , N0, steps)
Inputs: A ∈ Zp[x]n×n, b ∈ Zp[x]n×m, and dX , N0, steps ∈ Z

with dX , steps > 0 and N0 ≥ 0.
Outputs: v ∈ Zp[x]n×m and d ∈ Zp[x] such that A(1/d)v = b.
Condition: dX ≥ degA.
(1) [Initialize:]

X,B := LiftInit(A, x, n, p, dX);
N := Bound(A, b);
k0 := InitialLifting(A, b,N0, dX);
blim := MaxPrecision(b, dX);
c := XadicExpansion(b,X);

(2) [Initial Lifting:]
kn := k0;
Nc := N0;
c̄ := 0n×m;

7

z := LinearLift(A,B, c, c̄, X, 0, kn);
dv :=∞;

(3) [Output Sensitive Rational Reconstruction:]
while dv > Nc do

kc := kn;
kn := kn + steps;
Nc := CurrentBound(kn, dX);
z := LinearLift(A,B, c, c̄, X, kc, kn);
u := randomize(z);
d := RationalReconstruction(u);
if rational reconstruction fails then

dv :=∞;
next;

else

v := Rem

(
d

(
kn−1∑
j=0

z[i]X i

)
, Xkn

)
;

dv := deg v;
fi;

od;
return v, d;

Although we have omitted some of the details of the algorithm, the above pseudocode
describes its general process. For instance, it is important to note that the randomization
technique we discussed above for attempting to reconstruct our solution from a random
combination of entries in z is performed by the randomize(z) function.

The other functions presented in the algorithm are described below:

• LiftInit(A, x, n, p, dX) → polynomial X and polynomial matrix B such that B =
Rem (A−1, X). The computation of B requires X ⊥ detA.

• Bound(A, b)→ max
(
(n− 1) degA+ deg b , n degA

)
[5]

• InitialLifting(A, b,N0, dX)→ dmax
(
2N0 , N0 + degA , N0 + deg b

)
e

• MaxPrecision(b, dX)→ ddeg b+1
dX
e

• XadicExpansion(b,X)→ table c, such that b = c[0] + c[1]X + . . . c[k]Xk

8

• CurrentBound(kn, dX)→ min
(
dkndX

2
e − 10 , 1

)
The bound Nc produced by CurrentBound(kn, dX) has the property

2Nc << degM − 10

where M = Xkn is the modulus of the current X-adic expansion of A−1b. This property
ensures that if the lifting is not high enough (i.e., Nc > max(deg v, deg d)), then the trail
rational reconstruction will quickly report fail, avoiding the expensive cost of reconstructing
v from all of z in the early lifting steps of the algorithm.

The procedure LinearLift is the main focus of the algorithm as it is where all the lifting
takes place. The pseudocode for LinearLift is as follows:

LinearLift(A,B, c, c̄, X, kc, kn)
Inputs: A,B ∈ Zp[x]n×n, X ∈ Zp[x], c[i] ∈ Zp[x]n×m for 0 ≤ i < blim,

and kc, kn ∈ Z≥0.
Outputs: z[i] ∈ Zp[x]n×m for 0 ≤ i < kn and c̄ ∈ Zp[x]n×m.

for i = kc to kn − 1 do
if i < blim then

c̄ := c̄+ c[i]
fi;
z[i] := Rem (Bc̄, X);
c̄ := (1/X)(c̄− Az[i]);

od;
return z;

We will show a couple steps of linear lifting given the inputs from our running example
with p = 113 and X = x2 + 92x+ 1:

First we compute

B = Rem
(
A−1, X

)
=

 84x+ 71 110x+ 42 72x+ 23
57x+ 61 83x+ 85 78x+ 61
110x+ 59 33x+ 59 100x+ 31


Then we let table c contain the coefficients in the X-adic representation of b:

b =

24x+ 70
69x+ 59
84x+ 76


︸ ︷︷ ︸

c[0]

+

92
46
45


︸ ︷︷ ︸
c[1]

X mod X2

9

We let c̄ := c[0]. Then the first coefficient in the X-adic expansion of A−1b is

z[0] = Rem (Bc̄, X) =

98x+ 96
54x+ 48
8x+ 40


Using z[0], we compute the correction term c̄

c̄ := (1/X)(c̄− Az[0]) =

80x+ 112
49x

100x+ 98


Now we add the correction term to the next coefficient in the X-adic expansion of b

c̄ := c̄+ c[1] =

 80x+ 91
49x+ 46
100x+ 30


Then the second coefficient in the X-adic expansion of A−1b is

z[1] = Rem (Bc̄, X) =

108x+ 56
26x+ 62
75x+ 9


From these two lifting steps, we get the following congruence:

A−1b ≡ z[0] + z[1]X ≡

98x+ 96
54x+ 48
8x+ 40

+

108x+ 56
26x+ 62
75x+ 9

X mod X2

3.1 Condition on Degree of X

Let z be the table representing the X-adic expansion of A−1b and c be the table representing
the X-adic expansion of b. To show that the condition degX ≥ degA must be satisfied
for RatSolve to work, we must look at the procedure LinearLift which performs a specified
number of lifting steps and has two outputs: the current coefficient in the X-adic expansion
of A−1b, stored in z[i], and a correction term for the next coefficient in the X-adic expansion
of b, denoted c̄.

10

Suppose we obtain c̄ from the previous lifting step i − 1 (for i = 0 we see from the
RatSolve algorithm that c̄ = c[0]). Then for the next lifting step i we do the following:

c̄ := c̄+ c[i]

z[i] := Rem (Bc̄, X)

c̄ := (1/X)(c̄− Az[i])

From the above operations we see deg z̄[i] < degX. Since c̄ = c[0] in the first lifting step,
for any other lifting step we have

deg c̄ < degA+ degX − degX = degA

If degX < degA then the correction term would need to correct more than the next
coefficient in c. Thus we add the condition degX ≥ degA to limit our correction to the
next coefficient only.

11

Chapter 4

Optimized Linear Lifting by
reduction to BLAS

Our next goal is to replace polynomial matrix operations in the standard algorithm with
Level 2 and Level 3 BLAS operations. We rely on picking a polynomial X such that

X ≡ (x− α0)(x− α1) · · · (x− αdX−1) (mod p),

where αi ∈ Zp are distinct for all i, 0 ≤ i ≤ dX − 1 and X ⊥ detA.

We use the roots {α0, α1, . . . , αdX−1} of X to represent polynomial matrices in an “X
basis representation”. This is more easily seen through an example: we will show how we
represent A ∈ Zp[x]n×n in the X basis.

Let Ax=a denote the matrix A with polynomial entries evaluated at a modulo p. For
each root αi of X, we compute Ax=αi

, which is equivalent to computing Rem (A, x− αi).
We can then store these matrices in a table, denoted Ax such that Ax[i] = Ax=αi

.

For example, let p = 113 and X = (x− 76)(x− 58)(x− 15). Then for

A =

92x2 + 110x+ 44 95x2 + 5x+ 97 58x2 + 43x+ 99
37x2 + 68x+ 26 95x2 + 16x+ 103 100x2 + 89x+ 33
17x2 + 51x+ 55 42x2 + 82x+ 24 89x2 + 92x+ 59



12

we have

Ax[0] = Ax=76 =

108 17 53
25 68 74
84 22 72

 , Ax[1] = Ax=58 =

77 64 68
70 30 109
85 72 30

 ,
Ax[2] = Ax=15 =

 20 77 8
105 22 25
12 82 107


With the X basis representation, we can replace any polynomial matrix operation with

BLAS operations involving integer matrices. Suppose we also had a matrix B ∈ Zp[x]n×n

represented in the X basis by the table Bx. Then,

(A−1)x[i] = (Ax[i])−1 (mod p)

(AB)x[i] = Ax[i]Bx[i] (mod p)

(A+ αB)x[i] = Ax[i] + αBx[i] (mod p) (for α ∈ Z)

for 0 ≤ i < dX .

By replacing polynomial matrix operations with integer matrix operations, we decrease
the computational cost of the algorithm, especially since there are many polynomial matrix
operations that occur in the lifting phase of the standard algorithm.

As a note for any timings we compute in this paper, we are running Maple 18 on a
machine with the following specifications: Scale 5027R 2U Xeon Dual Socket Server, with
128G RAM, 4 × 2T drives, and OS Ubuntu 14.04 LTS AMD ALT 64bit.

We can show it is worthwhile to use the X basis representations by comparing the time
it takes to compute the product AB of polynomial matrices to computing the product
Ax[i]Bx[i] for 0 ≤ i < dX where A ∈ Zp[x]n×n, B ∈ Zp[x]n×n, and degA = degB = dX =
10:

n AB Ax[i]Bx[i] for 0 ≤ i < dX Factor of Speedup
200 28 s 0.816 s 34.6
300 103 s 0.950 s 109
400 246 s 4.36 s 56.5
500 584 s 12.1 s 48.1

Table 4.1: Polynomial Matrix operations vs Level 3 BLAS operations (CPU time)

13

Thus we can see that, as we increase the dimension n, we save a lot of time on polynomial
matrix operations by using their X basis representations.

4.1 Evaluation

The standard method for evaluation of polynomial matrices at some integer value is to
evaluate each polynomial in the matrix at that value. However, we can reduce evaluation
to a matrix-matrix multiplication. To efficiently evaluate polynomial matrices at each root
of X, we require the use of Vandermonde matrices.

Definition 1 ([10, Section 5.2]) Let u0, u1, . . . , uk ∈ F for some field F and let f be a
polynomial of degree less than or equal to n. Then we define the Vandermonde Matrix V
to be

V = VDM(u0, . . . , uk) =


1 u0 u20 · · · un0
1 u1 u21 · · · un1
...

...
...

...
1 uk u2k · · · unk

 ∈ F n×n

Suppose we have Q ∈ Zp[x]m×n where dQ = degQ, and we want to evaluate Q at each
root of X. Let S = {α0, α1, . . . , αdX} be the set of roots of X where αi ∈ Zp for 0 ≤ i ≤ k
and dX = degX. We define Qi ∈ Zpm×n for 0 ≤ i ≤ dQ, such that

Q = Q0 +Q1x+Q2x
2 + . . . QdQx

dQ

Thus each Qi represents the n by m matrix of coefficients of the term xi of the polynomials
in Q.

We will use a Vandermonde matrix to perform evaluation at each point in S. Since
each polynomial in Q has degree less than or equal to dQ, the Vandermonde matrix of the
set of points S, which we will denote Vx, is defined to be

Vx =


1 α0 α2

0 · · · α
dQ
0

1 α1 α2
1 · · · α

dQ
1

...
...

...
...

1 αdX α2
dX
· · · α

dQ
dX

 ∈ ZdX×(dQ+1)
p

14

If we were to attempt evaluation by using each Qi separately, we would need to perform
many scalar multiplications of matrices and matrix additions. However, by reshaping each
Qi into vectors and assigning each vector to a row, we can perform evaluation as a single
matrix multiplication. To visualize this, let us consider the case where n = 1 so that Q
and Qi for all i, 0 ≤ i ≤ dQ are column vectors. Then the matrix Q′ we construct from all
Qi’s is

Q′ =


Q0

T

Q1
T

...
QdQ

T

 ∈ Z(dQ+1)×nm
p

We can think of each column j of Q′ as the column vector of coefficients of the j-th entry
polynomial in Q. The evaluation step becomes

VxQ
′ =


1 α0 α2

0 · · · α
dQ
0

1 α1 α2
1 · · · α

dQ
1

...
...

...
...

1 αdX α2
dX
· · · α

dQ
dX



Q0

T

Q1
T

...
QdQ

T

 ∈ ZdX×nmp

Where Qx[i] is obtained by reshaping row i of the above matrix multiplication into an n
by m matrix.

Using our running example we can split our matrix A into integer matrices for the
coefficients of distinct terms as follows:

A =

44 97 99
26 103 33
55 24 59


︸ ︷︷ ︸

A0

+

110 5 43
68 16 89
51 82 92


︸ ︷︷ ︸

A1

x+

92 95 58
37 95 100
17 42 89


︸ ︷︷ ︸

A2

x2

Using the Ai matrices, we can construct the matrix

A′ =

 44 26 55 97 103 24 99 33 59
110 68 51 5 16 82 43 89 92
92 37 17 95 95 42 58 100 89


Since X = (x− 76)(x− 58)(x− 15) we have the Vandermonde matrix

Vx =

1 76 762

1 58 582

1 15 152

 ≡
1 76 13

1 58 87
1 15 112

 (mod 113)

15

Then we multiply on the right by Vx to get

VxA
′ =

108 25 84 17 68 22 53 74 72
77 70 85 64 30 72 68 109 30
20 105 12 77 22 82 8 25 107

 (mod 113)

where the first row can be reshaped to give Ax=76, the second row can be reshaped to give
Ax=58, and the third row can be reshaped to give Ax=15.

Thus we have reduced the process of evaluation to a single matrix multiplication. We
can use a similar process for interpolation by starting with the X basis representation,
creating the bigger matrix where each row is a reshaping of a basis matrix, and then
multiplying on the right by (Vx)

−1.

The evaluation and interpolation processes described here are useful for efficiently con-
verting from polynomial matrices to their X basis representations for linear X-adic lifting,
and back to polynomial matrices for rational reconstruction.

4.2 Y Basis

Following an idea presented in [7], we can further increase the efficiency of RatSolve by
introducing a new polynomial Y with dY = deg Y , where

Y = (x− β0)(x− β1) · · · (x− βdY −1) (mod p)

such that βi ∈ Zp are distinct for all i, 0 ≤ i ≤ dY − 1.

Using the same argument for showing degX ≥ degA for the polynomial X from before,
we also have deg Y ≥ degA. However, unlike the polynomial X, we do not require Y ⊥
detA since we are not computing Rem (A−1b, Y) and A is already nonsingular modulo
X. Instead we will be using Y to convert between X basis representation to Y basis
representation, specifically for use in the lifting phase of RatSolve. The reasoning behind
implementing a change of basis is due to the fact that, depending on our choices for X and
Y , performing the linear lifting in the Y basis may be less costly than performing it in the
X basis.

Since we are working with polynomial matrices where degA ≤ degX and degA ≤
deg Y , all the polynomials we deal with inA have degree less than or equal to max(degX , deg Y).
Assuming degX ≥ deg Y (which is not a necessary condition) let us define a few Van-
dermonde matrices we will use in the algorithm. Let the sets {α0, α1, . . . , αdX−1} and
{β0, β1, . . . , βdY −1} be the roots of X and Y respectively. Then

16

• Vx = VDM(α0, α1, . . . , αdX−1) ∈ Zp[x]dX×dX

Vy = VDM(β0, β1, . . . , βdY −1) ∈ Zp[x]dY ×dY

}
Square matrices

• Vxy = VDM(α0, α1, . . . , αdX−1) ∈ Zp[x]dX×dY

Vyx = VDM(β0, β1, . . . , βdY −1) ∈ Zp[x]dY ×dX

}
Non-square matrices

We switch between the X basis and the Y basis through the use of Vandermonde
matrices Vx→y and Vy→x which are defined by

Vx→y = Vyx(Vx)
−1 ∈ Zp[x]dY ×dX and Vy→x = Vxy(Vy)

−1 ∈ Zp[x]dX×dY

By definition of Vandermonde matrices, we are guaranteed that Vx and Vy are nonsingular
since all the roots of X and all the roots of Y are distinct. Using the same technique for
evaluation and interpolation, we can change bases using Vx→y and Vy→x with a single matrix
multiplication. Thus switching between bases is reduced to integer matrix multiplication
modulo p.

The pseudocode for the optimized version of the algorithm, called RatModSolve, is
similar to the pseudocode for RatSolve where polynomial matrix operations are replaced
with their equivalent X and Y basis operations, and we convert from X basis representation
to polynomial matrix representation for the rational reconstruction.

4.3 Optimal degree of X

Now that we have introduced a second polynomial Y to perform linear X-adic lifting, we
want deg Y to be as small as possible for more efficient lifting. Since deg Y ≥ degA, we
let deg Y = degA. Different choices for degX give different timings on our optimized
algorithm. This is because a larger degX gives us a larger degree modulus Xk for any
precision k in the lifting procedure of our algorithm, which results in a decrease in the
amount of lifting needed to get to a solution. However, there is a trade off since we also
need to compute degX inverses to get the X basis for B = Rem (A−1, X), denoted by Bx.

In general, the optimal degX should be a function of n, m, degA, and deg b. For
simplicity, we attempt to find the best degX as a multiple of degA, and we hope that this
is close enough to the optimal degX given the inputs of the rational system. By running
a few test instances for varying n and degA, we produce the following tables:

17

n degA degX Optimized Algorithm (CPU time)
200 5 5 18.2 s
200 5 7 17.1 s
200 5 9 18.3 s
200 5 11 16.9 s
200 5 13 19.1 s
200 5 15 19.8 s
200 5 17 16.9 s
200 5 19 18.6 s
200 5 21 18.0 s
200 5 23 20.2 s
200 5 25 24.2 s
200 5 27 22.2 s
200 5 29 27.2 s
200 5 31 28.3 s

Table 4.2: Timings for several degX for n = 200 and degA = 5

n degA degX Optimized Algorithm (CPU time)
300 5 5 46.8 s
300 5 7 39.2 s
300 5 9 38.5 s
300 5 11 39.8 s
300 5 13 39.8 s
300 5 15 35.3 s
300 5 17 36.5 s
300 5 19 46.3 s
300 5 21 44.3 s
300 5 23 41.9 s
300 5 25 43.0 s
300 5 27 43.9 s
300 5 29 47.5 s
300 5 31 55.1 s

Table 4.3: Timings for several degX for n = 300 and degA = 5

18

n degA degX Optimized Algorithm (CPU time)
200 50 50 525 s
200 50 70 475 s
200 50 90 475 s
200 50 110 521 s
200 50 130 513 s
200 50 150 503 s
200 50 170 440 s
200 50 190 516 s
200 50 210 571 s
200 50 230 483 s
200 50 250 550 s
200 50 270 575 s
200 50 290 617 s
200 50 310 696 s

Table 4.4: Timings for several degX for n = 200 and degA = 50

n degA degX Optimized Algorithm (CPU time)
800 5 5 685 s
800 5 7 510 s
800 5 9 394 s
800 5 11 378 s
800 5 13 357 s
800 5 15 353 s
800 5 17 355 s
800 5 19 366 s
800 5 21 376 s
800 5 23 357 s
800 5 25 405 s
800 5 27 374 s
800 5 29 408 s
800 5 31 407 s

Table 4.5: Timings for several degX for n = 800 and degA = 5

19

In the above tables, we have highlighted the two best CPU times. We see that for
small n and small degA in Table 4.2 and Table 4.3, choosing degX to be about 2 or 3
times degA gives lower CPU times. In Table 4.4 we increase degA, and the best CPU
times seem to occur again with degX equaling 2 or 3 times degA, at least for small n.
In Table 4.5, we increase n and see that degX roughly 3 times degA gives the best CPU
times.

The results from the tables suggest that degX about 3 times degA should give lower
CPU times for our algorithm. However, there is still a little discrepancy on the affect the
size of degX has on our algorithm for different size and degree inputs. This suggests that
the optimal degX is affected by more than just degA, but, for the sake of comparing the
efficiency of our algorithms, we will use degX = 3 degA for the rest of our timings in this
paper.

4.4 Standard versus Optimized Timings

We recall that in the standard algorithm, we represent polynomial matrices in their X-
adic representation, and the polynomial matrix-matrix operations are performed using
the modp1 Maple package for univariate polynomials with coefficients modulo p. The opti-
mized algorithm represents polynomial matrices in their X basis, which reduces polynomial
matrix-matrix operations to integer matrix-matrix BLAS operations. In this section, we
compare the costs of these algorithms for different values of n, where the optimized algo-
rithm makes use of the orthogonal polynomials X and Y such that deg Y = degA and
degX = 3 deg Y .

n degA Standard Optimized Factor of Speedup
200 5 351 s 34.3 s 10.2
300 5 1248 s 58.4 s 21.4
400 5 4084 s 98.8 s 41.7
500 5 7581 s 162 s 46.5
800 5 35789 s 537 s 66.7

Table 4.6: Standard vs Optimized Algorithm (CPU time)

From Table 4.6, we can see that the optimized algorithm performs much better than
the standard algorithm. Therefore, the reduction to BLAS operations is very effective in
increasing the algorithm’s efficiency.

20

4.5 External BLAS Libraries

Since we have reduced most of the operations in our algorithm to level 3 BLAS operations,
we can use external libraries for efficient matrix-matrix multiplication and matrix inversion.
We use the OpenBLAS 0.2.14 library [11] for matrix-matrix multiplication and the integer
matrix library (IML 1.0.4) [2] for inversion of integer matrices. While the BLAS included
with the Maple distribution is a precompiled binary, OpenBLAS has been compiled on and
optimized for the particular machine we are using for the timings. To use the OpenBLAS
library, we use the following command:

fgemm := define external(‘cblas dgemm’,
ORDER::integer[8],
TRANSA::integer[8],
TRANSB::integer[8],
M::integer[8],
N::integer[8],
K::integer[8],
ALPHA::float[8],
A::(ARRAY(1..M,1..K,float[8])),
LDA::integer[8],
B::(ARRAY(1..K,1..N,float[8])),
LDB::integer[8],
BETA::float[8],
C::(ARRAY(1..M,1..N,float[8])),
LDC::integer[8],
‘THREAD SAFE’,
LIB=“/u4/astorjohann/software/lib/libopenblas.so”):

A similar command can be used to call the integer matrix library. We will mainly focus
on the use of the OpenBLAS library in this section since the commands for using either
library are similar. In the following table, we compare matrix-matrix multiplication of n
by n integer matrices using Maple BLAS operations and OpenBLAS operations.

21

n Maple BLAS OpenBLAS Factor of Speedup
200 0.245 s 0.091 s 2.70
400 0.345 s 0.124 s 2.79
800 0.728 s 0.209 s 3.48
1600 3.346 s 0.990 s 3.38

Table 4.7: Maple BLAS vs OpenBLAS matrix-matrix multiplication (CPU time)

From Table 4.7 we can see that using external libraries increases the efficiency of matrix-
matrix multiplication for integer matrices. Since most of the operations performed in our
algorithm involve matrix-matrix multiplication, we can further increase our algorithms
efficiency by using these external libraries.

In the following table, we see a decrease in CPU time from using these libraries:

n degA Standard Opt. w/ Maple BLAS Opt. w/ Ext. Libraries
200 5 351 s 34 s 20 s
300 5 1248 s 58 s 35 s
400 5 4084 s 98 s 75 s
500 5 7581 s 163 s 149 s
800 5 35789 s 537 s 353 s

Table 4.8: Optimized Algorithm with Maple BLAS vs with External Libraries (CPU time)

22

Chapter 5

Application

We now have an algorithm RatModSolve which gives us a solution to Av = db modulo any
prime p for A ∈ Zp[x]n×n and b ∈ Zp[x]n×m. We can use RatModSolve to solve the more
general problem where A ∈ Z[x]n×n and b ∈ Z[x]n×m. Once we compute enough images
modulo distinct primes we can use Chinese Remaindering to compute the solution pair
(v, d) such that v ∈ Z[x]n×m and d ∈ Z[x]. However, only using Chinese Remaindering will
not give us the solution. We must take into account the coefficients of polynomials in v
and of the polynomial d. We need to re-describe the problem once more:

We have Av = db. In general, our solution will have v ∈ Q[x]n×m and d ∈ Q[x]. Let
D be an integer such that Dv ∈ Z[x]n×m and Dd ∈ Z[x]. Then we have A(Dv) = (Dd)b.
Thus the (v, d) solution pair we are looking for will need to make use of the integer D.

The following is pseudocode for the algorithm RatQSolve:

RatQSolve(A, b, dX , dY , N0, imagenumber, steps)
Inputs: A ∈ Z[x]n×n, b ∈ Z[x]n×n, and dY , dX , N0, imagenumber, steps ∈ Z

with dY , dX , imagenumber, steps > 0 and N0 ≥ 0.
Outputs: v ∈ Z[x]n×m and d ∈ Z[x] such that Av = db.
Conditions: dY ≥ degA and dX ≥ degA.

α := max
(
Size(A) , Size(b)

)
;

p := MaxModulus(n);
do

p := prevprime(p);
Amod := A mod p;
bmod := b mod p;

23

v′, d′ := RatModSolve(Amod, bmod, p, dX , dY , N0, steps);
if maximum degree of denominators < deg d′ then

Discard all previous images.
P := p;
Add (v′, d′, p) to our set of images.
Compute more images.

elif maximum degree of denominators = deg d′ then
P := P · p;
Add (v′, d′, p) to our set of images.

fi;
if we have imagenumber images then

N := NumeratorBound(A,α, n, P);
V V,DD := Chinese Remaindering on images (v′, d′, p);
V V ′, DD′, drat := IntegerRationalReconstruction(V V,DD,P);
if IntegerRationalReconstruction FAILS then

Compute more images.
fi;
v := drat · V V ′ (modsP);
d := drat ·DD′ (modsP);

else
Compute more images.

fi;
while Size(v) ≥ N or Size(d) ≥ N od;
return v, d

The integer D we referred to earlier is denoted by drat in the above pseudocode for
RatQSolve. We compute drat through the rational reconstruction of each coefficient of V V
and DD. We start with drat = 1 and if rational reconstruction returns the fraction a/b,
then drat := drat · b. Then we pre-multiply the next coefficient in V V or DD by drat and
perform rational reconstruction with the appropriate decrease in the denominator bound.
After going through every coefficient of V V and DD, we obtain our integer drat such that
drat · V V ′ ∈ Z[x]n×m and drat ·DD′ ∈ Z[x].

The functions in the pseudocode for RatQSolve are described below:

• Size(A)→ Maximum magnitude of coefficients of the polynomials in A

• MaxModulus(n)→
⌊√

253−1
n

+ 1

⌋
24

• NumeratorBound(A,α, n, P)→ min

(⌊
P−2

2n(degA+1)α
− 1

⌋
,

⌊√
P

10000

⌋)
The first of the minimum of two values for NumeratorBound is from [9, Lemma 2.1].

The reason we have a minimum of two values for the NumeratorBound is to prevent needless
computations that occur if the bound is too large [1]. Instead, we compute more images
of our solution until the computed NumeratorBound we use gives a successful rational
reconstruction.

25

Chapter 6

Conclusion

We have developed an algorithm, based on algorithms from previous research in the field,
that efficiently computes the solution to the rational system Av = db. After starting with
the standard algorithm, we describe the modifications made to increase its efficiency and
perform timings on different instances of the inputs to show that the optimized algorithm
is more efficient at finding the solution pair (v, d) such that Av = db. For an input of
dimension n = 200, and degrees of entries less than or equal to 5, the optimized algorithm
using external libraries computes the solution 17.7 times faster than the standard algorithm.
An application of our algorithm was then presented to find solutions to the more general
rational system where A ∈ Z[x]n×n and b ∈ Z[x]n×m, as opposed to finding solutions over
the field Zp.

More work can be done to improve the efficiency of the algorithm. In Section 4.3 we
attempted to find a relation between degX and degA, but our results showed that the
optimal degX is affected by more than just degA. In general, it is a function of n, m,
degA, and deg b. Further testing will need to be done to find the optimal degX which
would allow us to auto-tune this parameter in our algorithm given the sizes and degrees of
the inputs.

We can also explore other methods of lifting, such as DoublePlusOneLifting [7] which
combines linear and quadratic lifting into a single step. This produces a quadratic increase
in the power of the modulus in the lifting phase after each step, as opposed to a linear
increase produced from our algorithm, meaning we would arrive to a solution much faster.

26

References

[1] S. Cabay. Exact solution of linear systems. In Proc. Second Symp. on Symbolic and
Algebraic Manipulation, pages 248—253, 1971.

[2] Z. Chen and A. Storjohann. A BLAS based C library for exact linear algebra on
integer matrices. In M. Kauers, editor, Proc. Int’l. Symp. on Symbolic and Algebraic
Computation: ISSAC’05, pages 92–99. ACM Press, New York, 2005.

[3] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms forComputer Algebra. Kluwer
Academic Publishers, Norwell, Massachusetts, 1992.

[4] R. T. Moenck and J. H. Carter. Approximate algorithms to derive exact solutions to
systems of linear equations. In Proc. EUROSAM ’79, volume 72 of Lecture Notes in
Compute Science, pages 65–72, Berlin-Heidelberg-New York, 1979. Springer-Verlag.

[5] T. Mulders and A. Storjohann. Diophantine Linear System Solving. In S. Dooley,
editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC’09, pages
281–288. ACM Press, New York, 1999.

[6] T. Mulders and A. Storjohann. Certified Dense Linear System Solving. Journal of
Symbolic Computation, 37(4):485–510, 2004.

[7] C. Pauderis and A. Storjohann. Deterministic unimodularity certification. In
J. van der Hoeven and M. van Hoeij, editors, Proc. Int’l. Symp. on Symbolic and
Algebraic Computation: ISSAC’12, pages 281–288. ACM Press, New York, 2012.

[8] A. Storjohann. High–Order Lifting and Integrality Certification. Journal of Symbolic
Computation, 36(3–4):613–648, 2003.

[9] A. Storjohann. On the complexity of inverting integer and polynomial matrices. Com-
putational Complexity, 2010. Accepted for publication.

27

[10] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, New York, 3rd edition, 2013.

[11] Z. Xianyi. OpenBLAS: an optimized BLAS library. http://www.openblas.net/,
2011–2015.

28

http://www.openblas.net/

	List of Tables
	Introduction
	Lifting
	Linear Lifting

	Standard X-adic Lifting
	Condition on Degree of X

	Optimized Linear Lifting by reduction to BLAS
	Evaluation
	Y Basis
	Optimal degree of X
	Standard versus Optimized Timings
	External BLAS Libraries

	Application
	Conclusion
	References

