Comparison Between Different
Numerical Methods in the
Applications of Option Pricing

by

Lidan Chen

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in

Computational Mathematics
Supervisor: Prof. Jun Liu
Waterloo, Ontario, Canada, 2020

©) Lidan Chen 2020

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Abstract

Driven by the increasing popularity of neural networks, we implement a new neural network-based
method Physics-Informed Neural Networks in the option pricing model of financial markets. We
consider another four traditional methods: the binomial tree, Monte Carlo, finite difference, along
with artificial neural network as references, and show the pros and cons of these different methods

in different scenarios.

TT

Acknowledgements

I would express gratitude for my supervisor, Dr. Jun Liu, for his guidance and support.

Also, I would like to thank Dr. Xinzhi Liu, who spent precious time reading this paper as a

second reader.

Great thanks go as well to CM group, Hybrid Systems Lab, especially Mengyao Zhang, Yan

Liu and Zhibing Sun, all of whom contributed to the research.

I would also like to thank Dr. Hans De Sterck and Dr. Jeff Orchard again for serving as my

committee members.

TT1T

Dedication

This is dedicated to my family.

N

Table of Contents

Introduction

Option Pricing Theory

2.1 Introduction to Options
2.1.1 European Options e
2.1.2 American Options e e

2.2 Option Pricing Theory« . . o e
2.2.1 The Black-Scholes-Merton model and its connection to PDEs

Numerical Methods

3.1 Binomial Tree L e
3.2 Monte-Carlo Method
3.3 Finite Difference Methods
3.4 Artificial Neural Networks
3.5 PINN oo

Implementation Results and Discussions

4.1 Binomial Tree e e
4.2 Monte-Carlo Method e
4.3 Finite Difference Methods L
4.4 Artificial Neural Network

11

12

13

17

20

4.5 PINN with DeepXDE

5 Conclusion and Future Outlooks

VT

41

Chapter 1

Introduction

Financial derivatives are widely used in today’s market. In fact, the markets for options,
futures, forwards, swaps and other types of derivatives are much bigger than the original market
for their underlying assets. Options are one of the most popular and well-studied derivatives. They
are extremely volatile, and thus it is important to accurately price them as fast as possible. Hence,
we choose to study option pricing. In this paper, we not only use traditional methods to solve
option pricing models, such as the binomial tree, Monte Carlo, finite difference (FD) and artificial
neural networks (ANNs) but also use the Physics-Informed Neural Networks (PINN) method based
on DeepXDE: a deep learning library for solving different equations [1].

A brief introduction to options is given in Chapter 2. This chapter includes basic concepts,
such as the arbitrage-free assumption, and a description of the geometric Brownian motion that
the underlying asset follows. Based on these assumptions, the famous Black-Scholes-Merton model
is introduced. Furthermore, by introducing the Feynman-Kac theorem, the relationship between
the pricing model and its corresponding partial differential equation (PDE) is described. Explicit
solutions of the Black-Scholes-Merton equation to certain options, as well as the corresponding

PDE, will be used as a reference for the following chapters.

In Chapter 3, we briefly introduce the theoretical foundations of various computational tools
used for option pricing, including traditional methods such as the binomial tree, Monte-Carlo
simulation and FD. Two machine learning methods are also introduced: using ANNs to directly

approximate the price of the option, and using PINN to solve the corresponding PDE.

In Chapter 4, we implement the above numerical methods and have a short discussion at the
end of each section. We also discuss how to reduce the variance of large volatility and strike price
in the Monte-Carlo methods, and discuss the results of the explicit, implicit and Crank-Nicholson
scheme in FD setting. We use the true price of Black-Scholes as a reference to approximate the
price of a European call option using ANNs. Finally, we implement the PINN scheme with the
DeepXDE library and discuss the impact of the number of training points, the neural network (NN)

depth, the NN width and the learning rate on the model. In addition, we also discuss some extra

features in this scheme.

In Chapter 5, we briefly summarize the results and discuss some possibilities for future research.

Chapter 2
Option Pricing Theory

In this chapter, we introduce some basic financial concepts and formulate and discuss the
main assumptions behind the standard option pricing theory. Most importantly, we will introduce
the Black-Scholes-Merton model on the basis of these assumptions, and its corresponding PDE by

introducing the Feynman-Kac theorem.

2.1 Introduction to Options

An option in finance is a contract that gives the buyer the right, but not the obligation, to
buy or sell an underlying asset at a specified strike price before or on a specified date [2]. The
strike price itself or the rule of calculating it is usually set beforehand. It might be set by reference
to the market price of the underlying asset, or fixed to be a certain amount, or a discount at a
premium, etc. When the buyer chooses to buy/sell his corresponding option, it is called “exercise”.
An option that gives the right to buy the underlying asset is called a “call”, and an option that
gives the right to sell the underlying asset is called a “put”. In the next section, we would discuss
the deterministic relationship between European call and put options. In most cases, it suffices to

discuss one of them.

There are many rules about when and how the options should be exercised. One of the most
common ones is by time. A European option is an option that can only be exercised on a preset
specific date in the future, while the holder of an American option can exercise his option at
any time before that date. The date on which the option is exercised is called the expiry date.
The mentioned option types are called “vanilla” options as they are highly standardized and well
studied.

2.1.1 European Options

The value of the option expiry date, as a function of the value of the underlying asset, is called
the payoff function. As discussed above, the holder of a European option has the right to exercise
the option at the expiry date [3], and the payoff he gets depends on the price of the underlying asset
at this date. For example, for a call option, if the price of the asset is greater than the strike price,
the holder will exercise; otherwise, he will not exercise. Let us denote the price of the underlying
asset at expiration by Xr, and the strike price by K. Then, the payoff function of the long position
(buying) a European call option can be written as:

max (X7 — K,0).

Similarly, the payoff of the long position of a put option can be written as max(K — Xp,0). If we
were at the short position (sell) of a call option, the payoff can be written as min(K — Xr,0), and

the payoff when we short a put is min(X7y — K, 0) [3]. Figure 2.1 shows the payoff diagrams:

100 Long a Call 100 Long a Put

50 50

payoff
o

payoff
o

-50 -50

-100 -100
0 50 100 150 200 0 50 100 150 200
Xr X

T

Short a Call Short a Put
100 100

50 50

payoff
o

payoff
o

-50 -50

-100 -100
0 50 100 150 200 0 50 100 150 200

Figure 2.1: Payoff functions with K = 100 for European options

2.1.2 American Options

An option can be named as American option if it can be exercised at any time from now to the
expiry date [4]. When there exists an opportunity to exercise at any time, things get complicated.
The payoff function now, in contrast to the European option, cannot depend solely on the price
of the asset at maturity. In practice, the most advantageous strategies for options with convex

payoff functions, like stock call options that do not pay dividends, are exercised at expiry. In other

cases, most options, covering put options, also have an optimal exercise strategy, which, however,
cannot be simply or easily calculated. In addition, in the case of the American call option, when
the maturity is limited, there is an analytic formula for the price. However, it does not exist for

the corresponding put option.

2.2 Option Pricing Theory

There are two assumptions when pricing an option. The first one assumes that in the market,
bonds and stocks can be used to replicate each return payoff structure of the contract. The second

one is the arbitrage-free principle in the risk-free measure.

Moreover, suppose that there are only two types of assets in the market: the risk-free assets B,
and the risk assets S. Let us define a trading strategy (x, ¢), which represents that we purchase z
unit of the risk-free asset and ¢ units of the risk asset at time 0. Let Vi(x, ¢) represent the value of
the trading strategy at time ¢. Throughout the process, we keep this ratio constant. Let us denote
the above market as (B, S).

Definition 2.2.1. A trading strategy (z,¢) in the market (B, S) is said to be an arbitrage oppor-
tunity (or arbitrage) if

o Vo(x,¢) =0 (no initial investment),

o Vi(x,¢) >0 (no risk of loss),

o P(Vi(z,¢) >0) > 0.

Note that this assumption provides the foundation of option pricing. Based on the above

assumptions, we can discuss a widely used model for the pricing and hedging of European contingent

claims - the Black-Scholes-Merton model.

2.2.1 The Black-Scholes-Merton model and its connection to PDEs

Assume that the price of the cash bond at time ¢, By, satisfies the following differential equation
dB; = rBdt,
where r > 0 is the risk-free interest rate. Then, if we assume By = 1, we will get the unique solution
By = e,

Now suppose that the price of the risk asset at time ¢ is S;. Then, S; follows a stochastic differential
equation of the form
dSt = /J,Stdt + O'Stth,

where Sy is the initial price, u > 0 and o > 0 represent the drift and volatility, respectively, and

W, is a standard Brownian motion.

Proposition 2.2.1. The above equation has a unique solution with given by

1
Sy = Spexp((p — 502)t + oWy).

Proof. Apply Ito’s formula and use the ansatz
Y; := log S;.
We can easily get the desired expression. O

Remark 2.2.1. In a risk-free market, r = p. This means that, under the risk-neutral measure, all

the assets grow with the risk-free interest rates.

Obviously, the European call option for asset stocks with strike K and expiry date T is a
contract allowing owners to buy the stock share at the price of K at time T'. So, the value of the
call at time T is max(Sy — K, 0). Therefore, the price of the European call option at time 0 should

be the discounted expectation, under the risk-neutral measure, of the value at time ¢t = T', which is
Ele " max(Sr — K, 0)].

Similarly, the price of the European put option at the time 0 is
E[e™"" max(K — Sr,0)].

Note that this provides the basic idea of the Monte-Carlo method that will be discussed in the next
chapter.

Theorem 2.2.1. (The Black-Scholes Formula [5]) Assume that the risk-free interest rate is r, and
the underlying asset Sy has volatility o > 0 with current price Sy. Then the price of a call option

with strike K and maturity T can be written in the following form:
c= SN (dy) — Ke "N (dy),
and the price of a put option with the same strike and maturity can be written as
p=Ke "IN (=dsy) — SoN (—dy),

where

0 In(52) + (r + 2o?)T
1 — O’\/T Y
In(%2) + (r — 302)T
d = :d —Uﬁ,
2 T 1

and N (+) is the cumulative probability distribution function for the standardized normal distribution.

=i

Proof (sketch). We will not perform a complete calculation of the proof. The idea is that the
standard Brownian motion W; has independent increments and it is normally distributed with 0
mean and variance ¢{. This implies that the price of the asset price S; is a log-normally distributed

random variable. Some standard argument in probability yields the result. O

It is quite straightforward to derive a closed-form solution for the simple European call and
options. However, these cases are too simple. There are numerous different types of contracts on
the market. For example, the Asian options, the barrier options and the Bermuda options, etc.

The following two theorems provide a general deterministic way of solving such problems.

Theorem 2.2.2. (Feymann-Kac Theorem with Discounting [6]) Consider the stochastic differential
equation
dX; = ,u(t, Xt)dt + O'(t, Xt)th,

and let h(zx) be a function and r > 0 be a constant. Fiz T > 0 and lett € [0,T]. Define the function
v(t,z) = Ele " T On(X)| X, = a].
Then, v satisfies the following partial differential equation:
ve(t, @) + plt, z)vg (L, x) + %J%Iﬁ,x)vm(t,x) =0,
(T, z) = h(z).

for all x.

Proof (sketch). The idea of the proof is the following: Conditional expectations are martingales by
the tower property of conditional expectations. Suppose r = 0. Then E[h(X7)|X; = z] is the price
of any derivative security, where X is the underlying asset and h is the intermediate cash flow.

Applying Ito’s formula, the drift term must be 0, which yields the result. O

The PDE in the above theorem describes the flow of a time-dependent probability distribution.
The stochastic process describes individual realizations. The Feynman-Kac Theorem provides the
link between stochastic processes and partial differential equations. Thus, we can solve numerous
problems with stochastic nature in a deterministic way. Owing to its physical applications, the
method of solving PDEs is widely studied in numerical analysis. This helps us understand and
calculate different types of financial derivatives. Note that the multivariate version of Feynman-

Kac theorem works similarly. This also provides another way to look at the Black—Scholes Formula.

If the contract only depends on the asset value on the maturity dateT’, it is called a financial

contract, that is, a simple contingent claim. The payoff can be written as ¢(St).

Theorem 2.2.3. (Black-Scholes PDE [6]) Let v(t,S;) be the value of the contingent claim ¢ at
time t <T and assume v € CY2. Then v(t,s) satisfies the following PDE

1
ve(t,) + ravg(t, z) + §U2$2Ugm(t, x) =0,

(T, x) = ¢(x).

Proof (sketch). The proof comes directly from the Feynman-Kac theorem. Note that here in the

infinitesimal generator we use the risk-free interest rate r for the sake of no-arbitrage assumption.
O

The idea of the Black-Scholes-Merton model is to create a simple model for pricing options.
Note that these assumptions are not always correct, because the volatility in the market is not

always constant. However, for simplicity, we adopt the Black-Scholes hypothesis.

Chapter 3

Numerical Methods

Usually in finance, the calculation of a large number of prices of options has to be done within
a short time. Therefore, fast and accurate calculation of option prices is crucial. Furthermore, as
the asset models or the payoff structures become more complex, closed-form solutions as in the
call/put option case are usually not available, or way too complicated to implement. Hence, we
should search for efficient and accurate numerical solutions. In this chapter, we introduce the ideas
of some of the most popular numerical methods in option pricing: the binomial tree, Monte-Carlo
method, FD, ANNs and PINN. This forms the basis for the implementations in Chapter 4.

3.1 Binomial Tree

The binomial tree is a simple and commonly used numerical procedure of option pricing. In

particular, we will study the Cox, Ross, Rubinstein tree [7].

The binomial tree is a discrete version of the Black-Scholes constant volatility process. The
asset price can only be changed at certain predefined time points 0 = tg < t; < --- <ty =7T. As

shown in Figure 3.1, assume that

g Sy, u, with probability p,
t =

i+1

Sy, d, with probability 1 — p,

where u > 1,d < 1, and it is usually assumed that v = é. This means the asset price moves up

with probability p and down with probability 1 — p at each step. Risk-neutral assumption asks
¢ = pu+ (1 - p)d,

which yields

S(2) = Spe*
/ \
S(1) = Spe* S(3) = Spe2utd
S(0) = So 5(2) = Spettd
S(1) = Spe? S(3) = Spevt2d
S(2) = Spe
\

Figure 3.1: Graphical representation of the binomial tree

Theorem 3.1.1.

> OP(SH) =1

ie{u,d}N

Proof. The sum is

Yo oBsh= Y pMOa-pNld

ie{u,d}N ie{u,d}N
=(1-p" 3 ()N
ie{u,d}N p
NY p
=1-p) (k>(fp)k
i€{u,d}N
— (1 _ N P \N
=(1-p) (1+1_p)
-1,

by the binomial theorem.

O

With the stock price tree, by walking backward in the tree, it is easy to get an approximation

value of the option price at time 0. At the end step of the tree, i.e., at maturity 7', the price of the

option equals its intrinsic value. For a European type contingent claim, the model then works by

taking expectation backwards at each time interval, and calculating the option value at each step.

Let v(n, k) denote the option price of the kth node at step n. At maturity:
v(N,j) = ¢(Sow!d"7), j=0,1,...,N.
Working backwards in time, we have

(i j)=e " (po(i+ Lj+ 1)+ 1 —pp(+1,7), j=01,...,

10

The implementation of the binomial tree is straight forward, and we will discuss some results in

the next chapter.

3.2 Monte-Carlo Method

As a commonly used data processing tool, Monte-Carlo simulation is irreplaceable for some
situations. For example, when the underlying stochastic process is not Markovian. As mentioned
in the previous section, the idea lies in constructing the trajectories of the underlying asset by
simulating a Brownian motion. And note again that the option price is the discounted expectation of
the payoff at expiry under the risk-neutral measure. Simply, Monte-Carlo option pricing simulation

can be divided into several steps as follows:

Simulate a trajectory of the underlying asset under the risk-neutral measure.

Force the payoff function at expiry.

Repeat the simulation for sufficiently many times.

Calculate average payoff for all simulations.

Discount the average payoff to time 0 to get the option price.

This discrete way of simulating the time series is also regarded as the Euler method. It depends
on the assumption that the underlying process is Markovian, i.e., the current value of the process
can be simulated using the previous step. The Monte-Carlo method referring to here depends on
the normality of AW,, or, lognormality of the underlying process. Under the risk-neutral measure,

we have:

S(t+ At) = S(t) exp((r — %ﬁ)m + oV/Aiz),

where z is a N(0, 1) random variable. Usually, it does not matter to use super small steps, as the

formula is exact. The key here is the number of simulations.

In many cases, the variance reduction can be used to improve the estimation accuracy of the
Monte Carlo method, which can be obtained through a given simulation or calculation. One way
to variance reduction is called importance sampling. We will briefly experiment with importance
sampling in the next chapter. One of the biggest advantages of the Monte Carlo method is that it
can handle European-style options depending on many variables. Of course, one can write down
the corresponding PDE for multi-dimensional problems. Solving it, however, is very difficult, and
it is what we call “the curse of dimensionality”. The equation for higher dimensions is basically
the same as the one-dimensional case, and correlated random variables can be calculated using the

Cholesky decomposition.

11

3.3 Finite Difference Methods

Finite difference methods (FDMs) can be used to solve partial differential equations. It uses
a discrete format to approximates the required derivative. FDM can handle a small number of
dimensions well, since FDM finds the solution of the differential equation through numerically
approximating each partial derivative. After finding a solution at each point, it can be plugged

back into the grid and give us an approximation over the whole domain.

Assume that f: R — R is a function of x, then the derivative in discrete form is defined to be

Of(x) _ fle+h)— f(z)

oh h ’

where h is the differentiation step. By Taylor’s formula, we have

2
flx+h) = f(z)+hf(z)+ %f”(x) 4.

Combining the two equations, we will get an error O(h) for the derivative. To get an error O(h?),

define:
of(x) _ fle+h)—fl@—h)
T o7 = f'(z) + O(Rh?).

The idea of this section is to use FDM to approximate the solution of the Black-Scholes PDE:

filt,x) +refe(t,x) + %021‘2fm(t, x) =0,

f(Tx) = ¢(),

where ¢(z) is the payoff function of the stock price at maturity. To approximate the solution f,
we first need to create a grid. Taking the European put option as an example. Let N, M represent
the total steps of discretization in time and space, and let \S; ; represents the stock price for time
1At and space jAS. There will also exist three boundary conditions for the mesh, and it is with

these that all the calculations can be made. The terminal condition (at T') can be written as
fnj =K —max(Sn;,0), j=0,1,..., M.

Apart from the initial conditions (terminal conditions in this case), boundary conditions need to
be enforced on the scheme. The lower boundary condition is § = 0. Consequently, the price of the
put option would be equal to K. For the upper boundary condition, which is the option price at
expiry, then the option price would be 0. Applying the finite-difference on the derivatives in the
Black-Scholes PDE on the space-time grid gives the following approximations:

e Forward approximations:

of _ firrg—fig

ot At

e Backward approximations:
of _ fij—fi1
ot At '

19

e Central approximations:

of _ fivnj—ficay OF _ fijwr = fij
ot 2At 0S8 2AS

e Second derivative:)
Ff _ figrr = 2fij + fija
052 A2S '

These approximations would yield the three different schemes of finite difference methods: the
explicit (backward approximation), implicit (forward approximation) and Crank-Nicholson (central
approximation). The explicit method is the easiest finite difference method to implement and it
has the fastest algorithm, but it is also the most unstable one. The method calculates the option
prices for each time step using known quantities from the previous time step. The implicit method
is more stable. However, it requires larger number of computations. This method does not depend

on the quantities from the previous state. Instead, it uses the current state and the next state.

The Crank-Nicholson method is a weighted sum between the explicit method and the implicit
method. Applying the Crank-Nicholson idea to the Black-Scholes equation, we get the following

grid equation:

fij— fim1j . rjAS L fic1j41 — fic1,j—1 n rjAS fijr1 — fij-1
At 2 2AS8 2 2A8
+T2j2A25 fic1 41— 2fic1j + fic1—1 n 1252028 fi i1 —2fij + fij—1 _ Cf' . Cf' _
4 A28 4 A28 g imhi T o i

One can write the above equation in a compact matrix form and solve it efficiently.

3.4 Artificial Neural Networks

ANNs are data processing entities that have similar information processing properties and
functions as the biological neural networks, i.e., human or animal brains. There has been a lot of
research done on option pricing by computer scientists in the field of neural networks. The neural
networks are not required to fulfill any economic assumptions or axioms as they yield results based
on the universal approximation theorem. As discussed before, the Black-Scholes formula is based on
some crucial assumptions such as no-arbitrage and lognormality of the underlying process. However,
the study on neural networks in option pricing has largely been carried out using the market data.
Some analysis has been done by Hutchinson et al. (1994), which show that for American options,
the neural network does a better job than the Black-Scholes model. Malliaris Salchenberger (1993),
on the other hand, showed the Black-Scholes formula performs better in the case of in-the-money
options, whereas the neural network approach is dominant in the outlier prediction. Later on,
some researchers also showed that including the economic assumptions in the neural network helps
describe the market better. These studies are highly based on market data, which we will not
discuss in this project. We will now introduce the basic concepts in the study of neural networks,

and two different approaches based on the assumption of the Black-Scholes-Merton model.

12

Artificial Neural Networks Approximation based on the Black-Scholes-Merton Model

We consider neural networks whose elements are arranged into separate layers, where each
layer can control only its output into the next layer. This is called a feedforward neural network
since it guarantees the one-way transfer of data [9]. The layers between the input and output layers
are called hidden layers and each one of them can have any number of neurons. The number of
hidden layers depends on the nature of the approximation problem and there are various empirical

techniques on how to choose it.

In the hidden layers and the output layer, we have a continuous output by using a so-called

“activation function,” which is commonly taken as the sigmoid function

1

o) = e

since its derivative has a closed form. Other commonly used activation functions are o(z) =

In(1 + e*), o(z) = sin (z), the heaviside function and the ReLu-function.

In multi-layer neural networks, we usually use an algorithm called backpropagation to calculate
the error distribution after the data go through the network. Given a set of data points {(zy,yn) :
n =1,...,N}, where (2,,7,) € R? x R are independent samples from an unknown probability
measure v, we define the best neural network function o € N, which is defined by the minimized
parameter set 6

min E[g(y, a(z,0))]

ocENK

for a given loss function g. Assume that g is convex in its second argument a. Use the function

9(y, oz, 0) := (y — a(x,0))

as a general loss function. The goal is to minimize the expectation of the loss function over
all possible o’s. As discussed before, the backpropagation algorithm works in the minimization
procedure by calculates the differences between the training pattern target and the actual value.
Based on the differences, the weights are updated. After several steps, it might end up in a steady-
state where the weights at each layer are fixed. The most common way to optimize these weights
is the gradient descent scheme. For example, consider the simple case where we have one hidden

layer in the network, then we write the neural network functions as

K
Ny ={a:a(x,0) = Z Gia(ﬂix + 62)}5

k=1

and use an iterative scheme to determine
O(n+1) =0(n) — Vog(yn, a(xn, 0(n))).

Note that the neural network using several hidden layers works similarly. An example of the neural

network structure is shown in Figure 3.2.

14

Input Layer € R* Hidden Layer € R® Hidden Layer € R™ Hidden Layer € R* Output Layer e R'

Figure 3.2: An example of the neural network with three hidden layers

Now consider the price of a European call option,
C=¢(S K1),
and normalize the equation by defining the moneyness m = S/K. Then we have
C/K =K¢(S/K,1,T) = ¢=C/K =¢(m,T).

Some underlying assumptions are imposed on the neural network to meet the behaviour of traders
on options markets. For call options, they easily carry to the puts due to put-call-parity. The
first condition below ensures a non-increasing price with respect to the strike, and this is because
the difference between the underlying price and the strike would be smaller in the case of the

in-the-money case:

oC

— <

oK —
The second assumption ensures the convexity of the price in terms of the strike:

0.

&C >0
0OK?2 — 7
The third assumption says that the longer the maturity, the larger the probability of having a

positive price:
oC
—_— >
oT —
The last assumption ensures that when the event of a large enough strike has probability 0, we will

0.

make profit through the following option:

lim C(S,K,T) = 0.
K—o0

15

Use Artificial Neural Networks to the Solve Heat Equation

Another approach of using the neural network to price options is to solve the corresponding
PDE. Traditional tools based on discrete domains, like finite element, finite difference and finite
volume, perform weak solutions on them on this grid. In general, these methods are usually ef-
fective, but the solutions obtained are discrete or have finite differentiability. Another possibility
is to use neural networks. 10. The effectiveness of this method depends greatly on the function
approximation ability of the feedforward neural network, which finally contributes to the solutions.
As already introduced in Chapter 1, we can use the PINN method for example to solve the corre-
sponding PDE. Choosing the suitable discretization and structure of the neural network, the goal
reduces again to finding a trial solution that “nearly satisfies” the PDE by minimizing a related
error over all hidden nodes. Once the optimal parameters are obtained numerically, we can use
this trial solution as a smooth approximation to the true solution that can be evaluated continu-
ously over the domain. One would expect that the solution accuracy would increase with a finer
network, but at the expense of computation and possible overfitting. Therefore, we hope to obtain

an approximation of sufficient accuracy by using a minimum of computational cost.

We will solve the Black-Scholes PDE analytically by transforming our problem into the heat
equation. The heat equation has a well-known solution and has been studied in detail in physics and
is easy to implement. The idea is to do two steps of change of variables, to convert the Black-Scholes

PDE with the terminal condition into a standard heat equation with the initial condition.

Let define a new random variable 7 such that ¢t =T — %E, then t = T corresponds to 7 = 0.
Since the underlying stock price is log-normally distributed, we define z = log(S). Using these
new definitions, the terminal condition can be converted to an initial condition, and get rid of the

independent variable S in the dynamics. Finally, a substitution of the form
u = exp(ax + f1)V

can be used to get rid of the unwanted constants and first order in the z terms. With the above
construction, we can get a new function u that solves the following standard heat equation:

2
T
Ut = Ugx, x€R70§t§77

u(z,0) = e *op(e”),
where ¢ is the payoff function. If it is a European call option, then
u(z,0) = e *max(e” — K,0).

Finally, to convert the solution of the heat equation back to the option price, we have

2 _
V(t,S) = KU(M,log(S)) = Kv(r,x) = Ke”'”'*'ﬁTu(rﬁ,7')7
B o2 —2r
*T Togr
o2+ 2r 9
b= _(W) :

1A

To assign the appropriate boundary conditions on the function u, recall that

V(T,S) = max(S — K,0),V5S,
V(t,0) = 0, VL.

Therefore, let a := 1_7’“, we have boundary conditions for the call option:

u(r,z) — 0, as x — —o0,

(k+1)x
u(t,z) > e 2 , as T — 0.

Similarly, the boundary conditions for a put option is

_(r=1)?
u(t,z) e 4 , as x — —o0,

u(r,x) = 0, as z — oo.

3.5 PINN

i(z,t) — gp(=,t) J—’@’@MS

T

%(‘T’t) *gﬁ(u::‘cvt)

Figure 3.3: Structure of the PINN method with the heat equation as an example [1]

Compared with traditional neural network methods, PINN solving PDE has three advantages.
PINN uses automatic differentiation (AD) to embed the PDE into the loss function of the neural
network, so the effect of the mesh size on the result can be ignored without defining the mesh. PINN
can solve different types of differential equations, and its algorithm is relatively simple, especially
for solving inverse problems. Not only that, but a new residual-based adaptive refinement (RAR)

method is also proposed, which can improve the training efficiency of PINN.

DeepXDE is a Python library for PINNs. DeepXDE is not only a teaching tool but also a
rescarch tool. It is based on constructive solid geometry (CSG) and can support complex domains.
At the same time, DeepXDE defines a callback function, through which users can easily supervise

and modify the solution process.

PINN evolved from feed-forward neural network (FNN). FNN is the simplest neural network,

and it can also be called a multilayer perceptron (MLP). In addition, another neural network based

17

on residuals, ResNet (residual neural network), is easy to train for deep networks. The library
DeepXDE we use for implementation supports both FNN and ResNet. In the implementation of

the heat equation next chapter we use FNN since it is sufficient for most of the PDE’s.

PINN has four steps. The first step is to construct a neural network @(¢;x) with parameter
6. Where § = {w!,b'} is the set of trainable weight matrices and bias vectors and ¢ is a nonlinear
activation function. The input of this neural network is x and t, and the output is vector. Using
set instead of solution u. Here % is used to approximate the final PDE solution u. In the second
step, since u(z) is unknown, we use PDE to train u(6; x). Since it is difficult to constrain the neural
network in the entire domain, the goal is achieved by constraining two training sets Ty and Tj. T
is the residual set of the PDE function, and 73 is the residual set on the boundary. I in 7} refers
to identity, which is the value of u obtained. % is the derivative of the vertical vector n. g_D and
g-R are two functions that we define according to the different boundary conditions required by
PDE, which means that g_D is taken from the set D and ¢g_R is taken from R. The third step, use
the L? norm to select the loss function for the weighted summation of the PDE equation, and the

residuals of the boundary conditions:
L(6;T) = wsLy(0;Ty) + wpLlp(0;T),

where

£5(6) = ﬁ S 1F@)2

x€Ty

1 N
Ly(0) = 7l > 11B(@@,)| 1%,
b z€Ty
F(u,z) and B(u,) are solved by the AD method. Finally, we find a suitable 6* through training

to minimize the loss function.

There are three methods for selecting residual points: the first is to randomly select points on
the grid as the residual points before training, and use the same residual points during the training
process. The second is to randomly select different residual points in each iteration during the
training process. The third is to adaptively improve the location of the residual points during the

training process.

The RAR method was proposed because the more residual points selected, the slower the
training time. Therefore, it is necessary to find a balance and use a faster speed to achieve more
accurate results. Since the residual points are usually randomly distributed, good results can be
obtained in most cases, but for some PDE equations with steep gradient solutions, this may not
be so effective, so add more at the place where the PDE residual is greater than residual points.
The specific steps are: the first step, select an initial distribution of residual set 7, then train the
neural network for some number of iterations. The second step is to let & be randomly take a large
number of points in the domain and compute the mean residual &,:

1 ~
Er D IF @ @)

‘S| x€S

1R

The third part is to stop adding residual points when the average residual of the entire domain is
smaller than the custom threshold. Otherwise, Select m points with the largest residuals in S and

add them to T, and repeat step 2.

10

Chapter 4

Implementation Results and

Discussions

In Chapter 3, we described some of the methods and the different approaches for pricing
Furopean options. In this chapter, we perform these algorithms with a European call option as
an example and compare the resulting option prices to the true solution provided by the closed-
form solution. Furthermore, we will implement the PINN method with the help of the DeepXDE
library, by using the partial differential equation introduced in Chapter 3. Lastly, we will provide

a discussion and possible modifications for each method.

4.1 Binomial Tree

We implement the binomial tree model on an (at the price) European call option with
K =100, = 0.05,0 = 0.25,

and 20 steps and plot the price surface and the tree of the stock price under the risk-neutral measure

as follows.

Stock

[-R- -0

bib2

Figure 4.1: Binomial tree illustration Figure 4.2: European call option price surface

9290

One can see that the binomial tree is very visible, direct, and deterministic. In order to improve
accuracy, using the binomial tree for pricing a European call option, we fix the current stock price
to be S = 100 and maturity 7'= 1. We run a test for different time steps (up to 2000 steps) and
compare the error with respect to the true price of the option, the result is illustrated graphically

as in Figure 4.3. The true price of the option is calculated using the Black-Scholes formula.

0.144 T T
— — Exact Solution
Binomial Tree

0.1439 (f

0.1438
B LA h b

W A

0.1436 |

Option Price

0.1435 | b

0.1434 b

I I
200 400 600 800 1000 1200 1400 1600 1800 2000
Time steps N

0.1433

Figure 4.3: Option price by binomial tree against number of steps

One can easily see in the above figure that the more branches we have, the more accurate the
model. A variation of the tree model is called the trinomial tree. It is also an efficient method for
option pricing, which uses 3 nodes instead of 2 at each step. Trinomial trees are more useful when
we want to ensure nodes lie on a given level such as a barrier since this gives the better convergence.
Its convergence property is also similar to that of the binomial tree. The following figure illustrates

the structure of the stock price evolution under a trinomial tree.

21

[N}

i

o
1

220 -
200 - o o
o] >
180 - o o o o o
) o o
o 160 o o o o
kel o o o o0 o0 ¢
$ 1ol o © o o o o
8 o o o o
) o o o © o o
120 - o © © © ¢ o g 6 @ ©
) o o)))
> o o o o o (o] 8 10
100 o e o o o ©
p— o o o o o o o o
oy 2 & g ¢ o @
O © > Q &
80 |- &=—o 9o O 8 S o
S 2§ % 8
60 |- o
—8=
40 L i Il L i L L i L I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05

Figure 4.4: Stock price under the trinomial tree

One thing to note in this section is that the binomial method (or the trinomial method)
consumes a lot of memory to store the trajectory. For a European type of option, one solution is
to directly generate the price distribution at time 7. However, we cannot do that if the option is
path-dependent. The advantage of the binomial tree method is that it is very easy to understand
and implement. We will see later that it is actually just a special case of the explicit finite difference

scheme.

4.2 Monte-Carlo Method

The Monte-Carlo method, as explained in the previous chapter, is basically simulating different
trajectories and take the expectation of the desired function of the underlying process, in order
to get rid of the randomness as much as possible. First simulate five trajectories of a geometric

Brownian motion with Sg = 100, u = 0.05, 0 = 0.25, as shown in Figure 4.5 below.

D)

Value of the asset

0 200 400 600 800 1000 1200
Steps

Figure 4.5: Five realizations of a geometric brownian motion by Monte-Carlo against number of

steps

Using the Monte-Carlo simulation method explained in the previous chapter, we implement

the pricing of a European call option with the following parameters:
So =100,7 =0.05,7 = 1.

With 102,102, 10* simulations respectively, setting the strike K to be varying from 40 to 200, and
the volatility o from 0.01 to 2, we get the following price surface for the corresponding options

shown in Figure 4.6.

99

Price of tha Mneia
Price of tha Nesia-

0 : 0
?%ﬂhﬁj&%ﬂ M%-E%_sq,_? ﬂnhzfd]ﬁu

009 25 55,
547
m:a%ﬂ;i’:zisr}l_ﬁl 00 25°0

10 50
'-ﬂfa{m:.:}fz 55-59_]_752_00 25

(a) 10 simulations (b) 102 simulations

Price of tha Mesina
Price of tha Mesi.-

e e
! 000255,

002559
507
'.m:tﬂg;z 150 75, 00 2570

10 50
WI&I&F{%’zE-SG]_?%_OO 25

(c) 10® simulations (d) 10* simulations

Figure 4.6: Monte-Carlo pricing surface for a European call option with different numbers of

simulations

In the above figures, the blue surfaces represent the Black-Scholes “true” value, and the red
surfaces represent the Monte-Carlo results. In terms of a call option, when volatility or the strike is
large, the result is extremely volatile. This is because larger randomness in the underlying process
brings the larger variance in the Monte-Carlo result, which is the expectation of a function of this
randomness. Bigger volatility parameter enlarges the randomness driven by the Brownian motion.
When K is large, where St > K, i.e., the probability such that we have a Monte-Carlo value is
small. Therefore, there are a lot of meaningless trials where the stock price does not meet the
strike. In addition, the larger the number of simulations, the smaller the error. Let ¢ = 0.25 and
K = 100, and plot the absolute error of the Monte-Carlo simulated price compared to the true

price, which is shown in shown in Figure 4.7.

MN

07 4 = Monte Carlo

05

05 A

04

Error

03

02 A

01 A

00

T T T T
1] 20000 40000 G000 80000
n_trials

Figure 4.7: Monte-Carlo error against number of simulations

It is easy to see that the Monte-Carlo error decreases with the number of simulations. So we
can simply use more trials to increase the accuracy of Monte-Carlo pricing. However, when K is
large, this method will not solve the problem, and we will spend a lot of computational power in
generating scenarios that we do not use. One way to solve this problem is to use the importance

sampling method.

The importance sampling method is a variance reduction technique with the idea that f “im-
portant” values are emphasized by sampling more frequently, then the estimator variance can be
reduced [8]. The idea is to generate values of S7 under a distribution that is more likely to exceed

K. More specifically, we wish to estimate
ECle™" T (Soef — K)*],

where Zp ~ (rT — 30°T,0%T). Here @Q is a probability measure [6]. Set K = 200 to achieve
the above variance reduction, and plot the standard error against the number of simulations as in

Figure 4.9.

1=

7 4 = Monte Carlo
Importance Sampling

T T T T
0 2000 4000 EOO0 8000 10000
number of simulations

Figure 4.8: Monte-Carlo standard error against number of simulations

We can see that in both methods, the standard error reduces with the number of simulations.
However, when simulating a small number of times, through importance sampling, the variance can
be significantly reduced. When the simulation is performed multiple times, it is difficult to see the
difference, but it may be related to the parameters. Furthermore, we list the computational times

with 100 discretization steps of the two different Monte-Carlo methods as shown in Figure 4.9.

method runtime error standard error n_trials n_steps

Black Scholes 0.000419 0.000000 0.000000 100 100

MC 0.001316 0.351944 2.916642 100 100

Importance Sampling 0.000796 1.212279 2.428221 100 100
Black Scholes 0.000385 0.000000 0.000000 600 100

MC 0.004568 0.769842 1.153938 600 100

Importance Sampling 0.002485 1.346573 1.013451 600 100
Black Scholes 0.000371 0.000000 0.000000 1100 100

MC 0.007065 0.226922 0.844478 1100 100

Importance Sampling 0.003939 0.046939 0.814968 1100 100
Black Scholes 0.000368 0.000000 0.000000 1600 100

MC 0.011800 0.596556 0.688706 1600 100

Importance Sampling 0.004743 0.363393 0.670496 1600 100

Figure 4.9: Monte-Carlo running times

We can see that the importance sampling method reduces the variance when the number of
trials is limited, and it also reduces the running time. However, Monte-Carlo can take a long while
to run when there are a lot of simulations. Monte Carlo is often used because the requirements
for mathematics are usually very basic and it is especially easy to compute options depending on

several assets.

D TAY

4.3 Finite Difference Methods

In this section, we implement the explicit method, the implicit method and the crank Nichol-
son method according to the Black-Scholes PDE. Use the parameters Sp = K = 100,7 € [0, 1],r =
0.05, 0 = 0.025, we perform the PDE under the above three different methods with time discretiza-
tion 5000 steps and space discretization 100 steps. Taking the explicit scheme as an example, we
plot the price surface as Furthermore, we list the computational times with 100 discretization steps

of the two different Monte-Carlo methods as shown in Figure 4.10.

Explicit Scheme Solution of an Option Explicit Scheme Solution of an Option
120
100 : g
B 4 4
0 £ £
0 8
0
0
ﬂpsﬂ'z"\. o
o)
0.0 Tl?_z 04 ;0 ‘\.,1\':‘
ime g n. 06 250
* Expiratins®8 10 07
(a) Call Option (b) Put Option

Figure 4.10: Price surface for call and put options under an explicit scheme

Note that under appropriate discretization, the implicit and Crank-Nicholson schemes yield
similar surfaces. During the implementation, it was found that the approximation of the solution
sometimes grows exponentially as time increases with the explicit method, for example, with a
small number of time steps. Let the time steps be proportionate to the square of space steps, in
order to compare three methods. According to [10], the implicit method should require the most
computing time, and the Crank-Nicholson method should have the best convergence property. We
record the computing times for N = 10, N = 100, and N = 1000 for the three methods in the
following table:

Computing times | Explicit Method | Implicit Method | Crank-Nicholson Method

N=10 0.0240s 0.2052s 0.0301s
N=100 0.1565s 2.1984s 0.2179s
N=1000 10.44s 1303s 23.182s

As we can see from the above table that the explicit method is the fastest method due to its
nature of calculating new values from purely the old values, and the implicit method is the slowest.
It stopped computing when we raised the number of space steps to 10000. This is because, at each
step, it tries to solve an equation involving both the current state and the next one. It requires too

much computational power. The Crank-Nicholson method is a combination of the explicit method

o7

and the implicit method. In terms of computational times, it is very similar to the explicit method.
We further plot the relative errors under the three methods, with a relatively small number of steps

in space, as shown in Figure 4.11.

Relative Error - European Call Option

12 A1 —— |Implicit scheme

Explicit scheme
Crank Nicolson scheme

Figure 4.11: Different finite difference schemes error contrast

The above figure shows that the explicit method outperforms the other two methods, while
the Crank-Nicholson method has a relatively small error, especially when there is not a very fine

mesh.

The finite difference method is a purely deterministic method for option pricing based on the
corresponding PDE of the underlying problem. Therefore, it does not consist of any randomness,
one can easily see the similarities with the binomial tree method. Similar to the tree method, the
finer the mesh, the more accurate the result. However, this also means that the approximated

derivatives depend highly on the mesh we choose, which brings up stability and accuracy problems.

After trying the the vanilla call options, we also tried to implement the Heston model below
to explore how the finite difference method behaves in higher dimensions:
dS; = rSdt + /V, S, dW},
AV, = a(Vo — Vy)dt + by/V,dW2,
dW}dW? = pdt,
where 7, a,b are positive constants. The Heston model assumes that the volatility is stochastic in-

stead of a constant, and that its driving Brownian motion is positively correlated with the Brownian

motion which drives the underlying asset.

However, we came across some problems, of which one is to label the grid. We tried to use the
Cantor’s mapping theorem to solve it but found it very complicated and easy to mess up with. In
terms of higher dimensional problems, the Monte-Carlo method works better in terms of simplicity

so far. But of course, it is also very slow and depends largely on the number of simulations.

IR

4.4 Artificial Neural Network

If we plot the solution of an European call option as a function of the underlying stock price, it
looks like a polynomial in terms of the stock price S. Therefore, we use the polynomial regression
in this section. Polynomial regression is a common form of linear regression, where the relationship
between x and y (dependent variable) is a polynomial of degree n. Polynomial regression fits the
value of z and the conditional mean of y into a nonlinear relationship, shown as E[y|z]. First,
generate 50000 training data points for a European call option, as shown in Figure 4.15. The
training set is generated by simulating 50000 different paths of the geometric Brownian motion

from time 0 to maturity.

200 Training data points

175

150

125

=
1=}
=}

max(0, 5_T-K)
Il

=

50 100 150 200 50
Stock Price

Figure 4.12: Training data sets for a European call option

Now, we propose to use a Tth degree polynomial to approximate the value function. We use

the library scikit-learn to achieve this:

10)

175 4 i o ° ° k
—— Degree 7 Polynomial o °

150

125

=
=
=

max(0, 5_T-K)
b}

25

25 50] 100 125 150 175 200

Figure 4.13: Polynomial regression with degree 7

As can be seen from the above figure that when the stock price is low, this regression does not
show the monotonicity of the price well. We tried regression with degree 6, but it further drives
the error up when the stock price is low. We then performed the regression with degree 8, and
in order to access the accuracy, we use the Black-Scholes-Merton price introduced in the previous

chapter as the true solution to the value function.

175 4 - o © = T
—— Polynomial degree 8 n

BSM price a@® g

150

T
g

max(0, 5_T-K)
)

251

25 50] 100 125 150 175 200
Stock

Figure 4.14: Polynomial regression with degree 8

As is shown in the above figure, this polynomial regression works very well. We want to see
in the rest of this session if ANN performs just as well. Now, we implement the following vanilla

diamond shape neural network, and use the sigmoid function as the activation function:

20

Figure 4.15: Structure of the neural network

We use the gradient descent method, and its general idea is to tweak parameters iteratively in

order to minimize a cost/loss function.

The learning rate is an important parameter in gradient descent. If the learning rate is too
small, then the algorithm will have to go through many iterations to converge, which will take a
long time. Conversely, if the learning rate is too high, it might end up quickly diverging. Let the
learning rate to be 0.05, the different performance with different epochs:

21

200

200

175 175

150

150

125

100 100

(b) Epoch:10

200

— 200
—— epoch: 100 LI —— epoch: 1000 L
BSM o @ BSM o P

175

150

100

(c¢) Epoch:100 (d) Epoch:1000

Figure 4.16: Approximation of ANNs with different epochs

It is shown that the performance with 1000 epochs is very similar to polynomial regression
with degree 8. However, the polynomial regression depends a lot on the pre-assumed degree, while
the neural network works automatically without any assumption like that. We have achieved a

similar result with ANN without pre-assumptions.

4.5 PINN with DeepXDE

In this section, we implement the PINN method to solve the standard heat equation with
Black-Schole’s initial and boundary conditions using the DeepXDE library. We follow the following

procedure:

e Specify the computational domain using the geometry module. In our case, it is an interval.

29

Specify the PDE using the grammar of TensorFlow.

Specify initial and boundary conditions.

Specify the training data (at random) into data.TimePDE module.
Construct a neural network using maps.

Call Model.compile to set the learning rate.

Call Model.train to train the network.

Call Model.predict to predict the PDE solution at different locations.

We include the script as follows:

from

from

from

import
import

import

future__ import absolute_import

future__ import division

future__ import print_function

matplotlib.pyplot as plt
numpy as np

deepxde as dde

from deepxde.backend import tf

def xde
def

def

def

_call():

pde(x, y):

dy_x = tf.gradients(y, x)[0]

dy_x, dy_t = dy_x[:, 0:1], dy_x[:, 1:]
dy_xx = tf.gradients(dy_x, x)[0][:, 0:1]
return dy_t-dy_xx

ini(x):

r = 0.05

sigma = 0.25

k = r/(0.5*sigma*sigma)

a= (1-k)/2

return np.exp(-a*x[:, 0:1])*np.max(np.exp(x[:, 0:1]1)-1,0)

func(x):

r = 0.05

sigma = 0.25

k = r/(0.5*sigma*sigma)

a= (1-k)/2
b = (k-1)/4-k
Lmax = 1

Q29

return np.exp(-a*Lmax-b*x[:, 1:])*(np.exp(Lmax)-np.exp(-k*x[:, 1:1))

def boundary_1l(x, on_boundary):

return on_boundary and np.isclose(x[0], -3)

def boundary_r(x, on_boundary):

return on_boundary and np.isclose(x[0], 0.5)

geom = dde.geometry.Interval(-3, 0.5)

timedomain = dde.geometry.TimeDomain(0, 1) # T = 1

geomtime = dde.geometry.GeometryXTime(geom, timedomain)

bc_1 = dde.DirichletBC(geomtime, lambda X: np.zeros((len(X), 1)), boundary_1)
bc_r = dde.DirichletBC(geomtime, func, boundary_r)

ic = dde.IC(geomtime, ini, lambda _, on_initial: on_initial)

data = dde.data.TimePDE(
geomtime,
pde,
[bec_1, bc_r, icl,
num_domain=400,
num_boundary=200,
num_initial=100,

num_test=2000,

layer_size = [2] + [20] * 3 + [1]
activation = "tanh"
initializer = "Glorot uniform"

net = dde.maps.FNN(layer_size, activation, initializer)
model = dde.Model(data, net)
model .compile("adam", 1r=0.001)

losshistory, train_state = model.train(epochs=5000)

dde.saveplot(losshistory, train_state, issave=True, isplot=True)

Use the parameters Sy = K = 100,17 = 1,7 = 0.05,0 = 0.025, implement the network for this

heat equation and get the pricing curve in the transformed variable = in the figure below:

RV

Figure 4.17: Solution surface by DeepXDE

One of the main advantages of using this method to solve PDE is that the procedure of
taking the derivative is much more efficient than that of the finite-difference. In PINN, we need
to compute the derivatives of the network outputs with respect to the network inputs. This is
done by backpropagation, a special technique of automatic differentiation. AD applies the chain
rule repeatedly to compute the derivatives. There are only two steps in AD: one forward pass to
compute the values of all variables, and one backward pass to compute the derivatives, no matter
what the input dimension is [1]. To compute the second-order derivatives, simply repeat AD twice,

as we can see from the script above.

First, with the number of epoch=5000 and learning rate = 0.001, we test how the number of

training points affects the loss of the model, and plot the results in Figure 4.18.

3=

107
10° — Train loss — Tain loss
Test loss Test loss
10% 3§ 10! 1
10’3 -
10’3 -
107! g
10-1 -
102 4
T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
Steps # Steps
(a) 10 training points (b) 50 training points
10° 4
—— Train loss —— Train loss
Test loss Test loss
101 -
10% 4§
10’3 o
107 §
10—1 -
107 5 -
ry 10—2 -
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Steps # Steps
(c) 100 training points (d) 200 training points

Figure 4.18: PINN training and validation loss with different numbers of training points

It is not difficult to see that with only 10 and 50 training points each time, the training loss
is going down, while the test loss is going up. So we need more training points. With 100 and
200 training points, the absolute loss is decreasing with respect to the number of steps. Moreover,
the more training points, the less the absolute loss. However, training loss still predominates the
validation loss, which means the model is still under fitting for a small number of steps. As the

number of epochs grows, the difference between the training loss and test loss gets smaller.

Then, we will test how the neural network depth affects the accuracy of the model. With the
number of epochs = 5000, the number of training points = 200, and learning rate = 0.001, we plot

the empirical loss for the NN with 2, 4, 8, 16 layers with 20 neurons per layer in Figure 4.19.

RIS

—— Train loss —— Train loss
Test loss Test loss
101 o 101 4
10’ 3 10° 4
1071 4§ o 10° 4
T T T T T T T T T T T
0 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Steps # Steps
(a) 2 hidden layers (b) 4 hidden layers
—— Train loss —— Train loss
Test loss Test loss
101 4 101 E
10° 4) "_”“'—n._”,__ 10° A
107! 4 1071
T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000

Steps # Steps

(c) 8 hidden layers (d) 16 hidden layers

Figure 4.19: PINN training and validation loss with different NN depths

As can be seen from the above figures, with 2 and 4 layers, the absolute loss is reduced a bit.
The training loss and test loss of 4 layers are very similar to 5000 steps. However, the absolute
loss does of the 8 layers does not change much, but the test loss is larger, which indicates that
the model is overfitting. This can be further confirmed by looking at the result with 16 layers.

Furthermore, the training times are:

Unit (s)

| 2 layers | 4 layers | 8 layers | 16 layers
Training time | 1057 | 24.53 | 54.67 | 109.03

We can see that the computational time grows linearly with the NN depth. Through this
test, we know that the number of hidden layers does not contribute too much to the accuracy
of the model, with a large number of layers, the model could appear to be overfitting, and the

computational time is too long.

We will now test how the neural network width affects the accuracy of the model. With the

Q7

number of epochs = 5000, the number of training points = 200, and learning rate = 0.001, we plot

the empirical loss for a 4-hidden-layer NN with 5, 10, 20, 40 neurons per layer in Figure 4.20:

—— Train loss —— Train loss
Test loss Test loss
10° 1 10! 4
107 10° 4
10-1 A ‘v'”"u‘__"“'n 10-! 4 o
T T T T T T T T T T T
o 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
Steps # Steps
(a) 5 Neurons (b) 10 Neurons
107 4
—— Train loss —— Train loss
Test loss Test loss
10! A 10 4
10’3 o
10'3 4
10-1 «
10—1 -
R 1072 4 “-"""-v-.A____'_-
10_2 A T T T T T - I T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Steps # Steps
(c) 20 Neurons (d) 40 Neurons

Figure 4.20: PINN training and validation loss with different NN width

We can see from the above figures that, with 5 to 20 neurons, the absolute loss decreases.
When it reaches 40 layers, the training loss and test loss do not change too much. Furthermore,

the training times are:

Unit (s) | 5 Neurons | 10 Neurons | 20 Neurons | 40 Neurons
Training time | 9.028 | 13.8976 | 211876 | 35.8706

It can be seen that the computational time grows sub-linearly. However, it does not help so
much with too many neurons. In this example, the best NN width is 20. However, in general, we

find that the training time for neural networks is longer than the finite difference method.

Finally, we will test how the learning rate affects the accuracy of the model. With the number
of epochs = 5000, the number of training points = 200, NN width = 20 and NN depth = 4, we

QAQ

plot the empirical loss for a model with learning rate 0.1, 0.01, 0.001 and 0.0001 in Figure 4.21:

107 4

107 1

107% 4

10—1-:1

10-13 1

10* A

10° 4

107 3

1072 5

Tain loss S

st loss T ——
T T T T T T
o 1000 2000 3000 4000 5000
Steps
(a) learning rate 0.1
—— Tain loss
st loss

T T
2000 5000

Steps

T
1000 3000

(¢) learning rate 0.001

—— Train loss
Test loss
10 4
107 4
107% 4
10_2 E T T L] T T T
o 1000 2000 3000 4000 5000
Steps
(b) learning rate 0.01
—— Train loss
Test loss
10
10'3 -
1071
T T T T T T
o 1000 2000 3000 4000 5000
Steps

(d) learning rate 0.0001

Figure 4.21: PINN training and validation loss with different learning rates

It can be seen from the above data that if the learning rate too big, the loss explodes, and if

the learning rate too small, the loss increases again. Therefore, in this model, the best learning

rate is around 0.001.

Another thing to try with the DeepXDE methods is the residual-based adaptive refinement

(RAR) procedure. The residual points are usually randomly distributed in the domain. This works

well for most cases, but it may not be efficient for certain PDEs that exhibit solutions with steep

gradients. With the European call options, we don’t have such a problem, but possibly with other

possible payoffs. The RAR procedure works as follows:

1. Select the initial residual points 7, and train the neural network for a limited number of

iterations.

2. Estimate the mean PDE residual by Monte-Carlo integrations.

20

3. Stop if the residual is smaller than some pre-defined threshold.
4. Add m new residual points with the largest residual to the current residual set, and go to

step 2).

In this way, we make sure that the average residual is smaller than a threshold, by repeating adding
points when needed. We did not implement this procedure, but it is also a possibility to try in the

future.

A0

Chapter 5

Conclusion and Future Outlooks

In this paper, we introduce the option pricing theory along with its various computational
tools. Firstly, we modified the assumptions of arbitrage-free pricing, and the famous Black-Scholes-
Merton model, and its connection with partial differential equations. We then discuss the theoretical
foundations for different numerical methods, including the binomial tree, Monte-Carlo simulation,
finite difference, ANNs and PINN.

We implement the numerical methods mentioned above, and some of the conclusions are as

follows:

e The binomial method is the easiest to understand and implement. However, it requires a lot
of memory if it is not a simple European option. And if the option is path-dependent, this

method cannot be used.

e The Monte-Carlo method can be used when the dynamics of the underlying asset are known.
Using importance sampling can solve the problem of large variance caused by large volatility

and large strike.

e In the finite difference method, the finer the mesh, the more accurate the result. Therefore,
the result highly depends on the mesh we choose. The implicit scheme is the most stable one,
but also the most time-consuming. The explicit scheme is not stable in a lot of scenarios but
it is the fastest. The Crank-Nicholson scheme behaves relatively better in both cases. But it

is not easy to implement with higher dimensions.

e With the artificial neural networks, it can be compared with the true price to directly estimate
the option price. And it does not require strong pre-assumptions or information of the model.

The more epochs, the smaller the model error.

e Instead of approximating the price directly, we can also price the options by solving the
corresponding partial differential equations with various deep learning methods. For example,

the PINN scheme. We implement this scheme by using the DeepXDE library with TensorFlow

A1

grammar. This library is easy to use and supports a lot of different features, like callback

functions and different geometries.

e With the PINN scheme, the more training points, the smaller the absolute loss. As the
number of steps grows, the model gets more and more accurate. The depth of the neural
network does not affect the result too much. The error reduces with the width of the neural

network, but the speed gets slower. The learning rate should not be too large or too small.

There are a lot of other possibilities with option pricing. For example, with the artificial neural
network, instead of the Black-Scholes price, we can use the market price of the options. This is
because the Black-Scholes model has an unrealistic assumption: the volatility is constant. In this
case, we can get the suitable parameters for the model and reveal a different volatility curve.
Another possibility is to look at American options, which can be regarded as an optimization

problem. One can use the methods in reinforcement learning to solve these kinds of problems.

A9

References

[9]

[10]

Lu, L., Meng, X., Mao, Z., & Karniadakis, G. (2020, February 14). DeepXDE: A Deep
Learning Library for Solving Differential Equations. Retrieved August 15, 2020, from
https://arxiv.org/abs/1907.04502

Option (Finance). (2020, July 15). Retrieved August 15, 2020, from
https://en.wikipedia.org/wiki/Option_(finance)

Hull, J. C. (2018). Options, Futures, and Other Derivatives. Pearson.

Wilmott, P., Howison, S., & Dewynne, J. (2010). The Mathematics of Financial Derivatives :
A Student Introduction. Cambridge University Press.

Joshi, M. S. (2003). The Concepts and Practice of Mathematical Finance. Cambridge Uni-

versity.
Bjork, T. (2020). Arbitrage Theory in Continuous Time. Oxford University Press.

Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A Simplified Approach.
Journal of Financial Economics, 7(3), 229-263. doi:10.1016/0304-405x(79)90015-1

Glynn, P. W., & Iglehart, D. L. (1987). Importance Sampling for Stochastic Simulations.
Management Science, 35(11), 1367-1392. doi:10.21236 /ada193585

Dindar, Z. (2006, February 10). Artificial Neural Networks Applied to Option Pricing. Re-
trieved August 15, 2020, from http://wiredspace.wits.ac.za/handle/10539/181

Brandimarte, P. (2006). Numerical Methods in Finance and Economics : A Matlab—based

Introduction. Wiley-Interscience.

A2

