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Abstract

Understanding turbulent flow is vastly important for our everyday lives. For instance
accurate weather prediction, something most of us rely on everyday, would not be possible
without the understanding and modelling of turbulence. It is unfortunate that even in
the 21st century we are far from having the computational power necessary to implement
direct numerical simulation on the majority of turbulent simulations. Thus, the use of a
turbulence model is a necessity. The Smagorinsky model, originally developed by Joseph
Smagorinsky in 1963, has continued to be a useful model over the decades; however, it is
not without its flaws. In particular it is known to be overly dissipative - a fault thought
to be linked to a violation of scale invariance. To remedy this the Dynamic Smagorinsky
Model (DSM) can be used. We implement the DSM into the Weather Research and
Forecasting (WRF) model and use WREF’s real data capabilities to simulate Hurricane
Igor. First we present a base case featuring results strictly from the Smagorinsky model.
We compare with recorded data to validate our simulation. We then compare against DSM
for several physical quantities using two methods to compute the Smagorinsky constant
cs and find little difference. Energy spectra are presented for all cases using two domains
and resolutions. Surprisingly, we find almost no differences with the classic Smagorinsky
model; however,; a time analysis shows that within the confines of WRF, the additional cost
is negligible. Thus there are no major downsides of using it. A few differences we do note
are more energy at small length scales when coarse resolution is used and more vigorous
gravity waves propagating away from regions of precipitation. We conclude that under
these specific circumstances, using the DSM for large scale atmospheric flows presents

little benefit; however, there may be altered approaches to improve results.
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Chapter 1

Introduction

1.1 Motivation

What is turbulence? Why do we study it? There is a lot to be said about the nature
of turbulent flows. Humanity has been making strides to understand turbulence for hun-
dreds of years. Indeed, perhaps the oldest account of someone truly understanding the
concept was that of Leonardo da Vinci circa in the early 1500s. Leonardo was ahead of
his time; illustrating what was supposed to be flow entering a tank and the formation
of various turbulent structures not too unlike what we know true today [19]. Leonardo’s
idea of turbulence has been investigated further by Monaghan and Kajtar (2014) [27].
One of the most important discoveries came much later in the 1800s at the hands of Sir
Osborne Reynolds (1883) [35]. In his famous pipe-flow experiment, Reynolds was able to
demonstrate the onset of turbulent flow. Through this he could determine a criteria for
the transition of flow from laminar to turbulent. This coined the famous Reynolds num-
ber: Re = uL/v, where u and v are the fluids velocity and kinematic viscosity, and L
defines a length scale. It is known that low Reynolds numbers characterize laminar flow
where viscosity is dominant and flow is smooth. Then high Reynolds numbers characterize
turbulent flow dominated by inertial forces. Since then the study of turbulent flow has
only grown. A quick search of a few keywords on Google Scholar is proof of that. If not

turbulent flows directly then turbulence modelling or test cases in which turbulence plays
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a major factor. We still have yet to answer - what is turbulence anyway?

The ideas in the remainder of this section can be referenced from [15]. Anyone that has
been on an airplane before surely has some concept of turbulence. The vigorous shaking of
an aircraft as it travels through a turbulent regime is certainly one example. However, one
need not book a flight just to experience turbulence themselves. For turbulence is around us
in everyday life. Smoke rising from a chimney or fire, water rapidly flowing down a rapids,
wind sharply changing direction and speed are all examples of flow which can demonstrate
turbulent qualities. More specifically, turbulence is characterized by unsteady, irregular,
seemingly random and chaotic flow. It is linked with the unpredictable creation of chaotic
3D vorticity, or eddies - a rotational movement of fluid creating a vortex. The idea that
large eddies can excite small eddies through vortex stretching is essential in turbulence.
An example of turbulent flow can be observed simply by turning the tap on a kitchen sink.
While the initial flow of water will be laminar, the spraying of water droplets around the
basin demonstrates turbulent flow - each droplet of water is highly unpredictable. Increase
the pressure and let the water strike a rough surface for further exaggeration. With its
highly chaotic nature, one might think turbulence would fit well under the relatively new
chaos theory; however, it is not a perfect fit. Unlike chaos in the dynamical systems sense,
turbulence has a space dependence in addition to time dependence. Still many of its fea-
tures closely resemble chaos such as high sensitivity to initial conditions in turbulent jets.
Because of this randomness, turbulence is often studied in a statistical sense. Computa-
tional methods such as Reynolds-Averaged Navier-Stokes (RANS) rely completely on an

averaging technique.

Why we study turbulence should be clear. It is present in everyday life; thus, an interest
among physicists, mathematicians, and engineers alike is undeniable. A pessimist might
argue that turbulence is too complex and we know too little to be considering engineering
problems. There are always fewer equations than unknowns to predict anything other than
instantaneous motions. Hence the problem with turbulence closure. Yet real engineering
problems must be tackled: airplanes must fly, weather must be predicted, water plants

must be build and so on. Then the question is not why, but how. Of course experiments



were always the first step as demonstrated by Reynolds (1883) [35]. Experiments are help-
ful in that they provide concrete evidence in how turbulent flows in the real world are
supposed to behave. The difficulty in experiments is often the logistics. It is easy for the
average person to obtain a small tank to fill with water and do basic experiments, but it
very quickly becomes out of reach. Access to large (say a few cubic meters) tanks will likely
only be accessible to top research facilities. The same can be said for a large wind tunnel.
Consider wanting to study large scale flows in the atmospheric boundary layer. Do we have
the means to set probes atop of large obstacles (i.e. buildings) to record data? Because
of these challenges the development of Computational Fluid Dynamics (CFD) techniques

has been a necessity.

If we will not use an experiment to study turbulence then we must model it and simulate it
on a computer. Hence the concept of turbulence modelling, which this report has focus on.
In particular we are interested in what is known as the 2D horizontal Smagorinsky model
for the eddy viscosity, and how it can be improved via the DSM for numerical models of
the atmosphere. The term model in this context truthfully is a model in that we are not
representing the equations exactly. To do so would require a technique known as Direct
Numerical Simulation (DNS), which presents a slue of challenges. This is why we opt for
Large-Eddy Simulation (LES). Turbulence modelling techniques were being studied well
before we had the computational power to simulate anything substantial. This is evident
by the Smagorinsky model’s inception by Joseph Smagorinsky in 1963 [13] and its first
implementation by Deardorff in [13]. In the present work we make use of the WRF model
and its real data capabilities to simulate Hurricane Igor. We note that how we are using
WRF does not make use of LES in the traditional sense, but the approach is very simi-
lar. This is discussed more in Chapter 2. The choice of a large scale weather system like
a hurricane has no direct relation to the turbulence models. One could study the DSM
using many different test cases, but this allows us to determine if the expected deficits and
improvements will actually be observed using WRF for such large scale flow. Hurricanes

are also exciting, which hopefully gives this report a more interesting premise.

To close this section we note that our understanding of turbulence is still quite limited.



Look no further than the often inaccurate prediction of weather forecasts leading to frus-
trations of people daily. There is still much to learn about turbulent flows and some of
what we know now may end up untrue. George (2013) [15] puts it quite nicely. The idea
that the sun revolved around the Earth was a fine idea at the time - one which almost
anyone would believe. The only problem was when someone looked up closely and realized
it wasn’t true. While a revelation on such a scale may be a bit extreme, there is certainly

much to discover.

1.2 Hurricane Igor

As mentioned we will be using WRF’s real data capabilities to simulate Hurricane Igor using
various turbulence models. This section will provide the reader with basic background on
said hurricane. Much of the information in this section was obtained from [32]. Otherwise
it is cited accordingly. Hurricane Igor was the most destructive tropical cyclone to ever
strike the island of Newfoundland - the home province of the author. Because of this
fact, it was of particular interest to simulate. On top of what was just mentioned, it
was the strongest hurricane during the 2010 Atlantic hurricane season. Igor originated off
the west coast of Africa due to a broad area of low pressure moving off the Cape Verde
islands on September 6th, 2010. It slowly crept across the Atlantic reaching tropical storm
levels by the 10th. Explosive intensification took place on the 12th, where Igor reached
Category 4 status on the Saffir-Simpson Hurricane Wind Scale (SSHWS). With a 27 km
wide eye, deep convection, and spiral banding, Igor retained this status for 4 days. It
reached peak strength on September 15th around 0000 UTC, with 250 km/h 1-minute
sustained wind speeds and a minimum pressure of 924 hPa. Around this time Igor began
its north-westward track up the Atlantic Ocean. Thankfully, Igor was quite far from
land mass during its most destructive phase, and damages were relatively small outside of
Newfoundland. Igor began to weaken on the 17th due to increased wind shear and dry
air intrusion as it sat roughly 555 km northeast of the Leeward Islands. Over the next
few days Igor fell to a Category 1 status; however, it grew very large in size with tropical
storm-force winds covering an area about 1390 km [7]. On September 20th Igor’s centre

reached Bermuda with wind speeds now as low as 120 km/h. Igor began transitioning
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to an extratropical cyclone as it approached Newfoundland. Figure 1.1 pictures exactly
this. Deep convection became less consistent through its centre; however, the storm re-
intensified as it passed a baroclinic zone while nearing Newfoundland. This allowed it
to strengthen despite the lowering sea surface temperatures [10]. Igor made landfall near
Cape Race of Newfoundland around 1500 UTC on September 21st. Wind speeds reach 140
km/h. Shortly after Igor completed its transition to an extratropical storm. Two days later
the remnants of Igor were absorbed by another extratropical cyclone within the Labrador

sea. Newfoundland is a province which is seldom on the receiving end of powerful tropical

Figure 1.1: Satellite image showing Igor on September 20th, shortly before landing in
Newfoundland. Provided by [11].

storms, so even a Category 1 hurricane was quite devastating. Unprecedented amounts of
rainfall were recorded across parts of eastern Newfoundland, leading to widespread flooding
[10]. In Bonavista, more than 250 mm was estimated to have fallen between the 20th and
21st. A confirmed 238 mm fell in St. Lawrence, ranking Igor as the third-wettest tropical
cyclone in Canadian history [I1]. Sustained wind speeds of 130 km/h were maintained
with gusts reaching 172 km/h [32]. Tgor produced storm tides off the coast up to 1.1 m.
Additionally, massive offshore waves reaching heights up to 25.5 m were recorded [32].

Significant damage was sustained throughout Newfoundland due to the torrential rains,



leading to excessive runoff and flash flooding. In many rural areas entire bridges, roads and
homes were destroyed. In some regions flood waters were higher than entire homes [31][34].
Roughly 150 communities were temporarily isolated as all roads leading to them had been
destroyed or taken substantial damage [31]. Two severe cases were: a 30 m section of the
Trans-Canada Highway being significantly eroded, disconnecting the main population of
the island from the rest of Newfoundland, and a bridge washout on the Burin Peninsula
leaving 20,000 people stranded [31][31]. High winds downing trees and power lines caused
more damage to homes and left many without power. An estimated 50,000 residents were
left without electricity [5]. Overall, the total losses were substantial reaching $200 million,
ranking it as the costliest cyclone in Newfoundland history. A single Newfoundlander lost

his life due to severe flooding causing a collapsed driveway and being dragged out to sea.

1.3 The Governing Equations

In this section will we discuss some thermodynamic background leading up to the governing
equations. Section 1.4, 1.5, and 1.6 of [16] will be used for reference. We also give a subset

of the equations used by WRF using [12] for reference.

1.3.1 Equation of State

Consider the dry, compressible equations of motion in 3D. Five equations are present (three
momentum equations, the continuity equation, and the equation for energy), but there
arc 6 unknowns - three velocity components, pressure (p), density (p), and temperature
(T). Clearly another equation is needed. The equation of state is an expression that
diagnostically relates the various thermodynamic variables to each other. For example, the
thermal equation of state is an expression that relates temperature, pressure, composition

(the mass fraction of various components), and density. It can be written generally as

p=pp. T, ¢n), (1.3.1)

where ¢,, is the mass fraction of the nth constituent. This is not the most fundamental

equation of state from a thermodynamic perspective, but it connects readily measurable



quantities. For an ideal gas (air in the atmosphere is essentially ideal) the thermal equation
of state is
p = pRT, (1.3.2)

where R is the ideal gas constant. R is a specific constant, and is related to the universal
gas constant R* by R = R*/[i, where i is the mean molar mass of the constituents of the
gas. We can also relate R to the number of molecules per unit mass n,, and Boltzmann
constant kg via R = n,, kg, hence R is proportional to the number of molecules contained
in a unit mass. Air has essentially constant composition except for variations in water
vapour. This makes the gas constant in the equation of state have a weak dependence on

the water vapour content, but we can often regard R as constant.

1.3.2 Thermodynamic Relations

A fundamental postulate of thermodynamics is that the internal energy of a system at
equilibrium is a function of volume, entropy, and the mass of various constituents - the
extensive properties. Extensive meaning the value is proportional to the amount of material
present. This is in contrast to something intensive such as temperature. We consider each of
these quantities as divided by the mass of the fluid present, so expressing the internal energy
per unit mass I as a function of the specific volume o = p~*, the specific entropy 7, and the
mass of fractions of its various components. We are interested in two-component fluids (i.e.
dry air and water vapour) so we may parametrize the composition by a single parameter,
q, representing the water vapour mixing ratio. Standard thermodynamic notation is used,
except that [ is internal energy over wu, since u is typically fluid velocity, and 7 instead of S
for entropy, to be consistent with [16]. Then we can write the entropy in terms of internal

energy, density, and ¢ as

I'=I(a,n.q) or n=n(l,aq). (1.3.3)

Either of these expressions gives a complete description of the macroscopic state of a system
in equilibrium, and we call either of them the fundamental equation of state. We can derive

the thermal equation of state from 1.3.3, but not vice versa. The first differential is (we



consider the leftmost equation)

oI oI ol
dl = | — dn + (—) do + (—) dq. 1.3.4
(877)067(1 " 156" - dq - 4 ( )

The subscript notation indicates a parameter being held constant. We can give a physical
interpretation for each of these differentials. Conservation of energy tells us internal energy
of a body may change due to three things: work down by or on it, heat input, or a change

in its chemical composition (e.g. salinity or water vapour content). We write this as
dl = dQ + dW + dC, (1.3.5)

where dW is the work done by the body, d(@) is the heat input to the body, and dC' is the
change in internal energy caused by a change in chemical composition. We call this ‘chemi-
cal work.” The infinitesimal quantities denoted by d are so-called inexact differentials. The
use of inexact differentials is that ), W, and C' are not functions of the state of body, and
the internal energy cannot be regarded as the sum of a ‘heat” and ‘work’. Thus we think
of them only as fluxes of energy, or rates of energy input - not as amounts of energy. Their
sum changes the internal energy of a body, which s a function of its state. It is possible

to rewrite 1.3.5 in a form known as the fundamental thermodynamic relation:
dl = Tdn — pda + pdyg, (1.3.6)

where p represents the chemical potential. The fundamental equations of state (1.3.3)
describe the properties of a particular fluid, while the fundamental thermodynamic relation
(1.3.6) is associated with conservation of energy. Much classical thermodynamics follows

from these two expression.

1.3.3 Thermodynamic Equations for Fluids

The fundamental thermodynamic relation can be applied to identifiable bodies or system,
hence heat input affects the fluid it is applied to, and we can apply the material derivative to

the thermodynamic relations to obtain the equations of motion. We make two assumptions:

i The fluid is in thermodynamic equilibrium locally.



ii. Macroscopic fluid motions are reversible and so not entropy producing.

The first point implies that quantities like temperature, pressure, and density can be locally
related by thermodynamic relationships. Using equation 1.3.5, conservation of energy for

an infinitesimal fluid parcel can be written as
dl = —pda + dQ g, (1.3.7)

where dQg is the total energy input from heating and change in composition. Based on

our first assumption, we may take a material derivative to obtain

% +p% — G, (1.3.8)
where Qp is the rate of total energy input, per unit mass, with possible contributions from
thermal fluxes and fluxes of composition. We can use the mass continuity equation in the
form Da/Dt = aV - u, to write

%l{-l-pozv-u:QE. (1.3.9)
This is the internal energy equation for a fluid. Q in general contains energy fluxes due
to changes in composition, so we need to know said composition. The composition of a
fluid parcel is carried with it as it moves, and changes only if there are non-conservative
sources and sinks. Thus its evolution can be determined by
Dq
D =
where ¢ represents all non-conservative terms such as condensation or evaporation for

4, (1.3.10)

vapour. We obtain the entropy equation by taking the material derivative of 1.3.5, and
applying equations 1.3.9 and 1.3.10 arriving at

%7 - %Q‘E - %q = %Q, (1.3.11)
where Q gives the heating rate per unit mass. The entropy equation is not independent of
internal energy, rather it is related by the thermodynamic relations and the equations of
state. By using the internal energy equation we can indeed calculate the entropy via the
equation of state n = n(I, o, ¢) and vice versa. However, the heating term @ is not always
easy to accurate determine in practice as it is affected by gradients of composition, viscosity,

and latent heating; thus, the internal energy equation may be more straightforward to use.



Potential Temperature

It is common in meteorology to express the entropy in terms of the potential temperature 6,
which is defined as the temperature that a fluid would have if it moved adiabatically and at
constant composition to some reference pressure (usually 1000 hPa - approximately Earth’s
surface pressure). Thus, adiabatic flow in the potential temperature obeys D8/Dt = 0. To
derive an expression for  we start with the first law of thermodynamics for an ideal gas,
using the fact that internal energy becomes a function of temperature only dI = ¢,dT (¢,

is the heat capacity at constant volume). Using this with 1.3.5 and 1.3.6 gives
dQ = ¢, dT — adp, (1.3.12)

where ¢, is the heat capacity at constant pressure. Now when a fluid parcel changes
pressure adiabatically, it expands or contracts and, using 1.3.12 with d@) = 0, we see
the temperature change is determined via c,dI" = adp. We use equation 1.3.12 and the

equation of state for an ideal gas to relate 6 to other thermodynamic variables
dn = c,dInT — RdlInp. (1.3.13)

If we move adiabatically (dn = 0) from p to pr the temperature changes, by definition
from T to 6. Taking the integral of 1.3.13 under these bounds can be solved with constant

0=T (%)N, (1.3.14)

where pp is the reference pressure and k = R/c,. Thus, it follows from the previous two

¢, and R to give

equations that potential temperature is related to entropy via
dn = c,dIné, (1.3.15)
and if ¢, is constant (which it nearly is for Earth’s atmosphere),
n = c,Inb. (1.3.16)

We finally arrive at our last governing equation by taking the material derivative of 1.3.16

and using 1.3.11 to get

Do 0 .
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1.3.4 The Set of Equations

Of course the first two equations in our set of governing equations for dry air are the

evolution equations for the density

0
9P LV (pu) =0, (1.3.18)
ot
and velocity
DU 00 xu— —1vpt uvu s B (1.3.19)
— =—= v : 3.
Dt p P

Equation 1.3.18 is known as the mass continuity equation. It states that the rate at which
mass enters a system is equal to the rate at which mass leaves plus the accumulation
of mass within. The time derivative can be interpreted as the accumulation (or loss) of
mass in the system, while the divergence term represents the difference of flow in versus
flow out. Equation 1.3.19 is known as the momentum equation, which describes how the
velocity of a fluid responds to internal or imposed forces. F represents external body forces
such as gravity, Vp is the pressure gradient force, while the Laplacian term represents the
viscous force. The second term on the left hand side represents the Coriolis acceleration
due to Earth’s rotation. To complete our set of equations we add several of the previously

discussed thermodynamic equations:

PR " Do 0 .
b= P <p>’ T
Note that we now have a closed set of equations. There are 7 equations present (three

momentum equations), and 7 unknowns: u, v, w, p, p, T', and 6.

WRF Equations with Moisture

For reference we give the Euler equations as used by WRF which include moist thermo-
dynamic effects. Note that WRF does not use height as a vertical coordinate. Rather
they implement a terrain-following hydrostatic pressure vertical coordinate that was first

proposed by Laprise (1992) [22]. The idea is that using this coordinate, WRF can more
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effectively handle rough terrain on the bottom boundary. The vertical coordinate is given
by
¢ = (Pan — Pant)/ 1d; (1.3.20)

where p4 represents the mass of dry air in a column and pg, and pgy; represent the hydro-
static pressure of the dry atmosphere and the hydrostatic pressure at the top of the dry
atmosphere. The full set of equations are

U + (V- Vu) + paadyp + (o) og) 0cpoyp = Fuy (1.3.21)
oV 4+ (V- Vu) + paadyp + (o) aq)0cpdydp = Fy (1.3.22)
AW +(V - Vi) — gl(a/aa)dep — pta = Fiv (1.3.23)
0,0+ (V-V0) =Fg (1.3.24)
opa+(V-V)=0 (1.3.25)
O+ 17 (V- Vo) — gW] = 0 (1.3.26)
O Qm + (V- Vgn) = Fy,,, (1.3.27)

with the diagnostic equation for dry inverse density
e = —apla, (1.3.28)

and the equation of state for the full pressure (water vapour plus dry air)

p = po(Rabhn/poca)” (1.3.29)

There are a slue of additional terms due to the vertical coordinate. We give a breakdown
of any new symbols. A subscript d refers to dry air specificity. There are several coupled
variables defined as V' = pgu = (U, V,W) and © = p,0. The geopotential is ¢ = gz. F,
represents all the forces on the right hand side of the momentum equation. v = 1.4 is a
constant and Q,, = taqm, Where ¢, = Gy, qe, Gr, - - - TEpresents any mixing ratio (mass per

mass of dry air) for water vapour, clouds, rain, etc. Finally, 6,, ~ 6(1 4+ 1.61¢,).

1.4 Objectives

The main objectives of this work are:

12



e Successfully simulate Hurricane Igor using WRF's real data capabilities with the 2D

horizontal Smagorinsky model.

e Implement the DSM and compare results - specifically energy spectra - to determine
if the DSM’s has made any changes such as decreasing dissipation. Additionally, is

it worth the extra computational cost?
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Chapter 2
Large-Eddy Simulation

This chapter aims to cover all necessary background information on the computational
approach for turbulence: LES. It will also provide insight on the DSM and why we are
using it. We start by discussing a major hurdle in turbulence modelling (cost) and why
DNS is usually not feasible. Then we discuss the mechanics: the filtering operation, and
modelling the subgrid-scale (SGS) stress tensor. Finally we discuss the concept of scale

invariance and why it motivates the use of the DSM.

2.1 Direct Numerical Simulation

A major challenge in turbulence modelling is cost. Technology and computers have contin-
ued to improve, but we are still far from a time where turbulence models will be unnecessary
to save cost. While using DNS would be ideal, it is often far from realistic. Using DNS, the
Navier-Stokes Equations (NSE) are numerically solved without the use of any turbulence
model. This means all ranges of spatial and temporal scales of the turbulence are resolved
completely. In particular the spatial scales of the turbulence must be resolved down to the
smallest energy dissipating eddies, the Kolmogorov scale given by n = (%/€)"/* where v
is the kinematics viscosity and € is the kinetic energy dissipation. In the atmosphere the

Kolmogorov is as small as n ~ 1 mm. A simple analysis using the Kolmogorov and integral

14



scale shows that a three-dimensional DNS requires a massive amount of grid points. If L

is the length scale then the number of grid points in each cardinal direction is
L
N, ~ N, ~ N, ~ = =Re** (2.1.1)
n

where Re = wlL/v is the Reynolds number (u is the velocity scale). Thus, the total
number of grid points N* is of order Re?* (chapter 9 of Pope [33]). This easily becomes
overwhelming in large scale atmospheric flows. For example the kinematic viscosity of air
is approximately v = 1.5 x 107° m?/s. Using a relatively small velocity scale of u = 2.5
m/s and L = 50 m we get Re = 8.3 x 10°. On top of this, the integration for the solution
in time must be done using an explicit method. Thus for accuracy, the integration often
needs to be done using a time step, At, small enough such that a fluid particle only moves
a fraction of the grid spacing h each step. In other words, the Courant-Friedrichs-Lewy
(CFL) condition [$] must be met:

ulAt
C=——<1.
h
The number of time steps also grows at a rate N; ~ Re** [33]. Thus, we can get an

estimate on the number of floating point operations required to complete the simulation

as Re”* ¥ Re®/* = Re®.

DNS is very expensive, even at low Re. Hence the need for turbulence models such as
RANS and the aforementioned LES. If DNS is one extreme where all scales are resolved,
RANS is at the opposite spectrum where a large portion of the flow is modelled. This
saves on computational cost greatly at the downfall of accuracy. LES provides a powerful
compromise between the two. This is illustrated quite eloquently in a figure given on slide
4 of [6] which depicts a range of scales showing what is resolved versus modelled for each

scheme.

2.2 Filtering

We use Pope [33] as our reference for this subsection. LES is a powerful tool able to

accurately simulate turbulent flows spanning vast length scales. As stated, LES provides
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an effective compromise between computational costs and accuracy of simulations. To
achieve this, LES separates the largest scale eddies from the smallest energy containing
eddies to be resolved directly. Then the smallest (or SGS) eddies are filtered, and the effect
of the sub-filter scale is modelled via a mathematical formulation called a turbulence model.
In the present section we discuss the procedure of filtering. There are four conceptual steps
involved in LES:

1. A filtering operation which decomposes the velocity U (x,t) into the sum of the

resolved (or filtered) component u(x, t) and the SGS (or residual) component u'(x, t).

2. The equations of motion for the filtered velocity field are derived from the NSE,

where the addition of subgrid velocities give rise to the SGS stress tensor.
3. The modelling of the SGS stress tensor via a turbulence model, obtaining closure.

4. The model filtered equations are solved numerically for u(x,t), providing an approx-

imate solution to the large scales of flow.

Note that we are using (bold) @ to indicate a vector. The most important step in this
process is the filtering. Recall that DNS must resolve the velocity field U (x, t) down to the
Kolmogorov scale leading to a cost in memory of Re?*. However, with LES the filtered
velocity field u(x, t) can be adequately resolved on a relatively coarse grid, with a reduced
cost of log(Re) in the right conditions (for instance exercise 13.29 of Pope [33]). This is
a substantial improvement. More specifically, the required grid spacing should be propor-
tional to the specified filter width. The filter width should be slightly smaller than the
size of the smallest energy containing motions to ensure everything is resolved effectively.
Filtering in this way gives us a large grid spacing to reduce cost, while still being small

enough to resolve the energy containing motions.

The general filtering operation is defined as

u(x,t) = ///V G(r,z)U(x — r,t)dr, (2.2.1)
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where G is a specified filter function satisfying

/G(r,m) dr = 1. (2.2.2)

We will analyse the properties of this filter in 1D as it is easier and the extension to 3D is
straightforward. Thus we let U(x) be the velocity field and G = G(r) be a homogencous
filter. Then the filtered velocity is given by the convolution

u(z) = /00 G(r)U(x —r)dr. (2.2.3)

An example of some of the most common filters are the box filter or the sharp spectral
filter, defined as G(r) = xH(0.5A — |r|) and G(r) = —sin(rr/A) respectively. The
transfer function to these filters, defined by

o0

G(K) = /_ e*TG(r) dr, (2.2.4)

o

are G(kK') = 2ok sin(0.5K'A) and G(K) = H(k. — |F']), where H is the Heaviside step
function, A is the grid spacing, k" is the wave number, and k. = 7/A. The simplest filter
is the box filter, which is just an average of U(z’) in the interval x —0.5A < 2’ < z+ 0.5A.
In a later section we discuss the use of a simple box filter with the two-dimensional trape-

zoid rule to implement the DSM.

We can examine the sharp spectral filter in wavenumber space to make its effects more

clear. Suppose U(z) has a Fourier transform

From (2.2.3) and the properties of convolution we see the filtered velocity will have the

Fourier transform
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where the transfer function is equal to 27 times the Fourier transform of the filter. I.e.
G(K') = 2nF(G(r)). Recalling that G(k') = H(k. — |K'|), we see the significance of the
sharp spectral filter in that it eliminates all Fourier modes of wavenumber |k’| greater than
the cutoff wavenumber k., while having no effect on the lower wavenumber modes. The
spectra of turbulent flows is central to LES SGS models, which reconstruct the effects of
the high frequency wave numbers. A challenge in subgrid modelling is effectively being able
to represent the cascade of kinetic energy from the high to low wave numbers. This makes
the spectral properties of the implemented filter very important to the SGS modelling.
While the sharp spectral filter is sharp in wavenumber space, it is decidedly non-local in
physical scape. The opposite can be said of the box filter. A filter that can be used which

is relatively compact in both spaces is the Gaussian filter, defined by

Gr) = (%)0‘5 exp <—6A—f> ,

12 A2
G(K') = exp (—k A ) :

with

24
Along with satisfying (2.2.2), LES filters which are to be applied to the NSE must also

satisfy the property of linearity, and for homogeneous filters, commutation with derivatives

[39]. If (%) is the filtering operation, then
({U+V)=(U)+{V),
and

(oU)  oU)
ds  0Os’

for both s = 2 and s = ¢.

2.3 LES Equations

The Navier-Stokes Equations represent the motion of fluid flow from the largest to smallest

scales,

ou; oUU; 10P 0 (oU; 90U,
v ( + J), (2.3.1)

ot oz,  pom  oz,\oz, T om
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oU;
al‘i N

where U; and P represent the fluid velocity and pressure, while p and v are the density

0, (2.3.2)

and kinematic viscosity [21]. Note that we have both omitted the Coriolis term from
equation 1.3.19 and are assuming incompressibility for simplicity. These equations are
difficult to solve. There is no known analytical solution and as discussed in section 2.1, are
challenging to simulate directly. Instead we use LES as a cost effective, accurate approach.
LES solves the filtered NSE such that the velocities are decomposed as discussed in the
previous section. To obtain the filtered equations we substitute the decomposition of the
velocity field into equations 2.3.1 and 2.3.2 and filter, obtaining

ou;  Owum;  19P Sy Om

= —— 2 — 2.3.3
ot (‘3xj paxl tev 8xj an ’ ( )
ou;
= 2.3.4
and

where 7;; is the SGS stress tensor grouping all unclosed terms. Note the over-bar indicates
the filtering. We write the diffusion term in 2.3.1 in terms of the filtered strain rate tensor
Sij = (Ou;/0x; 4+ Ou;/0x;)/2. The non-linear advection term in equation 2.3.1 is a major
cause of difficulty in LES as it requires knowledge of the residual velocity field, which is
unknown, and hence must be modelled. This term gives rise to the SGS stress tensor as
written in 2.3.5. Leonard [23] decomposed the stress tensor such that 7,; = L;; + C;; + R,
and provided physical interpretations for each term. L;; = w;u; — w;u; is known as the
Leonard tensor, and represents interaction between large scale flow. R;; = W—d@u_} is the
Reynolds stress-like term, and represents interactions among the subgrid-scales. Finally
Ci = W—i—@ — ﬁ,u_; — uli;, the Clark tensor [12], represents cross interaction between
small and large scales. The fact that 7;; represents interactions between both resolved and

SGS velocities is what makes effectively modelling it challenging, but it is the sole goal of
SGS models.
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The SGS stress tensor 7;; represents the effect of the subgrid-scale eddies on the larger
eddies and needs to be modelled via a turbulence model. To begin the discussion we note
that there are two types of unresolved scales: resolved sub-filter-scale (SFS)s and SGSs.
The distinction is that SFSs represent the wave numbers greater than the cutoff wave
number k., but whose effects are dampened by the filter. As mentioned in the section on
filtering, these only exist when filters non-local in wavenumber space are used (such as
the box or Gaussian filter). We are concerned with the SGSs, that is, any scale smaller
than the cutoff filter width A. The type of SGS model used can depend on the filter
chosen. The type of model we are considering is known as a functional model, focusing
only on dissipating energy at a rate that is physically correct. These assume what is
known as an eddy viscosity assumption, where the effect of turbulence are lumped into a
turbulent viscosity. Some limitations of this assumption are discussed in section 6.6.4 of
Wyngaard (2010) [17]. Notably that the diagonal components of SGS deviatoric stress are
largely maintained a tilting term (see equation (6.81) of Wyngaard), which is something

our assumption lacks. The SGS stress tensor is related to the resolved strain tensor via
Tij = —214.5;5. (2.3.6)

With this approximation the only unknown is v;, the turbulent viscosity. The first model
for 1, was given by Smagorinsky (1963)[13] and first implemented by Deardorff (1970)[13].

It models the turbulent viscosity as

Vy = (CSA)zx/ 25”5“ = (CSA)2|S|, (237)

where A = /AxAyAz is the filter width and ¢, is the universal Smagorinsky constant.
Recall that in the present case we are implementing 2D horizontal Smagorinsky using

WRF, in which the magnitude of the strain is instead given by
S| = ((S11 — S22)* + S3y)'/? (2.3.8)

[12]. This formulation in 2.3.8 is originally given by equation (4.23) of [13]. The Smagorin-
sky models’ simplicity and consistency with conservation laws is perhaps why it is so widely
used; however, it is not without its deficits. For instance, the Smagorinsky coefficient ¢,

being held constant may not be a good approximation as it’s expected to vary throughout
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the fluid. Pope [33] goes in some detail about these deficits. In particular a posteriori test
concludes that Smagoirsnky is too dissipative - i.e. it transfers too much energy to the
residule motions. Schaefer-Rolffs and Becker (2013) [10] argue that this deficit may be re-
lated to equation 2.3.7, i.e. the Smagorinsky model, is not scale invariant [29]. There have
been studies done to improve the Smagorinsky model without concern for scale invariance
e.g. Léveéque et al. [21]; however, we will focus on what scale invariance is and why it
motivates the DSM.

2.3.1 LES in WRF

It is typically thought that LES is a turbulence model used on domains no larger than
a few tens of kilometres. In the present case our horizontal length scale is already on
the top end of that range. Thus, it may be correct to say there is no “real” LES within
our simulations. However, the mechanisms WRF uses to compute the turbulent mixing
and eddy viscosity are highly similar. The difference is largely that WRF computes the
horizontal and vertical mixing length separately. The WRF manual [12] provides us with

the equations for horizontal diffusion in physical space

atu =T My [a:rTll + 81/7—12 - az(szll + Z’y7—12>] - az7—137 (239)
O =+ —my[0,T1g + OyTag — 0-(2,T12 + 2yTo2)| — 0.To3, (2.3.10)
Ow = -+ —m,[0pT13 + OyTog — 02,713 + 2yTa3)] — 02 Ta3. (2.3.11)
The additional terms of the momentum equation are excluded via the ... to save space.

Note the additional variables m,, z,., etc. are a byproduct of the fact that WRF does not
use a flat vertical coordinate. The punchline is that 7;; no longer has a single ansatz that
relates it to the strain (e.g. equation 2.3.6). Rather for components of the stress containing

a subscript ‘3", the stress tensor is given by a vertical eddy viscosity (for example)
T3 = —2ug K, 513,

and in any other case i, j # 3, a horizontal eddy viscosity
Tij = —20q K554
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These two equations highly resemble that of 2.3.6 and K, is identically equal to equation

2.3.7. K, is then externally defined as a constant in our input.

2.4 Scale Invariance

Scale invariance is a feature of objects or laws that do not change if scales of length, energy,
or other variables are multiplied by a common factor. Conservation laws are universal and
independent from the effective length scale of the processes considered. For instance con-
servation of energy is connected to an invariance of the equations of motion with respect to
a translation in time [11]. In contrast, scale invariance does not hold for the whole spectral
range of scales and there is no conserved quantity that does not violate scale invariance for
every scale [11]. Consider the turbulent kinetic energy cascade in the atmosphere, where
there is a wide range of scales from planetary to micro-scales where viscosity becomes im-
portant. There is no single scale-invariant subrange that covers this. Instead the energy
spectrum is divided into subranges where different terms of the governing equations are
dominant. This is illustrated is figure 1 of Schacfer-Rolffs et al. (2014) [11] which depicts
wavelengths in the range [10%,107%] versus spectral density. There is a clear change in
profile in spectral density between the non-inertial subranges. In the isotropic inertial sub-
range (which direclty precedes the viscous subrange), Kolmogorov’s spectral theory (see
chapter 8 of [15]) assumes a large inertial range between the scales of injection and dissi-
pation of kinetic energy. In this range kinetic energy is transferred to smaller and smaller
scales. This holds true as long as there is self-similarity within the inertial ranges. In other
words, the NSE are only scale invariant if the external forcing and internal friction are
negligible for scales in the inertial range. Additional evidence of the Smagorinsky model’s
shortcomings due to a lack of scale invariance are shown in figure 2 of the same paper. A
kinetic energy spectrum is pictured for the Smagorinsky model at different mixing lengths
ln = (¢sA). Depending on the value of [;, the model fails to accurately represent the spec-
trum at different wave number ranges. For instance at [;, = 11.6km the spectrum is only
reasonably represented at the synoptic subrange (wavenumbers less than 100 m™!). Con-

versely, the DSM, which obeys scale invariance, is reasonable for all range of scales pictured.
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A simple way to see that the Smagorinsky model is not scale invariant is as follows. By
equation 2.3.5 7; is a difference of squared velocities and hence should be modelled as
such. However using the Smagorinsky ansatz we have 7;; = 2[7|S|S;; where the mixing
length does not contribute to scaling. I.e. the modelled 7;; scales with squared strain and
therefore is not scale invariant. Schaefer-Rolffs et al. (2014) [11] have developed a more

sophisticated approach. They define the scaling transformation of a variable as
a* =e“a (2.4.1)

with ¢, being the scaling factor. A relationship between temporal and spatial scaling
factors under which scale invariance is held is obtained. To do so we consider length,
speed and (advective) time scales: L, U, and T. Assume a constant spectral energy flux
¢* = ¢ = constant (equivalently c. = 0). Given that ¢ ~ L?/T? we arrive at the relation
0 = ¢ = 2¢, —3¢;. Equivalently ¢, = %cx. This scaling transformation must not be violated
by any other transformation of the momentum equations. An example showcasing how
the NSE lead to a second relationship violating scale invariance is as follows. Consider
a flow with characteristic scales as mentioned above. To ensure the same behaviour at
different scales, one has to modify both L and T simultaneously to ensure Re = UL /v =
constant [30]. An assumption of constant viscosity and a simple analysis of the equations
Re = L?/Tv and U = L/T lead to a second relationship ¢; = 2¢,. This contradicts scale
invariance as the only solution satisfying both relationships is ¢; = ¢, = 0. In short, in
LES a scaling transformation of the equations of motion must not lead to a relationship
between spacial and temporal parameters that contradicts ¢; = %cz. To indeed show that
the Smagorinsky model violated this relationship, a condition to determine scale invariance

was developed. Defining
Gu(t,zs,a,b) = e%%_c‘lfa(e%%t, e x;, e“a, e, (2.4.2)
where F is the right hand side of the momentum equation
oa+ (v-V)a = F,(t,z;a,by, by, ...),
Schaefer-Rolffs et al. (2014) [11] developed the condition
Ga(t,zia,b) = Fult, zi,a,by) (2.4.3)
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to ensure scale invariance is held. Then considering the eddy viscosity for the Smagorinsky
model
= ll2L|S|7

the scaling factor for the eddy viscosity can be written as

2
Cy, = 2€1, — =Cy.

3

As we’ve previously mentioned the Smagorinsky coefficient ¢4 is constant in the classical
model. A consequence is that the mixing length is constant such that [; = [;. Equivalently
¢, = 0 (refer to equation 2.4.1). This gives a relationship based on equations 2.4.2 and
2.4.3

Goa = ¢ *“LiNV(|S]S) # Fua, (2.4.4)

where the equality cannot hold unless ¢, = 0. However, doing so would imply no scaling
transformation could be applied. This is a classical result of the constant mixing length
and was first pointed out by Oberlack (1997) [28].

2.5 Dynamic Smagorinsky Model

It is clear that there are deficits with the classical Smagorinsky model - the violating of scale
invariance being the highlight. As previous analysis has shown, it appears the assump-
tion of a constant mixing length; that is, that the Smagorinsky constant ¢, is unchanging
throughout the flow is the culprit. Then one would like to develop an alternative to the
Smagorinsky model which has variable mixing length and thus complies with scale invari-
ance. That is exactly what the DSM entails. The DSM was originally developed in 1991
by Germano et al. [17]. They investigated several studies using the classic Smagorinsky
model and found different values for ¢, depending on the flow configurations. Thus the

need to develop a model which computes ¢, at run time.

To do this we introduce an additional filter (hereafter: test filter) with size greater than
the LES filter: A > A. A typical approach lets A = 2A, but it should remain that A and
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A lie within the same turbulent inertial range. Germano et al. (1991) [17] initially derived
a scheme for a sharp cutoff filter in a grid-point model. Shortly after, Germano (1992)
[16] showed this approach is applicable to a variety of explicit filters such as spectral cutoff
and Gaussian. In similarity to equation 2.3.5, we define the turbulent stress due to scales
smaller than A as

Ty = W; — U, (2.5.1)
Next we introduce the Germano identity [17]. This represents the turbulent stress due to

scales between A and A acting on scales larger than A:

Lig = Ty = T = Wty — Uty — 0l + Uity = Uty — Uiy, (25.2)
Equation 2.5.2 is expressed in terms of the resolved eddies, thus can be calculated directly

from resolved scales. Then we make the same eddy viscosity assumption on 7;; and we did

7;; and parametrize via the same ansatz. That is, we can express T;; as
T;; ~ —2(crA)*| S5y, (2.5.3)

with Smagorinsky constant ¢y for the test filter A. Substituting eddy viscosity approxima-

tions for both 7;; and 7;; into equation 2.5.2, we obtain the approximation relation:
Lij = =2[(crA)?|S[Si; — [(s2)*|S[Si]"]

2 e~ —~— —_ N
Y [(C_T> A255, — A2S[S, | = M,
Cs
where [...]” indicates the test filter applied to everything within the square brackets. Note

the second equality only holds if A and ¢? are slowly varying at the scale of the test filter.

2

This obviously holds since A is numerically constant. We require the assumption ¢ ~ c;

without mathematical justification (Ronchi et al. 1992) [36]. We also assume the classical
Smagorinsky constant is comparable at the test filter and resolution scale, i.e. c% = 2.

Thus, we can compute the dynamic Smagorinsky parameter from

P
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and the resulting turbulent stress tensor can be written as
(Ti)psm = —2¢2A%|S[S};, (2.5.5)

where ¢, is now being computed from equation 2.5.4. A simple analysis will show scale
invariance is no longer being violated. We have L;; scaling with squared velocity from
equation 2.5.2, while M;; scales with squared shear, thus ¢, scales with squared length. In
short, (7;;)psm scales analogously to 7;; with squared velocity. We can apply the method-
ology from Schaefer-Rolffs et al. (2014) [!1] and achieve the same result. It is no longer
the case that ¢, = 0 and consequently, [} # [,. Indeed, as cg scales with squared length

we have [ ~ ¢? giving the relationship

Cl, = Cg.

This corresponds to the transformed turbulent diffusion term
Gup = =V (e™1)*| S| S]

which reduces to
Gu2 = V(I;|S]S) = Fo2. (2.5.6)

Hence, by the criteria laid out in section 2.4 the DSM is scale invariant. Therefore, the
DSM correctly provides scaling properties to allow for a turbulent energy cascade from the

resolved to unresolved scales, as required by LES.

All that remains is to solve equation 2.5.4 for the dynamic Smagorinsky parameter ¢?. First
there are two things to made note of. As discussed in Schaefer-Rolffs and Becker (2013)
[10], the shear production must be positive definite for any diagnostic SGS model. This is
due to the second law of thermodynamics and the fact that entropy always increases. For
the DSM the shear production is given by

¢ = ;55 = ulS| = A8%IS[', (257)

so it is equivalent to say the second law is satisfied is 1, > 0. Equivalently, we require the

dynamically computed Smagorinsky parameter ¢2 to be positive definite. It is sufficient to
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relax this condition by taking a spatial or temporal average (denoted (-)) over the resolved
scale, instead requiring (c?) > 0. If it’s the case that (c?) < 0, then some numerical insta-
bilities will likely arise (Zang et al. 1993) [18]. Secondly we note that both L;; and M;; are
symmetric and have zero trace, so each tensor has 2 independent elements. This means
equation 2.5.4 is a system of two independent equations with only one unknown c¢?, which
is generally not mathematically exact. As this is essentially an approximation similar to
the classical Smagorinsky ansatz to describe the subgrid processes, we shouldn’t expect a
perfect correlation between the stress and strain tensor elements. Hence, equation 2.5.4
is at most valid in a statistical sense and therefore any useful solution will require further

approximation.

There are several proposed methods to solve equation 2.5.4 such as Moin’s (1991) [20] sug-
gestion to relax the assumption ¢2 = ¢ and defining several new tensors, or the “solution
applying the tensor norm” as discussed in Schaefer-Rolffs and Becker (2013) [10]. The
only method we will be discussing is the least squared approach by Lilly (1992) [25] as it
is the method we used in our implementation of the DSM. For this approach [25] solves
O(Li; — 2M;;)?/0c? = 0 yielding

o _ LMy
* MuMy’

where we are using the Einstein summation convention. While this a very simple solu-

C

(2.5.8)

tion, an unfortunate side effect is the product L;;M;; can become negative leading to a
negative c2. This may lead to numerical instabilities if not handled. One must either ap-

ply some spatial or temporal averaging, truncation to a value, or some combination of both.

We make note of a few circumstances in which the DSM has shown to give improved results.
Schaefer-Rolffs and Becker (2013) [10] made use of the DSM within the Kiihlunsborn
mechanistic general circulation model. In Figure 3 of their work they present two kinetic
energy spectra comparing the classical Smagorinsky model and the DSM. They found the
DSM gave a more realistic spectrum for the higher wave numbers including a transition to
the -5/3 inertial range. Khani and Waite (2015) [20] implemented the DSM for stratified
turbulence and found the DSM to be less dissipative at high wavenumbers (Figure 4).
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Specifically, they found that the DSM produced results similar to the Smagorinsky model

using a grid spacing twice as large.
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Chapter 3

Weather Research and Forecasting
Model

The chapter will provide a general overview of what WRF is and what it is used for.
Following that, a description of how our simulations were set up, and finally we discuss

how the DSM was implemented for our tests.

3.1 Overview

We use [2] as a reference for the overview. The Weather Research and Forecasting model
is a next-generation mesoscale numerical weather prediction system designed to serve both
atmospheric research and operational forecasting needs. While having “weather” in its
name may lead one to believe WRF can only be used to model the largest of scales, it
actually serves meteorological scale from tens of meters to thousands of kilometres. WRF
is the culmination of work by many organizations. Development began in the latter part
of the 1990 and while the majority of work and support has been from the National Center
for Atmospheric Research (NCAR), the National Oceanic and Atmospheric Administra-
tion (represented by the National Centers for Environmental Prediction (NCEP)) and the
(then) Forecast Systems Laboratory, and the Air Force Weather Agency, there have been
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contributions from the Naval Research Laboratory, the University of Oklahoma, and the
Federal Aviation Administration as well. WRF offers two dynamical solvers: the WRF-
ARW (Advanced Research WRF) core and the WRF-NMM (Non-hydrostatic Mesoscale
Model) core. NCAR is the prime developer of the ARW model and is maintained by their
Mesoscale and Microscale Meteorology Laboratory. On the other hand, the NMM core
was developed by NCEP and is currently at use in their hurricane WREF system. For our
simulations we use WRF-ARW.

WRF has the functionality to produce simulations based on real atmospheric conditions
(i.e. data from observations or analysis) or true idealized conditions. At the beginning of
this research project we knew we wanted to test the DSM versus classical Smagorinsky using
WREF; however, we had not decided whether to use an idealized case or not. Ultimately the
decision came down to the fact that using real data is more interesting (i.e. cooler). The
decision was made to use Hurricane Igor as the real weather event of choice as discussed

n section 1.2.

3.2 Simulation Setup

To perform a real data simulation you need not only atmospheric weather data (for initial
and boundary conditions), but data from the static geography as well. WREF uses data
given by [1]. There is an extensive list of data - some which one may or may not need for
individual simulations. To obtain the actual weather data we employ the services of North
American Regional Reanalysis (NARR). NARR is a regional reanalysis of North America
containing data for dozens of variables, and is produced by NCEP. The NARR model takes
in, or assimilates, a large amount of observational data to produce a long-term picture of
weather over all of North America. The data is produced in General Regularly-distributed
Information in Binary form (GRIB) format. To obtain the data required to simulate Hur-
ricane Igor we simply put in a request for data over the time frame of the event. For our
simulations we requested data from September 20th to September 22nd in the year 2019.

This time frame leaves Hurricane Igor striking Newfoundland roughly halfway through the
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simulation. Note NARR distributes data in 3 hour increments.

As NARR supplies data for all of North America, we need to specify the region we are
interested in. To do so we make use of WRF Preprocessing System (WPS). The supported
functions we use in WPS to be specify our domain are: geogrid.eze, ungrid.exe, and met-
grid.exe. Geogrid takes static geographical data and fits it to the specified grid. Ungrid
takes the static GRIB data and turns it into an intermediate file format. These can be
run independently of each other, but metgrid, which takes output from geogrid and ungrid
and interpolates the data to the domain for the specified times, must be run last. The
NARR data is used as the boundary conditions in our domain. It’s important that the
domain is large enough that the boundaries do not interfere with the body of the hurricane
as it moves along its path. The only limitations on domain size are run time and required
memory, so it is encouraged to go large; however, with Newfoundland containing the most
eastern point in North America and with our data being sourced from North America, we
actually end up outside the domain for data NARR provides if we stretch our domain too

far south east. We feature two domains of varying sizes and grid spacing for comparison.
54°N
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Figure 3.1: Simulation domain contoured by terrain height.
Figure 3.1 shows the size of our larger, finer domain with terrain height contours. You
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can see there is still plenty of space between the boundary in the south and east. For the
larger domain the reference latitude and longitude, corresponding to the centre point, are
46°N and 51.5°W| respectively. For the grid we use a spacing of dz = dy = 15,000 m,
with west-east grid points n,. = 150 and south-north grid points ng, = 135. This gives a
domain size of (Lye, Lyns) = (2250,2025) km. The smaller domain uses a reference latitude
and longitude of 44.5°N and 54.5°W, respectively. The grid spacing is dr = dy = 20,000 m
with grid points n,. = 105 and n,; = 90. Thus the domain size is (L., L,s) = (2100, 1800)
km. There are 30 vertical levels ranging from a minimum height of approximately 40 m to
a maximum of approximately 16,500 m. The minimum layer separation is about 45 m at
the lower boundary, while the maximum is about 800 m near the top. With this separation
the troposphere lies below the 22nd layer. We use a timestep of At = 90 s. WREF uses a
staggered grid such that a majority of scalar variables are taken at the centre of the cell;
however, the velocities are taken at the midpoint on the corresponding boundary. Because

of this we ensure to interpolate the velocities to the centre point in our implementation of

the DSM.

Once we’ve successfully run WPS to build our domain we can finally run our simulation.
The first step is to run real.exe. This will vertically interpolate data created during WPS
and create the boundary and initial conditions. The final step is to run wrf.exe which
generates the simulation. There is a nameslist.input text file containing a multitude of
parameters we can use to alter the simulation. In general we follow the best practices as
desribed in [3]. Our test case is relatively quick to run. Using 16 processors we are able
to complete a simulation in approximately 15 minutes. In the greater world of CFD this
is quite fast, so one might think we should decrease the resolution. However, the data
we obtain from NARR has fairly coarse lower bound of 32 km and we cannot bring our
grid size to be much smaller than this without receiving errors. We could address this by
using nested domains, but we decided against this for simplicity. Using this procedure we
can easily run a real data simulation using the 2D horizontal Smagorinsky model given by
equations 2.3.7 and 2.3.8; however, WRF does not include an implementation of the DSM

for real data simulations, so we must write it ourselves.
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3.3 Implementing Dynamic Smagorinsky

There are essentially two steps required to implementing the DSM. The first is filtering all
the required variables at the test filter width, and the second is solving for the Smagorinsky
constant c,. The second step is much simpler than the first. We just have to apply equation
2.5.8 after computing L;; and M;;. Referencing equations 2.5.2 and 2.5.4, we’ll need to
filter the velocity field (and its product) to compute L;; and filter the strain rate tensor,
its magnitude, and their product to compute M;;. Once we successfully filter one field,
the others are the same. We can use the subroutine already present in the WRF code for
horizontal Smagorinsky. This way all the proper framework is in place and we just need

to add the extra steps to compute ¢,. We apply a box filter

1 a-‘r% b+%
u(a,b) = P/ . /b . u(z,y) dzdy, (3.3.1)
a=3 -3

and use the 2D trapezoidal rule given by [I]. For a function f(z,y) over a rectangle
R = {{z,y} : a <2 < b,c <y < d} subdivided into grid points ranging xo, ..., z,, and
Yo, ---, Yo With h and k the grid spacing we have

//R flz,y)dA = /ab /Cdf(:v, y) dwdy ~ T2D(f, h, k), (3.3.2)

where

TID(f, b ) = S (Fa,€) + F(0,) + Fla,d) + F(b.)

m—1 m—1 n—1 n—1
+2) fwno)+2> flend) +2)  fla,y) +2) fbu)
i=1 i=1 j=1 Jj=1

n—1m—1

+ 42 Z f(@i,y1))-

j=1 i=1

This equation for T2D gives us the formula we use to filter all of our fields. Initially this
looks much more complex than simply applying a 1D trapezoid rule twice (once for z and
y); however, doing so is less efficient. This is because to implement 1D trapezoid rule we

have to embed a loop within the existing loops over our grid points as the filter has to be
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applied at every node in the grid. This adds an additional order of cost to the complexity.

It is possible to avoid this using a 2D method as we can write T2D as a matrix:

122 ...221

. 44 2
T2D = — :
1 :

442

122 .02 2 1]

which is very easy to construct using Fortran. Using this method we can keep all our loops
the same order. We just have to manually construct our trapezoid matrix and perform

l

“matrix” multiplication with the quantity we want to filter. This works because naively
multiplying matrices (which are truthfully 3D arrays) is done component-wise, so we get

the desired expression. We then multiply by the appropriate constant.

To determine the size of the trapezoid matrix we must consider the size of our test filter.
It is recommended to use a test filter twice the size of the default filter. This corresponds
to a 3 grid point filter and thus our trapezoid matrix will be size 3 x 3. The constant
is found via hk/(4A?). As we have the same grid spacing in both directions this reduces
completely. Using h = k = dz and A = 2dz gives us a constant 1 /16. In pseudo-code this

will look something like

do,do,do (j,k,1)

U(i,k,j) = sum(0.5%(u(i-1:i+1,k,j-1:j+1) + u(i:i+2, k, j-1:j+1))*T2D)
end,end,end

U =U0U/16

There is no concern for points near the boundary as WREFE calculates up to 10 ghost points
for each of its fields. This means we can freely start and end the loop indexes without
fear of going out of range via the ¢ & 1. Tests were done on constant and noisy vectors to
ensure the correctness of the filtering. Once we have a properly working filter code we can

calculate the tensors L;; and M;;. From there the only concern is negative values of c.

34



We found approximately half the values of ¢; to be negative as found in other studies; e.g.
Khani and Waite (2015) [20]. We attempted filtering ¢, through a variety of filter sizes,
but found that only a smaller percentage of the negative values were being removed each
time. This meant we had to apply a truncation method, with which the remaining negative
values were set to zero. Compared with a pure truncation method, we generally found little
difference. We will be presenting results using a two methods: where ¢4 is filtered twice on

a 8dx width filter and where there is no filtering of ¢4, i.e. a pure truncation method.
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Chapter 4

Results

We first present our “base case” using the standard Smagorinsky model and, using several
physical quantities, show our simulation captures basic features of Hurricane Igor such as
its track and regions of precipitation. We present a comparison of these quantities with
the DSM to identify which features depend on the subgrid model. We then give several
energy spectra of u and w to definitively deduce whether our implementation of the DSM

has a decreased dissipation at the small scales.

4.1 Base Case

As stated in the objectives, we would like to “successfully simulate” Hurricane Igor; how-
ever, this statement is bit vague. More specifically we would like to see that what we are
simulating does indeed reproduce some basic features of Igor, such as pressure and precip-
itation. Perhaps one of the easiest ways to verify we have recreated a hurricane is to follow
its path as determined by point of lowest pressure. To do this we plot sea level pressure
contours over the time frame of our simulation. From this we can easily identify the storm
as it moves and get a good estimate on its centre i.e. the point of lowest pressure. Table 4.1
features the minimum pressure at various times along with latitude and longitude values.

This data is obtained from Weather Underground and is used for comparison. Figure 4.1
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Figure 4.1: Sea Level Pressure contours at times: (a) 00 UTC, (b) 06 UTC, (c) 12
UTC, and (d) 18 UTC on September 21st. Additionally u velocity vectors at 10 m and

temperature at 2 m are shown.
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Date Time (UTC) | Lat (°N) | Lon (°W) | Pressure (hPa)
09/21/2010 00 UTC 39.0 60.4 960
09/21/2010 06 UTC 41.5 27.0 960
09/21/2010 | 12 UTC 443 54.4 955
09/21/2010 | 18 UTC 185 52.1 950

Table 4.1: Minimum pressure of Hurricane Igor for various times and locations. Data

provided by Weather Underground.

displays pressure contours on September 21st for the times listed in table 4.1. Additionally
velocity vectors of u at 10 m and contours of temperature at 2 m are given. Results are
only presented for our larger, finer, domain as the differences between the pressure, veloc-
ity, and temperature are minute; the same trends are observed. The first thing we note is
the simulation is consistent with the timing given in section 1.2. Hurricane Igor landed at
Cape Race (marked by the black dot in Figure 4.1 (a)) at approximately 15 UTC. Figure
4.1 (c) and (d) show this quite well. The centre of the storm clearly passes over the Avalon
Peninsula between these times. Comparing with the given data, the earliest time we see
the centre of the inner contour is in very good agreement in terms of location. Using the
fine, blue tinted text beneath each figure, we see the minimum contour is 982 hPa. We
can estimate the minimum value of pressure by taking P at the lowest contour value and
subtracting AP. This gives us 980 hPa for the earliest time. This is quite a bit larger than
960 hPa; however, this improves with time. At the latest time the estimated minimum

pressure is 960 hPa, which is only 10 hPa higher than expected.

Casson and Coles (1999) [9] observed the opposite trend. In Figure 8 of their paper they
feature quantile-quantile plots of the minimum pressure for landfalling and non-landfalling
hurricanes, where landfalling implies part of the hurricane’s track intercepts land. The
model they used is based off of the HURDAT database which, at the time, contained infor-
mation on hurricanes and tropical storms in the North Atlantic from 1886 to 1994. Their
approach involved simulating an n-year epoch of the hurricane history. The general trend
was that for non-landfalling hurricanes, the observed pressure was slightly larger than the

simulated pressure. The opposite was true for landfalling hurricanes. By their definition
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Igor is a non-landfalling hurricane for the majority of its duration, meaning our simulated
results disagree with their findings. Aside from this, the order of error in recorded min-

imum pressure values are similar to what we found. A more accurate depiction of the

54°N
52°N
50°N
48°N
46°N
44°N
42°N
40°N

38°N

60°W 55°W 50°W 45°W 40°W

Figure 4.2: Simulated track (black) versus data obtained from Weather Underground
(white) of Igor via the minimum pressure. At black: 3 hours; At white: 6 hours. Units

are hPa.

hurricanes track and minimum pressure is given in Figure 4.2. The black dots indicate an
exact location of the minimum pressure for different times as extracted directly from our
output files. The white dots indicate the same but data was taken from Weather Under-
ground. Note for every white dot there is two black dots. The earliest pressure corresponds

to Figure 4.1 (a). You can see our estimation of 980 hPa is spot on. The same can be
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said for the other plotted times. The locations of minimum pressure are in good agreement
for all times displayed with the exception of 18 UTC and later. Here both pressure and
longitude show good agreement, but the expected latitude falls short by several degrees.
Notice the earliest white 950 hPa dot is directly north of the black 961 hPa dot. This is
seen again with the second white 950 hPa dot and first black 956 hPa dot. We can assume
the simulation moves more slowly than the actual storm. The velocity vectors are shown
to see that they do follow the pressure contours as expected. From the temperature we
can infer a shift from night to day. Notice the temperature of Nova Scotia increase by up
to 10 Kelvin between 06 UTC and 18 UTC. Locally this is 2:00 a.m. to 2:00 p.m. In any

case, this shows our simulation of Igor follows an appropriate path with reasonable pressure.

Another quantity we can plot to observe the validity is the rain rate. In section 1.2 we
mentioned the highest confirmed rain total was 238 mm ~ 9.37 inches in St. Lawrence.

Figure 4.3 illustrates exactly thus by giving the total rainfall over Newfoundland from

Hurricane Igor
September 20-21, 2010
78 sites

Maximum: 9.37"
St. Lawrence, Nfld

Figure 4.3: Total rainfall over Newfoundland. Obtained from [33].

the 20th to the 21st. Note that St. Lawrence is located in the southern most section of

the dark blue colour. We could not find a radar image displaying rain rate of Igor over
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Figure 4.4: Rain rate per 3 hours for times: (a) 18 UTC on September 20th and (b) 03

UTC, (c) 12 UTC, and (d) 21 UTC on September 21st. Coloured by terrain.
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Newfoundland, but this will still be a useful comparison. Rain rate in inches per 3 hours
is given by Figure 4.4. We use 3 hour increments as our data from NARR is given as
such. Only the larger domain is displayed as there is nothing new to gain from the smaller.
The first thing to notice is the band-like structure that is present. This strong band of
rainfall forms as early as 15 UTC on September 20th and continues as such until petering
out shortly after 21 UTC on the 21st (sce Figure 4.4 (d)). This banding can actually be
seen in the satellite image given in Figure 1.1, which is timed shortly before Igor arrives
at Newfoundland. Furthermore, Igor quickly devolved into a extratropical cyclone as it
pasted over Newfoundland, where these large band structures are commonly found [15].
Geographically the bands of heavy precipitation are located over the St. Lawrence area
from 18 UTC on the 20th until 12 UTC on the 21st. In the next immediate time frame
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Figure 4.5: Spatial averaged rain rate per 3 hours over the entire domain.

rainfall over St. Lawrence has reduced to approximately 0.2 inches per 3 hours and has
completed fallen off by 21 UTC on September 21st. Thus, it is clear that our simulation
places the largest amount of rain in the expected location. Using the full set of our rain rate
figures for all times we estimate total rainfall to be approximately the same as expected
in the high intensity areas. In addition to plotting contours at various times, we can take

a spatial average of rain rate over the entire domain and plot that over the simulation
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time. Figure 4.5 features exactly this. Note that the values on the y-axis are essentially
irrelevant as being averaged over the entire domain significantly reduces the values. What
this does tell us is during which times was the rainfall the heaviest. We see this to be
around the end of September 20th and the beginning of September 21st. This time frame
was the heaviest rainfall displayed in Figure 4.4, and indeed was one of the heaviest rain

rate contours we obtained.

(a)

Figure 4.6: Vorticity at times: (a) 18 UTC on September 20th and (b) 03 UTC on
September 21st.

Finally, we display the vorticity in Figure 4.6 to greatly emphasize the formation of the
eye combined with the large band observed in both the rain rate and satellite imagery. It’s
clear that the centre of the storm shows positive (cyclonic) vorticity. At the small scale
we see both positive and negative values in regions of strong precipitation (note these are
the first two times pictured in Figure 4.4). The “slope” of the vorticity bands align very
will with the bands of precipitation. Also the effects of the boundary can be observed; for

instance, the ribbed structure we see around the bottom left corner.
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4.2 Comparison with Dynamic Smagorinsky

In this section we provide a comparison for some of the quantities displayed in section

4.1 as well one other. We start by comparing the sea level pressure. Figure 4.7 features
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a4°N —f A
42°N

40°N

60°W 55°W

(a)
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60°W 55°W 50°W
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50°W
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52°N

45°W 40°W
SLP Contours: 972 to 1020 by 4

SLP Contours: 972 to 1020 by 4

45°W 40°W
SLP Contours: 972 to 1020 by 4

Figure 4.7: Sea level pressure contours at time 12 UTC for: (a) Smagorinsky model, (b)

DSM with filtering, and (c) DSM on September 21st.
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exactly this. Pictured is the sea level pressure on September 21st at 12 UTC for our base
case and two versions of the DSM. The first implements a twice filtering technique with an
8dx filter on the Smagorinsky coefficients to try and remove many of the negatives before
truncation, while the second is pure truncation method. The images are highly similar.
This is observed for all times tested. The level of similarity may seem surprising; however,
the pressure is such a large scale quantity that the effects of dissipation would be very
small. Thus, the overly dissipative nature Smagorinsky is unlikely to have a large impact.
Perhaps what is more interesting is that the difference between both versions of the DSM
being so small. One would think the difference between simply chopping a negative to zero
and averaging it to get something positive would be significant. As mentioned in Chapter
3, we found nearly half of the ¢, values to be negative. Therefore, an averaging technique
essentially just brings all values closer to the zero with a slight positive favouring. In fact,
we chose to average twice on such a large filter because anything lesser did not remove
a large enough portion of the negatives. Despite this, the pressure being so large scale
trumps the minute differences. What this does tell us is that implementing the DSM did
not break our code. There are far too many pressure contours to show in this paper, but

we found a level of agreement similar to the Smagorinsky model with regards to Table 4.1.

Figure 4.8 gives the rain rate contours using the DSM for both methods to compute c;.
Notice these are quite a bit more different from one another than the pressure contours. We
see what may be a consequence of over filtering ¢, when comparing both methods in Figure
4.8 (c) and (d). In particular, there is significantly less rain using the 8dz filter method,
even when compared to the same time in Figure 4.4. This is most noticeable around 44°N
and 55°W. As discussed, having so many c, values less than zero means filtering brings
the overall average of c; a lot closer to zero. This is what we mean by over filtering - we
would expect to observe more rain using a dynamic method. This same phenomena was
extremely prominent in the immediate proceeding time frame as well. However, it seems
the contrary is true when considering Figure 4.8 (a) and (b). Though to a less extreme
effect, we clearly see large values for the rain rate with the 8dx filter method, so this is
rather inconclusive. Regardless, the aim of the DSM is to be less dissipative. Thus, for a

small scale quantity like the rain rate, we expect to see larger quantities when compared
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Figure 4.8: Rain rate per 3 hours. Top: September 20th, 18 UTC, Bottom: September
21st, 03 UTC. Left: DSM with filtering, Right: DSM. Coloured by terrain.

to the original Smagorinsky model. There is some truth to this if we take least dissipative

figure from each method and compare with Figure 4.4; however, it’s far more similar than

expected. This is quite surprising, so we analyse another small scale quantity, the vertical
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velocity w, to attempt to better understand the behaviour.

The effects of grid resolution had a more significant impact on the vertical velocity, so we
will feature contours from both resolutions. We took the velocity at the 15th vertical level
which corresponds to about 5550 m. This puts us in the mid-troposphere. Figures 4.9 and
4.10 picture the vertical velocity for the large (with do = 15 km) and small (with dz = 20
km) domains, respectively. We see using a finer resolution allows us to see much more of
the velocity. This is especially evident in the light blue banding seen between 44°N and
48°N. The comparison between the Smagorinsky model and the DSM with no filtering is
minimal. For both resolutions we see very little difference. It seems the model is doing little
to improve the dissipation. On the other hand, the 8dx filter method shows some promise.
Even at the low resolution we see light blue bands forming immediately north-west of the
largest velocities, resembling the Smagorinsky model at a higher resolution. At the higher
resolution the banding is strong not only above the eye of the storm (where the highest
velocities are recorded), but well beneath it as well (say between 38°N and 42°N). These
bands arc actually prominent gravity waves that are not visible in any of the other cases.
This result consistent with weather dissipation. This trend was observed for many of the
other time frames, but it was of largest significance for the frame presented. Nevertheless,

this is at least a result somewhat in favour of the DSM.

4.3 Energy Spectra

Overall, the results presented in the previous section seem to imply implementing the
DSM does not seem to improve upon the over dissipation of the Smagorinsky model for
large scale atmospheric simulations. We can further explain whether or not this is true by
examining the energy spectrum of the velocities. To compute the the energy spectra of
the velocity, say u, we calculate the Fourier transform in 1D of the velocity over the entire
domain at a specific height. Just as with the vertical velocity contours, we use the 15th

level. Then the energy in a particular wave number can be found via

: (4.3.1)
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Figure 4.9: Vertical velocity contours at time 09 UTC for: (a) Smagorinsky model, (b)
DSM with filtering, and (c) DSM on September 21st.
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Figure 4.10: Vertical velocity contours at time 09 UTC for: (a) Smagorinsky model, (b)
DSM with filtering, and (c) DSM on September 21st. Small, coarse domain.

where the carrot symbol indicated a transformed variable to the wavenumber space. To
get the energy is just the x (or y) direction, we simply average over the number of rows (or

columns). We then take a log-log plot to visualize the spectra. The only challenge is that
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our domain is not periodic, which is required to take the Fourier transform. To solve this
we can use a strategy discussed in [14], in which we construct a line using the first and last
point in the velocity vector and then subtracting this linear trend from said vector. Thus,
we have the spectra. There is a lot of theory about how the energy spectra should look
like in a perfect LES and when using the Smagorinsky model. This was briefly discussed
in the section 2.3 on scale invariance. So we can infer a lot based on how our spectra look.

Figure 4.11 gives the energy spectra of u for September 22nd, 00 UTC. A line with slope
—5/3 is plotted for reference to the power law. The results are pretty definitive. In a
perfect LES, the energy spectra would follow more or less what is pictured in Figure 4.11
(c) and (d) up to the medium wavenumbers (say k ~ 50 in the large domain case). For
wavenumbers larger than this we see a steep drop in the energy. This is a known deficit of
the Smagorinsky model - that it dissipates too much energy in the small resolved scales.
One aim of the DSM was to try and correct this. In other words, we expect to see the
Smagorinsky model and the DSM in high agreement up until the large wavenumbers. After
this point the DSM should maintain roughly the same slope (barring some exceptions - say
if the small scales have different physics), while the Smagorinsky model starts to drop. This
would definitively show that the DSM has remedied the issue of over dissipation. This is
decidedly not what we observe for domains of both sizes. There is slightly more promising
result given in Figure 4.12 which depicts the energy spectrum of w for September 21st,
15 UTC. We again expect to see larger values of energy for the larger wavenumbers, and
this is certainty not the case for the larger domain. There is a small sliver of hope for the
DSM when considering a courser domain of dz = 20 km. For wavenumbers approximately
k > 20 we do see a significant increase in the energy. This was observed for several of the
time frames while the storm was active, but not all. On the other hand, the Figure 4.11
solidly represents what was observed for all relevant time frames. Overall, with a coarse
resolution we observe more small-scale energy with DSM (albeit subtle); this is consistent

with DSM being less dissipative.
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Figure 4.11: Energy spectrum of horizontal velocity u on a loglog scale. Top: small, coarse
domain, Bottom: large, fine domain. Left: DSM with filtering, Right: DSM.

o1



(a,c)

102
—— Smagorinsky
——DSM
————— 5/3 law
=, \ "\
I\“. ﬁ"'\«vx\\
~ 5 %
107!
10° 10" 10?
Wavenumber
102
— Smagorinsky
2 ——DSM
101
100 +
107" :
100 10° 10?

Wavenumber

(b,d)
102
——Smagorinsky
—DSM
————— 5/3 law
10 ‘\“-\_\
100}
ﬁ"'\«vf\;q
~O\
107
10° i "
Wavenumber
102
——Smagorinsky
- ——DSM
g m\\ ————— 5/3 law
10" N
b \—ww;{{;;“
“ .{‘\"\_r'\
.. A
100 Sy, kﬂl\;r\“
107" .
10° 4 ©
Wavenumber

Figure 4.12: Energy spectrum of vertical velocity w on a loglog scale. Top: small, coarse
domain, Bottom: large, fine domain. Left: DSM with filtering, Right: DSM.
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Chapter 5
Conclusion

In this report we motivated the study of turbulence and turbulence modelling. We pre-
sented a simulation of Hurricane Igor using WREF’s real data functionality to study two
turbulence models - specifically the effects of using the DSM over the Smagorinsky model.
We provided necessary background information to motivate the use of the DSM and argue
why it should prove to be a useful improvement over the classic Smagorinsky model. A base
case using the classical model is provided where we qualitatively show that our simulations
are sufficiently correct in simulating Hurricane Igor. An implementation for the DSM using
WREF is given. Using this we compare and contrast results with the Smagorinsky model.
The findings are such that, despite the theory and previous evidence of the DSM success
for other types of fluid dynamics simulations, we find it is likely not worth the additional

cost to implement when using WREF for large scale atmospheric simulations.

In order to more definitively say whether or not the DSM is worth the additional cost,
we ran our simulation on a single processor for both models and recorded the time. Im-
plementing the DSM in WRF requires an additional 2 loops using a truncation method
and 4 loops using a double filter method. The loops are over i,k, j, thus are of order
O(N3) if N is the total number of grid points. This is the same order as loops which are
already present within the subroutine that we have implemented the DSM in. Hence, the

total cost is only increasing linearly in its order. For a much simpler piece of software
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or code, this could be very significant - easily doubling the cost [20]. However, WRF is
a very complex piece of software that has to handle a lot of other processes during each
step of the simulation. Because of this we wouldn’t except anything close to a doubling
of time, but there should still be a noticeable increase. After running on a single proces-
sor we found that the Smagorinsky model finished in 02:32:06, while the DSM finished in
02:15:42. This is clearly a due to a difference in processors, so we reran the simulations to
account for this. A second run found the Smagorinsky model finishing in 02:32:33, and the
DSM finishing in 02:25:29. From this we conclude it may or may not be worth the time
to implement the DSM into WREF for large scale atmospheric simulations. The additional
complexity is very small, but the improvements are also so small it may not be worth the
effort. Truthfully the DSM will be slower eventually. Increasing computation time via
increasing domain size or simulation length would eventually show this. With times this
similar it may also be useful to either use a temporal average over several simulations. We
could also ensure each simulation is run on the same processor. Regardless, this shows us

the added time complexity is trivially small in comparison to everything else WREF is doing.

For future work we would look into getting our data from a different provider (for instance
from the Global Forecast System provided by NCEP). One of the limitations we found
was that the domain of the data was slightly too small when we’re interested in regions
south east of Newfoundland. Being able to increase the domain size further can have
no negative effects. Furthermore, we'd like data that is taken over a larger resolution
allowing us to decrease our simulations grid size further without nesting. Of course we
could also implement nesting for future tests. It is possible this might let the DSM fare
better. Additionally, there are several other methods used to calculate ¢;. We could try
using a more complicated method (for instance section 3 of [10]) that is will not produce
negative results. Thus we can avoid any filtering and truncation. The DSM has proven its
usefulness in other CFD simulations as mentioned earlier. Perhaps some of these changes

would allow the DSM to continue to shine for large scale atmospheric simulations using

WRF.
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