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Abstract

The Monte Carlo method uses a random sample of size n to approximate the value
of an s-dimensional integral and has a convergence rate of O(n~'/2). By using low-
discrepancy sampling, the quasi-Monte Carlo (QMC) method achieves a convergence rate
of O(n~*(logn)?®), which is asymptotically faster than that of the Monte Carlo method.
However, due to the dependence of the QMC error bound on the dimension s, this result
doesn’t hold at practical values of n for even relatively small values of s. Still, many
empirical studies have shown that QMC can outperform Monte Carlo integration in high-
dimensional problems at practical values of n. Empirical studies are often conducted by
researchers to investigate the behaviour of QMC methods since the QMC error bound
suffers from several practical limitations. This paper presents a Matlab program that im-
plements some of the more commonly used numerical tests and provides a simple graphical
summary of the results.
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Chapter 1

Introduction

Monte Carlo has become a widely used numerical method for approximating integrals,
especially those in high dimensions, with no known closed-form solution. Given a real-
valued function f defined on the s-dimensional unit hypercube [0,1)°, the Monte Carlo
estimator for the integral

I(f) = f(ua) du,
[0,1)¢
where u = (uq, ..., u), is given by
0= 13 s
= - u;),
S i=1

where {uy,...,u,} is an independent and identically distributed random sample from the
uniform distribution over [0,1)°. Since u; ~ U([0,1)*), it is easy to see that E[f(u;)] =
I(f), and it follows that f is an unbiased estimator for I(f). Applying the Strong Law
of Large Numbers, the Monte Carlo estimator ji converges almost surely to I(f) as the
number of function evaluations n tends to infinity. Additionally, by the Central Limit
Theorem, the Monte Carlo integration error

I(f) = o= N(0,0/v/n)

for sufficiently large n, where
o= [ () - 1) du
[0.1)®

is the variance of f. Thus, the Monte Carlo integration error is in O(1/y/n).
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Figure 1.1: Both point sets contain 512 points, the one on the left is a random point set
while the one on the right is a low-discrepancy point set (constructed using the Sobol’
method).

The O(1/4/n) convergence rate of the Monte Carlo error has the attractive property
of being independent of the problem’s dimension s, but also the unattractive property of
being slow. One approach to speed up the performance of the Monte Carlo method is to
replace the random sample used in a Monte Carlo estimator by a well-chosen deterministic
point set, known as a low-discrepancy or quasi-random point set. This method is known
as quasi-Monte Carlo integration. These low-discrepancy point sets are constructed to be
more uniformly distributed than a random sample. In other words, low-discrepancy point
scts are constructed to avoid the gaps and clusters that naturally occur in a random sample,
as illustrated in Figure 1.1. The Koksma-Hlawka inequality establishes a deterministic
bound on the quasi-Monte Carlo integration error, from which it follows that the quasi-
Monte Carlo error convergence rate is in O((logn)®/n). Thus, as long as n is sufficiently
large, quasi-Monte Carlo converges faster than Monte Carlo. However, as we will see, the
Koksma-Hlawka bound is subject to several limitations preventing its use as a practical
error bound. As a result, researchers often turn to numerical experiments to test and
compare quasi-Monte Carlo methods.

In this paper we present a Matlab program that facilitates the testing and comparison of
quasi-Monte Carlo methods by means of numerical experiments. This program is detailed
in Chapter 3. Chapter 2 presents the necessary background material on quasi-Monte Carlo
integration, such as formally introducing low-discrepancy point sets and establishing the
practical limitations of the quasi-Monte Carlo error bound. Lastly, in Chapter 4, we use
our Matlab program to conduct some tests with a specific class of quasi-Monte Carlo
constructions known as generalized Faure sequences.



Chapter 2

Background Material

2.1 Low-Discrepancy Point Sets

Quasi-Monte Carlo methods are based on deterministic point sets that are constructed to
be more uniformly distributed than a random sample. The uniformity of a point set is
measured by the concept of discrepancy. The star discrepancy is one of the more popular
uniformity measures used in quasi-Monte Carlo methods, which we define following [6].
This discrepancy measure considers all hyper-rectangles in [0,1)® with one corner at the
origin. More precisely, these hyper-rectangles are sets of the form

B(v)={uel0,1)°:0<u; <wv;,1<j<s},

where v = (vy,...,vs) € [0,1)°. For a point set P, = {uy,...,u,}, let a(P,,v) denote
the number of points u; € P, that are contained in B(v). The empirical distribution £,
induced by P, is then F,(v) = a(P,,Vv)/n, which is compared to the uniform distribution
over [0,1)* via the Kolmogorov-Smirnov statistic, and yields the star discrepancy

D*(Pn) = Sup |U1U2 T Us — a(anv)/n|'

velo,1)s

As we will see in the next section, the star discrepancy plays a central role in bounding
the quasi-Monte Carlo integration error and so it will make sense to choose deterministic
point sets with a low star discrepancy. The following lower bounds on the star discrepancy
were given in [10], and have been cited by several other authors. It is conjectured for
dimensions s > 3, but known for s = 1 and s = 2, that any point set P, satisfies

D*(P,) > Bsn_l(log n)‘“’_l,



and that the first n points of any sequence satisfy
D*(P,) > Bin"'(logn)°*,

where By and B/ are positive constants depending only on s. There are several examples
of sequences known to satisfy D*(P,) € O(n™*(logn)®), some of the more popular names
being Sobol’, Halton, Niederreiter, and Faure, the last of which is presented in detail in
Section 4.1. For this reason, a sequence uj, uy, ... is called a low-discrepancy sequence if
D*(P,) € O(n"'(logn)*) and the point set P, obtained from the first n points of such
sequences is called a low-discrepancy point set.

2.2 (QMC Error Bound

Recall that our goal is to approximate the integral of f by an average of function evalua-
tions:

fludum =37 fw),

0.1)°

The Koksma-Hlawka inequality establishes a bound on the integration error:

<V(f)D*(uy,...,u,), (2.1)

S> ) - [ fw)du

[0,1]°

where uy, ..., u, are any points in [0,1)%, provided that V'(f) is finite. V(f) denotes the
variation of f on [0, 1]* in the sense of Hardy and Krause, which, following [10], is given by

V=Y. > VO(frin,. i),

k=1 1<iy <ip<-<ip<s

where V®)(f:41,...,4;) denotes the application of

V(s)(f):/ol.../ol

to the restriction of f to the k-dimensional face {(us,...,us) € [0,1]° : u; = 1 for j #
i1,...,ix}. Note however that it is not necessary for f to be differentiable for V*)(f) to be
finite [5], and we refer the reader to [10] for a more general definition of V*)(f), as well as
for details on the Koksma-Hlawka bound.

duy - - - dug

>’f
Juy - - - Qus

It follows from the Koksma-Hlawka inequality that the quasi-Monte Carlo integration
error is in O(n~!(logn)®) since the points uy, ..., u, are chosen to form a low-discrepancy
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point set. The probabilistic error bound for Monte Carlo integration is in O(n~'/2), from
which we can conclude, for fixed dimension s, that Monte Carlo converges more slowly
than quasi-Monte Carlo. However, for n=!(logn)® to be smaller than n~'/2 requires n to
be huge in even relatively small dimensions. For example, in 10 dimensions this inequality
holds once n ~ 10% [6]. This limits the usefulness of the quasi-Monte Carlo error bound
in practice since 103 is an infeasible sample size.

Another practical limitation of the Koksma-Hlawka inequality is the condition that
V(f) must be finite. This condition can be violated by even rather simple functions, such

as
0 if U1 S (%)

1 otherwise,

) = {

as well as by functions arising in practical applications [6]. For instance, for V(f) to be
finite requires that f be bounded, which is often not the case with integrands in financial
applications like option pricing [5]. It is important to note that V(f), as well as D*(P,),
are difficult to compute. Even if it is possible to compute D*(P,) and V(f) (and V(f) is
finite), the Koksma-Hlawka inequality only provides an upper bound and so does not give
a reliable error estimate. For these reasons, the quasi-Monte Carlo error bound is a poor
practical error bound. Thus, in practice, quasi-Monte Carlo methods are often tested and
compared by running numerical experiments. Still, it is desirable to have a method for
obtaining error estimates. Error estimates can be obtained by applying a randomization
to the point set, a technique known as randomized quasi-Monte Carlo, which is introduced
in the next section.

2.3 Randomized QMC

In Monte Carlo integration it is straightforward to obtain error estimates because the Monte
Carlo estimator is based on an independent and identically distributed (i.i.d.) sample of
points. Quasi-Monte Carlo integration replaces the random sampling used in Monte Carlo
methods by low-discrepancy sampling in order to obtain a faster rate of convergence, but
the Koksma-Hlawka bound (2.1) does not provide reliable error estimates. Randomized
quasi-Monte Carlo applies a randomization to the point set P, while trying to preserve
its low discrepancy, and thus tries to combine the best features of the Monte Carlo and
quasi-Monte Carlo methods. By randomizing P,, we can create several i.i.d copies of the
quasi-Monte Carlo estimator to obtain an error estimate.

Basing our discussion on [6], let P, = {uy,...,u,} C [0,1)® be a deterministic low-

discrepancy point set and P, = {uy,...,0,} C [0,1)® denote the randomized point set
obtained by applying a randomization function to each point u; € P,. The randomization



function should be such that each point ; € P, is U([0,1)*) so that the estimator based
on P, is unbiased:

E
i=1 ¥ [0:1)°

%Zf(ﬁl)] :%ZE[f(ﬁl)]:%Z f(a;) da; = I(f).

It is also important that the randomization function does not destroy the low discrepancy
of P,, since then the advantage of using quasi-Monte Carlo over Monte Carlo is lost. With
an appropriately chosen randomization, we can create a random sample of quasi-Monte
Carlo estimators

/qumC,l = l Z f(ﬁ):

n =
ﬁ.GP,,,,l
where f’ml, . af)n,m are m independent randomized copies of P,. We can then approxi-
mate I(f) by the unbiased estimator
m

. 1 .
Hrgme = — 5 Hrgme,l
q m = q

and estimate its variance by

1 1 &
A2 o ~ ~ 2
Orqmc - E (m Z(qumc,l - qumc) ) .

=1

The variance estimate can then be compared with those obtained from other randomized
quasi-Monte Carlo estimators or from the Monte Carlo estimator based on nm points.
Randomization methods are generally designed for specific types of low-discrepancy point
sets, and there are several common methods, but here we skip the details of specific methods
and refer the interested reader to the literature, for instance, [5] or [6].

2.4 Effective Dimension

The quasi-Monte Carlo error convergence rate is O(n~!(logn)®), which is faster than the
Monte Carlo convergence rate of O(n~%/2). However, as mentioned, when s is large, for
n~'(logn)® to be smaller than n~'/? requires an impractically large sample size n. For
this reason, it was thought that quasi-Monte Carlo integration should not be used in
high-dimensional problems. Some authors thought that quasi-Monte Carlo should not be
applied in dimensions greater than 40, while others thought that it should not be applied
in dimensions greater than 12 or 15 [5]. Despite what the theory suggested, Paskov and



Traub in [15] applied quasi-Monte Carlo integration to a high-dimensional finance problem
and found quasi-Monte Carlo to be superior to Monte Carlo in dimensions as large as 360
at practical sample sizes. The concept of effective dimension was proposed to explain the
success of quasi-Monte Carlo integration in high dimensions, but before we can define this
concept, we must first define the ANOVA decomposition of a function.

As explained in [6], the functional ANOVA decomposition expresses an s-dimensional
function f as a sum of 2° components,

fa)y=">"" fi(u).
}

IC{1,..s

Each term in the sum, f;(u), is a function depending on a subset (u;,,...,u;,) of the
variables where I = {iy,...,iq} C {1,...,s}, and, for I # {), is given by

= [ =3 g,

where d = |I| and —1 = {1,...,s} \ I. Note that fp(u) = I(f). Additionally,

f;(u) = 0

[0,1)®

for all I # 0 and, for all I # J, the ANOVA components are orthogonal:

fi(w) f;(u) du = 0.

[0,1)®

The ANOVA decomposition can be used to assess the difficulty of evaluating I(f) by
looking at the components’ variance

oj = | [fi(u)du
0.0

and how their variance contributes to the overall variance of f:
Var(f) = Var(f(U)) = 0* = ZO’?.
T

The effective dimension provides a way of summarizing which of the components explain
most of the function’s variability. Here we state the definition of effective dimension as
given in [6].



Definition 1 The effective dimension of f in the superposition sense (and in proportion
p) is the smallest integer dg such that

% Y ai=p

I:|I1<ds
The effective dimension of f in the truncation sense (and in proportion p) is the smallest

integer dp such that
1 2
; Z or > P,
Iig<dr

where I = {iy,... iq}.

In other words, a function with an effective dimension dg can be well approximated by a
sum of functions each depending on at most dg variables while a function with an effective
dimension dr can be well approximated by a sum of functions each depending on only
the first dp variables uy, ..., uq, [6]. To illustrate the difference between the superposition
and truncation senses, consider the function f = 7 | 2%u;, which has dg = 1 and dr = s
[2]. The effective dimension depends on the proportion p, and in the truncation sense also
depends on the order of the variables. Note that, for fixed p, dg < dr.

The low effective dimension, in one or both senses, of an integrand is often used to
explain the success of quasi-Monte Carlo on high-dimensional problems. This was the
case for the finance problem studied by Paskov and Traub; its effective dimension is much
smaller than 360. If the projections over the first dy coordinates of the chosen point set
have good space-filling properties, then it is reasonable to expect that the point set will
perform well on an integration problem with effective dimension in the truncation sense
dr [4]. If the projections over dg-dimensional subspaces or less exhibit good space-filling
properties, the point set should do well integrating a function with effective dimension in the
superposition sense dg [4]. Although low-discrepancy point sets are constructed to be more
evenly distributed than a random point set, several low-discrepancy sequences are known
to have poor space-filling properties in certain subspaces of [0,1)°. It is not uncommon for
a sequence’s low dimensional projections to be much more evenly distributed than those
in higher dimensions, making them especially suitable for integrating functions of low
effective dimension. For instance, as illustrated in Figure 2.1, the uniformity of the Halton
sequence is known to deteriorate as the dimension increases [4]. The projection onto the
first and second coordinates covers the unit square quite well, whereas the projection onto
the 49th and 50th coordinates is concentrated on the unit diagonal. Since its projection
over the first 2 coordinates is well distributed, the Halton sequence may perform well for
a function with dr = 2, but it may not perform so well for a function with dg = 2 since its
2-dimensional projections deteriorate in higher dimensions. Depending on the properties
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Figure 2.1: First 1000 points of the Halton sequence for the 1st and 2nd coordinates (left),
and 49th and 50th coordinates (right).

of the chosen point set, some quasi-Monte Carlo methods will be more sensitive to the
effective dimension of the integrand than others.

A closed-form expression for the ANOVA components f; and their variance o is usually
not available since, in particular, this requires knowing the value of I(f) [6]. However,

algorithms are available to approximate these quantities, two approaches are discussed in
Section 6.3.3 of [6].

To summarize, the effective dimension can be used to help understand the difficulty level
of the integration problem and to predict the performance of quasi-Monte Carlo methods.
Quasi-Monte Carlo integration has been seen to outperform Monte Carlo integration for
functions with a small effective dimension in the truncation sense, as well as for functions
with a very small effective dimension in the superposition sense, but a large effective
dimension in the truncation sense. Still, a low effective dimension is not sufficient to
guarantee that quasi-Monte Carlo methods will be effective. Other factors, such as the
dimension s, number of points n, and the choice of point set P,, affect the performance of
quasi-Monte Carlo integration. [17]



Chapter 3

User’s Guide

As discussed in the previous chapter, the quasi-Monte Carlo error bound has several limi-
tations preventing its use as a practical error bound. Consequently, in practice, numerical
experiments are needed to test the performance of quasi-Monte Carlo constructions. In
this chapter, we present a tool that facilitates the empirical testing and comparison of
quasi-Monte Carlo constructions. Our tool is a Matlab function, called runTests, which
is detailed in Section 3.3. First, we present the performance measures and numerical
experiments available to the user.

3.1 Performance Measures

There are two main types of integrands that can be found in the literature for assessing
the performance of quasi-Monte Carlo constructions [4]. The first type consists of test-
functions ¢ for which the solution to

can be computed exactly and analyzed as a function of the number of function evaluations
n in the quasi-Monte Carlo estimator



where {x1,...,x,} C[0,1)* is a low-discrepancy point set.

The second type consists of integrands ¢ arising from practical problems, examples of
such problems in finance are given in the next section. The exact solution to the integral is
usually unknown for this type of problem and therefore must be estimated if the absolute
error is to be used as a performance measure. An estimate of the exact value of I(g) can
be obtained by running a simulation based on a very large value of n. However, running
such large simulations to obtain an error estimate may not be realistic for practitioners
and so randomized quasi-Monte Carlo may be a more practical approach [4].

There are three measures available in the Matlab tool. The first is the absolute error
E, = |I(g) — fil,

which is a suitable measure for deterministic sequences. If m randomizations are applied
to the sequence, then the average absolute error,

Y

1 X
En,avg = E Z |I(g) — Hrgme,l
=1

or the estimated variance of the randomized sequences,

1

A2
0" g
"oom—1

m
Z(ﬂrqmal - /l’f‘qu)Qv

=1

can be used as performance measures where f[i,4mc; and flyqme are the randomized quasi-
Monte Carlo estimators defined in Section 2.3.

3.2 Numerical Experiments

Our Matlab tool implements five numerical experiments. The first three, which we refer
to as test-functions g1, g2, and g3, can be computed exactly and have been used in several
comparative studies on quasi-Monte Carlo constructions, see, for example, [4, 17,9, 18, 16].
The last two test functions arise from practical problems in financial mathematics: the
pricing of options and mortgage-backed securities. As mentioned in the previous chapter,
it was originally thought that quasi-Monte Carlo methods were not suitable for high-
dimensional problems, but empirical tests have shown otherwise. One such example is the
mortgage-backed security problem, which can be represented as a 360-dimensional integral.
Financial problems in the quasi-Monte Carlo setting have been studied in numerous papers,
an extensive list is given in Section 5.5 of [5].
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3.2.1 Test Function ¢g;

The first test function is

i 1+a;

where x = (21,...,x5) and I(g;) = 1. There are five parameter choices available to the
user:

1. a; = 00].,

2. a; = 1,

3. a; =7,

4. a; = j?,

5. a;=(s—j+1)%

for 1 < j < s. With parameter choices (1) and (2), all variables are equally important,
whereas with parameter choices (3) and (4) the influence of z; decreases as j increases
[18]. Choice (5), when compared to (4), essentially reverses the order of the coordinates
of x, and so the influence of z; increases as j increases. Changing the parameters from
choice (1) to (4) decreases the effective dimension in the truncation sense of the integrand.
Choice (5) has a large effective dimension in the truncation sense, probably equal to s.
This function is useful for testing the sensitivity of low-discrepancy constructions to the
effective dimension in the truncation sense of the integrand. [4]

3.2.2 Test Function ¢

The second test function is
g2(x) = [JI1 + c(z; — 0.5)],
j=1

where x = (x1,...,25) and 0 < ¢ < 1 is a constant to be chosen by the user. Changing
the constant ¢, changes the effective dimension of the integrand. As noted in [4], it is
more appropriate to measure the difficulty of this function by its effective dimension in the
superposition sense, rather than the truncation sense, since all variables x; contribute to
g2 in the same way. A detailed analysis of this integrand, for instance the relation between
the product sc and the efficiency of quasi-Monte Carlo integration in different dimensions,
can be found in [16]. Note that for any choice of s and ¢, I(gs) = 1.

12



3.2.3 Test Function g;

The third test function is

s

Y@ty

=1

g3(x) = o */? cos

N | —

where ®~! denotes the inverse of the cumulative distribution function of a standard normal
random variable. The constant «; is determined numerically (in Maple) so that I(g3) = 1.
This function is part of a family of isotropic integrals (see [12]). Papageorgiou and Traub
show in [14] that quasi-Monte Carlo beats Monte Carlo for this type of integrand, and
Owen suggests in [12] that this result is explained by the low effective dimension of the
integrand.

3.2.4 Option Pricing

An option is a type of financial contract giving the owner the right, but not the obligation,
to buy (call option), or sell (put option), one or more assets in the future according to
specified terms and conditions. Here we consider the single asset case for two specific types
of call options, Asian and digital. The problem at hand is to determine the price, or value
at time 0, of the option. This price is given by the expected value (under a risk-neutral
probability measure) of the option’s discounted payoff

Ele™™ P(S)],
where r is the risk-free interest rate, T' is the expiration time of the option, and P(S) is
the option’s payoff function, which depends on the price of the asset S [6].

The payoff function of a discretely monitored Asian option [6] is

P(S) = max (0,%25(@) — K) ,

where K, called the strike price, is the price at which the option holder can buy the asset
at time 7', and S(¢;) is the price of the asset at time points 0 < ¢; <ty < ... <t,=1T. For
simplicity, we assume the time points are equally spaced, that is, t; = jT'/s for 1 < j < s.
The number of time points at which the asset’s price must be simulated determines the
dimension s of the problem. Assuming S(¢;) is lognormally distributed, the asset price at
time ?; is generated under the risk-neutral measure as follows

S(tj) — S(tj_l)e(r_02/2)T/s+U T/s®~(uy) (31)
_ S(O)e(r—02/2)tj+rf\/T/s 25:1 (I>*1(ui)7

13



where o is the volatility of the asset and u = (uy,...,us) ~ U([0,1)®). In the quasi-Monte
Carlo setting, the point u is instead taken from a low-discrepancy point set. Thus, the
goal is to compute the s-dimensional integral

Ele"P(S)] = /

[0,1

e—TT max <0’ 1 Z S(O)Q(T—UQ/Q)tj-I-rr\/T/s Zf-,;l O 1(u;) K) duy . .. dus’
)s S ]:1

which has no closed-form solution. In order to use the absolute error as a performance
measure, an estimate for the above integral is obtained by using the digitally shifted Sobol’
method with n = 10 points. The Sobol’ method has been shown to be very effective in
financial applications [5].

The payoff function of a digital option [13] is

where “) (t0)
1 if S(¢) > S(t-
) — . 0 _ J j=1)s
(5(t;) = S(t-1))+ { 0 otherwise.
As with the Asian option, the asset prices S(t1),...,S(ts) are generated in chronological
order using formula (3.1), which is the standard method, but these prices can be generated
by other methods as well. One alternative is the Brownian bridge technique, which can
also reduce the effective dimension of the integrand and improve the performance of quasi-
Monte Carlo integration [6]. The author of [13] used the digital option to show that
generating the asset prices with the Brownian bridge method does not always lead to a

smaller error compared to the standard method.

In summary, to use the Asian option as a test function in our tool the user will need
to provide the following quantities:

e the dimension s,

e the strike price K,

the initial price, S(0), of the asset,
e the risk-free rate r,
e the expiration time 7" of the option in years, and,

e the asset’s volatility o.

With the exception of the strike price, the same quantities are needed to use the digital
option test function.

14



3.2.5 Mortgage-Backed Securities

A mortgage-backed security is a different type of financial contract, but, like an option, our
goal is still to determine its present value. More specifically, “the goal is to evaluate the
time-0 value of the cash flow received by the holder of a mortgage-backed security, which is
a product that banks sell to investors and in which the cash flows come from the payments
made by mortgage holders [6].” This problem has been used in several quasi-Monte Carlo
studies. Here, we consider a simple case of the mortgage-backed security problem and
follow the description and notation used in [2].

The time-0 value of the mortgage-backed security is given by

M
E Umg | ,
k=1

where M is the length, in months, of the mortgage, uy is the discount factor for month k,
my, is the cash flow for month £, and the expectation is taken with respect to the random
variables involved in the interest rate fluctuations. The model used for the interest rate
fluctuations is

E

ix = Koeékik_l — Kg€§1+.‘,+£ki07

where 7, denotes the interest rate for month k, & ~ N(0,0%), K, = e7°/? is a constant
chosen so that Eliy| = ig, and iy is the interest rate at the beginning of the mortgage. The
monthly discount factor and monthly cash flow are defined by

k—1
U = H(l +4;)7" and my = erg[(1 — wy) + wiey),
=0
respectively, where
wy, = fraction of remaining mortgages prepaying in month k,
k—1
ry = H(l — wj) is the fraction of remaining mortgages at month £,
j=1
¢ = monthly payment, and
—k
¢x = (remaining annuity at month k)/c = Z (1+19)7.
j=0

The prepayment rate wy is modelled by

Wy = Kl + K2 arctan(K;;z’k + K4)
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where K7, K,, K3, and K, are constants.

To summarize, the mortgage-backed security is specified by the parameters iy, K1, K, K3,
K,, and o2. In our tool, there are three sets of parameters available:

(i, K1, K, K3, K4,0%) = (0.007,0.01,—0.005, 10, 0.5,0.0004),
(i, K1, K3, K3, K4,0%) = (0.007,0.04,0.0222, —1500, 7.0, 0.0004),
(io, K1, K, K3, K1,02) = (0.00625,0.24,0.134, —261.17,12.72,0.04),

which will be referred to as “linear”, “nonlinear”, and “Tezuka”, respectively. The first
two sets of parameters were originally proposed in [2]. The “linear” set is so called because
the resulting integrand is nearly a linear function of uy,...,uy where & = ® '(uy). The
second set leads to an integrand which also has a large linear component, but not to the
same extreme as the first, hence the name “nonlinear”. The third set of parameters was
originally proposed by Ninomiya and Tezuka in [11]. The dimension s of the integrand is
equal to the length of the mortgage, M. In all cases, we consider 30-year mortgages, which
create a 360-dimensional integral.

3.3 Input Parameters for runTests

In what follows, it is assumed that the reader is familiar with the basics of Matlab. The
Matlab function runTests is used as follows:

runTests(inputFiles, testFnc, testFncType, N, interval, m, extraFiles).

The result of running this function is one or two graphs showing the values of one of the
performance measures, described in Section 3.1, at various values of n for a series of QMC
constructions and a particular test function. This function acts as a driver for several
C programs that implement the test functions detailed in the previous section. The C
programs use the RandQMC library, created by C. Lemieux, M. Cieslak, and K. Luttmer,
which implements many QMC methods and their associated randomizations, as well as the
Monte Carlo method. Details about this library, including a user’s guide, are available at
http://www.math.uwaterloo.ca/~clemieux/randgme.html. Next we detail the information
to be provided by the user.

inputFiles: a cell array of filenames corresponding to the input files needed by RandQMC.
A detailed description of these files can be found at the website above; they specify,
among other things, the QMC method to be used, the problem dimension, the ran-
domization method, and the number of randomizations. At most 8 methods can be
tested at once.
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testFnc: a string specifying the test function to be used, which have been coded as ‘gl’,
‘g2’ ‘23’ ‘option’, and ‘mortgage’.

testFncType: some of the test functions require additional information, as follows.

e For ‘gl’. the test function type is an integer 1, 2, 3, 4, or 5 corresponding to a
choice for the constants a; described in Section 3.2.1.

e For ‘g2’ the test function type is the number ¢ € (0, 1].

e For ‘g3’, the test function type is simply an empty string ‘’ since no additional
information needs to be specified. Note that this test function can only be used
in dimensions 10, 20, 30, 40, 50, 120, 150, and 360.

e For ‘option’, the quantities listed at the end of Section 3.2.4 must be given in an
array. For an Asian option, the test function type is the array [s, K, S(0),r, T, o].
For a digital option, the array is [s, S(0),r, T, o].

e For ‘mortgage’, the test function type is cither ‘linear’, ‘nonlinear’, or ‘Tezuka’
as described in Section 3.2.5. This function can only be used in dimension 360.

N: the number of points to be used in the QMC estimator (which has been denoted by n
thus far).

interval: a number that specifies at which values of N the performance measure is to be
plotted on the graph. For example, if NV is 100,000 and the interval is set to 2000,
then the value of the performance measure is plotted when the number of points used
in the QMC estimator is 2000, 4000, 6000, ..., 98,000, and 100,000.

m: the number of randomizations. If m = 1, then a single graph showing the absolute
error is produced. If m > 1, then two graphs are produced, one showing the average
absolute error, a second showing the estimated variance.

extraFiles: some of the QMC methods in the library require an extra input file, their
filenames are provided in a cell array.

To simplify things for the user, a GUI version of the function, runTestsGUI, is also
available and prompts the user for all of the information described above. It has no input
arguments and is run by typing runTestsGUI() at the Matlab command prompt. The
GUI version acts a bit like a driver function for runTests in that instead of asking for
the number of randomizations m, it asks the user for the number of graphs. So, it will
either produce 1 graph (absolute error), 2 graphs (average absolute error and estimated
variance), or 3 graphs (all measures). Note that different input files are needed based on
which performance measure is to be used. The function runTestsGUI copies the input
files but changes both m and the randomization method to 1 (no randomization) before
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it creates a graph of the absolute error. This way, only one set of input files is needed

when the user wishes to produce all 3 graphs at once. The function runTests gives the user
control over the order of the QMC constructions in the plot, and may be more convenient
to use when running many similar tests consecutively.

7

T
Halton
— — —Faure

\ — * — Sobol
6F | R

absolute error

2 25
number of points

w¥
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»
o

Figure 3.1: Absolute error for the mortgage-backed security problem (nonlinear case).

An example of the type of graph created by the Matlab function is given in Figure 3.1.
To illustrate how the function is used, this graph was produced with the following input:

e inputFiles = {‘inputHalton.dat’, ‘inputFaure.dat’, ‘inputSobol.dat’}
e testFnc = ‘mortgage’

o testFncType = ‘nonlinear’

e N = 50000
e interval = 2500
e m =1

o extraFiles = {}

As a last detail, the cell array tnput F'iles is used to build the plot legend. So, the QMC
methods are labelled by the name of their input file for the RandQMC library. If the user
chooses to follow the naming convention inputSomethingDescriptive.dat for their input
files, then SomethingDescriptive will appear in the legend (see the above example). For
the user more familiar with Matlab, short scripts can be written to customize the graphs,
such as adding titles, changing the legend, or saving the graphs in various formats.
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Chapter 4

Experiments

The Faure sequence is a well-known low-discrepancy sequence. The building block of this
sequence (and others) is the base b expansion of the sequence’s index 4. In this chapter, we
compare the performance of the Faure sequence and one of its generalizations, called the
GF1 sequence, in different bases. We also compare the performance of the GF1 sequence
with a newly proposed generalized Faure sequence.

4.1 Generalized Faure Sequences

Let u; denote the ith point of a generalized Faure sequence in the prime base b > s for
© > 0. The 7th point is obtained by first expressing ¢ in its base b expansion

=0

where q,(7) € Z;, and infinitely many a;(i) are zero. Then, for 1 < j < s, the jth coordinate
of u; is given by

o
=Y A (Do
=0

where

(djyo(i), &J}l(i)’ - ')T - Cj(a()(i)v al(i)v - ')T
and C; = Aijj ~! is a matrix of infinite dimensions with entries in Z,. A; is a nonsingular
lower triangular matrix and P, is the upper triangular Pascal matrix defined by

Py(r,c) = (C> mod b forr,c=0,1,....
r
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Figure 4.1: First 1000 points of the Faure (left column) and GF1 (right column) sequences
in different bases for the 49th and 50th coordinates.
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The original Faure sequence is obtained by taking A; to be the identity matrix I for
1 < j < 5. When the number of points n is small and the dimension s is large, the
space-filling properties of the Faure sequence may not be very good [6]. As explained in
[9], “powers of the Pascal matrix have ones on their diagonal, which in turn implies that
points from these sequences will tend to clump along the main diagonal in [0, 1)* initially,
and the larger b is, the more time it takes before this behaviour goes away.” This behaviour
of the Faure sequence is illustrated in the left-hand side of Figure 4.1. By multiplying the
powers of the Pascal matrix by a matrix A;, the generalized Faure sequence aims to improve
the space-filling properties of the Faure sequence. We will consider two generalized Faure
sequences in our experiments that both take A; = f;I for 1 < j < s where the numbers f;
are carefully chosen factors. The first sequence, called the GF1 construction, was proposed
by Lemieux and Faure in [9] and chooses the factors f; by considering the quality of two-
dimensional projections. Figure 4.1 shows that the first 1000 points of the GF'1 sequence
cover the unit square much more uniformly than those of the Faure sequence. The second
sequence uses a new method proposed by C. Lemieux [7] to select the factors f;. Some
further details about these two sequences will be given in Section 4.3.

4.2 A First Experiment

Generalized Faure sequences belong to a more general class of low-discrepancy sequences
called (t, s)-sequences, for which a bound on the discrepancy of the first n points is given
by

D*(P,) < ¢s(logn)* + O((logn)*~") [6].
Since all low-discrepancy sequences have the same asymptotic upper bound for D*(P,),

these sequences are sometimes compared by studying the behaviour of the constant c,,
which may depend on the dimension s. For the Faure sequence, it is known that

1 /b—1Y\"
] <logb) 4]

Since it is desirable for D*(P,) to be as small as possible, usually the base b used to
construct the Faure sequence is taken to be the smallest prime greater than or equal to
s. However, since these are asymptotic results, it is not clear how the sequence behaves
when s is large and n is relatively small. In this section, we use our tool to compare the
performance of the Faure and GF1 sequences in different bases.

4.2.1 Tests and Results

As a first test, the function g; was used with dimension s = 50 and four different bases:
53, 79, 97 and 127. Figure 4.2 shows the absolute errors for case 1, a; = 0.01. In the
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absolute error

number of points 4

Figure 4.2: Absolute error for g; with a; = 0.01 and s = 50.

figures, the Faure sequence is denoted by F, and the GF1 sequence by GF, followed by the
base b. In this case, it is clear that for the Faure sequence, the larger the base, the larger
the absolute error. For the GF1 sequence, there is so little difference in the absolute errors
that the lines overlap for all bases. It seems that the Faure sequence is much more sensitive
to the choice of base, which may agree with the behaviour of these sequences illustrated
in Figure 4.1. For case 2, a; = 1, the graph is very similar so it is not included here. For
cases 3, 4, and 5, the variables are no longer equally important and the graphs reveal a
different trend. These three graphs are also very similar, so only the results for case 3,
a; = j, are shown in Figure 4.3. In this case, for both sequences, the smallest base does
not always give the smallest error. Note the difference in the scales for the absolute error
between the two graphs in Figure 4.3.

The function ¢g; was also used in dimension 75 with bases 79, 97, 127, and 367. For
all five choices of a;, the graphs showed trends similar to those in dimension 50. For the
Faure sequence, base 367 stood out from the other bases as having an even larger absolute
error for most values of n in all five cases.

For the g function, two sets of parameters were tested, (c,s) = (0.25,96) and (c,s) =
(0.1,120), which have been used in other studies, such as [4]. It is given in [4] that the
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effective dimension in the superposition sense for each of these sets is 4 and 6, respectively.
The results for the first set, (0.25,96), are shown in the top row of Figure 4.4, the second
set in the bottom row of the same figure. For the Faure sequence, in both dimensions,
since the lines never cross it is clear that a smaller base gives a smaller error. The situation
is not so clear for the GF1 sequence, sometimes the largest base gives the smallest error.
Note that the scale for the absolute error is quite different for each graph in Figure 4.4.
In fact, the absolute errors for the GF1 sequence are always smaller than those for the
Faure sequence. For (¢, s) = (0.25,96), the absolute error of the Faure sequence is always
greater than 3 (for base 367 it’s always greater than 14), while the absolute error for the
GF'1 sequence is always smaller than 0.02.
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Figure 4.5: Digital option: s =50, S(0) = 100, r = 0.045, T'=1, o = 0.3.

The digital option was considered with S(0) = 100, » = 0.045, 7' = 1, and ¢ = 0.3,
which are the same parameter choices used in [13]. The dimension was chosen to be s = 50
and the bases used were 53, 79, 97, and 127. The results are shown in Figure 4.5. Overall,
there is much less variability in the accuracy of the GF1 sequence across different bases
than in the accuracy of the Faure sequence. Once n > 25,000, the larger the base, the
larger the absolute error of the Faure sequence. For this problem, there are several values
of n for which the accuracy of the Faure sequence in base 53 is very similar to that of the
GF1 sequence.

Lastly, the Asian option pricing problem in dimension s = 50 was used to compare
the sequences’ performance in different bases. In our experiment, S(0) = 50, » = 0.05,
T =1, 0 = 0.3, and two different strike prices were considered, K = 45 and K = 55. The
following four choices for the base were used: 53, 79, 97, and 127. The results are shown in
Figure 4.6. For both choices of the strike price, there is a much larger difference between
the accuracy of the Faure sequence in different bases than the GF1 sequence. For K = 55,
once n > 20,000, the smaller the base used in the Faure sequence, the smaller the absolute
error. For the smaller strike price, K = 45, once n > 20,000, the Faure sequence in base
79 actually does best.
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4.3 A Second Experiment

In this section, we compare the performance of two generalized Faure sequences. As men-
tioned, both sequences take A; = f;I for 1 < j < s, but differ in how the factors f;
are chosen. For the GF1 construction, as explained in [9], the first step in choosing the
factors f; is to establish a list containing the b/2 (approximately) best factors f based on
the quantity 95 . The criteria 95 is a measure first proposed in [3] and provides a bound
on the discrepancy of certain one-dimensional sequences. These factors give rise to good
one-dimensional projections, but the idea behind this construction is to ensure that two-
dimensional projections over nearby indices are also good. Thus, f; is chosen to be the
best factor in the list (the one with the smallest Hl{) and, for j = 2,..., s, the factor f; is
chosen from the list so that it minimizes
7j(No, W) = max T(No. (5,7, 57).

where C;_; = f;,P/7"" and ¢ = fP}~'. The number W is the “window” size, it’s
the number of nearby indices being considered and, along with Ny, must be specified.
T(No, (S’bcj’l7 S¢)) is the Lo-discrepancy of the first Ny points of the two-dimensional se-
quence formed by the (j—/)th and jth coordinates of the sequence under construction. The
Lo-discrepancy is another type of discrepancy commonly used to measure the uniformity
of a quasi-Monte Carlo construction. Unlike the star discrepancy, it is based on the Lo
norm instead of the L., norm, which makes it much easier to compute. Also, it considers
all hyper-rectangles in [0,1)°, not just those with a corner at the origin.

The second gencralized Faure sequence we consider here uses a criteria that doesn’t
depend on a discrepancy measure to choose the factors f;. This is a new method proposed
by C. Lemieux [7]. In what follows, the factors used to construct this sequence will be
referred to as the “new” factors, and the factors used to construct the GF1 sequence will
be referred to as the “old” factors. Figure 4.7 shows the projections onto the 49th and
50th coordinates of these two generalized Faure sequences, with the sequence based on the
new factors in the left column and the old factors in the right column. Both sequences
improve upon the space-filling properties of the original Faure sequence (see Figure 4.1).

4.3.1 Tests and Results

Here we consider our generalized Faure sequences in four different bases: 53, 79, 97, and
127. The performances of the two sequences were compared in dimension s = 50 across all
four choices of base. All five choices for the parameters a; in the function g; were tested;
the results for choices 3 and 5 are given in Figures 4.8 and 4.9, respectively. While the
performance of the old factors (GF1) is quite similar across all four bases in dimension
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50, the performance of the new factors in dimension 50 seems to be more sensitive to the
choice of base. This is particularly evident with parameter choice 5, a; = (50 — j + 1)?,
where the absolute error for the new factors is considerably larger in bases 79, 97, and 127
than in base 53.
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Figure 4.8: Absolute error for g; with a; = j (case 3) and dimension s = 50.

Figure 4.10 shows the absolute error for test function g, with ¢ = 0.25, s = 96, and
two choices for the base, 97 and 127. In base 97, the new factors usually have a slightly
larger absolute error than the old factors, whereas in base 127 the new factors usually have
a smaller absolute error. Figure 4.11 shows the absolute error for go with ¢ = 0.1, s = 120,
and b = 127. In this case, the performance of both sequences is very similar.

The same practical integrands used in Section 4.2 were also used to compare the perfor-
mance of the old and new factors. The results for the digital option are given in Figure 4.12
and the results for the Asian option, with K = 45 and K = 55, are given in Figure 4.13.
The dimension s for both options was 50. For the digital option, the difference between
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the absolute errors of the two sequences is fairly small, with the new factors having only
slightly larger absolute errors. For the Asian option, the performance of both sequences is
also very similar across all bases for both choices of the strike price.
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N
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Figure 4.9: Absolute error for g; with a; = (s — j + 1)? (case 5) and dimension s = 50.

Since some of the tests showed that the new factors do not perform as consistently across
different bases as the old factors, these two sequences were also compared by selecting a
dimension s and choosing the base b to be the smallest prime greater than or equal to s.
The following four pairs (s, b) were used: (50, 53), (75, 79), (95, 97), and (125, 127). The
results for test function g; with parameter choices 3 and 5 are shown in Figures 4.14 and
4.15, respectively. With parameter choice 3, the two sequences perform very similarly in all
four dimensions. With parameter choice 5, the sequence based on the new factors generally
has larger absolute errors than the sequence based on the old factors, the exception being
(s,b) = (125,127) where the absolute errors are more similar.
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Figure 4.13: Asian option: s = 50, S(0) =50, r = 0.05, T' =1, 0 = 0.3.
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Chapter 5

Conclusion

Due to the limitations of the quasi-Monte Carlo error bound, as discussed in Section 2.2,
researchers often use numerical experiments to test quasi-Monte Carlo constructions. In
this paper, we presented a Matlab tool that facilitates the empirical testing and comparison
of quasi-Monte Carlo constructions. The user has a choice of five numerical experiments,
all of which have been used in several comparative studies on quasi-Monte Carlo meth-
ods. The first three experiments are “artificial” integrands for which an exact solution is
known. By tuning their parameters, the user can test the sensitivity of a construction to
different features of the integrand, such as its effective dimension. The remaining experi-
ments are integrands arising from practical applications, such as pricing mortgage-backed
securities, for which an exact solution is usually not available. A single Matlab function,
runTests, gives the user access to all of the above-mentioned experiments, which have
been implemented in C, and creates a graph allowing the simultaneous comparison of up
to eight methods. Thus, our tool takes advantage of the computational power of C and
the graphing capabilities of Matlab. The user also has the choice of testing constructions
in a deterministic fashion (absolute error) or in a probabilistic fashion by applying an
appropriate randomization method (average absolute error or estimated variance of the
randomized sequence). A GUI implementation of runTests provides a user-friendly inter-
face; it prompts the user for all the necessary input and could easily be used by someone
with little working knowledge of Matlab.

Our Matlab tool was used to conduct some tests with two generalized Faure sequences
based on carefully chosen factors f; such that A; = f;1 for 1 < j < s. Based on the results
of the numerical tests, although the performances of the two sequences were similar in some
cases, the newly proposed factors did not seem to provide any significant improvement over
the factors used in the GF1 sequence. Thus, more work is needed to find improved quasi-
Monte Carlo constructions.

36



References

[1] R. E. Caflisch. Monte Carlo and quasi-Monte Carlo methods. Acta Numerica, pages
1-49, 1998.

2] R. E. Caflisch, W. Morokoff, and A. Owen. Valuation of mortgage-backed securi-
ties using Brownian bridges to reduce effective dimension. Journal of Computational
Finance, 1(1):27-46, 1997. 8, 15, 16

[3] H. Faure. Selection criteria for (random) generation of digitial (0,s)-sequences. In
H. Niederreiter and D. Talay, editors, Monte Carlo and Quasi-Monte Carlo Methods
2004, pages 113—-126. Springer, 2006. 27

[4] H. Faure and C. Lemieux. Generalized Halton sequences in 2008: A comparative
study. ACM-TOMACS, 19(4), 2009. 8, 10, 11, 12, 21, 22

[5] P. Glasserman. Monte Carlo Methods in Financial Engineering, volume 53 of Appli-
cation of Mathematics - Stochastic Modelling and Applied Probability. Springer, 2004.
4,5,6, 11, 14

[6] C.Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling. Springer Series in Statis-
tics. Springer, 2009. 3, 5, 6, 7, 8,9, 13, 14, 15, 21

[7] C. Lemieux. Private communication, July 2010. 21, 27

[8] C. Lemieux, M. Cieslak, and K. Luttmer. RandQMC user’s guide: A package for
randomized quasi-Monte Carlo methods in C. University of Calgary, 2004.

[9] C. Lemieux and H. Faure. New perspectives on (0,s)-sequences. In Pierre L’Ecuyer
and Art B. Owen, editors, Monte Carlo and Quasi-Monte Carlo Methods 2008, pages
113-130. Springer, 2009. 11, 21, 27

[10] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, vol-
ume 63 of CBMS-NSF' Regional Conference Series in Applied Mathematics. STAM,
1992. 3, 4

37



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

S. Ninomiya and S. Tezuka. Toward real-time pricing of complex financial derivatives.
Applied Mathematical Finance, 3(1):1-20, 1996. 16

A. B. Owen. The dimension distribution and quadrature test functions. Statistica
Sinica, 13:1-17, 2003. 13

A. Papageorgiou. The Brownian bridge does not offer a consistent advantage in quasi-
Monte Carlo integration. Journal of Complexity, 18:171-186, 2002. 14, 25

A. Papageorgiou and J.F. Traub. Faster evaluation of multidimensional integrals.
Computers in Physics, 11:574-578, 1997. 13

S.H. Paskov and J.F. Traub. Faster valuation of financial derivatives. Journal of
Portfolio Management, 22(1):113-120, 1995. 7

.M. Sobol’ and D.I. Asotsky. One more experiment on estimating high-dimensional
integrals by quasi-Monte Carlo methods. Mathematics and Computers in Simulation,
62:255-263, 2003. 11, 12

X. Wang and K-T Fang. The effective dimension and quasi-Monte Carlo integration.
Journal of Complezity, 19:101-124, 2003. 9, 11

X. Wang and F. J. Hickernell. Randomized Halton sequences. Mathematical and
Computer Modelling, 32:887-899, 2000. 11, 12

38



