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Abstract

Typical data used by biologists to track cells is obtained by recording a sequence of
two-dimensional microscopy images over a finite period of time. However, in fluorescent
microscopy images, cells may disappear for a few frames and then reappear. This can lead
to confusion since the biologists have no way of predicting whether these cells were present
in a previous frame or simply a result of cell division. When the set of images are stacked
in chronological order, they form a three-dimensional image volume in which the disap-
pearance of cells leads to broken cell paths. In this paper, we present two segmentation
methods that are capable of reconstructing incomplete cell paths as a tool for tracking
cells. The first model is inspired by geodesic active contours and Markov chains. The key
idea is to generate a sequence of pseudo-random numbers that create a set of “invisible
boundaries” within the 3D volume. Applying the geodesic segmentation algorithm with
the knowledge of these boundaries will capture the gaps in the incomplete cell paths. The
second approach performs 2D segmentation in a 3D framework using a similar formula-
tion as the Chan-Vese level set segmentation. The 2D segmentation locates the cells that
are visible in the image frames while the 3D segmentation captures the gap. We demon-
strate the accuracy of our models both qualitatively and quantitatively by presenting the
segmentation results of C2C12 cells in fluorescent images.
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Chapter 1

Introduction

The study of cells is crucial in the development of science. Diseases like cancer and AIDS
are direct consequences of cell mutations such as rapid cell growth, abnormal cell division,
and large quantities of cell death. For this reason, biologists consistently rely on live cell
imaging via light microscopy for medical research and monitoring of diseases. The idea is to
use visible light to detect and enlarge small objects such as cells inside a given frame. With
this research tool, cell biologists can extract detailed images of the interrelated structures
and dynamics of biological systems [13].

Fluorescent microscopy is one of the several types of imaging techniques used by these
biologists to study cell movement, cell growth, cell metabolism, cell differentiation, and cell
death [11], [13]. Images from fluorescent microscopy are recorded in a time series, for exam-
ple, taken every thirty minutes over a period of seven days. Typical experiments result in
hundreds of images, each containing many cells that undergo movement, division, growth,
and death, which render manual analysis extremely meticulous and time-consuming [13].
For illustration purposes, two consecutive fluorescent images from a sequence of eighty are
shown in Figure 1.1. In fluorescent microscopy, the cells are tagged with a protein that
exhibits fluorescence when exposed to light of different wavelengths. The fluorophore is the
component of the protein that causes the molecule to be fluorescent. The result is an image
in which the objects of interest, usually the nuclei of the cells, are easily distinguishable
from the background because they appear as bright convex shapes. However, the amount
of energy emitted by the fluorophores depends on the environment they are in. Therefore
it is sometimes possible for the protein to not emit a visible light when the cell undergoes
chemical changes during its division cycle. This property of fluorophores causes the cell to
be missing from the frame of interest for a short period of time. Hence, given a sequence
of fluorescent microscopy cell images obtained over a certain time interval, it is easy to



Figure 1.1: Fluorescent microscopy images of the same cell culture taken at different times

locate the positions of the various objects in each frame. The problem lies in tracking the
origin of a cell when it reappears into the frame after disappearing for a short period of
time. Although this is a problem that is often mentioned in the literature, a solution that
does not involve manual intervention has not yet been addressed.

Image segmentation is a common tool used in the automated algorithm of cell tracking.
By definition, it is the process of locating the boundaries of the objects in a given image.
A common challenge for programmers is to develop a segmentation method that is able to
detect edges as accurately as the human eye, despite gaps and broken boundaries in the
actual image. The classic tracking method involves recording position and boundary infor-
mation of the cells, at specified regular time intervals, using an appropriate segmentation
technique. The identified boundaries in a given frame are then used as initial guesses for
the position of the cells in the following frame [9]. In the case of a cell disappearing and
reappearing, it is up to a specialist to identify the origin of the cell. This segment-and-
track method only uses information from the previous image frame. However, the entire
sequence of recorded fluorescent images is often available for analysis. In this paper, we
will exploit the temporal information of the cells in order to reconstruct the missing seg-
ments when a cell disappears from the frame. The set of images obtained from fluorescent
microscopy are stacked in chronological order to create a three-dimensional image volume.
The sequence of cells form “tubes” in the image volume; for example, the stacking of one
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Figure 1.2: Three-dimensional image volume of one cell

cell is shown in Figure 1.2. We define the case of a cell disappearing from the frame of
interest, which can be seen in Figure 1.2(b), as an incomplete cell path because there is a
gap in the 3D image volume. Applying a three-dimensional segmentation to the volume
will capture the cell tubes and hence the locations of the cells at different times. However,
this approach alone does not resolve the issue of tracking a cell when it reappears into the
frame after disappearing for some time.

The goal of this project is to develop a technique for reconstructing incomplete cell paths
through a three-dimensional segmentation. The algorithm should automatically be able to
bridge gaps that are easily detectable by the human eye in any image volume. The input
parameters may vary from one experiment to another, however, within a single experiment,
no adjustments to the parameters should be necessary. We present two different approaches
to solve this problem, “Random Walk Geodesic Active Contours” and “3D-2D Level Sets.”
The first method involves modifying the geodesic active contour model as well as the
Metropolis algorithm from Markov Chain Monte Carlo methods to create a set of “invisible
boundaries” that bridge the gaps in the 3D volume. The second algorithm modifies the
active contours without edges model to perform a two-dimensional segmentation in a three-
dimensional framework, such that the 2D segmentation captures the cells that appear in
the image frames while the 3D segmentation reconstructs the incomplete cell path.

The rest of the paper is arranged as follows: Chapter 2 contains the background infor-
mation on two well-known segmentation algorithms, geodesic active contours and active
contours without edges, as well as a brief introduction to Markov Chain Monte Carlo



methods; Chapter 3 describes the two different models investigated in this project for re-
constructing incomplete cell paths; Chapter 4 presents and compares the results for both
methods and Chapter 5 is the conclusion of this paper.



Chapter 2

Background

In this chapter, we describe the background information that was used in the development
of the methods for reconstructing incomplete cell paths. The first algorithm was derived
by combining geodesic active contours with Markov chain Monte Carlo methods, whereas
the second is a modification of the active contours without edges segmentation technique.
Hence, we first consider the two different level set models, geodesic active contours and
active contours without edges, and present the discretization of the level set partial differ-
ential equation. Then we introduce a popular Markov Chain Monte Carlo method, called
the Metropolis algorithm, for generating pseudo-random numbers.

2.1 Level Set Segmentation Methodology

The level set method introduced by Osher and Sethian [12] stems from a class of segmen-
tation methods known as active contours. The basic idea for any active contour model is
to evolve a curve over time so that it forms an outline around the object of interest. The
classical active contour method is called snakes [8]. In this method, the evolving curve is
defined as a parameterized set of points that are attracted towards the edges of the objects
in an image. In particular, the snakes method is an energy minimization approach to seg-
mentation such that the local minimum is obtained at the boundary of the object. Unlike
the level set method, snakes cannot directly deal with changes in topology. Therefore,
the main advantage of the level set method is that the active contour naturally splits and
merges, allowing the simultaneous detection of several objects.

The level set method was derived using partial differential equations. The derivation
involves (), an open bounded set in R™ with boundary 02, and a level set function ¢. €2



corresponds to the object that we wish to segment, ¢ is an (n + 1)-dimensional curve that
is evolved over time, and the zero level set of ¢ defines 02 when the stopping conditions
are met. For example, in 3D, the boundary of the object is given by:

o ={(z,y,2) | ¢(z,y,2) = 0}.

More specifically, at any time ¢ and position x = (z,y, z), the boundary of the current
segmentation can be determined by solving

B(x(t), 1) = 0. 2.1)
Furthermore, ¢ is a signed distance function with the following properties:

o(x(t),t) =0 for x € 9N
p(x(t),t) >0 forxeQ
o(x(t),t) <0 for x € R"\(QUIN).

A brief summary of the level set segmentation method is as follows. In order to deter-
mine the motion of the contour, the chain rule is used to differentiate (2.1) with respect
to time [3]:

0% | Vg(x(t), 1) -x(t) =0 — 224 (—W‘(é(;')’ )

ot
Hence the curve propagates in a direction normal to itself with speed F = —i-x(¢), where

n= —% is the inward direction normal to the surface. Then the general level set equation

is given by

-x’(t)> V| = 0.

9 _
{61& +FVel =0 (2.2)

¢(X7 0) - ¢0

where F' dictates how fast the curve moves at each point in the image and ¢y is the zero
level set of the function ¢ at time ¢ = 0.

The choice of speed function F' depends on the level set model that is used. For example,
information about the edges of an object in an image u can be extracted from the gradient
of the image. More precisely, an image exhibits a rapid change in intensity values at the
boundaries of an object. Hence the gradient method detects the edges by looking for the
maximum values in the first derivative of the image. Consider the one-dimensional signal
w illustrated in Figure 2.1. The edge is indicated by the jump in intensity in Figure 2.1(a).
If we take the gradient of this signal, which in one dimension is just the first derivative

6
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Figure 2.1: Geometric interpretation of the edge stopping function g

Figure 2.2: Evolution of a level set curve using the anisotropic diffusion model. Source: The
Visible Human Project, MRI scans, Proton Density Image



with respect to the horizontal variable, we get the graph in Figure 2.1(b). The derivative
exhibits a maximum at the centre of the edge in the original signal.

Because the curve should keep moving in the background of the image and stop evolving
when it is close to the boundaries of the object, we define an edge stopping function g such
that it is very small at the boundaries of an object and large everywhere else. That is, ¢
is a strictly decreasing function such that ¢ — 0 as |Vu| — oco. Therefore, an appropriate
edge stopping function is g(r) = 1/(1 + r?), where p is a positive integer. For illustration
purposes, in Figure 2.1(c), observe that g is close to 0 at the edge of the signal and close
to 1 in the background of the image. If F' is chosen to be the edge stopping function

1

__ 2.3
L+ [Vaf? (23)

g9(|Vul) =

then this is known as the anisotropic diffusion model, which is shown in Figure 2.2.

In this paper, we discuss two different possibilities for the choice of F'. The first is
called geodesic active contours and is similar to the anisotropic diffusion model in that it
uses information about the edges in the image to calculate the propagation speed of the
curve. The second is called active contours without edges and uses mean intensity values
to split the image into two regions, the background and the objects.

2.1.1 Geodesic Active Contours

Caselles, Kimmel, and Sapiro [5] introduced a novel technique for detecting object bound-
aries called geodesic active contours in which the curves evolve over time according to
intrinsic geometric measures. Let ¢(s) : [0, 1] — R™ be a parameterized planar curve, «, 3,
and \ are constants, and u is the image in which we want to detect the object boundaries.
Then the snakes approach tries to find the curve that minimizes the energy functional (2.4)
such that the local minimum is obtained at the boundary of the object.

E(g)=a / ()P ds + / ¢ () ds — A / Vu(é(s))] ds. (2.4)

The first two terms in (2.4) represent the internal energy of the system and control the
smoothness of the curve. More specifically, the first term is an elastic term that discourages
stretching and the second is a curvature term that discourages bending. The third term
represents the external energy of the system and is responsible for attracting the curve
towards the boundaries of the objects.



In [5], the authors set the rigidity constant 3 to zero and argue that the first term in
(2.4) is sufficient to control the smoothness of the curve. Hence they reduce the energy

functional to
= a/ |¢'(5)|? ds — / [Vu(op(s))| ds. (2.5)

Note that in this equation, minimizing F is equivalent to maximizing the second term
while maintaining a certain smoothness to the curve. Hence we are trying to locate ¢ at
the maxima of |Vu|. This is also the goal of the edge detector function defined in (2.3), so
we can replace —|Vu/| in equation 2.5 with g(|Vu|), creating a particular snakes model.

A geodesic curve is defined as a local minimal distance path between given points. For
example, in two-dimensional FEuclidean space, the shortest path between two points is a
line segment given by the distance formula d(a, b) = /(a, — b;)? + (a, — b,)?. The deriva-
tion of the geodesic active contour model involves Maupertuis’ Principle! from dynamical
systems to show that the solution to the particular snake model is given by a geodesic
curve in a Riemannian space induced from the image u. Hence the energy minimization
problem derived from the snakes model is reduced to a distance minimization problem in
a Riemannian space where the functional is

L(g) = / o(IVu(o(5))))[¢/(5)] ds. (2.6)

In order to minimize (2.6), we need to compute the Euler-Lagrange of the above functional.

) is the Fuclidean

The descent direction is parameterized by time ¢ > 0 and k = le(g Py

curvature. The Euler-Lagrange equation for ¢ is given by

09(t) _
ot

In this paper, we use the following formula to compute curvature:

(Vu)k|Vo| — Vg(Vu) - Vo = 0. (2.7)

R = |V¢|3 (¢x¢yy 2¢w¢y@xy+¢ ¢mm+¢ Goz— 2¢$¢2¢I2+¢2¢$$ﬂ+¢y¢22 2¢y¢z¢yz+¢ ¢yy)

Furthermore, to deal with gaps in the boundaries of an object of the order of magnitude
%+, the authors in [4] and [5] add a term which acts as a balloon force, requiring that the

et U(¢) = —Ag(Vu),a = %, and p = m¢. Curves ¢(s) in Euclidean space which are extremal

corresponding to the Hamiltonian H = % + U(¢), and have a fixed energy level Fy (law of conservation
of energy), are geodesics, with non-natural parameter, with respect to the new metric (¢,5 =1,2) : g;; =



(a) c=0 (b) ¢=10.87
Figure 2.3: Geodesic segmentation of rectangles separated by a small gap of 8 pixels
region bounded by the level set maintain a certain area or volume. This term is called

the constant velocity and depends on a positive real constant c. The suggested differential
equation is

0o(t
% — g(Vu)s|Vg| — Vg(Vu) - Vo — g(Vu)e| V| = 0. (2.8)
This can be rewritten in a way that resembles the level set equation:
9¢(t) Vo
_ ‘ — . =0. 2.
S+ (= avaer 0 - Vova) - T8 w0l =0 29)

Hence, setting F' = —g(Vu)(c+ k) — Vg(Vu) - % yields the level set equation (2.2).

In this model, the evolution of the level set function does not uniquely depend on the
edge stopping function g. In the case where the edges are not ideal, that is, there are
different gradient values along the edges of the objects, the third term of (2.8), V(g)-V(¢)
will push the level set curve towards these boundaries. The geodesic active contour method
is also particularly good at detecting objects with gaps in the boundary. For example, for
the 2D case, in Figure 2.3(a), when ¢ = 0, the evolving contour splits and does not
include the gap in the segmented region. However in Figure 2.3(b), when ¢ = 0.87, the
final embedding function identifies both regions as one. It is important to note that in

10



Figure 2.4: Geodesic segmentation of rectangular prisms separated by a small gap of 8
voxels with ¢ = 0.87

the 3D case, as in Figure 2.4, including the constant velocity term has no effect on the
segmentation.

2.1.2 Active Contours without Edges

Chan and Vese [6] presented a new model for active contours that detects objects whose
edges are not necessarily defined by gradient. Instead of using an edge stopping func-
tion that relies on the gradient of the image w, the stopping term in [6] is based on the
Mumford-Shah segmentation techniques. Assume that u can be separated into two regions
of approximately piecewise-constant intensities, of distinct values u™, which represents
the object to be segmented, and u°*“, which corresponds to the background of the image.
Recall that 0€2 defines the boundary of the object 2. Then, in mathematical terms, we
have

u(z,y,z) ~u™  for (z,y,2) € QUIN
u(wz,y,z) =~ v for (x,y,2) € R"\(QUIN).
In the three-dimensional implementation of the Chan-Vese model, a level set function is

used to divide the image u(x,y, z) into two regions where ¢ > 0 is the inside and ¢ < 0
is the outside. Let ¢; and ¢y be the average intensity values of u inside and outside ¢

11



respectively, then for any curve ¢, the following fitting terms are considered:

Fi(¢) = / o) (u(z,y,2) — 01)2 dxdydz
Fafo) = / tside() (ufe,9,2) = 02)2dxdydz-

These terms measure the closeness of the regions separated by ¢ > 0 and ¢ < 0 to u™"
and u®" respectively. In fact, at the boundary of the object, we expect to have Fy(99) +
F5(0Q) ~ 0. Therefore, finding the boundary of the object is equivalent to finding the
curve ¢ that minimizes the sum of the fitting terms:

inf,{F1(¢) + Fo(¢)} =~ 0 = F1(09Q) + F,(0). (2.10)

Figure 2.5 shows how 02 minimizes (2.10).

In addition to the fitting terms in (2.10), Chan and Vese introduce parameters pu, v, Ay
and Ay to construct the following energy functional:

F(cy,co,¢) = p - Length(¢) 4+ v - Area(inside(¢))

+ A\ / (u(x, Y, z) — 01)2 dxdydz
inside(¢)

+ )\2/ (u(z,y,z) — 02)2 dxdydz. (2.11)
outside(p)

The last two terms in (2.11) are defined such that the energy is minimized when the level
set surface is located right on the boundary of the object. The other two are regularization
terms, the first is inserted to minimize the surface area and the second is meant to minimize
the volume of the inside region.

Using the Heaviside function H and the delta Dirac measure ¢, the Chan-Vese model
minimizes the energy functional

rn(gn u/ |\VH(¢)| dedydz + v (@) dxdydz + M\ | |u—ci|*H(¢) dxdydz
0 0

Q
+ AQ/ lu — co)*(1 — H(¢)) dzdydz.
Q
The corresponding Euler-Lagrange equation for ¢ is given by
0 . \Y
a—f — () [u - div (ﬁ) —v—M(u—c)? + Xpu — 02)1 =0, (2.12)

12



n

(a) F1(¢) >0, I2(¢) = 0 (b) Fi(¢) ~ 0, I2(¢) >0
(c) Fi(¢) >0, F2(¢) >0 (d) Fi(¢) = 0, F2(¢) = 0

Figure 2.5: Fitting terms for all possible cases of the position of ¢ in 2D
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with initial contour given by ¢(x,y, 2,0) = ¢o(z,y, z). At the steady state, the zero level
set of ¢ gives the boundary of the object. In order to extend the evolution to all level sets

of ¢, it is possible to replace §(¢) with |Vé| and recalling that x = div (%), we rewrite

equation (2.12) in a way that resembles the level set equation:

20 (v N ) — = )?) V6] = 0. (2.13)

2.1.3 Discretization of the Level Set PDE

In this project, the initial value partial differential equation (2.2) is solved using a finite
difference method with the upwinding scheme. The approximate solution to the above
PDE at iteration time t,, and voxel location (i, j, k) is denoted by ¢jr- Therefore, we
approximate ¢(x(t),t) at discrete times to, t1, ..., and positions (x;, y;, z) such that ¢, 4 —
tm = AL, 41 — 2 = Ax, yjp1 —y; = Ay, and 21 — 2, = Az are constants, using the
following upwinding scheme:

mtl . mo At [maX(Fijk, 0)V+ + min(ﬂjk? O)V_L

ijk ijk
such that
V' = [max(D;;7,0)? + min(D;7, 0)* + max (D}, 0)°
) . : . 1/2
+ mm(D;;z, 0)* + max(D;, 0)? + min(D;;, 0)%]
V™ = [max(D;5,0)? + min(D;;7, 0)* + max(D;;}, 0)°
) - , : . 1/2
+ min(Dj, 0)% + max(D;'}, 0)% + min(D;;, 0)%]
moo_ 7_77'«*1
where D} = % is the formula for backward differencing in the z-direction and
mtl_ pm
D;i’ — %k ~%% 5 the formula for forward differencing in the z-direction. This upwinding

scheme is stable if the following Courant-Friedrichs-Lewy (CFL) condition is satisfied:
( max F) At < min(Az, Ay, Az).

For simplification purposes, we will always force the 3D volume to be an n X n x n cube
so that Az = Ay = Az and the CFL condition is (maxq F)At < Az.

14



At time t(, we initialize ¢ to be a signed distance function. That is, we let

A(x) = min (fx — x)

such that d(x) = 0 Vx € 09, where 02 is the border between the inside, QF, and the
outside, 27, of the embedding function. Then

0 Vx € 0N
o(x) = ¢ —d(x) Vx e Q™ .
d(x) Vx e QF

In particular, for this project, ¢q is constructed such that its zero level set is a sphere that
surrounds the entire 3D image volume. Furthermore, every fifty iterations of the level set
method, say at times ¢y + 50, tg + 100, and so forth, the embedding function is reinitialized
to be a signed distance function that satisfies the properties descried above.

The number of time steps is not predefined by the user. Instead, we run the upwinding
scheme until no more changes are made to ¢ from one time step to another. More precisely,
at a given time step t,,, we let ¢ ((x,y,2),t;n) = ém, and run the algorithm until the
following stopping condition is met:

|pms1 > 0| = [, > 0.

2.2 Markov Chain Monte Carlo Methods

In this section, we move away from image processing techniques to introduce the statistical
background required in the derivation of the random walk geodesic active contour method.

Over the past 17 years, Markov Chain Monte Carlo (MCMC) techniques have taken
Bayesian statistics to new heights by providing a universal tool for dealing with integration
and optimization problems [7]. In the following sections, we define Markov Chains and
present a common algorithm for generating a sequence of discrete random numbers.

2.2.1 Markov Chains
A stochastic process is a sequence of random variables { X (¢), t € T'}, where t is a parame-

ter in a set T'. The state of the process at time ¢ is called X (¢) and the set of all possible real-
izations of X (t) describes the state space denoted by S. A discrete time stochastic process

15



is a stochastic process in which the parameter and state spaces are discrete, that is
T=1{0,1,..} and S ={0,1,...} [7].

Definition 2.2.1 (Markov Chain) A discrete time stochastic process {X; = X(t), t =
0,1,...} is said to be a Markov chain if the conditional distribution of the future state
X(tx) given the present and past history of X (t), i.e. X(tp—1) = xp_1,...,X(t1) = 1,
only depends on the present state X (tx_1) = xx_1. That is, for any set of k time points
1 <ty <...<ty ZTLT,

P(X(tk) S Tl ‘ X(tk_1> = Tk—1, ,X(tl) = (L’l)

The one-step transition probability function of a Markov chain defines the probability
distribution of the next state given the present state:

Pij = P<Xk :j‘kal = i);

JjES

If any of the transition probabilities change with time, that is pg-l) =+ pgn) for some m,n €
T, then the Markov chain is called timeinhomogeneous, otherwise, the chain is called

stationary.

The matrix of these transition probabilities shown below is square and is called the
transition matriz. It is a stochastic matrix, hence by definition, p;; > 0Vi,j € S and

Zj pij = 1.
P11 P12 P13
P = | P21 D22 D23

Consider the simple example of a person, Adam, standing on one of a sequence of four
tiles as illustrated in Figure 2.2.1. From one time step to another, Adam may move to a tile
that is directly beside the one he is already on, or he can remain at his current location. In
this case, S = {1,2,3,4} and the transition matrix indicates the probability of the person
moving from his current position ¢ € S to another location j € S. Assuming there are no
biases between the tiles, the resulting probability transition matrix is

1/2 1/2 O 0
s s s O
P=10 s s vy
0 0 1/2 1/2
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Tile 1 | Tile 2 | Tile 3 | Tile 4

Figure 2.6: Transition matrix illustration

The first row of the matrix can be read as, given that Adam is on Tile 1, the probability
that he will stay on his current tile is 1/2, the probability that he will move to Tile 2 is 1/2,
and the probability that he will move to any other tile is 0. On the other hand, assume
that there is a lion on Tile 3, so that Adam is inclined to stay away from that particular
location, then a possible transition matrix is

08 02 0 O
08 02 0 0
P= 0 05 0 0.5
0 0 0 1

2.2.2 Generating a Discrete Random Number

Let X be a discrete random variable with state space S = {a, as, ..., ax, ...} and respective
probabilities py, ps, ..., pi, ... such that >, p, = 1. To generate a random number from S,
we partition the interval [0, 1] into subintervals Iy, Is, ..., I, ... based on the densities [7].
That is, for £k =1,2, ...

I, = (kal,FkL
FQ :O,
Fo=p1+p2+ ..+

Each subinterval corresponds to a single value for X; in particular I corresponds to the
value ag. Next, we randomly generate a value U from the uniform distribution U(0, 1),
which is identical to randomly picking a number between 0 and 1. The interval I} to which
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U belongs indicates the generated value for X, a;. In summary;,

aq lf UE]l
as 1f UE[Q
X=Na if Uely

More specifically, in the following chapters of this paper, to generate X from a given
row 4 in the probability transition matrix P, that is X ~ P(i,:), we randomly generate
U~ U(0,1) and set

1 it U<psn
2 if pn <U < pp
X=93 i pi2 < U < piz -~
For example, if
08 02 0 0
0.8 02 0 0
P= 0 05 0 05|
0O 0 0 1

and we want to generate X from P(2,:). We first generate U ~ U(0, 1), then

B 1 if U<0.8
12 otherwise

2.2.3 Metropolis Algorithm

One of the most popular MCMC methods is the Metropolis algorithm. The idea was first
introduced by Metropolis, Rosenbluth, and Teller as a method for the efficient simulation of
the atomic energy levels in a crystalline structure [10]. The algorithm was later generalized
by Hastings to focus on statistical problems. The goal of the Metropolis algorithm is to
obtain a sample from a target distribution 7; = P(X = j),7 € S. Suppose there exists
a Markov chain with stationary distribution 7 = (7;;7 € §)* and choose a symmetric
stochastic matrix @ = (g¢i;)ijes, then the Metropolis algorithm starts with a proposed
state ¢ and decides whether it moves to a new state j based on a Bernoulli distribution.
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Algorithm 1 Metropolis

. Start withn=1and Xg € S

Set i = X,_; wherei e S

Generate j from the probability distribution {g;;;j € S}

Set r = 7”

Ifr>1 "set X, = j, otherwise generate u ~ U(0,1). If u < r set X,, = j, else set
X, =X,_1

6: Set n =n+1

7: Repeat from step 2 until the desired sample size is achieved.
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Chapter 3

Methodology

In this chapter, we present two different methods for segmenting a gap in a three-dimensional
image volume. The first is a three step algorithm which involves modifying the geodesic
active contour model so that the constant velocity term is dependent on voxel location,
as opposed to a constant c¢. This method can also be used to segment larger gaps in a
two-dimensional image. The second is a 3D-2D segmentation model that performs two-
dimensional segmentation in a three-dimensional framework using the active contours with-
out edges model. For both of these methods, we describe the process of capturing gaps in
the z-direction, however, the models can be adapted to capture gaps in any direction with
a simple adjustment to certain parameters.

3.1 Random Walk Geodesic Active Contours

The constant velocity term in (2.8) is not sufficient to detect gaps in the z-direction of the
volume. Thus we must manipulate the constant ¢ term so that it is a function of spatial
position, hence no longer a constant. In particular, we want to force the contour to stop at
an “invisible boundary” that will be determined by a modified version of the Metropolis
algorithm.

Recall the speed function used in the geodesic active contour model,

P (g(Vu)(c + k) + Vo(Vu) - %)'

In the case where there are different gradient values along the edges of the objects, the
second term is meant to push the level set function towards these non-ideal boundaries.
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However, in reconstructing incomplete cell paths, the edges of the missing cells are non-
existent, so they do not fall under the category of non-ideal boundaries. Hence, we simply
need to worry about the first term in F', which is the edge stopping function. At a given
voxel location (x,y, 2), if c(x,y,2) + k(x,y,z) = 0, then the contour is forced to stay
still. The idea behind this method is to set ¢(x,y, z) = —k(z,y, 2) for all (z,y,z) on the
“invisible boundary.” We propose three steps to implement this model:

1. Identify all possible gap locations by segmentation and clustering.

2. Use an algorithm inspired by Metropolis to locate the “invisible boundaries” within
these gaps.

3. Solve the level set equation with speed function F' = —(g(Vu)(c+k)+Vg(Vu)- %),
where ¢ = —k for all points on the “invisible boundary.”

These steps are explained in detail in the following three sections.

3.1.1 Locating the Gaps

In order to locate a possible gap region in a 3D image volume, we first use segmentation
to divide the image volume into clusters based on voxel location and intensity value.

There are known segmentation techniques, such a k-means clustering, that will simul-
taneously segment the image and divide it into different sections. However, the number of
clusters needs to be specified by user input and these methods are quite slow if the centres
of the sections are unknown.

A simple way to separate the image into clusters is to first use an active contour
method from Section 2.1 to divide the graph into two sections, A = {(z,v,2) | ¢(x,y, 2) >
0}, representing the objects, and B = {(x,y,2)|é(z,y,2) < 0}, corresponding to the
background. Next, each voxel, including the ones in the background, are labeled with an
integer value ranging from 1 to K, where K is the total number of clusters. First and
foremost, all the points in the background belong to the same group, therefore they are
labeled 1. For the points inside the objects, the grouping is as follows: any two neighbouring
voxels must belong to the same cluster C}. The clustering algorithm below is derived from
the Region Growing method of segmentation, however, the number of clusters need not
be specified. Note that a non-boundary point has 26 neighbours. We call the clustered
image u.. The result of this algorithm is illustrated in Figure 3.1(b) where each colour in
u, represents a different group of pixels.
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Algorithm 2 Clustering
Require: A — {(z,y,2)[0(z,4,2) = 0}

1: k1

2: for each point a € A do

3: k—k+1

4:  Remove a from A and add it to C},

5. repeat

6: for each voxel in the set C}, do

7 for each of its neighbours n, that are not in C, do
8: if n, € A then

9: Remove n, from A and add it to C},
10: end if

11: end for

12: end for

13:  until no pixels are added in the last pass

14: end for

15: Return Cs, Cs, ..., Ck

For each cluster Cy, k € {1, ..., K'}, an average intensity value u; and a centre location
Pr = (ZTk, Uk, Z) are calculated. Let I, be an indicator function such that

1 ifuc(z,y,2) =k

[k(l',y,z) = {

0 otherwise.

Then
Zx,y,z Ik(l',y,Z) : U(%Z/az) . Z"L'7y7z Ik(x>y7 Z) ' (3773/;2)

Hie = y Pk =
Zx,y,z Ik (x’ y7 Z) Z‘Ly,z [k(%’, y? Z)

The next step in finding a possible gap location is to identify all the points that are not
in C}, but are close enough to be considered part of the cluster.

Once a clustered image u,. is attained, we use a measure of “closeness” based on distance
and intensity values to determine whether two voxels belonging to different clusters should
actually belong to the same one. More specifically, we need to determine whether a point
(x,y, z) such that u.(x,y, z) # k should be part of Cy. This decision is influenced by the
distance between (x,y, z) and p; and the difference in intensity values, |u(z,y,z) — | If
(x,y, z) is relatively close to Cy in terms of distance and intensity value, then it should also
belong to that cluster. We let Sj be the set of all such points. Our measure of closeness is
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Figure 3.1: 2D Example of locating the gaps
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given in (3.1)
Dk(xuya Z) = wp - |ZE - CEl€| + ws - |y - gk’ + wsg - |Z - Zk| + wy - |U($,y, Z) - Mk|7 (31)

where u.(x,y,2) # k and w; € R for i = 1,...,4. Note that we do not compute distance
using the Euclidean formula d(a,b) = /(a, — b;)? + (a, — by)? + (a. — b.)? because all
three directions may not be equally as important. For example, in our case of incomplete
cell paths, the gaps only appear in the z-direction, therefore the vertical distance between
two voxels is the most meaningful. Furthermore, two points with a very large difference
in intensity values should obviously not belong to the same section. Therefore, in order
to avoid labeling background points as part of the objects in the image, w, is set to be
significantly larger than the other weights. For example, we choose w; = wy = 1, w3 = 2
and w, = 100.

Information about the volume of the cluster £ is used to compute a maximum allowed
closeness, Dinaz i, such that (z,y,2) € Sy <= Dy(x,y,2) < Dpaz - Let h be the height
of the largest gap we wish to be capable of identifying and dj ., di,, and di . be the
maximum length, width, and height of C}, respectively:

die = (max{z | uc(z,y, z) = k} — min{z|u.(z,y, 2) = k}),
iy = (m{y | v, ,2) = £} — minfy | (e, y. ) = K}).
dy.. = (max{z |u.(z,y,2) = k} — min{z|uc(z,y, 2) = k}).

Furthermore, because the voxel intensity values within the 3D image are scaled to be
between 0 and 1, the difference in intensity values between two points that should belong
to the same cluster is close to 0, whereas it is close to 1 for two points that should clearly
not be clustered together. Hence, we use

dj; » d dy, -
Dmax,k:uyl.%+w2-%+w3-( ];’ +h)+w4-0. (32)

The process to locate the points in Sy for k = {1,.., K} is described in Algorithm 3.
The results of this algorithm applied to a simple 2D example with A = 10 pixels are shown
in Figure 3.1(c). This time, the different colours indicate the cluster that each pixel should
be connected to. For example, all the light blue pixels labeled S3 in Figure 3.1(c) belong
to the green cluster labeled C5 in Figure 3.1(b). However, Algorithm 3 determined that
they are all close enough in distance and intensity value to also belong to Cjs.

The final step in this section is to locate a possible gap region, Ry, for each cluster k.
To do this, we simply take the region bounded in between C}) and Sj. This is illustrated in
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Algorithm 3

1: fork=1— K do

Compute Dipeq i as in equation 3.2

for all (z,y,z) € u such that u.(z,y,2) # k do
Compute Dg(z,y, 2) as in equation 3.1
if Di(x,y,2) < Dppazr then

Add voxel (z,y, z) to the set Sy

end if

8: end for

9: end for

10: return Si,95,...5;

Figure 3.1(d) where the areas within the red contours are the identified gap regions. Note
that, in this case, the gap regions identified by (Cy, Sy) and (Cy, Sy) are identical to those
identified by (C3,S3) and (Cs, S5) respectively.

3.1.2 Identifying the Invisible Boundaries

Given a cluster C, and a set of points S}, containing all the voxels that should be connected
to Cf, we propose a method for creating a link that bridges the gap between these two
sections.

The most obvious solutions to this problem is to draw a minimal distance line connecting
each point on the surface of Sy, e.g. the gray line at the top of S3 in Figure 3.2(a), to
a point in C%, which is basically linear interpolation. In this case, neither step 2 nor
step 3 of our summarized model is required. This process is illustrated in Figure 3.2(b)
where lines are drawn to connect S3 to C5 from the example in Figure 2.5. However, this
method only uses information from two slices in the 3D volume and assumes that the
motion of a cell is linear. It is important to note that a cell begins to move in response
to an external signal in its surrounding environment [2]. The cell senses the signal by
spatially recognizing concentration gradients and tries to move in the direction of greatest
concentration. Unfortunately, it is impossible for a cell to pick the correct direction without
randomly sampling its surroundings. Therefore a stochastic process is often used to model
cell movement. In an attempt to maintain the random motion of the cell within the gap,
we modify the Metropolis algorithm from Section 2.2.3 to create a random walk from S
to Ck. The idea is to generate a sequence of N points {X (t),t € T} where T'= {1, ..., N}
connecting a point (xg, Yo, 20) € Sk to a point (xy,yn,2n) € Ck. At each time step t,
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(a) C3 and S (b) Minimal distance lines (¢c) S connected to Cs

Figure 3.2: Bridging the gap between S3 and Cj

we generate (Z, 7, Z) from a set of probability distributions and then accept or reject that
point based on a Bernoulli distribution.

Because the gaps that we are dealing with are uniquely in the z-direction, the random
walk should only move up, if Si is below Cy, or down, if Sj is above C%. Without loss of
generality, we assume that Sy, is below C} and explain the steps for the “Random Walk Up”
algorithm. The motion of the cells occurs in the z-y plane, hence we need to determine
relevant probability transition matrices, P, and P,, for both of the variables z and y. Note
that we do not have the appropriate data to be able to create an exact stochastic matrix
that depicts the motion of the cell. Instead, we require that our model satisfy the following
three properties:

1. The path must move more or less randomly towards the closest point in Cj.
2. The path must be continuous, that is X (#;_1) and X (¢;) should be neighbours.

3. The path must remain inside the region Ry.

Let X (t;) = (z4,yi, 2;). First, we set Z = z;,1. Then, to satisfy the quality of randomness
in property 1, we allow the path to move in the z-direction with uniform distribution, at
all time t € T'. However, to maintain continuity we must have

x; — 1 with probability /3
Tig1 = T with probability /5 .
r; +1 with probability /3
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Hence the Markov chain is stationary and the corresponding n X n transition matrix is

Yy Yy 0 -~ 0 0 O

1/3 1/3 1/3 0 0 0
P, =

0 0 0 - Y5 Y3 s

0 0 0 - 0 Y 1/

We use this transition matrix to generate T from P,(z;,:). Given T and Z, we determine
y from the set Y = {y; — 1,y;,y; + 1}. For j = 1,...,3, we compute the shortest distance
from the point (Z, y;, Z) to Cy, where y; € Y and 4y # ¢ # ys. Let dy, da, and ds be these
distances such that d; < dy < ds. Then we have

Yy, with probability p;
Yo with probability py ,

|
I

y3 with probability p3

with p1 > ps > p3 and p; + po + p3 = 1. Note that, in this case, the point that is closest
to cluster C}, is given the highest probability and the resulting transition matrix is time
inhomogeneous because it is a function of distance. In this project, we manually choose
the values of pi, pa, and p3. The closer p; is to 1, the more the random walk resembles a
minimal distance line. More information about the choice of p; is given in Algorithm 4.
P, is a sparse matrix similar to P, in which each non-boundary row has three consecutive
elements. Without loss of generality, assume that y; = y; — 1, ¥ = y;, and y3 = y; + 1,
then

Py(]" 1: 2) - (pl)p2)>
P,(i,1—1:i4+1) = (p1,p2,p3)fori =2,...,n—1,and
Py(n, n—1:n) = (p1,p2).

Finally, to restrict the third property, we only accept the point (Z,y, Z) as a vertex in our
random walk if it is inside the possible gap region Rj. The above steps are summarized in
Algorithm 4.
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Algorithm 4 RandomWalkUp
Require: N is the length of the random walk and (zo, yo, 20) € Sk is the starting point of
the walk.
Ensure: X is a list of N coordinates of the random walk
L X(1,:) = (%0, Yo, 20)
2: fori=1— N—-1do
3:  Z«+ X(i,3) + 1 {for the Random Walk Down, this line is z <+ X(¢,3) — 1}

4: Generate Z from P, (X(i,1),:) as in section 2.2.2

5. Compute di, ds, and ds as defined above

6: if d; = dy = d3 then

7 Set p1 = po =ps =3

8: elseif dy = dy # d3 then

9: Set py = po = p and p3 = 1 — p for some 0.25 < p < 0.5
10: else

11: Set py > 0.5 > py > p3

12:  end if

13:  Generate 7 from P,(X(4,2),: ) as in section 2.2.2
14: if (z,9,%) € Ry, then

15: X(i+1,:)«—(z,9,2)
16: else

17: X(@i+1,:) «— X(1,:)
18:  end if

19: end for

20: return X

It is important to note that the boundaries of Ry are determined using information
about the entire cluster C. Hence the range of motion of the path is not restricted by one
slice in the 3D volume, as the linear interpolation method. Instead, the cells in the gap are
allowed to move around in the frame of interest as freely as any other cell in the previous
or subsequent slices.

To create the “invisible boundaries,” for each set (Cy, Sk, Ry) in the image u, we identify
all the points on the face of Sy that are closest to C) and use them as input in the Random
Walk Algorithm. If there are nj such points, then we create n; paths. However, we only
consider the paths that terminate somewhere in Cj, as opposed to the background of the
image. All the points in the random walks from S to C} are considered part of the
“invisible boundaries.”
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3.1.3 Final Segmentation of the Image

The result of the previous section is a logical n X n X n matrix, L, indicating the voxel
locations of the “invisible boundaries” in the image. At every iteration time t,, and voxel
location (i, j, k) of the level set method presented in section 2.1, we denote the curvature,
K, and the speed function, ¢, by £ and ¢}, respectively, and set

. —rpg, if L(i,5,k) =1

Cijk = . .

0 otherwise

A complete algorithm of the “Random Walk Geodesic Active Contours” model is given in
Algorithm 5.

It is important to note that the “invisible boundaries” do not form a solid contour.
Out of all the random walks generated, only the ones connecting a point in Si to one in
C) are used. Hence the region formed by the invisible boundaries contains little holes,
especially for large gap sizes. For this reason, it is important that a final 3D segmentation
is performed on the image; the curvature term will ensure the smoothness of the level set
function and capture the entire gap as one solid region.

Although the Random Walk Geodesic Active Contour idea is relatively simple in that
it uses information about the distance between two clusters, it is extremely accurate. The
model can virtually detect multiple gaps of any size in a 3D volume and propose a set of
boundaries to bridge these gaps. However, the method is computationally expensive. For
each identified section in the original image u, O(n?) distances are computed. Furthermore,
the algorithm requires two three-dimensional segmentations. Hence, in an attempt to
reduce the total number of segmentations to one, we investigate another segmentation
approach that is based on the active contour without edges model derived by Chan and
Vese in [6].
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Algorithm 5 Random Walk Geodesic Active Contours
Require: The user must specify the values of the weights w, wsy, w3, and wy, and the
probabilities p, p1, p2, and p3. Typically, wy = ws, w3 > wy, and wy > ws3; 0.25 < p <
0.5, p1 > 0.5 >py > p3, and p; +pa +p3 = 1.
1: Divide the original image u into sections based on voxel intensity values and location.
The clustered image is called u. and contains K sections labeled Cj,
2: for k=1— K do
3 Determine the set of points Sy C u that should be connected to Cj,
4.  Identify a possible gap region R, which is bounded by C} and Sy
5:  Initialize L to be an n X n X n matrix of zeros
6: if S} is above C), then
7.
8
9

for all points p on the bottom face of Sy do
X < RANDOMWALKDOWN(N, p)
: if X(N,:) € Cy, then
10: L(z,y,2) — 1 V(z,y,2) € X

11: end if

12: end for

13:  else

14: for all points p on the top face of S, do

15: X «— RANDOMWALKUP(N, p)

16: if X(N,:) € Cy then

17: L(z,y,2) «— 1 V(z,y,2) € X

18: end if

19: end for

20:  end if

21: end for

22: Initialize ¢, as a signed distance function

23: m«— 0

24: repeat

25:  for each voxel location (i, j, k) do

26: if L(i,j,k) =1 then

27: Cilik < —Kik

28: else

29: Cg?k — 0

30: end if vor
31: e = —(9(Vuir (e + K5k) + (Ve(V) e - gitsy)
32: ot = o — At[max(Fyy, 0)VT + min(Fj, 0)V~]

33:  end for

34: me—m+1

35: until [¢"™ > 0] = |¢™ > 0 30
36: Return ¢™*1




3.2 3D-2D Level Set Segmentation

The Chan-Vese model detects objects in an image by comparing the intensity value of each
voxel (z,y, z) with the mean intensity values inside and outside the embedding function.
However, a point inside the gap of an incomplete cell path has the same intensity value
as the background, as opposed to the intensity values within the cell tubes. Therefore,
the level set surface will move away from the gap and simply capture the visible cells, as
illustrated in Figure 3.3(a). An important property of active contours without edges is that
if ¢; = ¢y, that is the average intensity values inside and outside the embedding function ¢
are equal, then the fitting term in (2.10) is minimized for that particular ¢. Furthermore,
if v = 0, so that there is no volume constraint on the energy functional, then the level
set surface will not evolve since the given ¢ is already an optimal solution. We use this
particular property in our 3D-2D level set segmentation method to avoid the undesirable
motion of the level set surface moving away from the gap.

(a) Chan-Vese (b) 3D-2D with p=v =0 (c) 3D-2D with p, v # 0

Figure 3.3: Segmentation of a cylinder with a gap of height 10 voxels

In order to detect gaps in the z-direction, we propose that the comparison of intensity
values takes place at a two-dimensional slice instead of the three-dimensional volume. More
precisely, suppose we want to classify the voxel (x,y,2) as a point inside or outside the
level set surface ¢. Then we consider the image frame corresponding to the z position, say
u®, and project ¢ onto frame z to obtain a two-dimensional level set function:

" (7, y) = d(x,y, 2).

This idea is illustrated in Figure 3.4. The image u is a cylinder that exhibits a gap
between the slices z = 50 and z = 60 (Figure 3.4(a)). The zero level set surface of the
initial embedding function ¢, is a sphere that encompasses the entire cylinder, including
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(a) Initial 3D volume u (b) Level set surface, ¢o(x,y,2) =0

(c) Frame 80 of u, u®® (d) ¢89(z,y) =0 (e) Inside the gap, ¢53°(z,y) =0

Figure 3.4: Projection of the initial embedding function onto two frames of an image
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the gap, as shown in Figure 3.4(b). At any point on the eightieth slice of u, denoted u®
(Figure 3.4(c)), we consider the two-dimensional level set function ¢§°(z,y) = ¢o(x,y, 80)
for which the zero level set curve is shown in Figure 3.4(d).

Let ¢} and ¢} be the average intensity values of v* inside and outside ¢* respectively.
Then we replace ¢; and c¢p in the Euler-Lagrange equation (2.12) with ¢ and ¢§. Our
proposed partial differential equation for ¢ is given by

— — () {u - div (%) —v =M\ (u—c)?+ Xa(u—ci)?| =0. (3.3)

This equation evolves the 3D level set function ¢ by performing a 2D level set segmen-
tation on each frame. If a cell is present in an image frame z, as in Figure 3.4(c), the \;
and Ap terms in (3.3) will attract ¢* and hence ¢ towards the cell boundary. This is sim-
ilar to the two-dimensional Chan-Vese segmentation model. However, for an image frame
within the gap of the volume such as in Figure 3.4(e), ¢ = ¢5. Therefore, as described
previously, in the case where v = 0, the zero level set curve will be identical to the initial
one. This is observed in Figure 3.3(b) where the gap is captured by the segmentation,
but it is not an accurate representation of the missing cells. It is important to note that
the 3D-2D approach is not the same as segmenting each image frame individually. The
latter would not be able to bridge the gap and would simply produce the same results as a
three-dimensional image segmentation. In our method, each projected level set function ¢*
locates the boundaries of the objects in its own image frame while maintaining information
about the entire 3D level set function ¢. In fact, this information is maintained by the
regularization terms, p and v. For illustration purposes, consider a unique incomplete cell
path with one gap. Suppose the cell is visible in frame z; but non-existent in the next frame
21 + 1. Then the projected level set function ¢ is drastically different from ¢! because
the first contour captures the cell in the 2D image whereas the second is given by the initial
level set function. This large difference in contours induces a large mean curvature in the
zero level set of ¢. The regularization terms are meant to minimize this effect by evolving
¢**T1 such that the contour will be close to the cell boundary given by ¢*'. Hence, with
an appropriate choice of 1 and v, the 3D-2D method will correctly capture the gap as in
Figure 3.3(c).

In summary, the A\; and Ay terms drive the segmentation of the two-dimensional image
towards the existing objects in the frame, capturing the visible parts of the cell tube. The
regularization terms then extend the surface by minimizing the mean curvature into the
region where the cell disappears, creating a segmentation of the missing cell. This method
does not rely on physically identifying a gap region, it simply manipulates the level set
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surface to evolve in a desired manner when there is a gap within the embedding function.
In other words, the level set curve is not attracted towards the gap, instead, it is designed
to replicate contours from image frames prior to and following the gap. Therefore, in
order for this model to produce accurate results, the initial embedding function ¢, must
completely surround the gap.

To handle the case of an image containing many cell tubes with multiple gaps, we
suggest dividing the 3D volume into sections and performing the 3D-2D level set segmen-
tation on each of these smaller images separately. Furthermore, if uj = uj, v = uo,
and uf = wu; for some z € [1,n], then the entire image contains no objects, so we return
o(z,y,2) < 0V(z,y, 2) € u.
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Chapter 4

Results

In this chapter, we present the results of the algorithms described in Chapter 3. All of the
following cell images are fluorescent microscopy images of live C2C12 cells obtained from
the Department of Medicine and Human Genetics at McGill University. The original image
size is 512 x 512, but for illustration purposes, only a 100 x 100 section is shown. We present
the results obtained from three different datasets, each consisting of eighty frames. First
we test both methods on a 3D volume image containing one cell. Then we use a dataset in
which cell division is observed to discuss the effect of gap sizes on the segmentation results.
Finally we show the results for a more complex dataset with multiple cells.

The parameters for the random walk geodesic algorithm are set as follows, p = 0.45,
p1=0.8, po =p3=0.1, w; = ws =1, w3 =2, and wy = 100. The height of the largest gap
we wish to be capable of identifying, h, depends on the experiment we are running. Unless
otherwise specified, we choose h = 10, which is the average predicted gap size. For the
3D-2D level set method, the values of y and v depend on the dataset, however, we always
use \;1 = Ay = 1000 and a time step of At = 0.00009

4.1 Images Containing One Cell

Figure 4.1 shows the results of the random walk geodesic and the 3D-2D level set algorithms
applied to an incomplete cell path containing one gap of height 8 voxels. A complete image
dataset with the cell visible in each frame is taken as the ground truth. We then manually
remove the cell from frames z = 36 to z = 43 to simulate the effect of a cell disappearing
and reappearing from the frame of interest. For this experiment, we choose the 3D-2D
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parameters to be g = 0.1 and v = 1. The gap is visible in Figure 4.1(a) which corresponds
to an ordinary level set segmentation result, however, both the random walk and the 3D-2D
level set methods reconstruct the incomplete cell path, as illustrated in Figures 4.1(b) and
4.1(c). In Figures 4.1(d) and 4.1(e), we project the predicted segmentation surfaces onto
frame 36 of the ground truth dataset; this corresponds to the actual cell. Observe that the
curves agree very well with the missing cell, however, in this particular case, the random
walk geodesic method gives a better approximation of the cell location than the 3D-2D
level set method. It is important to note that the 3D-2D level set result is also extremely
accurate, even though the contour captures the glow of the cell from the microscope. In
fact, this result is expected of a level set segmentation in which no measures are taken to
smooth the image.

For this dataset, we compute the accuracy of the random walk geodesic segmentation
results for a gap size of eight voxels. Ten such cases are analyzed and recorded in Table 4.1
for a total of eighty image segmentation results. Similarly, the accuracy of the 3D-2D level
set method is recorded in Table 4.2. Accuracy is measured as |AN B|/|A| where A denotes
the segmentation result and B the ground truth. That is, in a given frame, we determine
the percentage of pixels inside a 35 x 35 square containing the original cell that are correctly
classified by the level set function. The frame numbers in both tables correspond to the
distance in the z-direction between the frame of interest and the beginning of the gap. For
example, in Case 1, we manually remove the cell from frames z = 14 to z = 21; then the
first entry indicates the accuracy of the segmentation at slice 14, the second indicates the
accuracy at slice 15, and so forth.

The accuracy is consistently high for the random walk geodesic algorithm and does not
seem to depend on the distance between the missing cell frame and the known positions.
On the other hand, for the 3D-2D level set segmentation algorithm, the accuracy is higher
at the extremities of the gap and becomes worse in the middle since the curve is further
away from the known positions. However, on average, this method captures most of the
missing cell with a mean accuracy of 83.78% . For comparison purposes, the mean accuracy
of both methods at cach frame is plotted in Figure 4.2. For this particular datasect, the
random walk algorithm is comparable to the 3D-2D method at the extremities of the gap
but seems to dominate in the centre.

Figure 4.3 illustrates that both methods are capable of detecting multiple gaps of dif-
ferent sizes within one cell tube. Given the unicellular complete image dataset, we remove
the cell from frames z = 22 to z = 29 and from z = 55 to z = 63, as shown in Figure
4.3(a). Once again, we observe an appropriate reconstruction of the incomplete cell path.
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Frame

1 2 3 4 5 6 7 8

Case 1 | 0.8606 0.8775 0.8650 0.8700 0.8812 0.8694 0.8669 0.8619
Case 2 | 0.8794 0.8875 0.8856 0.8894 0.9094 0.8894 0.8900 0.8881
Case 3 | 0.8950 0.8925 0.8950 0.8925 0.9031 0.8987 0.8956 0.8912
Case4 | 0.8756 0.8819 0.8838 0.8775 0.8819 0.8769 0.8731 0.8756
Case 5 | 0.8869 0.8825 0.8800 0.8888 0.8794 0.8888 0.8806 0.8912
Case 6 | 0.8975 0.8888 0.8944 0.8987 0.9012 0.8888 0.8894 0.8900
Case 7 | 0.8931 0.9069 0.9175 0.9006 0.9031 0.9000 0.8919 0.8925
Case 8 | 0.8781 0.8781 0.8806 0.8869 0.8812 0.8769 0.8719 0.8781
Case 9 | 0.8781 0.8781 0.8806 0.8869 0.8812 0.8769 0.8719 0.8781
Case 10 | 0.8688 0.8619 0.8750 0.8725 0.8800 0.8900 0.9100 0.8981
Mean 0.8813 0.8836 0.8858 0.8864 0.8902 0.8856 0.8841 0.8845

Table 4.1: Accuracy of random walk geodesic segmentation results for 10 testing cases,
each with a gap of 8 voxels

Frame

1 2 3 4 5 6 7 8

Case 1 | 0.9500 0.9063 0.9375 0.6500 0.6625 0.8750 0.8936 0.9188
Case 2 | 0.9500 0.9000 0.8438 0.6750 0.5375 0.7750 0.9250 0.9500
Case 3 | 0.9375 0.8750 0.9250 0.8750 0.8812 0.9188 0.9438 0.8938
Case 4 | 0.9250 0.9375 0.9250 0.6875 0.6813 0.7813 0.7875 0.8750
Case b |0.9313 0.8313 0.9375 0.6688 0.6563 0.7063 0.8250 0.8313
Case 6 | 0.8938 0.7813 0.6438 0.6375 0.7313 0.9000 0.8688 0.8750
Case 7 | 0.8875 0.9500 0.9375 0.8688 0.7750 0.8438 0.9938 0.9000
Case 8 | 0.8500 0.9000 0.8938 0.7625 0.8000 0.9125 0.8375 0.8438
Case 9 | 0.8438 0.8250 0.7000 0.7312 0.8375 0.9063 0.9375 0.9187
Case 10 | 0.8125 0.8688 0.7750 0.5938 0.7688 0.8375 0.8938 0.8988
Mean 0.8981 0.8775 0.8519 0.7150 0.7331 0.8457 0.8906 0.8905

Table 4.2: Accuracy of 3D-2D level set segmentation results for 10 testing cases, each with
a gap of 8 voxels
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4.2 Effect of Gap Sizes

For simple datasets such as the unicellular example from section 4.1, the prism in Figure
2.4, or the cylinder in Figure 3.3, the gap size has no effect on the final random walk geodesic
level set segmentation. Simply setting h to be large enough allows for the detection of gaps
of any size. For example, we show the random walk geodesic level set results applied to an
incomplete cell path in which the cell disappears from six, eleven, and sixteen frames. We
set h = 16 and record the results in Figure 4.4. In each case, the segmentation contour
captures the gap quite accurately. For comparison purposes, the complete cell path is
shown in Figure 1.2(a).

However, for a less consistent dataset in which the different clusters are not as compact,
such as in Figure 4.5 where the motion of the cell in the lower half of the volume spans
a large portion of the image frame, the results obtained from the random walk geodesic
active contours algorithm arc not quite as accurate. We perform the next experiment on
both of the image reconstruction approaches introduced in this paper. As in Section 4.1
we set the 3D-2D parameters to be = 0.1 and v = 1. The ground truth data consists
of a sequence of images in which the cell initially exhibits an abnormally rapid movement
towards the centre of the frame, and then undergoes cell division. We manually remove a
cell from six, eleven, and sixteen frames, respectively, as shown in Figure 4.5.

First, the random walk geodesic segmentation is applied to reconstruct the incomplete
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(b) Gap size = 11 voxels (¢) Gap size = 16 voxels

Figure 4.4: Random walk geodesic reconstruction of incomplete cell paths with different
gap sizes
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(b) Gap size = 11 voxels (¢) Gap size = 16 voxels

Figure 4.5: Incomplete cell paths with different gap sizes in which the cell undergoes
division
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cell paths. For each gap size, four image frames in which a cell is missing, along with the
resulting contours, are shown in Figure 4.6. In each row, the first and the last images
correspond to the extremities of the gap, the other two represent the middle frames. The
results for the small gap size in Figures 4.6(a) and 4.6(d) are almost one hundred percent
accurate, however in every other image, the active contour seems to underestimate the area
of the cell. Furthermore, as the gap size increases, the area of the predicted cell region
decreases. This result is explained by the unusual behaviour observed in the bottom half
of the 3D image volume. The rapid movement of the cell in the first few frames is not
taken into account by the model since the probabilities in the transition matrix of the
random walk only depend on the previous state. Hence, in order to resolve this issue, we
suggest using the known positions of the visible cells in the incomplete cell path to propose
a stochastic process that models the cell behaviour. The probabilities used in the random
walk algorithm should then be derived from the stochastic process.

The results obtained when the 3D-2D segmentation is applied to reconstruct the in-
complete cell path are shown in Figure 4.7. The organization of the images is the same as
in Figure 4.6. For this method, the segmentation contour agrees very well with the missing
cell. Note that the results are more accurate for smaller gap sizes and tend to get worse as
the gap size increases. Also, as observed in the previous section, the predicted cell location
is better at the extremities of the gap than in the middle.

4.3 Images Containing Multiple Cells

Finally, we present the segmentation results for a 3D image volume containing multiple
cells and two gaps. A complete image dataset with two cells in each frame, one of which
undergoes a cell division, is taken as the ground truth. We then manually remove a cell
from frames z = 16 to z = 22 and a different one from frames z = 60 to z = 66, creating
two gaps of height 7 voxels. For this experiment, we set © = 0.02 and v = 2. The gaps
are visible in Figure 4.8(a), which corresponds to the regular level set segmentation result.
As expected, both the random walk and the 3D-2D segmentation methods reconstruct the
incomplete cell paths, which is illustrated in Figures 4.8(b) and 4.8(c). In the 2D images,
we show the segmentation results at slices z = 17 and z = 61. The green curve represents
the segmentation of the cells that are visible in the image frame, whereas the red curve
represents the predicted location of the missing cell. We note that both methods capture
the cells quite accurately, however, the results of the 3D-2D segmentation are smoother
and slightly more accurate.
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Figure 4.6: Effect of gap sizes on random walk geodesic active contours model
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(a) Regular level set (b) Random walk geodesic (c) 3D-2D level set

(d) Random walk geodesic, z = 17 (e) Random walk geodesic, z = 61

(f) 3D-2D level set, z = 17

(g) 3D-2D level set, z = 61

Figure 4.8: Segmentation results of multiple cell tubes with two gaps

46

100



Chapter 5

Conclusion

This paper has presented a solution to one of the common problems that occur when
tracking cells in fluorescent microscopy images. In particular, we proposed two different
methods that used three-dimensional segmentation to reconstruct incomplete cell paths
when some of the cells disappear and reappear in the image sequence obtained from the
microscope.

The first model, called Random Walk Geodesic Active Contours, was a three step pro-
cess that used information about distance and voxel intensity values to locate the gaps in
the 3D image volume. Then the Metropolis algorithm from Markov Chain Monte Carlo
methods was modified to propose a set of boundaries to bridge these gaps. However, the
algorithm was computationally expensive and required two three-dimensional segmenta-
tions. Hence, we proposed a second model, called 3D-2D Level Set, which performed a
two-dimensional segmentation in a three-dimensional framework. In this case, we enforced
minimum mean curvature on the level set surface to capture the gaps in the 3D volume.

We showed that both methods were able to correctly reconstruct the incomplete cell
paths on a number of different image datasets. However, the random walk geodesic model
did not perform as well in a 3D volume in which the motion of the cell spanned a large
portion of the image frame.

Possible future work includes deriving a stochastic process that models the cellular
dynamics in the incomplete cell path, so that the accuracy of the random walk method is
not affected by the behaviour of the cells in the 3D volume. Also, further testing on the
robustness of the 3D-2D method should be performed. In particular, we should test the
model on images in which the cell goes missing from the frame right before it undergoes a
cell division.
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