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Abstract

Two different aggregation algorithms are proposed for a K-cycle multigrid method to
efficiently solve for the stationary probability vector of an irreducible Markov chain. It is
shown how the necighborhood aggregation algorithm and the double pairwise aggregation
algorithm use a strength of connection measure derived from the scaled matrix problem to
form aggregates. A recursively accelerated W-cycle is presented as the K-cycle multigrid
method. Acceleration is performed at each level of the W-cycle. Improved iterates are
produced by combining pairs of iterates that minimize the residual. A similar top-level
acceleration method is also proposed to further improve convergence. Several representative
test problems are used to compare the two aggregation algorithms and numerical results
indicate that the neighborhood aggregation algorithm performs better and leads to nearly
optimal multigrid efficiency.
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1 Introduction

In this paper we are interested in using multilevel methods to calculate the stationary
probability vector of large, sparse, irreducible Markov matrices in a numerically efficient
way. Finding efficient solution methods is of interest across many disciplines since large,
sparse, Markov chains are used in many different applications. These applications include
information retrieval and web ranking, performance modeling of computer and commu-
nication systems, dependability and security analysis and analysis of biological systems.
They are also prevalent in business and economics. The solution methods we examine in
this paper share similarities to both algebraic multigrid (AMG) methods for sparse linear
systems and to iterative aggregation/disaggregation (IAD) methods for Markov chains.

Most IAD methods are two-level methods and while multi-level methods have been
previously examined, [4, 6, 8, 10], their use is not widespread. A likely factor is the far
from optimal convergence properties. In contrast, multigrid methods have been developed
for a large class of (nonsingular) linear systems with optimal computational complexity and
since it is the multilevel component of multigrid methods that makes them so powerful and
scalable there is still a lot left to explore regarding multigrid methods for Markov chains.

Another common feature of IAD methods is the prespecified choice of aggregates based
on topological knowledge of the Markov chain. Instead, the aggregation procedures used in
this paper are based on the strength of connection in the problem matrix, similar to AMG
methods. Again, this idea is not new [4, 6, 10]; however, in a strength-based multilevel
aggregation strategy, calculating the strength of connection using the original problem
matrix has not proven successful for a wide class of Markov matrices. Given this difficulty
we adopt the proposed method in [17], where the aggregation algorithm is based on the
strength of connection in a scaled problem matrix.

Using the scaled problem matrix to calculate the strength of connection, we explore two
aggregation algorithms. The first aggregation scheme which we will refer to as the “double
pairwise aggregation” algorithm was developed by Notay [12] to study multigrid methods
for second order discrete scalar elliptic PDEs. The procedure uses two passes of a pairwise
matching algorithm applied to the scaled matrix graph. The matching algorithm favors
the strongest negative couplings. The second algorithm which was first introduced in [20]
will be referred to as the “neighborhood aggregation” algorithm. Aggregates are chosen
so that they include so-called neighborhoods. Each neighborhood of a point is determined
by the strength of connection in the scaled matrix problem. Since multigrid methods aim
to accelerate convergence by reducing error components with different scales at different
levels the choice of neighborhoods as aggregates is designed to create maximal aggregates
where the average error of each aggregate is different but the error within cach aggregate
is nearly constant.

For both aggregation procedures the scalability of the multigrid method is enhanced
by using a so-called K-cycle multigrid scheme, providing acceleration recursively at each



level. Acceleration is done at each level of a W-cycle by finding the linear combination
of the current and past iterate that minimizes the residual. Notay [12] uses the “double
pairwise aggregation” algorithm along with a K-cycle scheme where acceleration is done
using a conjugate gradient method. He is able to show that for second order discrete scalar
elliptic PDEs this method is significantly more robust than an unsmoothed aggregation
method without recursive acceleration. Several others have also considered K-cycle multi-
grid methods to solve PDEs including Oosterlee and Washio [22, 14]. They propose a
Krylov acceleration method in a nonlinear multigrid algorithm to efficiently solve several
nonlinear PDEs.

It is interesting to note some of the recent developments in the study of efficient Markov
chain solution methods. It has been shown in [15] that smoothing the interpolation and
restriction operators can dramatically increase the efficiency of aggregation multigrid for
Markov chains. As well, a lumped AMG method for Markov chains proposed in [16] leads
to nearly optimal multigrid efficiency for a representative set of test problems for which
traditional iterative methods are slow to converge. By considering our two aggregation
algorithms along with the K-cycle multigrid scheme, we hope to match the performance of
these two methods and we consider a number of Markov chains as examples.

The rest of the paper is organized as follows. Section 2 gives a detailed description
of the problem we are trying to solve and includes several theorems important for the
development of multilevel aggregation methods for Markov chains. Section 3 provides
details of the standard multilevel schemes used in multigrid methods including the V-cycle,
We-cycle and the K-cycle. Section 4 gives a description of the two aggregation algorithms.
In Section 5 we implement our methods on several example Markov chains and discuss the
results. Section 6 concludes.

2 Mathematical Formulation

A Markov transition matrix, or Markov matrix, describes the transition probabilities of a
Markov chain. The (i, 7)th element of a Markov matrix is the probability of moving from
state i to state 7. Our objective is to solve for the stationary probability vector of large,
sparse, irreducible Markov matrices. Let B € R™ "™ be a column stochastic matrix, i.e.,
Ogbw S l‘v’i,jand
1"B =17 (2.1)
with 1 the column vector of all ones. Let x € R™ be the vector that satisfies
Bx = x, x; > 0 Vi, x|l = 1. (2.2)

If B is a Markov matrix then x is the stationary probability vector. From the above
formulation we can see that x is an eigenvector of the matrix B with associated eigenvalue



1, which is an eigenvalue with maximum modulus (|A\1| = 1). A slowly mizing Markov
chain is one in which the modulus of the subdominant eigenvalue(s), |z, is approximately
one. For these types of Markov chains, traditional, one-level iterative methods are not
optimal and convergence can be significantly improved using multigrid methods. If the
matrix B is irreducible then the solution to (2.2) is unique. . Matrix B is irreducible iff
there exists a path from each vertex i to each vertex j in the directed graph of matrix B.
Additionally, if B is irreducible then x satisfies x; > 0 Vi.

2.1 Theoretical Foundations

It is important for us to prove that our multigrid algorithms are well-posed and that the
actual solution is a fixed point of our methods. We consider our multigrid algorithm well-
posed if given a strictly positive iterate, the algorithm gives a proper definition for the next
iterate. In order to ensure these properties hold we include several relevant theorems that
can readably be applied to Markov matrices. The Perron-Frobenius theorem is one of the
most significant. It provides important insight about the spectral radius of a nonnegative
matrix and its associated eigenvector. We include the following version:

THEOREM 2.1 (Perron-Frobenius ([1], p. 26, 27,28))
Let B € R"", b;; > 0Vi,j. Then the following hold:

1. p(B) is an eigenvalue of B.
2. 3zeR" 2; >0Vi: Be=p(B)x and 3y R",y; > 0Vi: y' B = p(B)y".

3. If B is irreducible, then the eigenvectors © and y in (2) are unique up to scaling, and
the inequalities in (2) are strict.

4. If B has a left or right eigenvector with strictly positive components, then this eigen-
vector has p(B) as its eigenvalue.

Singular M-matrices also play a critical role in the theory underlying multigrid methods
for Markov chains. A singular M-matrix is defined as follows

DEFINITION 2.2
A e R™" is a singular M-matriv < 3 B € R"", b; > 0Vi,j: A= p(B)I — B,

where p(B) is the spectral radius of B. An implication of the Perron-Frobenius theorem is
that the choice of B in Definition 2.2 is not unique. According to the theorem, p(B+sI) =
p(B) + s for any recal s > 0. Then A = p(B)I — B = (p(B) + s)I — (B+ sl) = p(B +
sI)I — (B + sI), which means that B + sI can be used instead of B in the definition. In
many applications of multilevel methods, the following properties of singular M-matrices
are important (see [15]):



THEOREM 2.3 (Properties of Singular M-malrices)

1. Irreducible singular M-matrices have a unique solution to the problem Ax =0, up to
scaling. All components of x have strictly the same sign (scaling can be chosen s.t.
x; > 0Vi). This follows directly from the Perron-Frobenius theorem.

2. An equivalent definition for singular M-matrices is : A € R™*" is a singular M-matriz
& A is singular and all elements of (A + o)™ are nonnegative, Vo > 0.

3. Irreducible singular M-matrices have nonpositive off-diagonal elements, and strictly
positive diagonal elements (n > 1).

4. If A has a strictly positive vector in its left or right nullspace and the off-diagonal
elements of A are nonpositive, then A is a singular M-matriz.

Using the above theorems and properties we can restate the problem in (2.2). Rather than
solving for the stationary probability vector we can solve for a strictly positive vector of
unit length which lies in the nullspace of a singular M-matrix. We seek the vector x € R"
such that

Ax =0, x; > 0 Vi, x|l =1, (2.3)

where A = I — B and B is irreducible. According to Definition 2.2, A is a singular M-
matrix and 174 = 0. Since B is irreducible, A must also be irreducible. This follows from
the definition of irreducibility and because subtracting B from I cannot zero out any of
the off-diagonal elements of B.

3 Aggregation Multigrid For Markov Chains

In this section, we recall the principal features of the classical AMG V-cycle, W-cycle and
K-cycle. For K-cycle multigrid, we include the details of our acceleration method. We
begin this section by considering several iterative methods that are often used to find the
stationary probability vector of Markov chains.

3.1 Power, Jacobi, and Gauss-Seidel Methods

The Power method is a simple and commonly used iterative method for approximating the
stationary probability vector of a stochastic matrix. Let x; be the ith approximation, then
the Power method is given by

X411 = Bx;. (3.1)

Suppose the stochastic matrix B is both irreducible and aperiodic. Matrix B is called
periodic with period p > 1 iff the lengths of all cycles in the directed graph of B are



multiples of p. A matrix B is called aperiodic if it is not periodic. If B is aperiodic and
irreducible then the unique stationary probability vector x can be obtained from any initial
vector xo with nonnegative components and ||xo||; = 1 by repeated multiplication with B:

x = lim B"xy. (3.2)
n—oo
This helps explain why the Power method is so appealing since convergence to the unique
stationary probability vector is guaranteed if B is both irreducible and aperiodic.

Two other frequently used iterative methods are the Jacobi (JAC) and Gauss-Seidel
(GS) methods. The Jacobi method is given by

Xiy1 = DHL + U)x;, (3.3)
and the Gauss-Seidel method by
Xi+1 = (L + D)_IUXZ‘. (34)

where we use standard notation for the decomposition of matrix A into its lower and upper
triangular parts and its diagonal part, A = D — (L + U). The Jacobi and Gauss-Seidel
methods may fail to converge to the unique stationary probability vector.

We can write all of the above methods in the following general form

Xi+1 = SXZ', (35)

where S = B for the Power method, S = D~'(L + U) for the Jacobi method and S =
(L + D)7'U for the Gauss-Seidel method. Using this general form we can construct a
weighted or damped method in the following manner

Xit1 = (]. — U))Xi + U)SXZ', (36)

where w € (0,1). Like the Power method, the weighted Power method will converge to
the unique stationary probability vector regardless of the initial condition. However, the
weighted Power method does not require the stochastic matrix to be aperiodic. Both the
weighted Gauss-Seidel and Jacobi methods will also always converge [17]. The periodicity
of the stochastic matrix is irrelevant for convergence; however, for some initial conditions,
convergence may not be to the unique stationary probability vector. Although these simple
iterative methods have nice convergence properties, convergence can often be slow espe-
cially when the error is low frequency. That is when IAD methods are often employed and
multilevel methods can also be considered. The simple iterative methods described above
dampen oscillatory error components quickly and this explains why they are actually used
in multigrid methods. In this context, they are often referred to as relaxation or smoothing



methods. In this paper we will use the weighted Jacobi method as a relaxation method
and for completeness we include it here:

x;ip1 = (1 —w)x; + w(DY(L +U)x;). (3.7)

3.2 Two-level Aggregation

Before considering multilevel methods, we start with a simple two-level aggregation method.
In developing this method we begin by examining the error that results from our approxi-
mate solution. In our two-level method, as well as in all our multigrid methods for Markov
chains, the error formulation is multiplicative. This is a significant difference from standard
multigrid methods for sparse linear systems where the error formulation is traditionally ad-
ditive. Let e; be the ¢th multiplicative error vector and x; the ith iterate where the exact
solution x is defined as x = diag(x;)e;. Equation (2.3) can be rewritten in terms of the
multiplicative error to get

Once convergence has been reached, x; = x and e; = 1. We will assume that for each
iterate all the entries of x; are greater than zero since our solution has this property. This
property is a consequence of Theorem 2.3.1, and is also required for (3.8). Let Q@ € R™™
be the aggregation matrix where n fine-level points are aggregated into m groups so that
¢i; = 1 if fine-level node ¢ belongs to aggregate j and ¢;; = 0 otherwise. Each fine-level
point belongs to one and only one aggregate (In Section 4 we will discuss how @) is actually
formed). If the fine level error e; is unknown we can approximate it with the coarse level
error using @), e; ~ Qe.. We use the subscript ¢ to represent vectors and matrices on the
coarse level. Using the fine level error approximation we can get a coarse level version of
Equation (3.8) as follows

QT Adiag(x;)Qe. = 0. (3.9)
Let the restriction and prolongation operators, R and P, be defined as
R=0Q" (3.10)
and
P = diag(x;)Q. (3.11)
We can then rewrite Equation (3.9) as
RAPe. = 0. (3.12)
Define the course-level operator, A., by
A. = RAP. (3.13)



This gives us the following coarse-level error equation
Ace. = 0. (3.14)

Using 1R = 17, we get that 17A, = 0. Rx; is the restriction of current fine-level
approximate x; to the coarse level and Rx; = PT1. Instead of solving the coarse-level
equation, Equation (3.14), for the multiplicative error, e., equivalently one can seek an
improved coarse-level approximation, x., of probability vector x. This improved coarse-
level approximation x. is related to coarse-level error e. by

x, = diag(Rx;)e. = diag(P'1)e., (3.15)
leading to the coarse-level probability equation
A (diag(P"1)) 'x, = 0. (3.16)

Using the coarse-level probability equation, Equation (3.16), we can solve for the coarse
level probability vector. We can perform the coarse-level solve approximately (e.g., by
using a relaxation method, which may employ PTx; as the initial guess) or exactly. Once
the coarse level probability vector has been computed we can use the prolongation matrix,
P, to determine, x;, the improved approximate solution on the fine level. This two-level
method is fully described in Algorithm 1. In the algorithm, Relax(A,x), stands for one
relaxation by a standard iterative method which in our numerical experiments will be the
weighted Jacobi method. The efficiency of the algorithm is contingent on the fact that the
coarse-level solve typically requires much less work than a fine-level solve. For the above
two-level method, local convergence properties have been derived in [11].

Algorithm 3.1: TLA(A, vy, 1»), Two-Level Aggregation Method

Choose the initial guess x
while The convergence criterion is NOT satisfied do
x < Relax(A,x) vy times

Build Q
R=QT and P = diag(x)Q
A.= RAP
X, < Solve A.diag(PT1) 'x, =0, z.; > 0 Vi, ||x.||; =1 (Coarse-level solve)
x « P(diag(P71)) 'x, (Coarse-level correction)
x « Relax(A,x) vy times
end




3.3 Multilevel Aggregation

If we recursively apply the two-level method to the coarse level probability equation, Equa-
tion (3.16), then we can obtain a multilevel aggregation method. This multilevel method
will hopefully improve upon the efficiency of the two-level method. Algorithm 2 uses the
simplest type of recursion which results in a so-called V-cycle. Figure 3.1 illustrates the
structure of one iteration step of the V-cycle. It is obvious from this figure where this
method’s name is derived from.

Algorithm 3.2: AM(A, x, vy, 1), Aggregation Multigrid for Markov chains (V-
cycle)
if NOT on the coarsest level then
x < Relax(A,x) vy times
Build @
R = QT and P = diag(x)Q
A. = RAP
X, — AM(A.diag(PT1)~1, P71, vy, 1) (Coarse-level solve)
x « P(diag(PT1)) %, (Coarse-level correction)
x « Relax(A,x) vy times
else
x « solve Ax =0
end

® : Relaxation

O : Coarsest grid treatment

Figure 3.1: V-Cycle

Consider the following two theorems which are reproduced from [15]. The first of these
theorems proves the well-posedness of the V-cycle algorithm and the second is necessary
for convergence. To prove these theorems we first define the coarse-level stochastic matrix



B, as
B. = QTB diag(xi)Q(diag(QTxi))_l. (3.17)

The matrix satisfies 17 B. = 17. We then obtain

A (diag(P"1))™! = R(I — B)P(diag(P"1))™"

— Q"ding(x)Q(diag(Q"x,) " — Q" B diag(x,)Q(diag(Q"x.)) "
=1I.- B.. (3.18)

THEOREM 3.1 (Singular M-matriz property of AM coarse-level operators).
A, is an irreducible singular M-matriz on all coarse levels, and thus has a unique right
kernel vector e. with strictly positive components (up to scaling) on all levels.

Proof. Equation (3.18) shows that A, has nonpositive off-diagonal elements, and 17 A, = 0
because 17 R = 17. This implies that A. is a singular M-matrix, due to Theorem 2.3.4.
Irreducibility of A. can be proved as follows. Let fine-level node 7 belong to aggregate I, and
fine-level node j to aggregate J. Then a link exists from J to I ((QT B diag(xx)Q)rs # 0) if
a link exists from j to @ (b;; # 0), by virtue of the shape of () and the strict positivity of the
components of x,. This implies that every aggregate J is connected to every aggregate [
via a directed path, because every ¢ € [ is connected to every j € J via a directed path due
to A’s irreducibility. The second part of the theorem then follows directly from Theorem
2.3.1. [ |

THEOREM 3.2 (Fized-point property of AM V-cycle).
Ezxact solution x is a fized point of the AM V-cycle.

Proof. 1t is easy to see that e. = 1. is a solution of coarse-level equation (3.12) for
x; = x: RAPe, = RAP1, = QT Adiag(x)Q1, = QT Ax = 0. This solution is unique (up
to scaling) because A. is an irreducible M-matrix. The coarse level correction equation
then gives x;,1 = Pe. = diag(x)Q1. = diag(x)1 = x. |

We can generalize the standard V-cycle algorithm by changing the number of coarse-
level solves from 1 to . where p can be any positive number. This gives us Algorithm 3.
Of course, if © = 1 then we get the standard V-cycle and if 4 = 2 we get the standard
Wh-cycle. One iteration of the standard W-cycle is depicted in Figure 3.2. W-cycles are
more expensive than V-cycles; however, as long as coarsening is sufficiently fast, they can
retain computational complexity that is linear in the number of unknowns. The theorems
used to prove well-posedness and the fixed-point property for the V-cycle can also be used
for the W-cycle since none of the equations have been modified.



Algorithm 3.3: pAM(A, x, vy, vo, 1), p-cycle Aggregation Multigrid for Markov
chains
if NOT on the coarsest level then
x « Relax(A,x) vy times
Build @
R=Q" and P = diag(x)Q
A. = RAP
X. — pAM(Adiag(PT1)™1 x., v1, vo) p times (Coarse-level solve)
x « P(diag(PT1)) %, (Coarse-level correction)
x < Relax(A,x) vy times
else
X «— solve Ax =0
end

@® : Relaxation

O : Coarsest grid treatment

Figure 3.2: W-Cycle

3.4 K-cycle

The scalability of the general multigrid method outlined in Algorithm 3 can be enhanced
or accelerated recursively on all levels by the use of K-cycle methods. The K-cycle method
is so named because the acceleration of multigrid is typically done by Krylov subspace
methods such as the conjugate gradient method (CG) or the generalized minimal residual
method (GMRES). However, acceleration is not limited to these methods. In fact, for our
numerical experiments, we use neither of these methods. Instead, we perform multigrid
acceleration by a different form of iterant recombination. Typically, accelerating multigrid
by a Krylov subspace method at the top level is synonymous with using multigrid as a
preconditioner in connection with Krylov subspace methods. General K-cycle methods can
be better understood if we consider the top-level acceleration case first. Consider Figure 3.3.
In this case the standard V-cycle is being used as a preconditioner for a Krylov subspace
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method. After each V-cycle, a Krylov subspace method is used in an attempt to reduce the
residual (i.e. ||AX;qcc| should be less than || Ax;|| where X; 4. is the approximate solution
computed using the Krylov subspace method). Through the use of the Krylov subspace
method the number of V-cycle iterates needed to reach convergence is hopefully reduced.
Although most acceleration methods only consider acceleration at the top-level there is
no reason why acceleration cannot be used within each multigrid cycle. As well, there is
no apparent restriction on the acceleration method. Figure 3.4 illustrates one iteration of
our K-cycle algorithm (we present an accelerated W-cycle) and Algorithm 4 provides an
outline of this method.

O : Acceleration
® : Relaxation

O : Coarsest grid treatment

Figure 3.3: Multigrid as a Preconditioner for a Krylov Subspace Method
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Algorithm 3.4: KAM(A, x, vy, 1n), K-cycle Aggregation Multigrid for Markov
chains

if NOT on the coarsest level then
x « Relax(A,x) vy times
Build @
R=Q" and P = diag(x)Q
A, = RAP
Xe,0 = PT]_
for i=1 to 2 do
Xei — KAM(A diag(PT1)™! %1, v1, 12) (Coarse-level solve)
if ¢ equals 2 then
Set x. equal to the linear combination of x.; and x.o which minimizes
|Acxc|l2 s.t. x. > 0 and ||x.|; =1

end
end
x « P(diag(PT1)) %, (Coarse-level correction)
x «— Relax(A,x) vy times
else
x < solve Ax =0
end

O : Acceleration
® : Relaxation

O : Coarsest grid treatment

Figure 3.4: K-Cycle
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The acceleration method we use is an iterant recombination method. Let x.; be the
approximate solution on the coarse level after the ith coarse level solve. Since we are using
the W-cycle there are two coarse level solves on any given level. Our objective is to find
the linear combination of these iterates that minimizes the residual. Let z = a1x1 + ai9Xa,
X = [x1]x2], and o = [0 an]”, where z = Xa. For now we will ignore the coarse level
subscript. We can write the minimization problem as

z" = argmin,||Az||, (3.19)
subject to: z = ;X1 + Q9Xa,
z > 0 and
2]l = 1.
(3.20)

We set the coarse-level approximation equal to the solution once it has been determined
(x. = z*). We should also note that our multilevel method requires all iterates to have
strictly positive components. This implies that the inequality in (3.19) should be strict.
To account for this we replace the above inequality with the following one: z > €l where
€ = min,; ;(#; ;) and § = 0.1 in our numerical experiments. Although there is a possibility
that one of the components in the solution is actually less than e, using the value proposed
seems to work well in practice. This optimal iterant recombination formulation is also used
by others in our research group for top-level acceleration of AMG methods for Markov
chains.

Given the small dimensionality of our minimization problem we can develop an efficient
solution algorithm. Problem (3.19) is a two dimensional problem and since there are n > 2
inequality constraints at most two of them will determine the feasible region. For each
inequality constraint we can define the following subset,

Hi = {(a1, 2) : jnan + ipp > 0}, (3.21)

which lies in the (ay, ) plane. Since each component of x; and x, is positive, H; is the
set of all points on the side of the line normal to (1, )7 that contains the first quadrant
and the line itself. Let . .
j = argmin=2 and k = argmax—2=. (3.22)
1<i<n Tj1 1<i<n L51
Then, the only two possibly binding constraints are

T 41001 + Tjo0g Z 0 and Tp1O1 + TroQg Z 0, (323)
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and

(a1, 00) € H; N Hy = (| Hs. (3.24)
=1

The equality constraint in (3.19) implies ap = 1 — a1, and the objective function can be
rewritten in terms of aq,

f(Ckl) =< A(a1X1 + (1 — Oél)Xg), A(ozlxl + (1 — C(l)XQ) > (325)
=o? < Axy, Ax; > +2(1 — ay)a; < Axy, Axy > +(1 — a;)? < Axy, AXy > .

For any value of «;; that minimizes (3.25), cr; must be on the line segment given by
From the first order necessary conditions we can derive the optimal value of a; as

B < AXQ,AXQ > — < Axl,Axl >
N < Axl,Axl > —2 < AXl,AXQ >4+ < AXQ,AXQ >

*

ay

(3.27)

If (o, 1—a7) satisfies the inequality constraints given in (3.23) we can use o] to produce the
minimal vector. However, if this is not the case we can evaluate the objective function at
the values of a; where the constraints in (3.23) are binding. We check to ensure that these
two values of o satisfy both inequalities. The value of a;; that satisfies both constraints and
produces the minimal value of the objective function is chosen. We have highlighted the
procedure using the inequality constraint given in problem (3.19); however, the procedure
is similar if we use the inequality constraint, Xo > €l. As well as performing acceleration
within the W-cycle, we also perform top-level acceleration in a manner similar to the
method we outlined for the V-cycle. Our method of top-level acceleration is again an
iterant recombination method. Rather than using two previous iterates to minimize the
residual we allow the possibility of k possible iterates where k is any number greater than
two. Numerical experiments have shown that £ = 3 gives the best results and this is the
number we use in our numerical experiments. It is also important to note that none of
the equations in the K-cycle algorithm have been modified from the basic V-cycle. The
acceleration only modifies the iteration values (x;). This implies that our theorems used
to prove well-posedness and the fixed-point property for the V-cycle can also be applied to
the K-cycle.

4 Aggregation

In the following section we describe how to build the aggregation matrix, (), defined in
Section 3.2 using two different algorithms: neighborhood aggregation and double pairwise
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aggregation. We also consider small modifications of the double pairwise aggregation al-
gorithm to improve performance on some of the test problems we consider. Neither the
neighborhood aggregation algorithm nor the double pairwise algorithm requires any topo-
logical knowledge about the Markov chain. Instead both algorithms arc based on the
strength of connection in a scaled problem matrix (A diag(x;)). A number of aggregation
algorithms have been proposed which are based on the strength of connection in the orig-
inal problem matrix [6, 9, 5, 10]. There are also several aggregation algorithms similar to
the double pairwise aggregation algorithm that use the problem matrix to form pairs or
matchings [2, 6, 7]. A detailed explanation of why we scale the columns of the original
problem matrix at each recursive level with the current probability vector at that level
can be found in [17]. However, there is a simple intuitive interpretation for why we would
want to base our strength of connection on the scaled Markov chain. Since the steady-state
probability of residing in state j is influenced by state ¢ not just through the transition
probability from state ¢ to 57 but by the product of that transition probability and the
probability of residing in state ¢ it is important that we consider the product.

4.1 Neighborhood Aggregation

Algorithm 5 summarizes the neighborhood aggregation method. Before the aggregates can
be built the strength matrix, S, must be calculated. Let A = Adiag(x) be the scaled
problem matrix with matrix entries a;;. The strength matrix S is defined so that s;; = 1 if
a;; < —fmaxg,, <o |a;| and s;; = 0 otherwise. If s;; = 1 then we say that node i is strongly
influenced by node j or equivalently node j strongly influences node i. Thus the ith row
of S represents all of the nodes that strongly influence node i and the ith column of S
represents all of the nodes that are strongly influenced by node 7. For the neighborhood
aggregation algorithm we want to consider the nodes that strongly influence node i and
the nodes that are strongly influenced by node i. Let S = S+ ST. 1If 5;; # 0, node j
belongs to the neighborhood of node i since node j either strongly influences node 7 or it
is strongly influenced by node i. The parameter § is called the threshold parameter and it
determines which nodes are considered strongly connected. In our numerical experiments
B = 0.25. Once S has been calculated it can be used to form the aggregates. The first
aggregate is constructed using node 1. All the nodes that belong to the neighborhood of
node 1 are included as members of this aggregate. Node 1 is called a center node since it
forms the center of the neighborhood aggregate. Before constructing the second aggregate
all the nodes in the first aggregate are removed from the list of possible center nodes.
Although we use node 1 as our first center node there is nothing special about this choice
and we could use any node as the starting point. After the first aggregate has been built
we move on to the next possible center node. If any of the nodes in the neighborhood of
this possible center node are in the first aggregate we do not form an aggregate, we remove
this node from the list of center nodes and we move on to the next possible center node.

15



We form the next aggregate when we have found a node where all of the members of its
neighborhood do not belong to any previous aggregates. We continue in this manner until
all possible center nodes have been considered. After this first pass, we have completely
disjoint aggregates; however, some nodes have yet to be assigned since they may not have
qualified as center nodes and they may not have been strongly connected to any center
nodes. The second pass of the algorithm loops through these remaining nodes. For each
node we calculate the number of nodes in each aggregate that are strongly connected to
our test node. The node is then included in the aggregate it has the largest number of
strong connections with.

The neighborhood aggregation algorithm is designed to create aggregates which are as
large as possible and for which the error of each node within a particular aggregate is sim-
ilar (after fine-level relaxation). For each node within a given aggregate it is important for
the values of the error to be similar since this property is necessary for multilevel methods
to be successful. We illustrate the results of the neighborhood aggregation algorithm for
the tandem queuing network and random planar graph in Figures 4.1 and 4.2, respectively.
Section 5 includes a detailed description of both problems. Both figures depict the ag-
gregates that are formed from applying the algorithm on the finest level. For the tandem
queuing network the aggregates appear regular and the number of variables is reduced from
256 on the fine level to 36 on the coarse level, a factor of approximately seven. For the
random planar graph the aggregates do not appear as regular although given the unstruc-
tured nature of the problem this is not surprising. For this case, the number of variables is
reduced from 221 on the fine level to 36 on the course-level, a factor of approximately six.
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Algorithm 4.1: NA(A, 3 ), Neighborhood Aggregation Algorithm

U=11,n] (n is the number of fine level points)
for i=1 to n do
Si ={j € U\{i} | a; < —Bmaxa, <o |a;]}
end
for i=1 to n do
end
n, =0
while U # () do
Let ¢ be the first element in U.

if None of the nodes in S; belong to previous aggregates then
Ne =N+ 1
an,i =1
U=U\{i}
forall j € S; do
an,j =1
U=U\{j}
end
end
else
R=RU{i}
U =U\{i}
end
end
while R # () do
Let 7 be the first element in R.
A;=0V1<j<n
forall k € S; do
if k is in aggregate j (Qr; = 1) then
end
end
Let A4, be the maximum A4; V1 < j <n,
Qmaa:,i =1
R = R\{i}
end
return Q7
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4.2 Double Pairwise Aggregation

The double pairwise aggregation algorithm begins by forming matchings in the scaled
problem matrix. Similar to the neighborhood aggregation algorithm this requires the
calculation of a strength matrix to help determine which nodes are best matched. The
strength matrix, S, is calculated exactly the same as it is for neighborhood aggregation.
For the double pairwise algorithm we only consider the nodes that strongly influence node
i (i.e., we do not use the strength matrix S). Nodes are matched by comparing different
neighbors of a node and by giving preference to the strongest negative coupling. The order
in which the nodes are matched is determined by the variable m; where

m; = [{j]sji = 1}]. (4.1)

We choose nodes with minimal m; so nodes with the smallest number of strong connections
as determined by S are considered first. This ensures that most nodes are matched. Once
node 7 has been selected as the initial node in the aggregate, node j for which a;; is
minimal is considered as a possible matching. Node j is only added to the aggregate if
si; = 1. It is possible for s;; to equal zero if all the nodes that strongly influence node ¢
have already been included in previous aggregates. If this occurs then node 7 is left in the
aggregate alone. This pairwise aggregation scheme is given in Algorithm 6. Using just a
pairwise aggregation scheme results in a relatively slow coarsening which motivates the use
of a second pass. This leads to Algorithm 7, the double pairwise algorithm. In the double
pairwise algorithm we simply repeat the process in the pairwise algorithm by forming pairs
of aggregates from the first pass. The final aggregates are either of size one, two, three or
four. In most cases using two pases of the pairwise matching algorithm results in a decrease
of the number of variables by a factor of slightly less than four. We note that the auxiliary
matrix A; used in the second pass of the algorithm is constructed using the course level
probability equation, Equation (3.16). The strength of connection for the second pass of
the pairwise algorithm should be determined by A.(diag(Q?¥1))~! scaled by the course grid
probability vector x., where

A = QT Adiag(x)Q1 = QT AQ1. (4.2)

However, in this case, x. = Q71 which implies 4; = QT AQ),.
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Algorithm 4.2: PWA(A, ), Pairwise Aggregation

U=|[1,n] (n is the number of fine level points)
for i=1 to n do
Si ={j € U\{i} | a; < —Bmaxa, <o |a;]}
end
for i=1 to n do
mi =14 i € S}
end
n, =0
while U # () do
Select ¢+ € U with minimal m,.
ne=n,+1
Select j € U such that a;; = mingey @y
if 7 € S; then
an,i =1
an,j =1
U=U\{i,j}
else
an,i =1
U=U\{i}
end
forall £ such that Q). =1 do
ml:ml—lforlegk
end
end
return Q7

Algorithm 4.3: DPWA(A, (), Double Pairwise Aggregation

A= QT AQ,

Q2 = PWA(A,,8)
Q=Q1- Q2
return

20



We illustrate the results of the double pairwise aggregation algorithm for the tandem
queuing network and random planar graph in Figures 4.3 and 4.4, respectively. For the
tandem queuing network the aggregates do not have the same regular appearance as they
do in the neighborhood aggregation case. Most aggregates are of size four, while there are
several size two and three aggregates. The number of variables is reduced from 256 on the
fine level to 67 on the coarse level, a factor of approximately four. Like the results from
the neighborhood aggregation algorithm the aggregates for the random planar graph do
not appear as regular. The number of variables is reduced from 221 on the fine level to
60 on the course-level. This is a much larger number of aggregates than for neighborhood
aggregation.

In our methods, an error, e, is defined to be algebraically smooth if it is slow to converge
with respect to the relaxation method (i.e., WJAC). Alternatively, we call an error smooth
if it has to be approximated by means of a coarser level in order to speed up convergence.
The success of our multilevel methods relies on our ability to group variables into aggregates
where we can take advantage of the pattern of algebraic smoothness. To do this we need
to know which neighbors of each state have similar error values after relaxation. “The
error at state j is influenced most strongly by the errors at states k£ that have large matrix
elements in row j and columns k of the scaled matrix A diag(x;)” [17]. It is also important
for the number of aggregates to be relatively small so that the problem may be solved
with relatively little expense. For our multilevel methods to be optimal any aggregation
method we propose must incorporate both principles. Both neighborhood aggregation
and double pairwise aggregation form aggregates based on these two principles. However,
since the neighborhood aggregation algorithm forms aggregates using all of the strongly
connected neighbors the number of aggregates will be smaller on average than for double
pairwise and thus the computational complexity should be lower. The double pairwise
aggregation algorithm forms aggregates by considering the strongest negative coupling
which should give aggregates with very similar error. In the neighborhood aggregation
algorithm the variance among the errors in any given aggregate might be larger which
suggest convergence in the double pairwise algorithm might be better.

4.3 Modified Double Pairwise Aggregation

In the double pairwise aggregation algorithm we want to form aggregates with as many
points as possible to ensure sufficiently low computationally complexity while ensuring a
strong connection between the matchings for convergence. However, a problem with the
pairwise algorithm given in Algorithm 6 can arise because of the order in which the initial
node is chosen. Suppose node i is chosen as the initial node but that all of the nodes that
strongly influence node 7 already belong to aggregates. This implies that node ¢ should be
the only node in the aggregate. However there might exist a node j currently not in any
aggregate that is strongly influenced by node i (where this is the strongest connection) but
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Figure 4.3: Tandem Queuing Network (n = 15): Aggregates formed using Double Pairwise
Aggregation.
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Figure 4.4: Random Planar Graph (n = 221): Aggregates formed using Double Pairwise
Aggregation.
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that does not strongly influence node i. If node j were chosen as the initial node before
node ¢ the aggregate would include both nodes. By considering nodes that both strongly
influence and are strongly influenced by our initial node this may lead to more matchings.
This leads us to the modified pairwise algorithm given in Algorithm 8. In this case we
determine the initial node to be the node with minimal m; where

mi = {jlsji = 1} + [{jls;; = 1} (4.3)

The second node in the aggregate is determined by examining both node j where a;; is
minimal and node j where @j; is minimal. If the connection between node ¢ and j is stronger
and s;; = 1 then node j is added to the aggregate and if the connection between node 7 and
j is stronger and 53, = 1 then node 7 is added to the aggregate. If both s;; = 55 = 0 then
node ¢ remains in the aggregate alone. This modified pairwise algorithm leads to a modified
double pairwise algorithm which is identical to Algorithm 7 except we call the modified
pairwise algorithm instead of the original pairwise algorithm. Our modified algorithm
should have lower computational complexity than the original and should converge in
fewer iterations since the connection between pairs should be the strongest possible.

Figures 4.5 and 4.6 show the results of the modified double pairwise aggregation al-
gorithm for the tandem queuing network and random planar graph, respectively. For the
tandem queuing network we can see that all of the aggregates are of size four which is an
improvement over the original double pairwise algorithm for this problem. Unfortunately
the aggregates still do not have the regular shape seen for the neighborhood aggregation
algorithm. For the random planar graph the number of variables is reduced from 221 on
the fine level to 56 on the course-level which is less than the number of aggregates for the
original algoirithm.

23



Algorithm 4.4: MPWA(A, 3 ), Modified Pairwise Aggregation

U=[1,n] (n is the number of fine level points)
for +=1 to n do
Si=A{J € U\{i} | ai; < —fmaxg,, <ola;|}
end
for i=1 to n do
m; = {jlie€SiH+H{ilje S}
end
ne, =0
while U # () do
Select ¢ € U with minimal m,.
Ne="n.+ 1
Select j € U such that @;; = mingecy @y
Select j € U such that a3; = Milgey Qg
if j € S; and a;; < aj; then

an,i =1
an,j =1
U=0U\{ij}
else if i € S; then
an,i =1
Qnj=1
U=U\{i,j}
else
an,i =1
U=U\{i}
end

forall k such that ), =1 do
my=m; —1forl € S
my=m; — 1for k€S
end
end
return Q7
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5 Numerical Results

In this section, we compare neighborhood and double pairwise aggregation using several
test problems. Using these examples, we also examine the performance of these algorithms
with and without top-level acceleration in our K-cycle aggregation multigrid method. We
use the shorthand notations NA for neighborhood aggregation, DPWA for double pairwise
aggregation and M-DPWA for modified double pairwise aggregation. We also denote the K-
cycle aggregation multigrid method with top-level acceleration by K-cycle™. We consider
one one-dimensional Markov chain and three two-dimensional Markov chains. The first
two test problems are generated by undirected graphs with weighted edges. The transition
probabilities are determined by the weights: the weight of the edge from node 7 to node
j, divided by the sum of the weights of all outgoing edges from node 7 gives the transition
probability from node ¢ to node j. All of the test problems we consider have a subdominant
eigenvalue approaching one as the number of states is increased. This property is important
because one-level or two-level iterative methods are ineffective in this case. Across the
different examples, we include many of the same variables in our discussion of the results.
In the tables, ‘n’ is the number of degrees of freedom and ‘v’ is the geometric mean of the
convergence factors of the last five K-cycles. The convergence factor of a K-cycle is defined
as the ratio of the one-norm of the residual, ||Ax;||;, after and before the cycle. For our
method to be considered scalable or optimal, v should be bounded away from one as n
increases. This also bounds the number of required iterations. The number of iterations
performed is given by ‘it’ and ‘lev’ is the number of levels in the last cycle. We use the
sum of the number of nonzero elements in all operators A on all levels divided by the
number of nonzero elements in the fine-level operator as a measure of operator complexity.
‘Cyp’ 1s the operator complexity of the last cycle. Our measure of operator complexity
gives a good indication of the amount of work required for one cycle. As n increases, it
should be bounded by a constant not too much larger than one if our method is to be
considered scalable (or optimal). To compare the overall efficiency of different methods
we also provide an effective convergence factor, defined as v.¢y = y"\C» The convergence
factor makes it easier to compare the overall efficiency of different methods since it takes
work into account. For all the numerical results presented in this paper, we start from
a random, strictly positive initial guess and iterate until the residual has been reduced
by a factor of 10~® measured in the one-norm, or until 100 cycles have been performed,
whichever comes first. We do a direct solve on the coarse level when n < 12. The number
of pre-relaxations and post-relaxations is one (v; = v = 1). For simplicity the weight in
our weighted Jacobi relaxation scheme is always chosen as 0.7.
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5.1 Uniform chain with two weak links

The first test problem we consider is a uniform chain with two weak links. All of the weights
are uniform, except two weak links with e = 107 in the middle of the chain (Figure 5.1).
The NA results are in Table 5.1 and the DPWA results are in Table 5.2. For both NA
and DPWA, top-level acceleration improves convergence. Both with and without top-level
acceleration, convergence is better for NA than for DPWA. It is interesting to note that
the amount of work required for NA is higher than for DPWA. Both the computational
complexity and convergence properties are contrary to what we expected. Our expectation
was for the amount of work to be smaller with NA and the convergence properties to be
better with DPWA. In this simple case, the neighborhoods generated by NA are relatively
small which leads to more aggregates. For this problem more aggregates are generated
by NA on average than by DPWA. For example, at the finest level when n = 4374 the
number of variables is reduced from 4374 to 1458 using NA while the number of variables
is reduced from 4374 to 1104 using DPWA. This helps explain why the amount of work
required per cycle is higher for NA.

: 1 : 1 : € : 1 : 1 :

Figure 5.1: Graph for uniform chain with two weak links

K-cycle K-cycle™
n it [ Cop [lev] v [reps [[36 [ Cop [lev] v [reps
54 34 18| 3 1066|080 |18 1.8 | 3 |044|0.64
162 341222 4 06608318222 4 |047]|0.71
486 351248 | 5 068|085 | 19248 | 5 |047|0.74
4374 || 37 | 2.77 | 7 | 0.69 087 || 211|277 7 |0.52]0.79
39366 || 38 {290 | 9 | 0.68|0.87 (20290 9 |0.51]0.79

Table 5.1: Uniform chain with two weak links. Neighborhood aggregation.
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K-cycle K-cycle™
n_ it [ Cop [lev] v [veps it | Cop [lev] v [ yeps
54 501162 | 3 |0.76 084 24]1.62| 3 |0.58]|0.71
162 57 | 1.88 | 4 [ 0.77 | 087 || 28| 1.88 | 4 |0.63 | 0.78
486 571182 4 |0.76 | 0.86 || 28 | 1.82 | 4 | 0.48 | 0.67
4374 || 56 {196 6 | 0.74 1086 (| 29]1.96| 6 | 0.63|0.79
39366 || 711198 7 |0.76 | 0.87 | 31| 198 | 7 |0.69|0.83

Table 5.2: Uniform chain with two weak links. Double pairwise aggregation.

5.2 Anisotropic 2D lattice

The first two-dimensional Markov chain we consider is an anisotropic 2D lattice. The
horizontal weights are 1 while the vertical weights are ¢ = 107¢ (Figure 5.2). Tables
5.3 and 5.4 show the results for this problem. For NA, top-level acceleration improves
convergence and we note that while the number of iterations required to reach convergence
is constant both with and without top-level acceleration the computational complexity
appears be growing as the state size increases. For DPWA | the computational complexity
is smaller than for NA. As with the previous test problem, this can be explained by an
average neighborhood size smaller than four which implies that on average the number of
variables on the coarse-grid will be larger for NA than for DPWA. It is troubling to note
that with DPWA when n = 16384 the number of iterations actually increases when we
use top-level acceleration and in this case we do not get convergence. Although top-level
acceleration is not guaranteed to improve convergence it is interesting that by applying
this method we actually worsen convergence. Perhaps DPWA changes the aggregation
too much from iteration to iteration and this causes the convergence deterioration with
top-level acceleration. However, this is only one possible explanation.

Figure 5.2: Graph for 2D lattice with anisotropic weights
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K-cycle K-cycle™
n it | Cop | lev | v | Yers || it | Cop | lev | y | Veff
64 30 (183 3 [059 (07513183 | 3 |0.31]0.52
256 |33 1253 5 [065[084 (171253 5 [043]0.71
1024 (1341293 ] 6 |0.65|0.87 | 181|293 | 6 |0.44|0.76
4096 || 34 [2.77| 7 1066|086 | 18277 | 7 |0.46|0.76
16384 || 351295 9 | 067|087 (| 18[295| 9 |0.46 | 0.77
65536 || 35 | 3.18 | 10 | 0.68 | 0.89 || 19 | 3.18 | 10 | 0.48 | 0.79

Table 5.3: 2D lattice with anisotropic weights. Neighborhood aggregation.

K-cycle K-cycle™
n it | Cop [lev| v [9epr | it [ Cop [lev] v [7eps
64 >100 | 1.49 | 3 | 1.00 | 1.00 29 1491 3 | 0.86 | 0.91
256 50 164 | 4 [0.76 | 0.84 23 1.64 | 4 | 0.56 | 0.70
1024 | >100 | 1.77 | 5 | 1.00 | 1.00 72 1.771 5 [0.95]0.97
4096 56 | 1.84 | 6 | 0.77 | 0.87 25 | 1.84| 6 |0.43|0.63
16384 95 1.89 | 7 (097098 || >100 | 1.89 | 7 | 1.00 | 1.00
65536 56 1.92 | 8 |0.76 | 0.86 27 1.92 | 8 |0.43 | 0.65

Table 5.4: 2D lattice with anisotropic weights. Double pairwise aggregation.

5.3 Tandem queuing network

Since Markov chains are important for studying queuing and manufacturing systems, the
next test problem we consider is an open tandem queuing network [18]. Two finite queues
with single servers are placed in tandem. Customers arrive according to a Poisson distri-
bution with rate p, and the service time distribution at the two single-server stations is
Poisson with rates p; and py. Figure 5.3 shows the basic structure of the tandem queuing
network. Let N be the largest number of customers allowed in each queue. For our nu-
merical tests, N = 15, 31, 63, 127, 255, p = 10, py = 11, and py = 10. The states of the
system can be represented by tuples (ny ,n2), where n; is the number of customers waiting
in the first queue and ns is the number waiting in the second queue. The total number
of states is given by (N + 1)2. A 2D regular lattice can be used to represent the states
and the transition rates are as indicated on Figure 5.4. The transition probabilities are
determined the same way as in all previous problems using the transition rates as weights.
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Figure 5.3: Tandem queuing network

Figure 5.4: Graph for tandem queuing network

The numerical results for the tandem queuing network with NA are in Table 5.5. In
these tables, we include W-cycles as well as K-cycles with and without top-level accelera-
tion. From the results it is clear that W-cycles do not scale optimally and that K-cycles
greatly improve convergence. This is also true when DPWA is used, which can be seen from
Table 5.6. If we compare the two aggregation algorithms for K-cycles without top-level
acceleration, we note that NA operator complexity is less than DPWA operator complexity
but as n increases, C,,, appears to be bounded in both cases. The convergence factors are
very similar for the two aggregation schemes and the number of iterations required to reach
convergence is comparable except when n = 31 where DPWA performs noticeably better
and when n = 255 where NA performs noticeably better. For NA, performing top-level ac-
celeration significantly improves convergence. However, with DPWA performing top-level
acceleration actually increases the number of iterations required to reach convergence for
large problems. As mentioned previously, the reason why convergence deteriorates using
top-level acceleration might be because DPWA changes the aggregation too much from
iteration to iteration. To test this hypothesis, we modify the K-cycle multigrid method.
The aggregation at the finest level is changed only every five iterations of the K-cycle,
as apposed to every iteration of the K-cycle. For coarser levels, the aggregation is deter-
mined as usual. The results are in Table 5.7 and it is obvious that in this case top-level
acceleration improves convergence which confirms our hypothesis.

We propose one addition method to try to improve our DPWA results for this problem.
Suppose that the problem matrix is used to determine the strength of connection for this
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problem (instead of the scaled problem matrix). Then, from Figure 5.4, we can see that the
strongest connection in the graph should be between diagonal elements since the transition
probability will be the largest between these nodes. However, including these diagonal
nodes in a particular aggregate is strongly dependent on the order on which the initial nodes
are chosen. This suggests that we might be able to improve the properties of DPWA if we
consider M-DPWA. The results from M-DPWA are in Table 5.8. If we compare M-DPWA
and DPWA without top-level acceleration we note that the computational complexity is
lower for M-DPWA in all but one case and the number of iterations required to reach
convergence is lower in all cases. For problems with a relatively small number of states,
M-PDWA outperforms NA with and without top-level acceleration. Without top-level
acceleration, M-DPWA is competitive with NA for problems with relatively large state
size in terms of convergence; however, C,, is larger which is not unexpected given that
NA produces fewer aggregates on average than M-DPWA. With top-level acceleration,
M-DPWA is outperformed by NA for large problems.

W-cycle K-cycle K-cycle™
n it Cop [lev | v [ Yerr || 16 | Cop [lev | v | Yers || it | Cop | lev | v | Yers
15 67 | 147 | 3 [ 084088142 |147| 3 [0.72]080 || 27| 147 | 3 |0.56 | 0.68
31 || >100 | 147 4 1091109448 |147| 4 |0.74|0.81 || 31| 147 4 |0.60|0.71
63 || >100 | 1.50 | 4 | 091094 50|150| 4 {073 081 |33|150| 4 [0.64]0.74
127 || >100 | 1.51 | 5 [0.95]096 | 57| 151 | 5 |0.76 |0.83 | 32|1.51| 5 |0.63]0.73
255 || >100 | 1.50 | 6 | 0.95 09763 |1.50| 6 [0.77]0.84 || 37| 150| 6 |0.56 | 0.68
Table 5.5: Tandem queuing network. Neighborhood aggregation.
W-cycle K-cycle K-cycle™

n it | Cop [lev | v [yes it [ Cop [lev | v [qers [0t [ Cop [lev | v [ yess

15 |51 (218 | 4 |0.78 108940 (218| 4 [0.75]088|26|214| 4 |0.54|0.75
31 (|57 1236 5 [0811091(39(239| 5 [0.74|088|35[235| 5 |0.54|0.77
63 || 701245 6 [ 084109348243 | 6 |0.730.83|64]245| 6 |0.720.88
127 11 82 1254 | 7 085094 || 58251 7 07208876 |251| 7 [0.73]0.88
255 1971256 8 |0871095| 73]1256| 8 [0.78[091|99]|255] 8 |0.790.91

Table 5.6: Tandem queuing network. Double pairwise aggregation.
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K-cycle K-cycle™
n it ] Cop [lev] v [yeps [0t [ Cop [lev] v | yepy

15 || 37218 4 |0.71]086 1 23 |219| 4 |0.46|0.70
31 |40 1238 5 [0.70]086 | 25|239| 5 |0.53]0.77
63 (|52]245] 6 [ 0771090 || 29|247| 6 |0.54]0.78
127 162 1252 7 [ 0751089 || 341|250 7 |0.54]0.78
255 || 75 1251 8 |0.77]1090 | 46 | 257 | 8 [0.64 | 0.84

Table 5.7: Tandem queuing network. Double pairwise aggregation with fixed fine-level
aggregation.

K-cycle K-cycle™
n it | Cop [lev ]| v [Yepr | it | Cop [lev ]| 7 | Yeps

-+

15 || 28214 | 4 | 057077 21 |2.06| 4 |0.46 | 0.69
31 (130(230| 5 |0.58]0.79 25 230 5 |042]0.69
63 || 35]242| 6 | 0.61]0.81 45 241 6 |0.48|0.73
127 | 50 | 247 | 7 | 0.63 | 0.83 82 249 7 [0.75]0.89
255169256 | 8 |0.70 | 0.87 || >100 | 2.56 | 8 | 0.88 | 0.95

Table 5.8: Tandem queuing network. Modified double pairwise aggregation.

5.4 Random Planar graph

As our final test problem, we consider an unstructured planar (undirected) graph and
calculate the stationary probability distribution of a random walk on the graph. The
graph is generated by choosing n random points in the unit square and triangulating them
using Delaunay triangulation. The random walk on the graph is modeled by a Markov
chain with the transition probability form node 7 to node j given by the reciprocal of the
number of edges incident on node i (equal weights).

Table 5.9 shows the results using NA. As in the tandem queuing network, we see
significant improvement once we move from W-cycles to K-cycles. Table 5.10 shows the
results using DPWA. With DPWA, as apposed to NA, W-cycles are scalable and although
K-cycles without top-level acceleration require fewer iterations to reach convergence, when
n = 16384 W-cycles actually perform better than K-cycles with top-level acceleration. The
DPWA results indicate that DPWA for K-cycles without top-level acceleration is scalable;
however, it is obvious from the NA results that NA for K-cycles with top-level acceleration
is optimal.

For DPWA, convergence is worse with top-level acceleration than without so we again
modify the K-cycle multigrid algorithm so the aggregation on the finest level is only up-
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dated every five iterations of the K-cycle. The results are in Table 5.11 and it is clear from
the results that K-cycle multigrid with top-level acceleration now improves convergence
and in fact the number of iterations required to reach convergence is lower than for NA. As
with the tandem queuing network, we also include the results using M-DPWA. Given the
random structure of the graph there is no reason to assume that M-DPWA will perform
better than DPWA and from Table 5.12 we see that the results are slightly worse in most
cases than those given for DPWA.
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W-cycle K-cycle K-cycle™
n it | Coplev] v [Yeps [0t [ Cop [lev] v [Yeps [l it [ Cop [lev ] v [7eps
1024 90 [1.24| 4 [0.88[0.90| 56 |1.24| 4 [0.80|0.84|26|1.24| 4 |0.61|0.67
2048 || >100 | 1.23 | 4 [ 091 ({093 | 62123 | 4 [0.81 085127 (1.23| 4 |0.62|0.68
4096 || >100 | 1.24 | 4 1092093 |66 | 1.24 | 4 |0.84 [ 0.87| 28| 1.24| 4 |0.61|0.67
8192 || >100 | 1.24 | 4 [ 093 (094 || 73124 4 [0.87]|090 |28 124 | 4 |0.48|0.55
16384 || >100 | 1.25| 5 [ 094|095 || 79| 1.25| 5 [0.88]0.90 | 31]1.25| 5 |0.67|0.72
Table 5.9: Random planar graph. Neighborhood aggregation.
W-cycle K-cycle K-cycle™
n | Cop [Tev | 7 Ty | [ Cp [lev] 5 gy | ] G v ] 3 [
1024 (|37 | 187 5 [ 072084 (130|188 | 5 | 067081 24|18 | 5 |0.59]0.75
2048 || 41 | 189 | 5 [0.77 087 {31190 | 5 | 067081127 |190| 5 |0.70 | 0.83
4096 || 451195 6 [0.80]0.89 (35195 | 6 [0.73 085 |35[1.95| 6 |0.77|0.88
8192 |46 | 1.96 | 6 |0.80 08936 |1.96| 6 |0.73]|0851 41 |1.95| 6 |0.84|0.92
16384 || 49 [ 1.98 | 7 [0.81 1090 (39198 | 7 [0.75|0.87 49198 | 7 [0.85|0.92
Table 5.10: Random planar graph. Double pairwise aggregation.




K-cycle K-cycle™
n_ it [ Cop [lev] v [veps [lit | Cop [lev] v [ yess

1024 || 34 {188 | 5 [ 0.68 081 |19 |1.87| 5 |0.44]0.65
2048 {35 (18| 5 [0.69 082 18190 5 |0.45 | 0.66
4096 |39 1194 6 [0.73 1085 |19(1.95| 6 |0.49 |0.69
8192 |40 [1.96 | 6 |0.75|0.86 | 20 | 1.96 | 6 | 0.48 | 0.69
16384 || 42 | 1.98 | 7 [ 0.78 [ 0.88 || 21 | 1.98 | 7 | 0.57 | 0.75

Table 5.11: Random planar graph. Double pairwise aggregation with fixed fine-level ag-
gregation.

K-cycle K-cycle™
n it|C(0P|1ev|fy|/yeff i|Oop|1ev|f}/|'76ff

-+

1024 || 31 | 1.88| 5 | 0.66 | 0.80 | 26 | 1.88 | 5 | 0.69 | 0.82
2048 33 (189 | 5 [0.70 | 0.83 ] 26 |1.89 | 5 |0.73 | 0.85
4096 || 351194 | 6 [ 0.70 | 0.83 ] 41 (194 | 6 | 0.80 | 0.89
8192 |36 [1.95| 6 |0.76 | 0.87 | 36 | 1.96 | 6 | 0.82 | 0.90
16384 || 40 | 1.98 | 7 [0.79 [0.89 | 49 |1.98 | 7 |0.87|0.93

Table 5.12: Random planar graph. Modified double pairwise aggregation.

6 Conclusion

We have presented two different aggregation algorithms for a K-cycle multigrid method
for Markov chains. Both the neighborhood aggregation algorithm and double pairwise
aggregation algorithm use the information in the scaled matrix problem and determine a
strength of connection measure to form aggregates. While the neighborhood aggregation
algorithm forms aggregates using strongly connected neighborhoods, double pairwise ag-
gregation uses two passes of a pairwise matching algorithm where the strongest connection
is favored in forming pairs. The K-cycle scheme we propose is a recursively accelerated
W-cycle where acceleration is performed by finding the optimal linear combination of two
iterates. Given the small dimensionality of our minimization problem we are able to develop
an efficient solution method. We also implement a top-level acceleration algorithm where
the proposed acceleration finds the optimal linear combination of three K-cycle iterates.
Using several test problems we are able to show how our two aggregation algorithms
compare. Our results indicate that the neighborhood aggregation algorithm performs bet-
ter than the double pairwise aggregation algorithm. For some problems the performance
of double pairwise aggregation can be improved when we consider a modified version. In
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the modified version, nodes are considered strongly connected if they strongly influence
our initial node or if they are strongly influenced by our initial node. In the neighborhood
aggregation algorithm strength of connection is determined exactly the same way as it is
for our modified double pairwise aggregation algorithm. For neighborhood aggregation,
top-level acceleration is able to improve convergence; however for double pairwise aggre-
gation top-level acceleration convergence actually becomes worse for some problems. It is
not entirely clear why this occurs although if we fix the top-level aggregates for a number
of iterations we are able to improve convergence using top-level acceleration. Future work
could include a further exploration of this phenomenon as well as finding ways to fix it. It is
also not entirely clear why neighborhood aggregation performs better the double pairwise
aggregation and a further examination of this could lead to better aggregation algorithms.
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