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Abstract

The COVID-19 outbreak has been identified as one of the most severe respiratory
virus outbreaks since the 1918 H1N1 influenza pandemic. Its impact on people’s lives
and governments has been significant, affecting areas such as health and the economy.
Governments have responded to the pandemic by implementing policies to mitigate its
destructive effects on the economy and people’s lives and to stop its spread. These policies
fall under four main categories: containment and closure policies, economic policies, health
system policies, and vaccination policies.

Many of these policies were implemented as emergency measures without a thorough
study of their impact and effectiveness. Therefore, investigating the impact of govern-
ment policies during the pandemic is crucial to assist policymakers in addressing future
pandemics or variations of COVID-19.

To conduct this investigation, we utilized counterfactual reasoning and counterfactual
generation techniques from causality. We also measured the level of dependence between
each policy and the spread of COVID-19 using Hilbert-Schmidt Independence Criterion
(HSIC) and mutual information. Our findings indicate that vaccination policies had the
most positive impact on controlling the disease. Additionally, school closings, restrictions
on gatherings, and canceling public events were found to be quite effective. However, in
some cases, our methods produced counterintuitive results, suggesting a decrease in the
level of some policies, such as PCR testing, for controlling the disease.

It’s important to note that different methods used in this investigation may produce dif-
ferent and sometimes contradicting results. We discussed the limitations of the techniques
used, which may have contributed to the contradictory findings.
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Chapter 1

Introduction

During the COVID-19 pandemic, governments implemented various policies to control the
spread of the disease and mitigate its negative impacts on people's lives. These policies
can be categorized into four main categories: containment and closure policies, economic
policies, health system policies, and vaccination policies. However, many of these poli-
cies were implemented as emergency measures without a thorough study of their impact
and e�ectiveness. Therefore, investigating the impact of government policies during the
pandemic is crucial to assist policymakers in addressing future pandemics or variations of
COVID-19.

Numerous studies have attempted to investigate the underlying e�ect of policies on
COVID-19. Some studies used statistical methods and approaches for this purpose. For
instance, in [8], the authors considered time, log(time), and the lagged value of di�erent
policies as features and found their coe�cient in their Poisson regression model. Negative
coe�cients indicated that the feature had a positive e�ect, and vice versa. The authors
found that most of the signi�cant policies had positive coe�cients, suggesting that daily
con�rmed cases and policies may be correlated in more complex ways or that other factors
not considered in the study may a�ect the spread of COVID-19. The study also found
that contact tracing and the health index had consistent negative coe�cients across all
analyses.

Other studies used causality to investigate the e�ect of policies. Some studies tried
to �nd the causal graph to show which policies were the cause of the number of daily
con�rmed cases without indicating the positivity or negativity of the e�ect. For example,
in [13], authors modi�ed the SyPI algorithm [14] to generate the causal graph by considering
confounders and generated the causal graph of the e�ect of di�erent types of closures and
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the e�ect of di�erent cities on each other in Germany. The study found that di�erent cities
had a di�erent set of policies as the causes, and the set of causes was not the same for all
cities.

Other studies assumed a causal graph between policies and the number of daily con-
�rmed cases and used interventions to �nd the e�ects. For instance,in [19], they assumed
a causal graph, derived the equations behind it, and found the coe�cients of the policies
on those equations to show the e�ect of those policies.

Additionally, a research introduced Simpson's paradox in COVID-19 case fatality rates
and argued that a country is like a confounder that a�ects both age and fatality rate [20].
Ignoring the e�ect of this confounder when investigating the e�ect of policies will hide the
true e�ect of age on the fatality rate.

This study aims to investigate the e�ect of policies on the number of daily con�rmed
cases during the COVID-19 pandemic. We assumed an underlying causal graph and em-
ployed deep learning/machine learning models for modeling the dynamic of the problem
to apply counterfactual reasoning. We aimed to answer three questions: (1) What would
have been the impact on the daily con�rmed cases if the policies were not implemented or
implemented with lower levels of strictness? (2) What is the optimal level of each policy to
ensure that the number of daily con�rmed cases remains below 500 during the peak days?
(3) What is the level of dependence between policies and the number of daily con�rmed
cases? The report is organized as follows: Chapter 1 introduces the problem statement,
Chapter 2 presents background information, Chapter 3 describes the proposed methods,
Chapter 4 presents the experimental results, Chapter 5 discusses the limitations of the
employed methods, and Chapter 6 concludes the paper.
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Chapter 2

Background and Problem De�nition

The coronavirus disease 2019 (COVID-19) has rapidly spread globally and was declared a
pandemic by the World Health Organization on March 11, 2020 (World Health Organiza-
tion, n.d.) [6]. The COVID-19 pandemic has had a signi�cant impact on people's lives,
world economies, and public health, and is considered the most severe respiratory virus
outbreak since the 1918 H1N1 inuenza pandemic (World Health Organization, n.d.)[7].
Governments worldwide have implemented various policies to mitigate or suppress the dis-
ease, which can be classi�ed into four categories: C for containment and closure policies, E
for economic policies, H for health system policies, and V for vaccination policies. However,
the e�ectiveness of each policy in mitigating the spread of COVID-19 may di�er. There-
fore, it is crucial to identify which policy or policies are most e�ective in controlling the
disease. Determining the e�ectiveness of each policy can assist policymakers in addressing
future pandemics or variations of COVID-19. To investigate the impact of each policy on
COVID-19 transmission, we employed counterfactual reasoning and counterfactual genera-
tion techniques from causality, while utilizing Hilbert-Schmidt Norm and mutual informa-
tion to measure the level of dependence between each policy and the spread of COVID-19.
Before introducing our approaches, it would be great to introduce the mentioned methods
from the available literature.

2.1 Causality

Causality can be illustrated through an example of a student, Matth, who is taking a math
course. The more hours he spends practicing math, the higher his score is likely to be.
This indicates a relationship between these two events, where a change in the number of
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practicing hours causes a change in the score. This is known as causality or causation,
which refers to the relationship between a cause and its e�ect. If we have two variables
X , and Y then we say that X is a cause ofY if Y relies on X for its value[16]. We
need causality and causation in machine learning due the obstacles that today's machine
learning models are confronting [15]. The �rst obstacle is about adaptability or robustness,
machine learning researchers has noticed that current systems lack the ability to recognize
the new circumstances that they have not been trained for before, also machine learning
models use historical data and as time passes some of the features may change so they
require to be trained again. The second problem is about explain ability, machine learning
models are mostly act as black boxes. So, they are unable to bring some reasons for their
predictions and to get some recommendation. Imagine a person who has been applied for
getting loan from a bank but his application was rejected by the system of that bank. The
system must be able to provide some explanations on its decision and also provide some
possible recommendations for that person to be able to get a loan. The third obstacle is
about ignoring the cause-e�ect relations[12]. Machine learning models require to be able
to consider these causal relations to be able to arrive at a human intelligence level while
they are mostly operating based on statistics.

2.2 Counterfactual Reasoning (CR)

Counterfactuals are a fundamental concept in causality that aim to address questions
of the form: "What would have happened if I had acted di�erently?" which the "if"
portion is unrealistic or untrue. Interventions are not capable of answering such questions
because counterfactuals consider events occurring under di�erent conditions or in di�erent
worlds, which is not possible in interventions. To calculate counterfactuals, a structural
causal model (SCM) is required, which illustrates how the variables in a given context
interact and are related. An SCM comprises two types of variables: exogenous variables,
which are unknown and act as external factors a�ecting other variables, denoted as U, and
endogenous variables, which are descended from at least one of the exogenous variables[16].
In the case of our problem, we assume that policies have a direct e�ect on the number of
daily con�rmed cases and have constructed an SCM using deep learning models, as shown
below:

y = f (x) + e (2.1)

Where e is the exogenous variable,x is the set of features (policies) andf is the
underlying function that we have found it by deep learning models andy is the number of
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daily con�rmed cases. After discovering the underlying Structural Causal Model (SCM)
of a problem, the following three steps must be taken to calculate counterfactuals[16]:

1. Abduction: Using the available observations for each instance to calculate its corre-
sponding exogenous variables

2. Action: modify the underlying model (M ) by replacing the intervened features (x
0
)

for arriving at a new model (M x0)

3. Prediction: calculate the consequence of the counterfactual by using the modi�ed
model M x0 and the corresponding exogenous variables that have been calculated in
the Abduction step

These procedures can be demonstrated via the following example: consider a scenario
where the number of daily con�rmed cases of COVID19 depends on the level of strictness
of three policies: health(h), vaccine(v) and closures(c). Let us assume that forh = 30,
v = 0, and c = 10, f (h = 30; v = 0; c = 10) = 19997 , and the recorded number of daily
con�rmed cases was around 20000. Based on the Abduction step, we �nd the exogenous
variable, e = 20000 � 19997 = 3. Next, we intervene in the features such thatv = 0,
h = 30, c = 100, and �nd the modi�ed model, f v=0 ;h=30 ;c=100 = 10000 based on the action
step. Finally, the resulting counterfactual will beycounterfactual = 10000 + 3 = 10003 which
implies that the closure policy had a positive e�ect on controlling COVID19.

2.3 Counterfactual Generation (CG)

Machine learning models have become increasingly popular for solving various tasks such
as classi�cation, regression, and recommendation systems. However, one of the limitations
of these models is their inability to provide recommendations to users on how to improve
their state and achieve desired goals [16]. Counterfactual generation aims to address this
limitation by generating recommendations that answer the question of how to change
the current state of di�erent features for an instance to transfer its state from A to B.
Many works in the literature have addressed counterfactual generation to arrive at possible
recommendations.

One current work [9], introduces a multi-objective optimization problem to cover di�er-
ent properties of the generated counterfactuals. According to their method, the generated
counterfactual (x

0
) should satisfy the following properties for its corresponding observation

(x � ):
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1. Its resulted output(state) is close to the desired output (state)

2. It is close tox � in the input space (X )

3. It is di�erent from x � in a few features

4. It is a possible data point based on the distribution of input data (PX )

To satisfy each of these properties, they de�ne the objective function as follows:

min
x

O(x) = min
x

(O1(f̂ (x); Y
0
); O2(x; x � ); O3(x; x � ); O4(x; X obs)) (2.2)

In the context of counterfactual generation, four properties have been identi�ed as
important metrics to evaluate the quality of generated counterfactual instances. These
properties are quanti�ed by four separate objective functions, denoted asOi , i = 1; : : : ; 4.
A detailed description of each objective function is available in the literature. Here, we
focus on the fourth objective function, which we use in our counterfactual reasoning method
to measure the distance of generated counterfactuals from the distribution of the dataset

The fourth objective measures weighted average Gower distance[11] betweenx (the
input) and the k nearest observed data points,x[1]; :::; x[k] 2 X . This empirical approxi-
mation helps determine the likelihood ofx originating from the distribution of the primary
data (X ) as follows:

O4(x; X obs) =
kX

i =1

w[i ] 1
p

pX

j =1

� G(x j ; x[i ]
j ) 2 [0; 1] where

kX

i =1

w[i ] = 1 (2.3)

And � G de�nes as follows:

� G(x j ; x �
j ) =

(
1

R̂ j
jx j � x �

j j if x is a numeriacl feature

I x j 6= x �
j

if x is a categorical feature
(2.4)

is extracted from the dataset based on the value range of the j-th feature.

2.4 Measuring Dependency

Measuring the dependency between each feature, i.e., policies, and the target variable, i.e.,
the number of daily con�rmed cases, is essential for revealing their e�ect and relation. To
accomplish this, we employed the following two methods:
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Hilbert-Schmidt Independence Criteria (HSIC)

This method is a kernel-based approach used to measure the dependency between variables.
The underlying idea is that while measuring correlation in a linear space is straightforward,
the unknown non-linearity of the data makes it challenging to measure the dependence
factor. Therefore, based on a theorem, if we implicitly transform the data to a high-
dimensional space using a kernel, such as the radial basis function (RBF), then the variables
in the in�nite-dimensional Reproducing Kernel Hilbert Spaces (RKHS) are independent
if and only if they are uncorrelated. As a result, it is su�cient to �nd the correlation
between the kernel means using kernel trick. For a set of independent observations that
have been sampled from a distributionPxy asO := ( x1; y1); : : : :; (xm ; ym ) � � , wherem is
the number of samples, HSIC can be calculated as follows[5]:

HSIC (O; F; g) := ( m � 1)� 2trKHLH (2.5)

Where H; K; L 2 Rm� m , K ij := k(x i ; x j ), L ij := l(yi ; yj ) and H ij := � ij � m� 1

Mutual Information (MI)

Mutual information is a measure based on the entropy of variables that quanti�es the
amount of information that one variable provides about another variable. MI is a non-
parametric measure of the dependence between two variables and ranges from 0 (indicating
independence) to positive in�nity, where a value of 0 indicates independence between two
random variables, and higher values indicate stronger dependence between them. Mathe-
matically, the mutual information between two random variablesX and Y can be computed
as follows[4]:

I (X ; Y) = H (X ) � H (X jY) (2.6)

Where I is the mutual information betweenX and Y, H (X ) is the entropy of X and
H (X jY) is the conditional entropy of X given Y.

2.5 Deep Learning/ Machine Learning Models

For �nding the underlying model of the COVID19 data, we have used Support Vector
Regression(SVR)[3] and a Gated Recurrent Unit (GRU)[10] based network, that their
details is mentioned bellow.
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Figure 2.1: Gated recurrent unit (GRU) architecture[2].

Gated Recurrent Unit (GRU)

Recurrent Neural Networks (RNNs) are prone to the problem of gradient vanishing and
bottleneck, which results in the loss of important information over long input sequences. In
order to solve this issue, the Gated Recurrent Unit (GRU) was introduced[?]. GRU utilizes
update and forget gates in its structure to address the problem of vanishing gradients and
information loss in RNNs. The functional representation of a GRU unit can be seen in
Figure 2.1 and is described below.

The update gate (zt ) determines which information needs to be kept and which needs
to be discarded using the following formula:
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zt = � (Wzx t + Uzht � 1) (2.7)

The reset gate (r t ) determines how much of the previous state should be passed using
the following formula:

r t = � (Wr x t + Ur ht � 1) (2.8)

The memory content uses the reset gate to store relevant information from the past:

h
0

t = tanh( Wxt + U(r t � ht � 1) (2.9)

Finally, the unit calculates the ht which contains information about the current state,
to be passed on to the next units using the following formula:

ht = zt � ht � 1 � (1 � zt ) � h
0

t (2.10)

Support Vector Regression (SVR)

This is a method used for regression tasks where the labels are continuous. The goal is
to �nd the best line by solving one of two optimization problems. The �rst optimization
problem is[18]:

The �rst optimization problem is:

min
1
2

kwk2 s:t:jyi � wi x i j � " (2.11)

The second optimization problem is:

min
1
2

kwk2 + C
nX

i =1

j� i j s:t:jyi � wi x i j � " + j� i j (2.12)

Here, " represents the margin of error,yi is the label, x i is the input and wi are
coe�cients.

The deviation from the margin" is represented by� i , which includes any error outside
of the margin for some points from the line.
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Chapter 3

Methodology

In this report, we aim to address the problem of determining the impact of policies on the
transmission of Covid-19 by answering the following three research questions:

1. What would have been the impact on the daily con�rmed cases if the policies were
not implemented or implemented with lower levels of strictness?

2. What is the optimal level of each policy to ensure that the number of daily con�rmed
cases remains below 500 during the peak days?

3. What is the level of dependence between policies and the number of daily con�rmed
cases?

To answer the �rst two questions, we employ counterfactual reasoning/generation, while
we estimate mutual information between each policy and the number of daily con�rmed
cases for the third research question. Further details of the employed methods can be
found in subsequent sections.

3.1 Counterfactual Reasoning

To address the initial inquiry, we have employed counterfactual reasoning, a concept in
causality, as a methodological approach. In order to implement this approach, it was nec-
essary to develop a model of the problem. Therefore, we began by utilizing deep/machine
learning models to model the e�ect of policies on the number of daily con�rmed cases. Two
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Sequence length
Train MSE Test MSE

#train data # test data
GRU model1 GRU model2 GRU model1 GRU model2

5 0.322301799308675140.4346392810129612 1.2528273836513348 1.2129056446786128 27158 6892
7 0.2987417784043683 0.3285427176648504 1.1543941183572677 1.095605739265928 27070 6859
10 0.210973340648669 0.29731745162944606 0.866611977065608 0.9799715153751649 26934 6817
15 0.153391241911137840.17105107342098852 0.6234000675083087 0.6291053129615952 26686 6770
30 0.011115003338498580.0120780988856892070.016105915017990950.0188593253631429525990 6581

Table 3.1: Mean square error and number of data for both train and test phases of GRU
based models.

models, namely a GRU network and Support Vector Regression (SVR), were employed for
this purpose.

In case of GRU network, two di�erent GRU networks were trained using 5 distinct
sequence lengths each. The mean of the results from all 10 models was reported as the
�nal conclusion in order to mitigate the e�ects of any potential model bias on the results. A
window with a length of 31 was utilized to represent the time required to observe the e�ect
of a policy on the number of daily con�rmed cases. Subsequently, 5, 7, 10, 15, and 30 were
evaluated as possible sequence lengths, and for each input sequence, the corresponding y
value at the end of the window was considered as the label. The process of generating
the data can be observed in Figure 3.1. In the case of SVR, the model is not designed for
modeling sequential data. Therefore, we input a set of features (policies) at each time and
select the labels by considering a window of 30, 35, 40, 45, and 50. This window allows us
to observe the e�ect of policies over time. To report our results, we calculate the average
of the outcomes across these di�erent window sizes to reduce model bias. To train these
models, we used 80% of the data for training and validation purposes (70% for training,
and 10% for validation). The remaining 20% of the data was used as the test set. To
minimize the impact of seasonal patterns, we separated the data as shown in Figure 3.2.
Finally mean squared error(MSE) along with the prediction curves on both train and test
data have been reported in Tables 3.1 and 3.2 and Figures 3.3 and 3.4 as a metric for
evaluating the generalizability of the models.

Following the development of the underlying data model, counterfactual reasoning can
be applied through three distinct steps[16]: abduction, action, and prediction. In the �rst
step, abduction, the unknown exogenous variable (e) is identi�ed for each data point within
the dataset, with Equation 1 representing the mathematical model of our problem. In this
equation, y represents the daily con�rmed cases and the label of each data point,f (x)
denotes the model prediction (utilizing either GRU networks or SVR) for a given input,x,
and x represents the set of features, including policies andyave.

11



Sequence length Train MSE Test MSE # train data # test data

30 0.4419261780802710 0.758835414247478925990 6581
35 0.495297405206378940.860035264931589825742 6534
40 0.5390001543702576 0.945128562432032 25518 6463
45 0.5716183213149735 0.983164585691065425270 6416
50 0.593433933264728 1.031799522523728925046 6345

Table 3.2: Mean square erreor and number of data for both train and test phases of SVR
models.

Figure 3.1: The process of generating sequential data (i.e., 5, 7, 10, 15, and 30) while a
window length of 31 has been utilized to capture the time required to observe the e�ect of
a policy on the number of daily con�rmed cases.
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Figure 3.2: Data separation into train/validation/test for reducing seasonality patterns.

Figure 3.3: A sample on GRU model predictions on test data when sequence length is 7.
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