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Abstract

In this paper, our goal is to solve the piecewise-constant transaction cost mini-

mization problem, one of the practical problems in finance, and to illustrate its com-

putational difficulty. We develop and apply a smoothing technique for this problem.

Finally, we compare examples of various dimensions to demonstrate the potential of

this new smoothing method for this global optimization problem.
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1. Introduction

In stock markets, transaction costs are fees that arise when selling or purchasing

assets, and they are often piecewise-constant or piecewise-linear, illustrated in the

following figures, where x is an asset holdings.
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(a) Piecewise Constant Function
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(b) Piecewise linear Function

The piecewise constant transaction cost implies the transaction costs stay the same

within an interval. And the piecewise linear transaction cost means the transaction

costs are proportional to the purchasing amount within an interval, and the proportion

is decreasing as the purchasing amount increases.

In this paper, we deal with the case when the transaction costs are piecewise-

constant, a common situation. The piecewise constant functions are discontinuous,

which are hard to minimize and in particular, smooth minimizing processes do not
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apply. Hence, we modify the transaction cost in two stages via linear interpolations

and quadratic splines to get a continuous and differentiable approximation. In the

first stage, we use linear interpolation to fill the “gap” between levels and make it

continuous, which is denoted by the function TC∆(x).

For x ≥ 0,

TC∆(x) =



level1 + δ∗(x−k+∆)
2∗∆ if k −∆ ≤ x ≤ k + ∆ and ∆ 6= 0

level1 if k −∆ ≤ x ≤ k + ∆ and ∆ = 0

level1 if x < k −∆

level2 otherwise,

where level1 and level2 represents the value of the first level and the second level

respectively, and k is the “jump” point from level1 to level2, and δ = (k−∆)
k
∗(level2−

level1).

For x < 0, TC∆(x) = TC∆(|x|).

In the second stage, we use quadratic splines to smooth the corners and make the

function differentiable. The smoothed function is denoted by the function TCb∆(x).

For x ≥ 0,

TCb∆(x) =



level1 + m
4∗ε∗(x−(k−∆)+ε)2

if k −∆− ε ≤ x and x ≤ k −∆ + ε and ∆ 6= 0

level1 if if k −∆− ε ≤ x ≤ k −∆ + ε and ∆ = 0

level1 + δ − m
4∗ε∗((k+∆)−x+ε)2

if k + ∆− ε ≥ x and x ≤ k + ∆ + ε and ∆ 6= 0

level1 if k + ∆− ε ≥ x and x ≤ k + ∆ + ε and ∆ = 0

level1 if x < k −∆− ε

level2 if x > k + ∆ + ε

TC∆(x) otherwise,

where ε = ∆
10

, and m = δ
2∗∆ .

For x < 0, TCb∆(x) = TCb∆(|x|).
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The following figures illustrate this modification process.
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(a) Original Transaction Cost
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Figure 2: Transaction Modification Process
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In finance, the usual portfolio allocation problem is of the form

min{1/2 ∗ x′ ∗H ∗ x : Ax = b, x ≥ 0}, (1)

where the term 1/2∗x′∗H ∗x represents risk, and the expected return of the portfolio

is expressed in one of the constraints. Thus, the problem is to minimize risk under

certain constraints. Since the risk function is smooth and convex, we can solve it by

quadratic programming.

In this paper, we would like to minimize the risk as well as the transaction costs.

Hence, we add a term S(x) representing the summation of the transaction costs into

the objective function of equation (1), which gives us the following problem.

min{S(x) + 1/2 ∗ x′ ∗H ∗ x : Ax = b, x ≥ 0} (2)

However, S(x) and 1/2∗x′ ∗H ∗x have different units, and hence, it is problematic

to add these two terms. One way to adjust the unit difference is by weighting the

two terms differently, which gives the following problem

min{w ∗ S(x) + 1/2 ∗ x′ ∗H ∗ x : Ax = b, x ≥ 0}, (3)

where w is the weight.

Another way to adjust it is replacing 1/2∗x′ ∗H ∗x by the term
√

1/2 ∗ x′ ∗H ∗ x

and gives the following minimization problem. We will focus on this formulation in

the paper.

min{S(x) +
√

1/2 ∗ x′ ∗H ∗ x : Ax = b, x ≥ 0} (4)

In the financial markets, we have the following interpretation. We hold a set of

n assets, which is represented by a n × 1 vector x indicating the amount we hold

for each asset and is assumed to be nonnegative. The problem (4) we are facing

is to minimize the total cost of the transaction costs and the risks under certain

constraints. In this paper, we use the S∆(x) =
∑
TCb∆(x), the summation of the

modified transaction costs to approximate S(x). And the risk is demonstrated by
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the later term, namely
√

1/2 ∗ x′ ∗H ∗ x, where H is a positive definite n×n matrix

and is known as the covariance matrix. The constraint Ax = b represents certain

restrictions on x, where A is an m × n matrix and b is an m × 1 vector. Matrix A

has at least two rows. One row represents the total wealth constraint, that is, how

much money is to be invested. Hence, each element in this row equals unity and the

corresponding right-hand-side element (i.e., corresponding component of vector b) is

the available sum to be invested. Another required row represents the target return of

the portfolio, that is, the expected return of portfolio ‘x’. In this row, the coefficients

represent the expected return of the corresponding asset, which are estimated using

historical data or scenario analysis, and the corresponding right-hand-side element

(i.e., the corresponding element of b) is the user-chosen desired expected return of the

portfolio (or target value of the portfolio). Other rows of matrixA represent additional

constraints on groups of variables to restrict investments in certain sectors.

For a given ∆ > 0, the optimization problem we solve is:

min{
∑

S∆(x) +
√

1/2 ∗ x′ ∗H ∗ x : Ax = b, x ≥ 0} (5)

For example, x = [1; 2; 5; 0] means that we have 1 unit of the first asset and 2 units

of the second asset and 5 units of the third asset and do not have any asset 4. If we

have the constraint A = [1, 1, 1, 1; 1.09, 0.98, 0.92, 1.1] and b = [1; 1.2], it means that

we use one unit of money to buy the four assets, and the four assets have expected

rates of return 1.09, 0.98, 0.92 and 1.1, respectively, and our expected return of the

portfolio is 1.2.

Problem (4) can be solved by the smooth minimizing methods. However, problem

(4) is not convex, therefore standard local minimization methods may find the nearest

local minimizer instead of the actual global one. Thus, in this paper, we introduce

a smoothing technique to try to overcome this difficulty. We will show that the new

method can often obtain better results than the standard local methods for most of

the cases in the later section.
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2. Transaction Cost Function Minimization Problem

In this section, we will first provide a description of the transaction cost function

minimization problem and then introduce its difficulties.

2.1. Description of the Problem

In this paper, we solve the problems of the form min{S(x) +
√

1/2 ∗ x′ ∗H ∗ x :

Ax = b, x ≥ 0}, where S(x) is the summation of the transaction costs, S(x) is

approximated by S∆(x), the summation of the modified transaction cost function

that is piecewise-linear with quadratic splines, and H is a positive definite matrix.

For simplicity, we only consider the piecewise constant transaction cost of two levels

with the lower level to be zero and the upper level to be one, which is demonstrated

in the following figure and will result in relatively hard problem.
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Figure 3: Simplified Transaction Cost Model

We have two types of constraints on x in the problem. The inequality constraint
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x ≥ 0 is to prevent negative entries in x, which means that we can only hold non-

negative amount of assets. It is reasonable to only allow holding nonnegative amount

of assets in the stock markets or other financial markets when ‘shorting’ is not al-

lowed. We also have a set of equality constraints, which is represented by the equation

Ax = b, where A is a matrix and b is a vector. The first row of A and b represents

the wealth constraint, where the entries are all 1’s meaning we use one unit of wealth

to buy the set of asset, i.e. e′ ∗ x = total wealth. The second constraint is the target

expected return of the portfolio, that is, w′ ∗ x = target expected return, where w(i)

is the expected return of asset i determined empirically, typically using historical

data. Other constraints may represent other conditions, such as sector constraints,

which indicate the proportion we invest in certain sector. For example, 25% of the

investment is allocated to the technology assets.

2.2. Difficulties of the Problem

The minimization problem (5) can be solved by applying smooth local minimizing

methods. But such methods will lead, typically, to the nearest local minimizer. In

order to avoid this, and attempt to reach a global minimizer, we solve a sequence of

problems (3), with decreasing values of ∆. Each new minimization (i.e. new value of

∆) uses as a starting point to minimizer of the previous problem. In this subsection,

we will discuss the difficulties of the problem and actually make it visualize to the

reader by plotting 2 dimension examples.

Our problem includes two parts. The first part is the summation of the transaction

costs and the second part is the risk part. We illustrate these two parts separately

using the following example.

We let A = [1, 1, 1, 1; 1.3, 1.1, 0.98, 0.99] and b = [1; 1.2], and with the equality

constraint Ax = b, we solve for x. Thus, in order to satisfy the constraint, x must

equal to [0.5 + 0.6∗ z+ 0.55∗w; 0.5−1.6∗ z−1.55∗w; z;w], for some z and w. Then,

we plot the S(z, w) with respect to z and w, which gives the following figure.
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Figure 4: S function

And we randomly generate a positive definite matrix H of dimension 4× 4, which

gives the matrix

H = [0.4389, −0.1161, −0.3817, 0.0284;

− 0.1161, 0.6417, 0.2276, −0.1544;

− 0.3817, 0.2276, 0.4457, 0.2048;

0.0284, −0.1544, 0.2048, 0.8113];,

and we plot the risk term, namely
√

1/2 ∗ x′ ∗H ∗ x, where x is of the form [0.5 +

0.6 ∗ z + 0.55 ∗ w; 0.5 − 1.6 ∗ z − 1.55 ∗ w; z;w], for some z and w, which gives the

following figure.
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And then, we combine those two parts together and plot the function that we are

trying to minimize.
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Figure 6: Combination

We can see from the example that although the risk part is a smooth function,

the problem still has a challenging structure. The reason is although we modified the

transaction cost function to make it continuous and differentiable, it is not convex,

which makes global minimization hard, since it is not guaranteed to have a global

minimizer. From the above figure, we can easily see that there are many local mini-

mizers. If starting from a random point, the smooth minimization method are more
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likely to find some nearby local minima or perhaps diverge. Hence, the transaction

cost part makes the problem hard to solve.
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3. Smoothing Minimization Procedure

In the previous section, we see that the problem, even in low dimension, is hard

to solve by smooth minimizing procedures. Thus, in this section, we will describe

the smoothing minimization procedure, which will overcome the difficulties in most

of the cases. Previous related work can be found in the papers [1], [2].

We first show the algorithm.

Algorithm 1 Minimization Procedure with Smoothing Technique

1: Find the global minimizer when ∆ = 1 by quadratic programming, denoted by z . ∆ = 1 is the
flat level, where the problem is convex

2: while ∆ 6= 0 do . continue decreasing ∆ until it is zero
3: ∆← ∆

f . f is a positive factor, which is determined experimentally

4: Compute the minimizer of S∆(x)+
√

1/2 ∗ x′ ∗H ∗ x, denoted by xmin using z as a starting
point

5: z ← xmin
6: end while
7: return xmin . The output minimizer is xmin

Instead of trying to find the minimizer of the function directly, we break the

problem into several levels and try to find the minimizer in each level using the

minimizer found in the previous level as a starting point. We apply the build-in

function fmincon in MatLab for each level, and for the first level (i.e. the flat level),

since S∆(x) = 0 when ∆ = 0, we have a convex problem with a global minimizer,

so we apply the function quadprog to find the minimizer of
√

1/2 ∗ x′ ∗H ∗ x using

quadratic programming, where x ≥ 0 and Ax = b.

The following figures illustrate how the smoothing method different from the

smooth method, where del denotes δ and δ = (k−∆)
k
∗ (level2− level1).
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Our algorithm starts from the flat level, where δ = 0, that is ∆ = 1.
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Figure 8: Flat Level

Since we have level 1 to be zero, at this level, the term S∆(x) is equal to zero.

Thus, we only have the term
√

1/2 ∗ x′ ∗H ∗ x, which is smooth and convex, and

hence, there is a global minimizer of the function. We use the quadratic programming

method to find this global minimizer, denoted by z, which can be done by applying

the MatLab build-in function quadprog.
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Then, we make an increment on level 1 by δ, which can be done by decreasing

∆, and use the z we found as a starting point for this level, and apply the MatLab

build-in function fmincon to find the minimizer for this level. For this level, we

cannot use the quadprog, because S∆(x) is no longer equal to zero, and hence, the

function is not a quadratic programming problem. And we denote the minimizer in

this level as xmin.

0 1 2 3 4 5 6

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

T
ra

ns
ac

tio
n 

C
os

t

Level 1

Level 1 + del

del: increment

Figure 9: Next Level

And we continue to make increments by δ and move to next level until we reach

level 2.
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4. Numerical Results

In this section, we will present some examples of different variables and constraints,

and we will compare the results from the smooth method and the smoothing method

and show that the smoothing technique provides better results in most of the cases.

We will show results in n = 4, 5, 6, 13, 15, 25, 50, 75, 80, 98 dimensions. For each of

the dimension, we first randomly generate the H matrix, which is positive definite

and is of the size n×n. After we generate the H, we keep it fixed for each dimension.

Then we will randomly generate the constraint matrices A and b as well as the

starting points using the MatLab build-in function randn.

We present some results in the following tables, which list the function values

computed and the smooth method, and the better results are bolded.
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For n = 4:

A=[1,1,1,1,1,1;1.2741,0.9577,0.9796,0.9517,1.0638,1.0626]; b=[1;1.2];
Starting Points Smoothing

Technique
Function
Value

Minimizer (com-
puted by new
method)

Local
Method
Function
Value

Minimizer (com-
puted by local
method)

[-0.6312; -0.5003;
-0.8672; -1.0401;
1.2654; -0.2415]

0.1808 [0.6476; 0.0000;
0.0000; 0.0000;
0.3523; 0.0000]

0.1808 [0.6476; 0; 0; 0;
0.3524; 0]

[1011 × 6.8630;
1011 × 0.3200;
1011 × −0.2564;
1011 × −2.1142;
1011 × −1.7769;
1011 ×−6.3918]

0.1808 [0.6476; 0; 0; 0;
0.3523; 0]

2.2575 ×
1011

[1011×6.863; 1011×
0.320; 0; 0; 0; 0]

1011×[4.0397; -
2.3685; -2.7481;
-0.0324; 1.7365;
0.0042]

0.1808 [0.6476; 0.0000;
0.0000; 0.0000;
0.3523; 0.0000]

1.0914 ×
1011

1011×[4.0397; 0; 0;
0; 1.7365; 0.0042]

1011× [0.7196;
1.4103; 5.8768;
-9.3534; 2.5614;
-1.2339]

0.1808 [0.6476; 0.0000;
0.0000; 0.0000;
0.3523; 0.0000]

1.474211 1011×[0; 0; 2.0684;
0.8732; 1.5049;
1.4197]

1011× [0.0000;
0.0000; 0.4814;
4.4447; 3.4848;
3.2019]

0.1808 [0.6476; 0.0000;
0.0000; 0.0000;
0.3523; 0.0000]

3.5010 ×
1011

1011× [0; 0; 0.4814;
4.4447; 3.4848;
3.2019]

1011× [3.4904;
-0.6770; 0.2106;
-1.2010; -0.1281;
1.5111]

0.1808 [0.6476; 0.0000;
0.0000; 0.0000;
0.3523; 0.0000]

1.5973 ×
103

103× [3.9564;
1.1849; 0.0056;
0.0003; 0; 0.0015]

[26.3024; -5.8052;
82.7728; 162.6502;
2.1088; -19.0014]

0.1808 [0.6476; 0.0000;
0.0000; 0.0000;
0.3523; 0.0000]

0.1808 [0.6476; 0; 0; 0;
0.3524; 0]
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For n = 5:

A=[1,1,1,1,1,1,1;0.7346,0.7118,1.0804,1.294,0.9346,1.1625,1.1091]; b=[1;1.2];

Starting Points Smoothing
Technique
Function
Value

Minimizer
(computed by
new method)

Local
Method
Function
Value

Minimizer (computed by
local method)

1012×[0.4358, -
1.0633, 0.1880,
0.6217, 0.1638,
0.6765, 1.5680]

0.1590 [0.0000,
0.0000,
0.1447,
0.4935,
0.0359,
0.1886,
0.1373]

131.7166 [0.0512, 0.0247,
438.1388, 36.3353,
0.0554, 0.1320, 0.0006]

1012×[0.2255,
0.5421, 0.3595, -
1.1108, -0.3518,
1.0347,-0.0368]

0.1590 [0.0000,
0.0000,
0.1447,
0.4935,
0.0359,
0.1886,
0.1373]

4.7587 ∗
107

107×[ 0.0000, 5.7481,
0.0000, 1.0494, 0.0978,
7.5518, 0.0000]

1011×[0.4889,
0.5086, -0.3344,
0.8237, 0.5190,
1.9708, 0.8354]

0.1590 [0.0000,
0.0000,
0.1447,
0.4935,
0.0359,
0.1886,
0.1373]

3.0025 ∗
109

109×[0.0082, 0.0000,
8.4218, 3.0048, 8.9139,
1.7600, 5.8724]

1010×[-7.4149, -
9.5620, 0.4023,
-2.7776, -2.4855,
-9.1918, 5.2651]

0.1590 [0.0000,
0.0000,
0.1447,
0.4935,
0.0359,
0.1886,
0.1373]

0.1590 [0.0000, 0.0000, 0.1447,
0.4935, 0.0359, 0.1886,
0.1373]

109×[3.0308, -
2.7009, -4.9916,
3.7788, -0.1712,
1.2253, -0.9915]

0.1590 [0.0000,
0.0000,
0.1447,
0.4935,
0.0359,
0.1886,
0.1373]

9.2251 ∗
107

108×[ 0.0000, 0.4900,
0.0009, 2.4002, 2.6791,
0.1760, 0.5496]
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For n = 6:

A=[1,1,1,1,1,1,1,1; 1.0492,1.0140,0.8783,0.7555,1.0633,0.7314,0.7936,1.2662]; b=[1;1.2];
Starting Points Smoothing

Technique
Function
Value

Minimizer (com-
puted by new
method)

Local
Method
Function
Value

Minimizer (com-
puted by local
method)

1010×[-0.6665, -
0.7842, 0.3746, 1.0707,
-1.1584, -0.3074,
-0.0577, -1.3627]

0.3029 [0.3051, 0.0000,
0.0000, 0.0000,
0.0000, 0.0000,
0.0000, 0.6949]

4.5971 ∗
109

1010×[0.0000,
0.0000, 0.3746,
1.0707, 0.0000,
0.0000, 0.0000,
0.0000]

1010×[-0.2861, 0.3893,
1.1282, 1.3321, -
0.0866, -0.2372,
0.6055, 0.3630]

0.3029 [0.3051, 0.0000,
0.0000, 0.0000,
0.0000, 0.0000,
0.0000, 0.6949]

1.5085e ∗
108

108×[0.0000,
1.9653, 0.0000,
0.0000, 0.0000,
1.9643, 0.0000,
0.0000]

1011×[1.2730, -2.4213,
0.8839, -0.1497, -
1.2435, -1.1345,
2.0961, -1.3245]

0.3029 [0.3051, 0.0000,
0.0000, 0.0000,
0.0000, 0.0000,
0.0000, 0.6949]

3.2366 ∗
1010

1010×[0.0425,
4.1049, 0.0000,
0.0006, 0.0003,
0.0000, 5.5810,
0.0000]

1010×[0.7850, 7.3520,
0.0934, 1.1272, -
3.4305, 6.1214, 0.4570,
1.9382]

0.3029 [0.3051, 0.0000,
0.0000, 0.0000,
0.0000, 0.0000,
0.0000, 0.6949]

0.3029 [0.3051, 0.0000,
0.0000, 0.0000,
0.0000, 0.0000,
0.0000, 0.6949]

1013×[1.5436, 0.7033,
-2.0893, 0.0718, -
0.8144. 0.1975,
-0.4528, -0.3432]

0.3029 [0.3051, 0.0000,
0.0000, 0.0000,
0.0000, 0.0000,
0.0000, 0.6949]

4.5220 ∗
1011

1011×[0.0000,
1.6050, 0.0000,
0.2201, 0.2395,
0.0000, 6.8892,
5.7357]
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For n = 13:

Starting Points
Index

Smoothing Technique
Function Value

Local Method
Function Value

1 0.0852 1.2572 ∗ 108

2 0.0852 2.5256 ∗ 108

3 0.0852 2.4341 ∗ 107

4 0.0852 1.4822 ∗ 109

5 0.0852 3.2170 ∗ 107

6 0.0852 1.0043 ∗ 109

7 0.0852 2.7345 ∗ 108

8 0.0852 0.0852
9 0.0852 8.2846 ∗ 105

10 0.0852 1.4652 ∗ 108

11 0.0852 1.9325 ∗ 109

12 0.0852 2.0372 ∗ 108

13 0.0852 4.4882 ∗ 107

14 0.0852 1.4948 ∗ 108
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For n = 15:

Starting Points
Index

Smoothing Technique
Function Value

Local Method
Function Value

1 1.1452 2.5037 ∗ 108

2 1.1452 3.8899 ∗ 109

3 1.1452 3.6806 ∗ 109

4 1.1452 4.2885 ∗ 109

5 1.1452 4.9499 ∗ 1011

6 1.1452 2.8274 ∗ 1011

7 1.1452 7.6344 ∗ 1011

8 1.1452 1.2937 ∗ 1011

9 1.1452 3.3868 ∗ 1012

10 1.1452 5.1544 ∗ 1012

11 1.1452 1.2371 ∗ 1012

12 1.1452 7.3769 ∗ 1011

13 1.1452 7.96842 ∗ 1012

14 1.1452 6.4084 ∗ 1011
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For n = 25:

Starting Points
Index

Smoothing Technique
Function Value

Local Method
Function Value

1 0.1427 5.1364 ∗ 108

2 0.1427 8.2071 ∗ 108

3 0.1427 8.0994 ∗ 107

4 0.1427 2.0008 ∗ 109

5 0.1427 2.6810 ∗ 104

6 0.1427 0.1434
7 0.1427 0.1508
8 0.1427 0.1435
9 0.1427 6.5344 ∗ 105

10 0.1427 0.1466
11 0.1427 0.1433
12 0.1427 2.1615 ∗ 1010

13 0.1427 6.8256 ∗ 109

14 0.1427 1.1519 ∗ 1010
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For n = 50:

Starting Points
Index

Smoothing Technique
Function Value

Local Method
Function Value

1 0.0852 4.3792 ∗ 107

2 0.0852 2.1447 ∗ 109

3 0.0852 5.6096 ∗ 108

4 0.0852 1.3468 ∗ 108

5 0.0852 1.7114 ∗ 109

6 0.0852 0.0916
7 0.0852 0.0899
8 0.0852 0.1160
9 0.0852 0.0915
10 0.0852 2.4477 ∗ 106

11 0.0852 2.1198 ∗ 106

12 0.0852 1.8307 ∗ 106

13 0.0852 2.3044 ∗ 106

14 0.0852 1.5957 ∗ 106
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For n = 75:

Starting Points
Index

Smoothing Technique
Function Value

Local Method
Function Value

1 2.9078 1.8717 ∗ 109

2 2.9078 2.7826 ∗ 104

3 2.9078 1.9388 ∗ 104

4 2.9078 2.9205
5 2.9078 7.8828 ∗ 104

6 2.9078 2.9083
7 2.9078 2.9206
8 2.9078 4.0374 ∗ 105

9 2.9078 5.7569 ∗ 105

10 2.9078 1.1771 ∗ 105

11 2.9078 1.9755 ∗ 105

12 2.9078 2.0452 ∗ 109

13 2.9078 2.6688 ∗ 1010

14 2.9078 5.1237 ∗ 1010
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For n = 80:

Starting Points
Index

Smoothing Technique
Function Value

Local Method
Function Value

1 2.9789 2.9922
2 2.9789 3.1159
3 2.9789 3.1984
4 2.9789 3.0103
5 2.9789 1.0168 ∗ 106

6 2.9789 1.4685 ∗ 105

7 2.9789 2.0015 ∗ 106

8 2.9789 8.8167 ∗ 108

9 2.9789 5.1380 ∗ 108

10 2.9789 3.8031 ∗ 1011

11 2.9789 3.2858 ∗ 1011

12 2.9789 6.7052 ∗ 1010

13 2.9789 3.8103 ∗ 109

14 2.9789 3.7978 ∗ 1010

Starting Point Index
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For n = 98:

Starting Points
Index

Smoothing Technique
Function Value

Local Method
Function Value

1 3.2143 88.5459
2 3.2143 105.2948
3 3.2143 114.7464
4 3.2143 494.5187
5 3.2143 257.19476
6 3.2143 249.7375
7 3.2143 3.2179
8 3.2143 3.4415 ∗ 106

9 3.2143 1.1419 ∗ 106

10 3.2143 2.8539 ∗ 106

11 3.2143 1.4312 ∗ 1010

12 3.2143 1.5532 ∗ 1010

13 3.2143 1.2537 ∗ 1010

14 3.2143 1.7907 ∗ 1010
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5. Conclusion

In this paper, we consider a minimization problem with piecewise constant trans-

action costs, which is a major problem in financial portfolio allocation. We develop

and apply a new smoothing technique to solve this problem.

The piecewise constant transaction cost makes the problem hard to solve by smooth

minimization methods due to its discontinuity. Thus, we develop a smoothing tech-

nique to solve this kind of problems, which can be formulated as min{S∆(x) +√
1/2 ∗ x′ ∗H ∗ x : Ax = b, x ≥ 0}, where the latter term

√
1/2 ∗ x′ ∗H ∗ x rep-

resents risk in finance.

We begin the process with the flat level, i.e. ∆ = 1, which is a convex problem and

has a global minimizer. We then solve a sequence of local minimization problems,

where each problem is defined by parameter ∆ and ∆ is reduced from unity to zero.

The starting point for a local minimization process in this sequence is the solution

to the previous local minimization problem in the sequence. Hence, we are tracking

a sequence of solutions starting from the global minimizer of a convex problem (i.e.,

when ∆ = 1).

Our numerical results support the claim that this is an effective approach to the

portfolio allocation problem with piecewise-constant transaction costs.

We notice that if we start from a point x where TCb(x) equals to level1 or level2,

then this point is a local minimizer, and hence, our methods are unable to make any

improvements. However, we can fix this by letting ∆ be large enough so that most

of the starting points are lying in the set of the linear interpolant.
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