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Abstract

We present a parallel implementation of an existing method for computing prices and
deltas of high dimensional American Options as a method of overcoming some of the known
issues of computational time cost associated with the known method. The known method
utilizes a sequence of Neural networks which learn the difference of the option pricing
functions between timesteps by using a least squares residual derived from a backwards
stochastic differential equation. Our method reduces the computational complexity of the
known algorithm by the square of a known factor, at the cost of a limited reduction in
accuracy. Our method also continues to compute prices and deltas across the same space-
time as what is presented in the previous literature and is thus usable in the construction
of delta-hedging processes for market traders. The numerical simulations of the method
show that we reach significant reductions in the wall clock time required to complete the
algorithm while still outputting accurate results within a certain statistical significance.
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Chapter 1

Introduction

Option pricing is one of the oldest problems in the field of financial mathematics and has
been the focus of many published works as mathematical tools have developed over time.
Not only are market investors interested in calculating the fair price of an asset, but they
also require the solutions of the first derivatives of the option values, known as the deltas
(Hull [14]), in order to hedge their portfolios and minimize their exposure to risk. The
level of risk-aversion in market participants drives the need for accurate delta hedging
processes which are difficult to solve theoretically for any reasonably-sized dimension of
options. European options are generally considered to be ‘vanilla’ types of options due
to their less complex form and as a result are much easier to price, so plenty of works
have targeted more complex types of options including Asian and American style option
pricing and hedging problems. In terms of American options, which are the focus of this
paper, past solution algorithms have ranged from Binomial trees [14], iterative solutions of
free boundary partial differential equations (PDEs, Achdou and Pirroneau [1], Duffy [5],
Forsyth and Vetzal [9], and Reisinger and Witte [19]), regression methods (Longstaff and
Schwartz [18], Kohler [16], and Tsitsiklis and Van Roy [22]) as well as many others. These
methods served researchers well in practical application, however more often than not these
methods would suffer from what came to be known as ‘the curse of dimensionality.’ This
meant that the computational requirements to obtain solutions to the problem increases
rapidly with the growing size of the dimensionality of the underlying option. The curse
of dimensionality is not exclusive however to the field of financial mathematics and many
solutions have presented themselves depending on the application, however one of the most
promising is the emergence of neural networks (Goodfellow et al. [12]) in the late 20th and
early 21st century.

Previous works have utilized neural networks to price European options (E. et al. [6],
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Beck et al. [3], Han et al. [13]) which is generally easier to compute than more com-
plex options. Separate works have also used neural networks in American option pricing
problems such as Chen and Wan [4], Fujii et al. [10], and Sirignano and Spiliopoulos [20],
however these works are limited in certain aspects. Fujii et al. only solves the option
pricing problem at a single domain point, Sirignano and Spiliopoulos’ method only solves
for American option prices on the space-time domain, but not deltas. Finally, Chen and
Wan solves these issues by providing an algorithm which provides both option prices and
deltas on the domain, but suffers from computational cost issues.

We present a method of implementing parallel processing to the algorithm of Chen and
Wan by considering a multilevel grid on the domain to construct a more computationally
efficient form while maintaining the same order of accuracy of the overall solution. We
also provide theoretical analysis for expected memory costs and computational wall clock
times of the methods proposed by Chen and Wan in [4], as well as our own proposed
parallel method. Finally, we numerically explore the effects of the size of each level of
the multilevel grid on the computational wall clock time used to complete the proposed
parallel algorithm.

The paper is organized as follows: Chapter 2 formulates the option pricing and delta
hedging problem that needs to be solved and discusses a general form of a solution. Chapter
3 discusses a previous algorithm devised by Chen and Wan [4] which the proposed parallel
algorithm is based off of. Chapter 4 formulates the mathematical basis of the partition of
the domain and the proposed parallel algorithm. Chapter 5 analyzes the theoretical com-
putational cost saves of the parallel algorithm over previous solutions. Finally, Chapter 6
explores the numerical results of our simulations which provide evidence for our theoretical
analysis. Chapter 7 provides a short conclusion to the paper.
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Chapter 2

Problem Formulation

This chapter defines the underlying mathematical theory of the value of American options
and the dynamic problem of pricing the option backwards in time by utilizing the backward
stochastic differential equation (BSDE).

2.1 Financial Options

An option is a financial instrument whose value is calculated on the price of a set of one or
more underlying assets. The buyer of the option, sometimes called the holder, is afforded
the right to buy or sell the underlying assets at a fixed price K, known as the strike price,
at some future time. The seller/writer of the option is obligated to fulfill the financial
contract and sell or buy the single/basket of assets to the holder as stipulated by the form
of the financial option. There are many parameters that define the kind of option such as
when the option can be exercised, and the function which describes the amount of value the
holder receives when utilizing their right to exercise the contract, known as the ‘exercise
value’ of the option. The exercise value of any option can be written in the general form

f(~s) = max(g(~s), 0), (2.1)

where ~s = (s1, s2, · · · , sd) is the price vector for d assets. Known as the ‘payoff function’
of the option, the function is non-negative because if exercising the option would lead to
a loss in value, the holder can simply choose to not exercise the option at all and let it
expire if necessary. The function g can be a multitude of different functions depending on
the context of the option, in most cases it’s based on the current prices of the underlying
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assets, but in some cases (lookback/Asian options), it can also be based on passed values
of the assets, also known as the price path. In this paper we focus specifically on American
options and the dynamic problem of pricing these options and calculating their deltas.

2.2 American Options

American options are unique from other options as the holder can choose to exercise the
contract at any time between the selling date and the maturity date. At each point in
time, the holder of the option must decide whether it is more profitable to exercise the
option at the current time, or hold the option and either hope it is more profitable or risk
it losing value in the future. To this end, there are two important values that must be
known to determine the value of the option at any point in time. The first is the exercise
value defined above in the previous section. For American options this can take many
forms but more commonly we see the geometric call option which has a payoff function of

the form f(~s) = max

((∏d
i=1 si

) 1
d −X, 0

)
, where X is a previously agreed upon value of

the basket of underlying options, known as the strike price.

The second value that must be known in order to find the value of the option is what is
called the ‘continuation value’ of the option, which is the maximum discounted expected
payoff value should the option not be exercised at the current time t and asset price vector
~s. The continuation value is mathematically described by the following equation:

c(~s, t) = max
τ∈[t,T ]

E
[
e−r(τ−t)f(~S(τ))|~S(t) = ~s

]
. (2.2)

where T is the maturity, or end date, of the option. At this time the option either must
be exercised or else it expires worthless.

Given these two values, the value of the option v is simply the maximum of the two,
which in turn defines whether it is financially optimal to exercise the option at the current
time, or hold the option for some greater future expected value:

v(~s, t) = max [c(~s, t), f(~s)] =

{
c(~s, t), c(~s, t) > f(~s),

f(~s), O.W.
(2.3)

The underlying assets can be defined by the random price vector ~S = (S1, ..., Sd)
T ∈ Rd

where given an initial price vector ~s 0 ∈ Rd, the elements follow the underlying stochastic
differential equations (SDEs):
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dSi(t) = (r − δi)Si(t)dt+ σiSi(t)dWi(t), i = 1, · · · , d, (2.4)

~S(0) = ~s 0. (2.5)

Here r is the risk-free interest rate of the market, ~δ = (δ1, ..., δd)
T ∈ Rd and ~σ =

(σ1, ..., σd)
T ∈ Rd are the dividend rates and volatilities of each of the underlying assets,

respectively, and ~W = (W1, ...,Wd)
T ∈ Rd defines a d-dimensional correlated Weiner pro-

cess.

Finally we are not only interested in the option value at any point in time, but also
the option deltas, which are the first derivatives of the option value with respect to the

asset prices, ~∇v(~s, t) ≡
(
∂v
∂s1

(~s, t), · · · , ∂v
∂sd

(~s, t)
)T

. There are many other derivatives that

are interesting in terms of financial options, sometimes called the ‘greeks’ by financial
theorists (deltas, gammas, etc.), however the scope of this paper sticks to only calculating
the deltas. The greeks are essential to market traders as they can be utilized to construct
portfolios which reduce or eliminate exposure to financial risk, also known as ‘hedging’ the
option. In continuous time, a perfect delta-hedging portfolio can completely eliminate the
risk of holding the option.

2.3 Backward Stochastic Differential Equation (BSDE)

In Chen and Wan [4], the authors utilize the following theorem to convert the problem into
a backward stochastic differential equation problem.

Theorem 2.1 (BSDE formulation). Assume that an American option is not exercised
in the timespace (t, t + dt). Then the continuation price of an American option at time t
satisfies the following BSDE:

dc(~S, t) = rc(~S, t)dt+
d∑
i=1

σiSi(t)
∂c

∂si
(~S, t)dWi(t), (2.6)

where ~S satisfies the SDE (2.4) and r, σi, and dWi(t) are the same as in (2.4).

Proof. The intricacies of the stochastic calculus which leads to this result are beyond the
scope of this paper but interested readers are directed to the proofs in El Karoui et al.
(1997) and Leentvaar (2008) which prove it through the use of Ito’s lemma.
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The solution of the BSDE not only yields the option value, but subsequently also
outputs the deltas, allowing the solution of both values of interest concurrently which
is pivotal to the construction of a complete hedging process across both the spatial and
temporal domain.

2.3.1 Discretization of the BSDE and Least Squares Solution

In the original paper by Chen and Wan [4] they utilize a Monte Carlo method with Euler
time stepping in order to simulate the propagation of the asset values from the initial
value according to SDE (2.4-2.5). Let m = 1, · · · ,M index the individual price paths
(simulations) and let n = 0, · · · , N index the discrete time points to evaluate the simulation
between t0 = 0 to tN = T , we take time step size ∆t = T

N
. The simulation of the asset

prices requires the ability to construct a realization of a d-dimensional correlated Weiner
process. To do so we let ρ ∈ Rd×d define the correlation matrix between the d assets, and
we can decompose the matrix into its Cholesky factors such that ρ = LLT . Given then a
set of d realizations of a standard normal random variables Φi(t) ∼ N(0, 1), i = 0, · · · , d,
we can construct the realization of a d-dimensional correlated Weiner process over a single
time step under the following equation:

(∆Wi)
n
m =

d∑
j=1

Lij (Φj)
n
m

√
∆t. (2.7)

Using (2.7), we can then discretize SDE (2.4-2.5) in the following way:

(Si)
0
m = s0

i , (2.8)

(Si)
n+1
m = (1 + (r − δi)∆t) (Si)

n
m + σi (Si)

n
m (∆Wi)

n
m . (2.9)

Equations (2.7-2.9) allow us to construct M simulated trajectories of the underlying
assets in time between the time points t0 = 0 and tN = T while only requiring the
generation of standard normal random realizations, which can be done with any useful
pseudo random generator. For the rest of this paper we use the built in generator of the
Math library in python to generate these realizations.

Now that we have discretized the SDE and established a method to construct real-
izations of the underlying price trajectories, we can also discretize the BSDE through an
Euler discretization method in the following way:
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c
(
~Sn+1
m , tn+1

)
= (1 + r∆t)c

(
~Snm, t

n
)

+
d∑
i=1

σi (Si)
n
m

∂c

∂si

(
~Snm, t

n
)

(∆Wi)
n
m . (2.10)

As established in Theorem 2.1 the assumption is made that the asset is not exercised
in the time space between the previous time point and the current one. However, if we
allow the option to possibly be exercised at some point after time tn+1, then we can replace
the future continuation value on the left hand side of (2.10) by the actual option value. If
we then bring the future option value to the other side of the equation, we can define the
residual of the discretized BSDE equation

R [cn]m = (1 + r∆t)cn
(
~Snm

)
+

d∑
i=1

σi (Si)
n
m

∂cn

∂si

(
~Snm

)
(∆Wi)

n
m − v

n+1
(
~Sn+1
m

)
. (2.11)

Here we utilize the functional shortcut where vn(~s) ≡ v(~s, tn). The solution of this
discretized equation at any single time step requires the finding of a d-dimensional function
cn(~s) where it and all of its first derivatives satisfy (2.11) in such a way that R [cn]m = 0
for all m = 0, · · · ,M . This problem is extremely difficult to solve analytically, so we must
rely on some numerical methods to allow us to construct an approximation to cn which
minimizes the residual as much as possible. Chen and Wan [4] define this approximation
to the continuation function as yn and attempt to solve the residual problem in a least
squares sense, that is, they wish to find the function yn which satisfies

cn ≈ (yn)∗ ≡ arg min
yn

(
M∑
m=1

R [yn]2m

)
. (2.12)

All of these ideas are compiled together and Algorithm 1 defines the most general form of
how to compute the solution to the given problem. This algorithm will be refined multiple
times further on in this paper. This algorithm is fairly easy to understand, and the problem
now becomes how do we solve the least squares minimization problem (2.12). In [4],
Chen and Wan utilize a system of Neural Networks which learn to solve this minimization
problem and output the difference between the value of the option at the same price vectors,
but two subsequent points in time. This method is discussed in full in the next chapter.
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Algorithm 1 General Algorithm to Solve the Pricing Problem
PARAMETERS
M : the number of individual underlying price paths/trajectories
N : the number of time steps

initialize the current underlying asset prices {~S0
m ≡ ~s0|m = 1, · · · ,M}

for n = 1, · · · , N do
Generate the underlying M price paths using equations (2.7-2.9) {~Sn+1

m |~Snm}∀m
end for

Initialize the terminal values of the options vN(~SNm) = f(~SNm)∀m

for n = N − 1, · · · , 0 do
Solve the least squares minimization problem (2.12) for (yn)∗

Calculate the value of the option vn(~Snm) = max
[
yn(~Snm), f(~Snm)

]
∀m

end for
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Chapter 3

Previous Solutions to the Problem

As discussed in the previous chapter, finding a solution to the least-squares minimization
problem (2.12) can be complicated. However, some known methods have been discussed in
previous literature from Longstaff and Schwartz [18], Kohler [16] as well as Chen and Wan
[4]. The Longstaff-Schwartz method (also analyzed by Kohler) is derived from transitioning
the functional space of (2.12) to a parameter space, which is much easier to work with. It
defines the wanted function yn as a parameterized degree-χ polynomial which is fit to the
regression function so as to satisfy the minimization problem. However the solution of this

method requires the consideration of an extensive monomial basis of size

(
d+ χ
d

)
≈ 1

χ!
dχ.

While practical applications select χ� d, it has been shown theoretically that convergence
of the method requires χ → ∞ ([18] and Stentoft [21]), resulting in an incomputable
problem for higher dimensions. The intricacies of the Longstaff-Schwartz are outside the
scope of this report, however we discuss the computational cost of this method in Chapter
5 and direct interested readers to [18].

The paper by Chen and Wan [4] solves the minimization problem (2.12) by constructing
a neural network which learns the dynamics of the residual equation and concurrently
outputs both the option values and deltas. They also utilize this solution in the form of
two related algorithms, the first of which from this point on we will refer to as their ‘original’
algorithm as defined in 4.1 of [4]. The second form of the algorithm will be referred to from
this point on as their ‘efficient’ algorithm. Chen and Wan’s efficient algorithm is required
for the construction of the parallel algorithm so for the scope of this paper we will discuss
their efficient algorithm and generally bypass the original construction of the algorithm,
however, interested readers are directed to read the publication of Chen and Wan to see
the original algorithm.
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3.1 Chen and Wan’s Neural Network Algorithm

Recall that for the discretization defined in Chapter 2, we utilize M Monte Carlo price
simulations with N time steps which evenly segment the temporal domain between the
temporal limits t0 = 0 and tN = T . However, instead of stepping backwards one temporal
step at a time, which is how the original algorithm works from Chen and Wan [4], their
efficient algorithm works by using two levels of discretization. We denote an additional
parameter J which we will call a ‘milestone step size’, and thus we also denote the first level
of temporal discretization as the set of ’milestone time points’ which can mathematically
be defined by the set Ψ = {tn|n = Ji, i = 0, · · · , N

J
− 1}. Note that the milestone points

begin at t0 and occur at every jth time point in the discretization, but does not include
the final time point tn = T . This choice to not include the final time point is theoretically
ornamental, however, it does make some of the calculations easier in later analysis. The
choice of milestone points is further supported by the fact that at the terminal time, we
can explicitly calculate the value of the option strictly by the payoff function of the price
vectors at that time, so this time point doesn’t require any analysis in most situations.
The second level of discretization is what we will define as ’fine time points’ which include
all time points in the discretization which are not designated as milestone points, i.e.,
Ψ′ = {tn|tn /∈ Ψ}.

The efficient algorithm by Chen and Wan utilizes a sequence of N neural networks which
are each responsible for learning the change in option value between the same price vector
at two different time points. The neural network works by learning a basis for a nonlinear
paramaterization which minimizes a given loss function over a set of training points, and
thus learns the optimal basis of parameters at the end of the training time (Goodfellow
et al. [12]). Denote the set of N neural networks as {yn(~s,Ωn)|n = N − 1, · · · , 0} which
outputs the value of the option at price vector ~s based on the value of the same price vector
at some future time. Chen and Wan use this definition through the use of the following
equations:

yN(~s) = f(~s), (3.1)

yn(~s; Ωn) = yn+j(~s; Ωn+j) + j∆tF (~s; Ωn). (3.2)

Here j is defined in such a way that if tn ∈ Ψ then j = J and if tn /∈ Ψ then n + j
is the minimum value of k > n + j such that tk ∈ Ψ. Put more simply, this means
that we traverse backwards across the milestone points from the terminal time, and at
each milestone point, we have J − 1 networks which branch off to the fine time points in
between the two subsequent milestone times.
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3.1.1 Neural Network Architecture

In equation (3.2), F (~s,Ωn) represents the output of the neural network between times n+j
and n, which has learned the difference between the two approximations of the continuation
functions at different times, and Ωn represents the set of learnable parameters of the neural
network. Equation (3.2) is also a useful definition for the implementation of the neural
network because even before any training occurs, we notice that the error of the option
value at time n is only of the order O(∆t) with respect to the previous function value.
The network F is implemented as an L-layer feedforward network with layers indexed by
l = 0, · · · , L, let superscripts with square brackets denote the index of the layer of the
network and thus the input layer of the network is ~x[0] = ~s ∈ Rd. Chen and Wan define
the rest of the network in [4] as follows:

• For layers, l = 1, · · · , L,

~z[l] = W[l] × ~x[l−1], (3.3)

~h[l] = bnorm(~z[l]; ~β[l], ~γ[l], ~µ[l], ~σ[l]), (3.4)

~x[l] = max(~h[l], 0), (3.5)

where

bnorm(~x; ~β,~γ, ~µ, ~σ) ≡ ~γ~x− ~µ
~σ

+ ~β (3.6)

is the batch normalization operator with moving averages and standard deviations
of batches ~µ[l], ~µ[l] ∈ Rd[l] and ~γ[l], ~β[l] ∈ Rd[l] are trainable scales and offsets. Finally
W[l] ∈ Rd[l]xd[l−1]

is a trainable matrix of values.

• For the output layer
F (~s; Ωn) = ~ω × ~x[L] + b, (3.7)

where ~ω ∈ Rd[L]
, b ∈ R are trainable weights and bias values.

Finally, Chen and Wan suggest a final addition to the output of the network architecture
in the form of a trainable parameter α which helps to expand the functional basis of the
network so it can better represent a wider variety of functions. This wider functional basis
of the neural network helps to better fit the training data as suggested by Goodfellow [12]:

yn(~s; Ωn) = αn
[
yn+j(~s; Ωn+j) + j∆tF (~s; Ωn)

]
. (3.8)

11



Figure 3.1: Overview of the neural network architecture separated into 3 sections: The
input layer, the feedforward network, and the linear relation between continuation values

In [4], two additional inputs to be submitted in the input layer of the network frame-
work. The first is the internal function of the option payoff g(~s), the heuristic idea behind
this is it allows the network to intrinsically learn the current payoff value of the function
and learn how that affects the option continuation value. The reason g(~s) is inputted
and not f(~s) is due to the maximum operator included in f . This means that f can be
uniquely determined given g, but not the other way around. Therefore, inputting g gives
the network more information to learn from. Secondly, they suggest inputting the previ-
ous continuation value of the option for a very straightforward reason. Over smaller time
steps, the difference between continuation values at different times should not change a
large amount, so inputting the previous continuation value gives a good ’initial value’ for
the network to learn from.

Figures (3.1) and (3.2) provide visual examples of the architecture of the networks and
the flow of outputs across time steps respectively (3.2 also appears in Chen and Wan’s
paper [4] in section 4.4). Note that all the previous equations only relate to the actual
continuation values of the option and make no mention of the deltas of the values which
are a requirement to solve the minimization problem (2.12). However, the deltas can
be extracted from the previous equations by taking the gradient of equation (3.2). It is
assumed that the deltas from future time steps have already been calculated so all that is
required is to calculate the deltas of the output value ~∇F , or the change in the output of
the network with respect to the input price vector values. These values can be calculated
simply in the tensorflow implementation of the code through the tf.gradients() functions
and is incorporated into the architecture of the network.

One final feature of the architecture to bring attention to is that equation (3.2) relates
the continuation value of the option at different times, but with respect to the same un-
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Figure 3.2: The efficient neural network framework suggested by Chen and Wan, where J
= 3.

derlying asset price vector. However, there is no guarantee that we will have the same
price vector appear more than once in any part of the Monte Carlo paths, especially as the
dimensionality of the option increases. To properly complete the algorithm, Chen and Wan
implement a solution where we initialize the value of the option at every time point along ev-
ery simulated path by the payoff function at the terminal time Y n

m = f(~Snm), then as we step
backwards in time, you update the values of the options according to two rules. If tn /∈ Ψ,
then Y ν

m = yn(~Sνm; (Ωn)∗),∀m, and if tn ∈ Ψ, then Y ν
m = yn(~Sνm; (Ωn)∗), 0 ≤ ν ≤ n,∀m. Put

more simply, if we are arriving at a milestone time point, then we need to carry forward
the continuation values for all time points that happen before tn. In contrast, if we are
branching off to a fine time point, then we only need to update the option values there for
the final time and no other time points are dependent on the values there. Once a continu-
ation value has been updated for the final time, we can calculate the value of the option by
simply taking the maximum of the continuation value yn(~Snm; (Ωn)∗) and the payoff value

f(~Snm). Here (Ωn)∗ denotes the optimal set of trained parameters reached after training.

3.1.2 Network Training

After finishing a previous time step, we must train the neural network to solve the mini-
mization problem through training. To do so we require the set of training inputs which
are as follows:
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{~Snm,∆ ~W n
m, v

n+1(~Sn+1
m ), g(~Snm), yn+j(~Snm; (Ωn+j)∗), ~∇yn+j(~Snm; (Ωn+j)∗)|∀m}. (3.9)

Of course the first, second and forth values are known or can be calculated immediately
as a result of the Monte Carlo simulated price paths, and the other three values have been
learned at previous time steps. The first three values are what is required to be inputted
into the minimization problem equation (2.12) while the final three values are requirements
of the neural network input layer or architecture to calculate training outputs at the current
time step. By calculating he last three values and the price vector through the neural
network, we get training outputs of the form {yn(~Snm; Ωn), ~∇yn(~Snm; Ωn)}. Now we finally
have everything required to properly train the neural network. We utilize the minimization
equation (2.12) as the loss function of the network, i.e., given the set of training inputs
and outputs, we can measure the current accuracy of the network by plugging these values
into the following:

L [Ω] ≡
M∑
m=1

[
(1 + r∆t)yn

(
~Snm

)
+

d∑
i=1

σi (Si)
n
m

∂yn

∂si

(
~Snm

)
(∆Wi)

n
m − v

n+1
(
~Sn+1
m

)]2

.

(3.10)

Once we have a network architecture and a proper residual loss function, we can now
adjust the trainable parameters of the model through a form of gradient descent to try to
minimize the loss generated by the network. As a result of this method, the network learns
to force this residual as close to zero as possible and as a byproduct solve the minimization
problem at the same time. There are many useful ways to achieve this but the original
algorithm utilizes the Adam optimizer (Kingma and Ba [15]). From this, we gain the set
of optimized parameters (Ωn)∗ ≡ arg minΩn L[Ωn].

In [4], the authors discuss a number of other intricate topics with relation to improving
upon the original algorithm. These topics include weight reuse between networks, correct-
ing the training inputs, utilizing network ensembles and the calculation of the asset value
at time t0 = 0. These topics are omitted here, but interested readers are directed to read
the original paper as we continue to utilize these methods in the parallel form which is
introduced in the next chapter. Algorithm 2, which also appears in [4], provides a step by
step walkthrough of completing Chen and Wan’s efficient algorithm in the manner that
was shown in this chapter.
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Algorithm 2 Chen and Wan’s Solution to the Pricing Problem
PARAMETERS
M : the number of individual underlying price paths/trajectories
N : the number of time steps
J : the size of milestone time steps

initialize the current underlying asset prices {~S0
m ≡ ~s 0|m = 1, · · · ,M}

for n = 1, · · · , N do
Generate the underlying M price paths using equations (2.7-2.9) {~Sn+1

m |~Snm}∀m
end for

Initialize the terminal values of the options and their deltas
Y n
m = f(~Snm) and Zn

m = ~∇f(~Snm)∀m,n
Initialize vN(~SNm) = Y N

m ∀m

for n = N − 1, · · · , 0 do
Initialize the neural network yn(~s; Ωn) defined by (3.1-3.8)

Training: minimize the loss function (3.10) yielding the optimal trained network
yn(~s; (Ωn)∗)

if (N − n) mod J = 0 then
(All upcoming time steps) Overwrite the options and deltas:

{Y ν
m = yn(~Sνm; (Ωn)∗), 0 ≤ ν ≤ n,∀m}

{Zν
m = ~∇yn(~Sνm; (Ωn)∗), 0 ≤ ν ≤ n,∀m}

else
(All upcoming time steps) Overwrite the options and deltas:

{Y n
m = yn(~Snm; (Ωn)∗),∀m}

{Zν
m = ~∇yn(~Sνm; (Ωn)∗),∀m}

end if

update {vn(~Snm) = max(Y n
m, f(~Snm))|∀m}

end for

RESULT: Sample of option prices Y n
m and deltas Zn

m on the entire domain
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Chapter 4

The Parallel Algorithm

Parallel processing, and more specifically its implementation in the field of financial math-
ematics is not new. We see implementations of parallel methods in finance as early as
2002 in the work of Bal and Maday [2] and further advancements were made in the field
over the next two decades including by Falgout et al. [8]. The issue with attempting to
apply these previous works to the problem found here is that they are developed and ap-
plied to problems involving PDE formulations. While nonlinear PDE solutions do exist for
American option pricing problems, for large-dimension problems, these PDE forms become
extremely complex and the iterative methods required to solve them become computation-
ally infeasible. The second issue with PDE solutions is that they don’t also output the
delta values for the option, and thus may be less desirable than the method proposed here.
Parallel processing methods tend to work on many different levels of discretization, the
theory is that you can work on a sparse grid to get an initial approximation of the solution
to the problem, then work an a finer grid while correcting the solution based on the initial
approximation. This type of method does not appear as if it can be feasibly applied to
this problem for a few reasons. Firstly, on every finer grid, you must generate a new set
of price vectors at different times making it difficult to apply any correction factors. Sec-
ondly, the algorithm must begin at the terminal time due to the nature of the continuation
function, so it’s difficult to shortcut running the algorithm on a smaller grid once the initial
approximations have been found. We note that a backward recursive parallel method for
pricing options was developed by Wan et al. [23] in 2006 which is based off of existing low
discrepancy mesh methods and applies ideas from quasi-Monte Carlo and stochastic mesh
techniques. The exact difficulty of applying these types of methods to this problem can be
a future work on it’s own, but we propose a new parallel processing method by segmenting
the original problem into a form which allows processors to work independently from one
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another to save time and memory.

4.1 Partitioning the Previous Algorithm

The construction of the proposed parallel algorithm begins with analyzing the dependence
of the value of the option at a general price vector and time, with respect to all the other
time points used in the discretization. Recall equation (3.2) yn(~s; Ωn) = yn+j(~s; Ωn+j) +
j∆tF (~s; Ωn) where if tn ∈ Ψ then j = J , and if tn /∈ Ψ then n + j is the minimum value
of k > n + j such that tk ∈ Ψ. We can extend this formulation to write the value of the
option at n as a function of all previous option milestone networks

yn(~s; (Ωn)∗) = yN(~s) + j∆tF (~s; (Ωn)∗) +
∑

k|tk∈Ψ,k≥n+j

J∆tF (~s; (Ωk)∗). (4.1)

This is constructed by recursively applying (3.2) to the yk on the right hand side of (3.2)
until you reach the terminal value of yN(~s). It is clear now by observing the summation
on the right hand side of (4.1) that the continuation value of option yn can be reached
by only traversing through the milestone networks with time points greater than n, and
finally by traversing the fine network n. In this sense, the solutions to the algorithm for
{tk|tk > tn, tk /∈ Ψ} are irrelevant in obtaining the solution at time point n. Of course this
is only true under the construction of the previous algorithm defined in Chapter 3, but this
fact is quintessential in segmenting the work across multiple processors and thus resulting
in time saves.

For further explanation, consider the following thought experiment: Imagine we wish to
solve for the values and deltas of the option at two times tk, tk+1 /∈ Ψ, we will consider the
example of a single processor and two individual processors completing the algorithm for
this task, with the parallel processors being individually responsible for one of the two fine
points. Firstly, we allow all 3 processors to independently train and compute the networks
across each of the milestone time steps until arriving at the final milestone point before the
pair of fine points we’re interested in calculating. Now, each of the pair of processors can
train and calculate each of the finer networks concurrently whereas the single processor
would need to complete these two tasks sequentially and would take twice as long for this
step, resulting in a time save for the parallel processors. This is not the only time the
parallel algorithm would save however, at each of the milestone steps, the single processor
would need to update the option continuation values and deltas at two future fine time
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points, whereas each parallel processor would only need to complete this task for the single
fine point it’s responsible for.

The thought experiment gives a general idea of the process involved with constructing
the proposed parallel algorithm. If we divide up the set of time points {tk|0 ≤ k < N}
across the number of processors available to us, K, we can allow each of the independent
processors to solve the option values and deltas only in the milestone and fine time points
that we have designated it to be responsible for. Designate the K processors as {Pq|q =
0, · · · , K − 1}, and if we naively divide up the N time steps sequentially amongst the K
processors, then processor Pq is responsible for calculating the time points

{tN
K
q+l|l = 0, · · · , N

K
− 1}. (4.2)

We then allow each of the processors to independently solve the algorithm in Chapter
3, but only for the time points it has been given responsibility for, as well as all milestone
times prior to its earliest time. In this case, each processor Pq individually needs to solve
the algorithm along the set of points

{tqh} = {tN
K
q+l|l = 0, · · · , N

K
− 1} ∪ {tj|tj ∈ Ψ, j ≥ N

K
q}, (4.3)

where h = 0, · · · , H, and H may vary depending on the size of N,K, J .

Once all of the processors have completed their algorithm, we have each of them send
the option prices and deltas on the solved set of time points it was responsible for to a single
processor and paste all of the time points together into a complete space-time solution.

4.2 Improving the Parallel Algorithm

The original naive partition of the set of time points does result in temporal wall clock and
memory cost savings over the efficient algorithm by Chen and Wan in [4], however it is not
the best approach to take and we can improve the amount of savings to be made. We begin
improving our assumptions with the Monte Carlo simulations of the price path and realize
that for each individual processor, the solution of the algorithm on the finer points which
the processor is not responsible for do not influence the solution that this processor will
compute. This also means that the trajectories of the Monte Carlo price paths on those
irrelevant points are not important and can be disregarded, i.e. we don’t need to simulate
these price vectors to begin with and each individual processor only needs to simulate price
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trajectories along the time points it is responsible for. Therefore, we can adjust equation
(2.7-2.9) to only simulate prices along these time points for each individual processor, i.e.,
given processor Pq, simulate trajectories

(∆Wi)
n
m =

d∑
j=1

Lij (Φj)
n
m

√
tqn+1 − tqn , (4.4)

(Si)
0
m = s0

i , (4.5)

(Si)
n+1
m =

(
1 + (r − δi)(tqn+1 − tqn)

)
(Si)

n
m + σi (Si)

n
m (∆Wi)

n
m , (4.6)

where the set tqh is as defined in equation (4.3). This clearly saves both memory and
wall clock time (explored in Chapter 5) since we need to simulate and store fewer price
trajectories than in the previous algorithm.

We can make a second large improvement over the algorithm by coming up with a
smarter way of partitioning the time points among the K processors. Let’s begin by
assigning time t0 to processor P0, and look at what happens in this case. Under this
assumption, this processor would need to traverse all N

J
milestone steps to arrive at time

t0 = 0 and calculate the initial value of the option. Note however that in order to complete
the algorithm, this processor has already computed the solution to the problem at every
milestone time along the way, making it redundant to assign these times to any other
processors. This means that we only need to partition the N − N

J
fine time points among

each of the K processors, rather than the entirety of the set {tk}. It’s initially unclear as
to whether or not this leads to a reduction in wall clock time or memory requirements,
however we can say that this immediately reduces the upper bound on the number of
processors required to see substantial gains in the algorithm since we at most only require
the use of N − N

J
processors instead of N , which reduces with the size of our milestone

step J .

We make one more assumption with respect to the parallel algorithm that doesn’t result
in computational saves, but does result in a more even load split among the K processors.
We will say that regardless of the fine time points which are given as a responsibility to each
of the processors, we will force all of the processors to compute all of the milestone times
and finish at t0. The reasoning behind this has less to do with the fact that it results in a
temporal or memory save (in fact it can be shown that there is an increase in both) but in
the field of parallel processing, it is generally considered inefficient to have some processors
complete their algorithms earlier and have to sit around waiting for others to finish. The
amount of wall clock time increase is small since one processor needs to compute all the
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milestone times anyways and will generally dominate the overall time as shown in Chapter
5. The increase in memory can be justified by the fact that forcing a maximum step size,
J , in the price path trajectories helps to limit the variation of the underlying paths and
keep the number of paths required for accurate results smaller. Forcing this new rule on
the processors helps to force all processors to finish their algorithms closer to one another
and reduce the amount of down time of each of them. We note however that this load split
could also be done through a more clever partition of the fine time points since the fine
times closer to t0 hold a larger weight load than later times (also shown in Chapter 5), and
could be the focus of some future work. We summarize the proposed parallel algorithm as
well as the noted improvements in Algorithm 3.
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Algorithm 3 Proposed Parallel Solution to the Pricing Problem
PARAMETERS
M : the number of individual underlying price paths/trajectories
N : the number of time steps
J : the size of milestone time steps
K: the number of processors used

for q = 0, · · · , K − 1 concurrently do
initialize the current underlying asset prices {~S0

m ≡ ~s 0|m = 1, · · · ,M}

for n s.t. tn ∈ {tqh} do

Generate the underlying M price paths using equations (4.4-4.6) {~Sn+1
m |~Snm}∀m

end for

Initialize the terminal values of the options and their deltas
Y n
m = f(~Snm) and Zn

m = ~∇f(~Snm)∀m, n : tn ∈ {tqh}
Initialize vN(~SNm) = Y N

m ∀m

for n s.t. tn ∈ {tqh} do
Initialize the neural network yn(~s; Ωn) defined by (3.1-3.8)

Training: minimize the loss function (3.10) yielding the optimal trained network
yn(~s; (Ωn)∗)

if (N − n) mod J = 0 then
(All upcoming time steps) Overwrite the options and deltas:

{Y ν
m = yn(~Sνm; (Ωn)∗), 0 ≤ ν ≤ n,∀m, tν ∈ {tqh}}

{Zν
m = ~∇yn(~Sνm; (Ωn)∗), 0 ≤ ν ≤ n,∀m, tν ∈ {tqh}}

else
(Current time step) Overwrite the options and deltas:

{Y n
m = yn(~Snm; (Ωn)∗),∀m}

{Zν
m = ~∇yn(~Sνm; (Ωn)∗),∀m}

end if

update {vn(~Snm) = max(Y n
m, f(~Snm))|∀m}

end for
Send the completed sample of option prices and deltas on fine time points to processor
0

end for
RESULT: Processor 0 compiles sample of option prices Y n

m and deltas Zn
m on the entire

domain
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Chapter 5

Computational Cost and Efficiency

This chapter analyzes the computational cost required in both memory requirements and
the wall-clock time required to complete each of the algorithms. We also study the effi-
ciency of the proposed parallel algorithm, i.e., how much wall-clock time is saved as extra
processors are used in the proposed parallel algorithm.

We will begin each section of this chapter by first establishing the baseline amount
of memory and time cost of the Longstaff-Schwartz method [18] and will compare it to
the original and efficient algorithms proposed by Chen and Wan [4] (the algorithms are
described in sections 4.1 and 4.4 respectively of that publication). Much of this analysis
was also presented in the paper by Chen and Wan, but we restate it as a way of establishing
a baseline to compare the costs of their algorithms with the parallel algorithm proposed in
this paper.

Recall from earlier and the works of Longstaff and Schwartz [18] and Kohler [16] that the
Longstaff-Schwartz method utilizes a degree-χ polynomial, which requires the consideration
of a monomial basis of the form:

φχ(~s) ≡ {sa11 s
a2
2 · · · s

ad
d |a1 + a2 + ad ≤ χ}. (5.1)

In practical applications, one chooses χ� d to keep the cost of the approach within a

computable range, and the size of the monomial basis is then

(
d+ χ
d

)
≈ 1

χ!
dχ.
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5.1 Memory Cost

An important consideration when discussing the effectiveness of the proposed algorithm
is the amount of memory that is required to complete the algorithm. It is known that
the pricing problem of American options is subject to the curse of dimensionality, i.e., the
amount of memory required is exponential in the dimension of the option. As shown in the
paper by Chen and Wan [4], for larger-scale problems (d ≥ 100) the Longstaff-Schwartz
method requires an excessive number of basis vectors and computers run out of mem-
ory. We show that the proposed parallel algorithm further saves on memory requirements
for each of the individual processors as compared to the original and efficient algorithms
proposed by Chen and Wan.

5.1.1 Longstaff-Schwartz Method

For the Longstaff-Schwartz Method, we first are required to store the d-dimensional price
vectors along each of the M price paths at all N time steps, resulting in an initial memory
cost of NMd floating point values {~Snm|∀n,m}. Secondly, while completing the actual
algorithm, at each time step we also need to store the current values of the 1

χ!
dχ monomial

basis functions for all paths, and the value of the option at each of the price paths in the
previous time point. In total at each time point, we must store {φχ(~Snm), yn( ~Snm)|∀m}.
Therefore, the Longstaff-Schwartz method requires the storage of NMd + 1

χ!
dχ + M =

M(Nd + 1) + 1
χ!
dχ floating point values. Recall that, although for practical applications

we choose a value of χ � d, for convergence, the method requires χ → ∞, resulting in a
rapidly growing memory cost for larger-dimensional option problems.

5.1.2 Chen and Wan’s Methods

Chen and Wan’s original and efficient algorithms both utilize the same amount of total
computer memory. These algorithms replaces the monomial basis of the Longstaff-Schwartz
polynomial with the training values that are used to train the neural networks, and the
trainable parameters of the neural networks, between different time steps. For the trainable
parameters we assume the nueral network contains L hidden layers with constant width z.
Given d + 2 input nodes and the final trainable parameter α, a total of (d + 3)z + (L −
1)(z2 + z) + z + 2 = (L− 1)z2 + (d + L + 2)z + 2 floating point trained parameters must
be stored. Both methods also need to store the NMd price point floating values along
all price paths and at each time step. Since the neural networks need to be trained, the
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algorithm finally requires the storage of the training input values from the previous time
step {yn+η(~Snm), ~∇yn+η(~S)nm|∀m}. The algorithm also needs to store the training outputs

{yn(~Snm), ~∇yn(~S)nm|∀m} to train the neural networks via the loss function. The training
inputs and outputs results in another 2(M +Md) floating point values, resulting in a total
memory cost of (L− 1)z2 + (d+ L+ 2)z + 2 +NMd+ 2(M +Md) floating point values.

We can see that Chen and Wan provided a method with linear memory cost in d,
providing significant gains in this regard over Longstaff and Schwartz, which required a
memory availability that was not only polynomial in d, but also required a large polynomial
dimension χ to ensure convergence to the correct solution. This gain is significant because
it allows traders to calculate values and deltas for options with significantly higher dimen-
sionality than shown in previous literature. We see this in the numerical results published
by Chen and Wan which saw out-of-memory errors presenting themselves for options of
dimensionality ≥ 100 using the Longstaff-Schwartz method, but that their method is able
to compute.

5.1.3 Proposed Parallel Algorithm

The algorithms proposed by Chen and Wan improved upon Longstaff and Schwartz by
reducing the memory cost required in terms of the number of floating point values to be
stored during the solving of the continuation function. The proposed parallel algorithm
improves upon Chen and Wan in terms of the number of total price path points that need
to be saved by each of the individual processors. Recall that we partition the grid of fine
points and evenly distribute them across the processors that are available to the algorithm.
This means that each processor no longer needs to save the underlying asset prices on the
entire space-time and only needs to save the prices at the N

J
milestone points, and at the

N−N
J

K
fine time points that that processor is responsible for calculating. Therefore, instead

of N time points to be saved, each processor only needs to save
N+N

J
(K−1)

K
time points

of asset prices, resulting in a memory cost of
N+N

J
(K−1)

K
Md + 2(M + Md). Finally, this

parallel method requires saving the same number of trainable parameters as the algorithm
by Chen and Wan, leaving a total memory cost per processor of (L− 1)z2 + (d+L+ 2)z+

2 +
N+N

J
(K−1)

K
Md+ 2(M +Md).

We note that the total cost across the entirety of the processors together is higher than
Chen and Wan’s algorithm since all of the milestone points are saved across each of the
individual processors. However, distributing the work of the fine time points across the
processors individually requires a smaller amount of allocated memory availability than
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what is required for one processor running the entirety of either one of Chen and Wan’s
algorithms. As discussed previously, smaller memory requirements allow for higher di-
mensionality, but also allow for more time steps to be taken since the work is distributed
across many more processors. This allowance of more time steps can help offset the accu-
racy losses sustained in the delta hedging process from larger milestone steps, potentially
making this algorithm more enticing to investors and market traders.

5.2 Computational Time Cost

Alongside the memory cost that was discussed throughout the previous section, another
important metric to consider is the computational wall clock time that is required to
complete the algorithm. This is important to traders and market researchers in the real
world who wish to trade and hedge assets. Algorithms that can be completed in a quicker
time frame result in options being able to be traded more often, and hedging strategies
being updated on a more regular basis. This results in a less risky portfolio and more
market information in a quicker time frame, which is always good in the eyes of market
investors.

The mathematical formulae of the wall clock time requirements of each of the methods
require a bit more in-depth analysis than the memory analysis seen previously in this paper.
While the analysis of Longstaff-Schwartz and their own methods was shown by Chen and
Wan [4], this paper will show the same analysis in a slightly different way in an attempt
to better show how exactly the proposed parallel method results in faster execution times.

5.2.1 Longstaff-Schwartz Method

As shown both by Longstaff and Schwartz [18] and Chen and Wan [4], under the assump-
tion that the standard normal equation is used for solving the regression problem posed
earlier in this paper, the Longstaff-Schwartz method results in a computational time that

is O

(
NM

(
1
χ!
dχ
)2
)

= O (NMd2χ). Of note, this method is worse than quadratic in the

dimensionality of the option, and we will see that Chen and Wan’s algorithm solves this
issue asymptotically.
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5.2.2 Chen and Wan’s Methods

To analyze the amount of computational time saved by Chen and Wan in more detail than
[4], we will first lay out three assumptions that will allow us to describe the amount of
time required to complete the algorithm. We will begin by assuming that the time for a
processor to simulate one time step of the Monte Carlo paths is constant, γ, secondly, the
time to train one of the neural networks between two time points is a constant value, β,
and the time required to update the option values at a single time point, i.e., to run all M
asset price vectors of a single slice of time through the neural network is also a constant,
α. These assumptions are coarse but since the number of training inputs and outputs
is constant for every neural network, all networks are of the same architecture, and all
computations are done on the same computer, it is a reasonable assumption to make in
the context of the problem. For simplicity of the analysis, we further assume that J |N , or
that the milestone time points evenly discretize the overall finer mesh.

Under these assumptions the computational time required for the original sequential
algorithm is

N(γ + β) +
N∑
i=1

iα = N(γ + β) +
α

2

(
N2 +N

)
. (5.2)

In this expression the first term Nβ comes from the fact that there is one neural
network between each of the N time points, and thus we need to train each of these
networks sequentially, resulting in a total time cost of Nβ. The second summation term
comes from the fact that after training each of the neural networks, we need to evaluate
the network for all price vectors that are positioned at a time point previous to the current
one. Early on in the algorithm we need to compute these updates at many time points, but
as the algorithm progresses, this number shrinks by one for each step. The result shows
that the computational time required is quadratic in N (Chen and Wan also show that it
is quadratic in d as well).

To analyze the computational time differences between the original and efficient algo-
rithms in Chen and Wan [4], we need to first understand the differences between the two
versions. It is easier to understand the analysis by first imagining that the time points are
segmented into the set of milestone times which occur every J steps and the set of fine
times which are all other time points in the discretization. Since we assume that J |N , we
can say that there are exactly N

J
milestone times and N − N

J
fine time points. For each of

the milestone steps, we need to first train the neural network from the previous milestone

26



time to the current one, and then we must update the option values and deltas for the cur-
rent time step and all previous time steps. Since the milestone times occur every J steps,
then we only need to take every J th term of the summation in the original algorithm. Once
we have computed the milestone points, then for each fine time step we only need to train
the neural network, and update the option values and deltas for that current time, and we
do this for all N − N

J
fine times. Then the computational time required for the efficient

algorithm in [4] is

Nγ +
N

J
β +

N
J∑
i=1

(Ji)α +

(
N − N

J

)
(β + α)

=N(γ + β) +
α

2

(
N2

J
+N

)
+

(
N − N

J

)
α

=N(γ + β) +
α

2

(
N2

J
+ 3N − 2

N

J

)
. (5.3)

Here we immediately note that if we select the milestone step size of J = 1, then we
reconstruct the computational time function for the original sequential algorithm, which
makes sense as then every time point would be a milestone point and we would have no
finer grid of time steps. It may not be immediately obvious, but a bit of analysis also shows
that as J increases, the computational time decreases, to the point where if we took one
milestone step from t = T to t = 0 (J = N), the computational time cost becomes linear
in N , however this would be expected to result in a high loss of accuracy.

5.2.3 Proposed Parallel Algorithm

The computational time cost of the proposed parallel algorithm continues to build upon
the gains that were made by the previous algorithms, but for simplicity we make one more
assumption with regards to the number of processors K that we use in the algorithm.
For this analysis, we assume that N

J
|K, which allows us to segment the fine time points

between each of the milestone times evenly across processors, and each processor is only
responsible for a set of fine time points confined between two subsequent milestone points.
This also means that the number of processors is required to be an integer value in the
range N

J
≤ K ≤ N , which is not a theoretical restriction, however, we denote it in this way

to ensure no processor is responsible for a set of fine time points which can be separated
by any milestone points to simplify the theoretical calculations which follow. Now denote
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the minimal fine time point that a single processor is responsible for as tminp where p is the
index of the processor in question, we define the value ζ = |{t < tmaxp |t = i ∗ J∆t ≥ t0, i ∈
NU{0}}|, or equivalently, ζ is the number of milestone time points which are at a time
less than the fine time points that the processor is responsible for. This is important to
note because the algorithm only updates the fine time values when evaluating the larger
milestone times, and not the ones that come between t0 and the fine times. Also recall

that a consequence of the memory cost analysis we only need to simulate
N+N

J
(K−1)

K
price

trajectories. With these additional assumptions and definitions, we can then define the
computational wall clock time for any individual processor to be

N + N
J

(K − 1)

K
γ +

N

J
β +

ζ∑
i=1

iα +

N
J∑

i=ζ+1

(
i+

(
N − N

J

K

))
α +

(
N − N

J

K

)
(β + α)

=
N + N

J
(K − 1)

K
γ +

N

J
β +

α

2

(
N2

J2
+
N

J

)
+

(
N − N

J

K

)(
β + α

(
N

J
− ζ + 2

))
. (5.4)

While this is the clock time for any individual processor to complete their part of the
algorithm, we need to define the time required for the entire algorithm as a whole. Since
all processors begin at the same time, the time required for the algorithm is equal to the
longest individual processor time. By analyzing the previous equations, the term inside
the first summation is always greater than the term in the second summation, therefore
the processor time is maximized when ζ is at it’s maximum value. This occurs when the
set of fine time points calculated by the processor is located between the milestone time
points of t0 and t = J∆t. This makes sense as we need to spend time computing these fine
points at all milestone points with a later time value, so the more milestone points that
occur after the fine points, the longer the algorithm will take for that individual processor
to complete. We can then say that the complete algorithm time is equal to the maximal
individual processor time which occurs when ζ = 1, the minimal value for zeta. The wall
clock time can then be expressed as

N + N
J

(K − 1)

K
(γ + β) +

α

2

(
N2

J2
+
N

J

)
+

(
N − N

J

K

)(
N

J
− 1

)
α. (5.5)

It is difficult to initially see that this is a reduction on the amount of wall clock time
required for the efficient algorithm presented in [4], however we can see that there is a
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reduction by an order of J in the second term. This overall reduction is easier to see when
we consider the maximal case of the number of processors with K = N− N

J
, under this final

assumption, we can state that the minimal possible time cost for this algorithm becomes

(
N

J
+ 1

)
(γ + β) +

α

2

(
N2

J2
+ 3

N

J
− 2

)
. (5.6)

Comparing this with equation (5.4) shows that in the limiting case, we can reduce the
computational wall clock time from Chen and Wan’s algorithm by a factor of approximately
J , meaning that the larger time steps we take, the more savings we will see at the expense
of some amount of accuracy. We see also that the computational time is still quadratic
with respect to N , this could theoretically be circumvented by careful selection of J , i.e.
J =

√
N . However, this causes J to increase with N , and thus we leave an in depth

analysis of the consequences of such a choice to some future work.

We conclude this section with Figure 5.1 which shows curves of the expected com-
putational times constructed by equations (5.3) and (5.5). Unless otherwise noted, the
parameter values are as follows: α = 1.4, β = 5.6, γ = 0.1, N = 100, J = 4, and K = 75.
We can immediately see by comparing the blue and red curves that the expected computa-
tional time is theoretically scaled down significantly by implementing the parallel method
with K = 75 processors. We also see that the expected time has a similar sensitivity to
varying J and K, with similarly shaped curves, but at very different scales since our base
case has 4 = J � K = 75. These results are further numerically evidenced near the end
of Chapter 6.
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Figure 5.1: Expected computation times of Chen and Wan’s algorithm varying N, J , and
the proposed parallel algorithm varying N, J,K
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Chapter 6

Numerical Observations

In this chapter we solve the American option pricing problem using the parallel algorithm
as defined in Algorithm 3. We calculate and compare the initial values of the option
v(~s 0, 0) and the initial option deltas ~∇v(~s 0, 0) with the same values calculated by Chen
and Wan’s efficient method described in Algorithm 2. We calculate these values using
t0 = 0 given an initial price vector ~s 0 = (s0

1, s
0
2, · · · , s0

d) for values of d = 7, 13, 20. We also
compute these values and deltas across the space time domain and compare them with the
baseline given by the efficient methods.

Throughout all of our simulations, we consider a geometric average option with payoff

value f(~s) = max

((∏d
i=1 si

) 1
d −X, 0

)
and strike prices X = 90, 100, 110. While these

options are not the most common for practical applications, they are useful as a baseline
tool to test the accuracy of the method because we can derive semi-analytical solutions to
the value and deltas of the option to construct error measures for the values we compute.
Glasserman [11] and Sirignano and Spiliopoulos [20] show that any d-dimensional American
geometric call option of this form can be reduced to a one dimensional American call option

in the variable s′ =
(∏d

i=1 si

) 1
d

with effective volatility σ′ =
√

1+(d−1)ρ
d

σ and effective drift

r′ = r−δ+ 1
2
(σ′ 2−σ2). Once this one dimensional option is constructed, its values can be

computed via finite difference and the deltas can be computed wherever s1 = s2 = · · · = sd.
In all experiments in this chapter, we assume a d-dimensional American geometric call
option with parameter values ρi,j = 0.75, σ = 0.25, r = 0, δ = 0.02, T = 2.

In the experiments, we compute for different values of K,N, J as described in each of
the corresponding tables and we consider the maximum number of processors available
for the method N − N

J
. Each of the neural networks consist of L = 7 hidden layers of
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equal width d[l] = d + 5, l = 1, · · · , L. Each simulation considers M = 240000 simulated
price paths beginning at ~s 0, and we train each network over 600 batches each of size 400.
Each of the algorithms are completed on N − N

J
Compute Canada Graham Cluster

base-GPU nodes each consisting of a single P100 Pascal GPU and 2 Intel E5-2683 v4
Broadwell @ 2.1GHz CPUs with 1024MB of memory availability.

Note that there are other parameter selections with respect to the algorithm improve-
ments discussed in Chen and Wan [4]. We follow their suggestions and select function
smoothing parameter κ = 2

∆t
, valuation weight θ = 0.5, and we only perform a single

network ensemble with C = 1.

6.1 Accuracy

In this section, we analyze the computational accuracy of the proposed parallel method
and compare it to Chen and Wan’s efficient algorithm. We propose that in most cases,
the best value for considering the accuracy of the method will be to consider the initial
value and deltas of the option v(~s 0, t0). We select this because in order to compute this
value, the entire course network must be traversed, meaning that any inaccuracies across
any of the course networks will compound through all of the computations. Thus result in
the value at t = 0 being either the most inaccurate, or at least the most volatile since it’s
possible some of these inaccuracies can cancel out. Since we have the ability to compute
the semi-analytical ‘true’ price of the option as described previously, we need to consider
what error measure we will use to measure the accuracy of our proposed method. Luckily,
Chen and Wan describe a suitable error measure in [4] and we continue to use this method
here. We measure the absolute percent error of the computed values with respect to the
finite difference solution, i.e. denote the finite difference solution v∗ then

‖v(~s 0, 0)− v∗(~s 0, 0)‖
‖v∗(~s 0, 0)‖

× 100%,
‖~∇v(~s 0, 0)− ~∇v∗(~s 0, 0)‖L2

‖~∇v∗(~s 0, 0)‖L2

× 100%, (6.1)

define the percentage error of the calculated initial option value and deltas respectively,
with respect to the true value.

Tables 6.1-6.6 show the results of computing the initial values and deltas of the Amer-
ican geometric option via the proposed parallel algorithm and Chen and Wan’s efficient
algorithm, as well as their percentage error with respect to the semi-analytical true value
of the option. For all of these simulations, we keep constant the number of total time steps
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N = 100, as well as the milestone step size J = 4. From this we also take the maximal
amount of reasonable processors K = N − N

J
= 75, although discussion and results on

the computational wall clock time for each simulation is shown later, we also include in
parentheses the amount of time (in seconds) that the algorithm took to finish.

Table 6.1: Geometric Option Initial Values with dimensionality = 7

s0
i

Exact Price
v(~s0, 0)

Parallel Algorithm Chen-Wan Algorithm
Computed Value % Error Computed Value % Error

90 5.9021 5.8882 (614sec) 0.24% 5.8822 (2531sec) 0.34%
100 10.2591 10.1928 (620sec) 0.65% 10.2286 (2472sec) 0.30%
110 15.9878 15.9813 (611sec) 0.04% 15.9738 (2491sec) 0.09%

Table 6.2: Geometric Option Initial Values with dimensionality = 13

s0
i

Exact Price
v(~s0, 0)

Parallel Algorithm Chen-Wan Algorithm
Computed Value % Error Computed Value % Error

90 5.7684 5.7310 (984sec) 0.65% 5.7719 (4150sec) 0.06%
100 10.0984 10.0392 (1020sec) 0.59% 10.1148 (4213sec) 0.16%
110 15.8200 15.7926 (944sec) 0.17% 15.8259 (4087sec) 0.04%

Table 6.3: Geometric Option Initial Values with dimensionality = 20

s0
i

Exact Price
v(~s0, 0)

Parallel Algorithm Chen-Wan Algorithm
Computed Value % Error Computed Value % Error

90 5.7137 5.6811 (4749sec) 0.57% 5.7105 (22043sec) 0.06%
100 10.0326 9.9967 (4578sec) 0.36% 10.0180 (20626sec) 0.15%
110 15.7513 15.7057 (4884sec) 0.29% 15.7425 (21369sec) 0.06%

We can see from the observations shown in Tables 6.1-6.3 that the proposed algorithm
continues to show a high degree of accuracy when computing the initial option values.
The majority of computed values lie within 0.5% of the true value and none are worse
than 0.65%. We see that for all three values of d, the best computed values are when
K = 110 > s0

i , it’s difficult to state this is a trend with a small sample size however
and this is likely just due to statistical variance. We also see that in terms of accuracy
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our method does slightly worse overall than Chen and Wan’s method, which is difficult
to explain since theoretically we should get the same or highly similar outputs from both
methods. However, one possible explanation, which is also discussed later is it’s possible
we see higher levels of variation since each processor independently simulates it’s own
price paths over larger time steps, instead of constructing a full domain of price paths and
distributing the necessary trajectories to each processor.

Table 6.4: Geometric Option Initial Deltas with dimensionality = 7

s0
i

Exact Deltas
~∇v(~s0, 0)

Parallel Algorithm Chen-Wan Algorithm
Computed Deltas % Error Computed Deltas % Error

90 (0.0523,· · · , 0.0523) (0.0525,· · · , 0.0525) 0.38% (0.0516,· · · , 0.0516) 1.2%
100 (0.0722,· · · , 0.0722) (0.0737,· · · , 0.0737) 2.08% (0.0710,· · · , 0.0710) 1.7%
110 (0.0912,· · · , 0.0912) (0.0909,· · · , 0.0909) 0.33% (0.0901,· · · , 0.0901) 1.2%

Table 6.5: Geometric Option Initial Deltas with dimensionality = 13

s0
i

Exact Deltas
~∇v(~s0, 0)

Parallel Algorithm Chen-Wan Algorithm
Computed Deltas % Error Computed Deltas % Error

90 (0.0279,· · · , 0.0279) (0.0279,· · · , 0.0279) < 0.40% (0.0277,· · · , 0.0277) 0.76%
100 (0.0387,· · · , 0.0387) (0.0385,· · · , 0.0385) 0.52% (0.0384,· · · , 0.0384) 0.83%
110 (0.0492,· · · , 0.0492) (0.0488,· · · , 0.0488) 0.81% (0.0486,· · · , 0.0486) 1.1%

Table 6.6: Geometric Option Initial Deltas with dimensionality = 20

s0
i

Exact Deltas
~∇v(~s0, 0)

Parallel Algorithm Chen-Wan Algorithm
Computed Deltas % Error Computed Deltas % Error

90 (0.0180,· · · , 0.0180) (0.0180,· · · , 0.0180) < 0.55% (0.0179,· · · , 0.0179) 0.7%
100 (0.0251,· · · , 0.0251) (0.0250,· · · , 0.0250) 0.40% (0.0248,· · · , 0.0248) 1.2%
110 (0.0320,· · · , 0.0320) (0.0318,· · · , 0.0318) 0.63% (0.0316,· · · , 0.0316) 1.2%

Tables 6.4-6.6 present the computed initial deltas under the same simulation parame-
ters that were used for the previous tables, as well as the percentage errors of the proposed
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method and Chen and Wan’s method with respect to the true value. We notice an inter-
esting phenomenon occurring here, while the initial option prices were generally computed
slightly worse by the parallel algorithm, the computed deltas are all more accurate than
Chen and Wan’s method, except in one case. Again, there’s no theoretical reason we can
construct as to why this has occurred other than standard statistical variance, however it’s
possible that along the coarser grid with fewer networks we avoid overfitting a little bit
better in this case, resulting in more accurate solutions. This explanation however does not
explain the less accurate option prices and more in depth analysis into this phenomenon
could be a focus of future research works.

Now that we have constructed a number of experiments which illustrate the numerical
accuracy of the proposed method, we turn our attention to another small subproblem of
interest. We are interested in the effect of changing values of N and J on the overall
accuracy of the method, intuition says that taking larger step sizes on either the coarse
or fine grid should lead to less accurate results. We simulate a number of experiments
to test this idea and the results are compiled in Table 6.7. For these experiments we set
K = s0

i = 100, and all other constants are the same as previous experiments

Table 6.7: Geometric Option Initial Value with dimensionality = 7

Exact Price v(~s0, 0)
Parallel Algorithm Percentage Error

N=100 N=60 N=20 N=100 N=60 N=20

10.2591
J=4 10.1928 10.2581 10.2386 0.65% 0.01% 0.20%
J=5 10.2680 10.2519 10.2220 0.09% 0.07% 0.36%
J=10 10.2579 10.1904 10.1838 0.01% 0.67% 0.73%

We notice interestingly enough that for the simulations with N = 100, the accuracy
increases with J , in defiance with the assumed relationship discussed previously. However,
for all other values of N , our intuitive theory is supported as the accuracy diminishes with
larger coarse grid step sizes. We can chalk the increase in accuracy for N = 100 due to
statistical variance with a low sample size as no theoretical reason could be constructed
for this relationship.

Finally, after computing the simulations and discussing the accuracy results so far, we
finish by presenting one of the completed algorithms in it’s completed form. Figure 6.1
shows the outputs of Chen and Wan’s efficient algorithm (left) and the proposed parallel
algorithm (right). The figure graphs the geometric average of the underlying assets against
time, with each dot on the graph representing one price vector at a certain point in time.
All 240000 price trajectories are shown and the colours represent the execution barrier
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with blue representing a price vector where the option should be exercised since the value
is currently larger than the future expected value, and red dots represent continuation price
vectors. We notice two aspects of the graphs that are worth discussing, firstly, we see that
the networks in the proposed parallel algorithm successfully learn the exercise dynamics
of the problem, reproducing the output of Chen and Wan’s method. Secondly, we notice
that the distribution of points in the parallel algorithm is not as smooth as the previous
method. This, as discussed before, is due to the independent price path generation between
the individual processors, and this could be fixed by having one processor generate the full
fine grid of Monte Carlo paths and then distributing the necessary points to the individual
processors. A second solution is to have each individual processor generate the paths across
N points with the same global seed, and only save the points that it needs to calculate.

Figure 6.1: Solved exercise dynamics by Chen and Wan’s efficient algorithm (left) and the
proposed parallel algorithm (right)

6.2 Computational Time

The motivation behind the proposed parallel algorithm was to reduce the computational
time required to solve the American option pricing problem, and thus allow for more
attainable market information amongst investors. As was done in the previous section,
we will analyze the required wall clock time to complete the proposed parallel algorithm,
as well as Chen and Wan’s efficient method. By doing this we can construct the clock
time reduction ratio to see how changing parameters affect the proportional amount of
wall clock time saved. Denote Wp and Wc as the clock times to complete the parallel and
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Chen-Wan algorithm respectively, then the wall clock reduction ratio, R, is simply R = Wc

Wp
.

The parameters for the simulations in Table 6.8 are equivalent to what was used for the
results of table 6.7.

Table 6.8: Geometric Option Computational Time with dimensionality = 7

Parallel Algorithm Chen-Wan Algorithm Clock Time Reduction Ratio
N=100 N=60 N=20 N=100 N=60 N=20 N=100 N=60 N=20

J=4 689 251 61 2472 1102 215 3.59 4.39 3.52
J=5 419 178 54 2136 941 209 5.10 5.29 3.87
J=10 151 71 32 1491 721 183 9.87 10.15 5.72

First we quickly point out that for the experiment in Table 6.8 with N = 100 and J = 4,
we noted that approximately the average time to complete a Monte Carlo price path step
was γ ≈ 0.1 seconds. Similarly the amount of time to train each neural network as well
as update the values of the option at all prices within a specific time step as β ≈ 5.6 and
α ≈ 1.4 seconds respectively. We can then numerically provide evidence for our theoretical
time requirements by plugging these values into equations (5.3) and (5.6). Doing so gives
us an expected clock time of 100(0.1 + 5.6) + 1.4

2
(1002

4
+ 3(100)− 2100

4
) = 2495 seconds for

Chen and Wan’s method and (100
4

+ 1)(0.1 + 5.6) + 1.4
2

(1002

42
+ 3100

4
− 2) = 636.8 seconds for

the proposed parallel algorithm. The numerical results of 2472 and 689 seconds for each
respective method provide numerical evidence to back up the theoretical equations, the
discrepancy is likely due to an sampling error in approximating the average time for each
process in the algorithm as it’s not exactly constant between any two simulations.

We also note that in Chapter 5 it was suggested that the reduction of Chen and Wan’s
algorithm was approximately equal to J , and we see numerical evidence to support this
in Table 6.8 with the reduction ratio being around J for both of the two larger values of
N . However, we also see that when N is restricted to be relatively small with respect
to the problem and J constitutes a large portion of N , i.e. N = 20, J = 10 we see that
the reduction ratio is smaller than expected. Which could be due to the fact that the
algorithm is completed fast enough regardless, that the clock time required to complete
background processes not considered in the theoretical analysis, i.e. memory allocation,
information passing between processors, etc. constitute a larger portion of the wall clock
time, resulting in a lower reduction ratio. In the smaller discretizations, these background
processes are likely dominated by the algorithm itself and thus we see closer ratios to what
is expected theoretically.
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Chapter 7

Conclusion

We propose a parallel processing implementation of a neural network architecture devel-
oped into a previous American option pricing algorithm. The parallel algorithm uses two
levels of discrete grid in order to partition the work of the algorithm onto separate proces-
sors, resulting in large computational time and memory cost saves. The proposed algorithm
not only saves plenty of computational time, but also maintains the order of accuracy of
previous methods both in computing option prices and deltas. We numerically and the-
oretically explore the computational time saves of completing the parallel algorithm over
the methods constructed in previous works and show evidence for the usefulness of the
parallel method to market investors.

We recognize a number of drawbacks to the current implementation of the proposed
parallel method, including that the computational time cost increases quadratically with
the size of the discretization of the spatial domain. This could theoretically be circumvented
by careful selection of the size of the coarse grid with respect to the finer grid, however
this is an avenue of research for some future work. We also recognize that the selection
to have each processor independently construct it’s own Monte Carlo paths leads to a less
smooth distribution of price vectors in the final result. This could be fixed in a future
implementation of the algorithm which could reduce the level of variation in the solution
of the problem. A future area of work into establishing optimal parameter values could
prove essential into pushing the solutions of American option prices further, allowing us
to price further into the future and more often, resulting in more accurate delta hedging
processes and limiting exposure to market risk.
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