Comparison of Machine Learning
Methods for Insurance Premium
Prediction

University of Waterloo
Computational Mathematics Research Paper

by

Meiyu Zhou

Supervisor: Prof. Ken Seng Tan

Abstract

The goal of my research is to compare different machine learning methods to predict
pure premium for auto-insurance claim data. Based on the result from article Insurance
Premium Prediction via Gradient Tree-Boosted Tweedie Compound Poisson Model, this pa-
per compares generalized additive model, TDboost, Xgboost, Gradient-boost, and random
forest for extension. Since the claim data is assumed to follow Tweedie distribution, mod-
els use profile likelihood approach to estimate optimized index and dispersion parameters.
The Gini Index, Absolute Mean Error, Bootstrap and Computational time are considered
to assess the performance of each model.

1. Introduction

In recent years, machine learning has developed rapidly to solve challenges in insur-
ance industry, which include underwriting and loss prevention, product pricing, claims
handling, fraud detection, sales and customer experience[2(]. Insurance premium is typ-
ically determined in such a way that it costs the expected payout of the policy, as well
as taking into consideration the administration and profit of the insurance company to
ensure sustainability of the business. One of the most commonly target variables used in
machine learning regression in insurance industry is claim size, which is one of the crucial
factors to set premium. In the age of big data, machine learning could be an option for
company to gain the information and insight of business by learning from data. In other
words, the expected learning result comes with highly correlation between the claim size
and information about policyholder in regression model.

Generalized linear models (GLM) [22] are commonly used for predicting claim size
in the past. Data usually are sampled from exponential, normal, gamma, Poisson, and
binomial distribution to fit model. However, the distribution of claim size is highly right-
skewed, which zero claim accounts for large proportion. Jgrgensen and de Souza (1994)
[11] assumed Poisson arrival of claims and gamma distributed costs for individual claims,
which imply that the claim size follows a Tweedie compound Poisson distribution. The
Tweedie compound Poisson distribution can model data consists of zeros and positive
number. The structure of the logarithmic mean is restricted to a linear form, which can
be too rigid for real application [28]. Yang, Qian and Zou (2018) [2%] proposed a gradient
tree-boosted algorithm and apply it to Tweedie compound Poisson models(TDboost) for
pure premium. The paper also compares GLM, generalized additive model(GAM), and
TDboost model. From our implementation, both GAM and TDboost appear to produce
more accurate result for predicting pure premium. Based on the result from Yang, Qian,
and Zou [28], this article explores gradient boosting (GB), XGBoost and random forest
and discusses their application to auto insurance claims data (Yip and Yau 2005 [29]).

Boosting method is one of the ensemble learning and consists of base learners. The
basic idea for boosting method is to reduce prediction error by training weak learner and
correcting its predecessor. The combination of each weak learner can output more accurate
prediction. Gradient boosting [7] is one of the most popular machine learning methods for
regression and classification. Each base learner is used to reduce residual errors that output
from previous predictor. Gradient boosting applied widely across various fields, such as face

alignment [20], epidemiology [3], and web search ranking [23]. Extreme gradient boosting
(XGBoost) [3] is also popular candidate in Kaggle competition. It is a implementation
of gradient boosting for fast, memory efficient and high accuracy [24]. Another ensemble

learning, random forest is one of bagging algorithms, which uses tree-structured classifier
to predict response. The weakness of random forest is suffering the extremely imbalanced
data set. In order to minimize prediction error, the model focuses on majority class [2].
If assuming response variable claim size is sampled from Poisson distribution, prediction
can improve from random forest. Moreover, random forest also can detect nonlinear effect
and interactions among explanatory variables. The variable importance in random forest
is also crucial for further analysis in insurance industry.

The remainder of this article has been organized as follows. In Section 2, we review the
compound Poisson distribution and Tweedie model. In Section 3, we discuss the concept
of boosting method and random forest. Model results and assessment are presented in
Section 4. Finally, the concluding remark and further research are provided in Section 5.

2. Tweedie’s Compound Poisson Model

The insurance claim data in real application usually consists of positive losses and zeros
losses. The distribution of claim data are highly right skewed. For such discrete data, Bent
Jorgensen and Marta C. Paes De Souza [l 1] applied Tweedie’s compound Poisson model
to fit claim data.

Let Y denote the total claim size. In insurance claim size modeling, Y is typically
modelled as a random sum as follows:

0 ifN=0
Y_{Y1+5/2+...+YN ifN=1,2,.., (1)
where N is a discrete integer value random variable that captures the total number of
claim occurrence over a given time period and Y;, i=1, 2, ..., denote the size (or severity)
of the i-th claim and are assumed to be iid. In our examples, we assume N follows Poisson
distribution (i.e. N ~ Pois())) and each i-th claim Y; follows the Gamma distribution
(i.e. Y; ~ Gamma(w,)). We further assume N and Y; are independent. Also, Y is is the
response variable in our application.
Under the above assumptions, it is easily to establish the following results: The expected
value of Y is u = %a, and the variance is % = ¢u”, where 1 > 0 and dispersion ¢ > 0.
The parameterization satisfy

2_ 2 1
A:ﬁv OZZPT[{, Bzcb(p—l)u"‘l- (2)

2

The distribution function of Y can be written as

e ify=20
Oé, ,A — _ _ 00 nao no— n . 3
Flo 80 ={ s o e 920)

Tweedie distribution belongs to Exponential Dispersion Models(EDM)[13], which has
the density as

2=y, (@)

where a(-) and x(-) are known normalizing function and cumulant function, respectively. To
transform density function (3) in the form of Tweedie distribution (4), the mean-variance
relation gives

fy (|0, ¢) = a(z, p)expi

L ifp#l BL ifp#2
p=1{ 1) ={ 2 5
{ log(y) ifp=1" w(6) { log(y) ~ ifp=2.)

Thus, the compound Poisson model for Y has Tweedie model form with 1 < p < 2 and
> 0. If we take moment generate function, we get Poisson distribution when p = 1 and
Gamma distribution when p = 2.

The log-likelihood function of Tweedie model can be written as

I N T
log fy (ylu, ¢, p) = 5(1/1 — oo p) + loga(y, ¢, p), (6)
where a(-) can be written as
1Ny™eo y" fu >0
aly,d,p) =14 v 2 n=1 TG T T @ g () iy g (7)
1 ify =0.

3. Methodology

Given an auto-insurance data and label each record as i, let NV; denote the number
of claims occurred and Y; denote the size of each claim in N;. Let w; denote the policy

3

duration. Thus, the total claim amount is the sum of all claim size that occurred. In this
article, the prediction based on ratio between total claim amount and duration wl, which
known as pure premium. The pure premium is part of an insurance premium which can
reflect the basic costs of loss, not including over-head or profit [1].

In our application with given pure premium y;, vector of predictors x; and duration wy;,
{(yi, %1, w;) };, the log-likelihood function can be written as

1) 0, 00, w0 H) = D Do i (il)
Z ®

1—p 2—p
Hi

N 9
—;¢(yzl_p 7)) +logalys - p).

3.1 Generalized Additive Model

Generalized additive model (GAM) is a method to add one or more nonlinear functions
into generalized linear model by taking the function turning into blocks and using some
mixture model to fit the smoother. The predicted values of GAM can arise from exponential
family refer to continuous outcomes, discrete outcomes,and proportion outcomes, etc. and
the outputs does not depend on prior model, which known as data-driven [27]. GAMSs has
the form as

g(p) = a+ Z fi(z;), (9)

where « is error term and f;(x;) is smoothing function. Fitting this model without any
structure would be a big challenge. Thus, we create a broad class of function to fit building
blocks, which using local scoring algorithm to estimate smoothing function f;(x;) nonpara-
metrically, using a scatterplot smoother as a building block [10]. There are many types of
scatterplot smoothers such as cubic splines, B-splines, and Locally weighted least square
regression (loess) which uses the tricubic function to weight each observation in building
block. The constrain for GAM requires functions f; are unique and centered about 0, which
is E(f;(z;)) = 0 for all j. If f; follows form as addition of linear function, the generalized
additive model is generalized linear model[27].

Generalized additive model is extension of generalized linear model. The replacement
between additive and linear means the model no longer only considers linear predictor and

linear in outcomes, but instead regarding linear predictor as parameter. The most familiar
additive model is polynomial model. However, the fitting result for polynomial regression
is unstable and the regresses are very correlated, which leading to multicollinearity. The
consequences of multicollinearity are unstable estimate and highly sensitive to outliers [11].
Another important concept of GAM is smoothing. The smoothness requires function to
be continuous and differentiable so the derivative gives idea of slope and allows numeri-
cally approximation. As mentioned above, loess smoother is more generalized smoothing
method, which uses local data to estimate response variable. It does not require the func-
tional structure between predictors and response variable. The only restriction is function
form must be smooth. However, the less restriction on function, the model is more rely on
the choice of smoothing parameter and increase computational time.

Spline is another critical concept in smoothing, which is piecewise polynomial functions
as shown below:

K

yi = Bo + fra + Zuk(ﬂfz — Kg)+ T €&
k (10)

0 1fr < kg

T — Ky ifr > Ky,

(zi — k) = {

where uy, defined as k-th order spline, which has continuous derivative of orders 1,...k-1, at
its knot. To determine how smooth the spline is is also question for spline. The smoothness
is determined by the number of knots and the basis function, which to minimize prediction
error. Penalised splines allow additional parameter to measure how smooth to be. Even
though we set number of knots, it does not constrain the smoothness. Consider minimizing,
penalized spline using the following criteria:

n Trmax

55" =Y ln— f@f+h [@), (1)

where the first term is the residual sum of square and the second term is the multiplication
between smoothing parameter and roughness penalty. If h is large, the model gives more
important role to roughness than least square, which implies greather smoothness.

In this article, we use MGCV in R to apply GAM on auto-insurance data fitting with

thin plate spline regression.
3.2 TDboost

TDboost was derived by Yi, Wei, and Hui [28], which integrates the boosted Tweedie
model into gradient boost methods. Assume parameters p and ¢ are known, the goal is
to estimate function F(-). Since the boosting method involves base learners, we define
minimizer function F*(-) as base learn over a class of IF, and can be written as,

F*(x) = arg min{ =1 (F'(-), &, p[{ (vi> xi, wi) }ioo) }

FeF
= arg min Z U(y;, F(x;)|p)
keF T (12)

where

W (yi, F(xi)|9) = w;

yierp[(1 = p)F(x5)] | expl(2 — p) F(x1)]
{- - +) }

)

The initial base learner is a constant function, which can minimize negative log-likelihood,

FI = arg min Z U (y;, n|rho)
T (13)
D ey Wili

= log(zn—).

i=1 Wi

Assume current stage is m, the estimated parameter £™ for base leaner h(x;, ™) is,

f[m] = arg min Z [ugm] — h(x;; f[m])]
L B

where

ml _ 09y, F(xi)lp)

(14)

u

7 aF(QjZ) |F(g;i):ﬁ‘[m—1](wi)
= w;{—y;exp[(1 — P)ﬁ[mfﬂ (x;)] + expl(2 — p)ﬁ’[m—l] (2]}

6

where u; is negative gradient vector and uses L-terminal node regression tree as base
learner,

L
Wz, €)=Y "™ I(z € RY™), (15)
=1

where Rl[m} and ugm], which are two parameters in base leaner, are calculated by ”best-fit”
algorithm with a least-square splitting criterion [12]. The expansion coefficient 3 "] can be
estimated by line search as,

B = argmin Y Wys, 7) + Bh(ais € p)
T
: . (16
= arg minz U (ys, F™" 7 2y) + Z ﬂgm]f(xq; € Rl[m])|,0)7
A =1

[m]

where u; ' = mean, eégm](u

[m]

;) is a constant value within each region }?I[m] Applying

1 2.2
a separate line search method to each region, we can solve 3 by finding constant nl[m] to
im f f t estimation for each region R["™, and optimal 7" i
prove performance of current estimation for each region R; ", and optimal 7), " is,

o Yumea wtkespl(1 —) E)
[m] i, €ER; -
Zz’::pief%}m] wierp|(2 — p) FIm=1(xz;)]

n " = log{ hi=1,..L. (17)

Thus, the update estimated function F™! (x) for each region R}m] is,

Fil(z) = Fm=Y(z) +og™I(z € RI™),1 =1,...L, (18)
where 0 < v <1 is learning rate.

Prior to estimating predictor function, we need to estimate index parameter p and dis-
persion ¢ for Tweedie distribution. Yi, Wei, and Hui [2&] use profile likelihood to estimate
these parameter. From section 2, the parameterization shows estimation p depends on
p. If pis given, p*(p) can be solved by (12) and ¢*(p) can use golden section search and
parabolic interpolation in following optimization problem,

¢*(p) = argénax{l(u*(ph b, p}. (19)

To estimate p, the authors maximize the profile likelihood with equal spaced 50 values
{plv ~--7P50} on (071)7

p" = argmax {{(1"(p),d"(p),p)}- (20)

Pe{thsPSo}

3.3 Gradient Boosting

Gradient boosting [7] consecutive, non-parametric machine learning methods to update
more accurate estimation at each stage and minimize loss function. The TDboost intro-
duced in previous subsection is an extension of Gradient boosting, which involves training
base learner and ensembles all base learner to construct powerful model. The loss function
in our application is (8). The goal is to estimate function F(-) which fits predictor variables
to response variable by minimizing the expected value of loss function ¥(y, F(z)),

F(z) = ar;g(n;in U(y, F(z))
= arg(rr;in E.[E,(Y]y, F(x)])|x],

(21)

where the expectation formula indicates minimizes the expected loss function over the
response variable with known predictor variable x. Assume the current stage is m-1, then
the function estimation at m-th iteration is defined as,

Pl — ftm=1] | gy (g ¢l

al . (22)
(B[m],f[m]) = arg min E U(y;, F[m_”) + Bh(x;, €).

Gradient boosting is proposed to update base learner by using gradient descent like
approach. Applying negative gradient of loss function to each observation as basis and
check the rest to make sure no such repeating errors, the updated weak learner will fit the

basis at each iteration.Finally, the expansion coefficient 5 can be estimated by minimization
problem [21],

- oV (y, F(x)
9" = Ey[ﬁmﬂmzﬁwm—u
N A (23)
gim = arg minz Wy, Fm=U(z) + Bh(x;, €M),
A

The finalized estimation function can be written as,

Flm] (z) = F[T"_l](x) 4 Uﬁ["”]h(x; s[m])7 (24)

where v is learning rate, which is used to control step size for updating. The small value of
learning rate becomes more shrinkage and causes longer time for computation. However,
the appropriate learning rate can help with over-fitting and predict more accurate result

7.

3.4 Xgboost

XGBoost[3] is ensemble machine learning algorithm which stands for eXtreme Gradi-
ent Boosting. It can achieve more efficiency and less computational resource than gradient
boosting method by exploiting sparsity-aware algorithm and weighted quantile sketch in
algorithm and considering hardware perspective such as, cache access patterns, data com-
pression and sharding [3].

As for the algorithm improvement, the loss function of XGBoost is,

L(9) =Y U y:) + Y Qfr)
where Q(f) =nT + §AHwH2,

here T is the number of leaves in trees, w is the weight for each leaf and 7 is learning rate.
The regularization term is used to smooth leaf score and avoid over-fitting. Assume the
current stage is t, to solve optimization problem for objective function,

LO =3, 70 + filw) + Q). (26)

=1

the algorithm uses second order Taylor expansion to make the prediction more accurate,

n

L o S 00 570) + i) + shaf2e] + Q70

i=1
e ~(t—1) 2l o A(t=-1)
Wy i) g pe = T ™)

oyt=1) A(yt-1)2

-
I

(27)

where g; =
After removing constant part, the simplified loss function at stage t can be written as,

" T
- | 1 2
LD = "[gife(:) + Shifi(@)] + 0T + SA >

j=1

= Z[(Z gi)w; + %(Z hi + Nw?] + 1T,

icl; i€l

(28)

To minimize the loss function, we set derivative as 0 to solve optimal number for weights
as,

Zie[9i
wh = ———7-—-" (29)
! D ier, hi A

Thus, the optimal solution is,

Lo Qoo o (30)

In boosting tree problem, it is necessary to find best split point. Generally, the ex-
act greedy algorithm is used because it can pick the optimal split point from all possible
candidates. However, considering the memory cost, XGBoost also supports the approxi-
mate algorithm. The weighted quantile sketch is used to propose split candidates for equal
weighted dataset. Let Di{(x1k,h1), ..., (Tnk, hn)} Tepresents the set of k-th feature value

10

and second order gradient for training set and feature are distributed by its percentile, the
rank functions ry,

o) =e—— 3 h (31)

Z (z,h)ED (z,h0E Dy, x<z

and the candidate split point {sg1, ..., Sx} defined as,

7k (Skj) — Th(Skj41)| <€ (32)

where € is approximation factor. The sparsity-aware split finding handles the situation
such as missing data, categorical variable and frequent zero entries. The algorithm can
assign the optimal value to missing data by learning from data or user directly specified
value.

As for the hardware perspective, XGBoost designs block to store data by compressed
column format, and each column stores ordered feature value. In approximate algorithm,
different subset of dataset can be stored in multiple block and allows parallel algorithm
to find split point. The block structure can improve the computation burden of split
finding. If the data size is too large to fit in RAM, blocks store on disk in the out-of-core
setting. In order to avoid cache miss or running out of memory, cache-aware prefetching
algorithm is designed for exact greedy algorithm. The basic idea of this algorithm is to
fetch the statistics and store in internal buffer, which is allocated in each thread. Thus,
the computation and read/write can be processed at same time. There are two techniques
used to improve out-of-core computation, which are block compression and block sharding.

3.5 Random Forest

Random forest [1]| is another ensemble learning algorithm, which belong to bagging
method that is different from the boosting method introduced in previous sections. The
key features for random forest are training data is randomly sampled to build trees and
predictors are picked from random subset to split nodes. It only involves two parame-
ters which are number of variables randomly samples as candidates at each split (my.,)
and number of trees to grow (n4..). For both regression and classification problem, the
algorithm for random forest states [17],

1. Draw ng... bootstrap samples from the original data. At training time, each tree
learns from a random sample of dataset with replacement. Even though each tree

11

has strong correlation with particular sampled data, the entire forest can reduce the
variance and avoid over-fitting.

2. For each bootstrap samples, the split point is chosen from random sampled my,.,,.
Generally, the optimal value for my,, is square root of total number of feature.

3. The prediction are made by aggregating the prediction from ny,.. trees.

The out-of-bag error can be criteria for parameter tuning. At each bootstrap, predict
the data that exclude from bootstrap sample by trees trained with bootstrap sample. The
data that exclude from bootstrap data is called out-of-bag (OOB) data. The error rate
of model can be estimated by OOB predictions. By using grid search approach to find
possible combination of parameters, the combination with lowest OOB error is selected to

fit final model.

4. Model Assessment
4.1 Gini Index

The Lorenz curve [18] is proposed in 1905, which is used represents the distribution of
income. In the economy perspective, x-axis represents the proportion of population and
y-axis represents the proportion of income. If the income distribution is perfect match
with population distribution, the Lorenz curve gives 45 degree line, which is called ”Line
of equality”. The area between line of equality and Lorenz curve indicates the discrepancy
between the income distribution and population distribution. The Gini index is calculated
by two times of that area [9]. In the cases of insurance claim, the Lorenz curve used to
compare a premium to a loss distribution. In order to consistent the policyholder groups,
the relativity premium is used to connect the losses to the premium.

The calculation of Gini index and concept of ordered Lorenz curve are explain in [0].
Let B(x) represent the "base premium”, which specified as each model. Let C(x) be the
”competing premium”, which are remaining model. Each observation is sorted by relativity

R(x),

R(z) = . (33)

The ordered premium distribution is,

(34)

and the ordered loss distribution is,

. " yI(R(x;) <
DL(S) — lely g (Qj) — S). (35)
> i1 Yi
The graph of ordered Lorenz curve has coordinate (ﬁp(s), Dy(s)). The Gini index in our

case is twice area between line of equality and Lorenz curve [28] because the curves below
the line of equality represents a profitable situation for insurer.

The selected score for Gini index is based on "mini-max” strategy, which is selected
from all maximum score from competing premium with respect to each base premium, and
select the maximum score among them. The corresponding base premium is the best choice
for Gini index. The reason to use "mini-max” strategy is the maximum value in first step
indicate the largest separation between the loss distribution and premium distribution,
and the minimum value in second step indicates the score is least vulnerable to alternative
scores. [0]

4.2 Mean Absolute Error

The mean absolute error is used to measure the model error. The MAE is calculated
as,

1~
MAE == |5 — il (36)

i=1

The MAE can measure the closeness of the prediction value to the exact response value.
Even though the distribution of insurance claim data contains high proportion of zeros and
highly right skewed, the MAE is the more intuitive approach to determine which model
is more accurate. The test are computed for every trained model. Thus, model with the
lowest MAE can be considered as the most accurate one.

4.3 Bootstrap

Bootstrap is another method to validate models. It creates samples with replacement

13

from training data n times. The model is used to fit into sampled data, and use testing data
to calculate prediction error. Finally, repeating above procedure K times, and calculate
the variance for prediction error to measure how robust each model is to change of training
data.

Let 6 be the bootstrap of prediction error and 6; be the prediction error that fit into
i-th resampled training data. The bootstrap variance is measured as,

K

A 1 ~ 9

5. Application and Results

5.1 Data

The auto-insurance data we analyzed is retrieved from the SAS Enterprise Miner
database [29]. There are totally 10,296 policyholders’ record. In our analysis, we use
16 predictors, which consists of 8 numerical variables and 8 categorical variables. The
value of response variable, pure premium, is calculated by ratio between total claims and
duration, where the duration is assumed at 5. Table 1 provides detailed information about
the involved predictors we used in our model.

As for data pre-processing, we take logarithmic transformation to BLUEBOOK and
standardise the AGE, RETAINED, TRAVTIME, and transformed BLUEBOOK with mean
0 and standard deviation 1. The dummy variables are created for categorical variables with
more than two levels, such as, JOBCLASS, MAX_EDUC and CAR_TYPE. The distribu-
tion of response variable is shown in Figure 1, which exhibits highly right skewed.There are
approximately 61% policyholders do not have claims and 29.6% policyholders have claims
up to $2,000. Even though those two groups cover the largest proportion of number of
claims, the sum of their claims amount only comprises 36% of total claim amount. The
zero-inflated data can affect the prediction error significantly.

The training set comprises 50% of data used for mode training, and the remaining 50%
of data used for model evaluation.

14

Variable Type Description

AGE Numerical Driver’s Age

BLUEBOOK Numerical Value of Vehicle

HOMEKIDS Numerical Number of children

KIDSDRIV Numerical Number of driving children

MVR_PTS Numerical MVR violation records

NPOLICY Numerical Number of policies

RETAINED Numerical Number of years as customer

TRAVTIME Numerical Distance to work

AREA Categorical Home/work area:” Rural”, ” Urban”.

CAR_USE Categorical Primary use of the vehicle: ”Commercial”, ”Private”.
9. BLUEBOOK:”

CAR_TYPE Categorical Type of the car: ”"Panel Truck”, "Pickup”, ”Sedan”,
”Sports Car”, "SUV”, ”Van”.

GENDER Categorical Gender of the driver: "F”, "M”.

JOBCLASS Categorical "Unknown”, 7Blue Collar”, ”Clerical”, ”Doctor”,
"Home Maker”, ”Lawyer”, "Manager”, ” Professional”,
”Student”.

MAX_EDUC Categorical Max education level:” jHigh School”, ”Bachelors”, ” High
School”, ”Masters”, "PhD”.

MARRIED Categorical Married or not: "No”, ”Yes”.

REVOKED Categorical Whether the dirver’s license was invoked in the past 7

years: "No”, "Yes”

Table 1: Information for predictors in auto-insurance claim data

15

Frequency
2000 4000 6000 8000

0
L

l l l | | T l
0 2 4 6 8 10 12

Total Insurance Claim Amount ($in 1000) Per Policy Year

Figure 1: Histogram of Total Insurance claim amount

5.2 Tuning Parameter
5.2.1 Tweedie Distribution

The index and dispersion parameters need to be estimated by profile likelihood. The
index parameter are split into 50 numbers with equal spaced value from 1.1 to 1.9. The
profile log-likelihood plot shows in Figure 2. The curve represents the profile likelihood
function of p. The dotted line shoes the estimated value p* = 1.361224 corresponding to
the maximum likelihood. The corresponded dispersion is ¢* = 2.305138.

5.2.2 Model Hyperparameter

The hyperparameter in model cannot be estimated from data, which is external to
model. In our application, we use the grid search approach to tune the hyperparame-
ter for XGBoost and random forest. The grid search is used to find the optimal set of
hyperparameters that has the lowest prediction error.

16

-6500
|

-7500 -7000
!

Profile log-likelihood

-8000
|

-8500
|

1 | | |
12 14 16 18

Index Parameter

Figure 2: Profile Log-likelihood function
The tuned hyperparameteter for XGBoost are,

1. lambda: L2 regularization term on weights. The model will be more conservative, if
lambda is large.

2. subsample: ratio to resample the training data, which used to prevent overfitting.
The subsample occur once in each iteration. Range is between 0 and 1.

3. colsample_bytree: ratio to resample columns when construct each tree. It occurs at
each iteration. Range is between 0 and 1.

The tuning result for XGBoost is listed in Table 2. The lowest test mean absolute error is
preferred. Thus, {lambda, SubSample, SubColumn} = {1, 0.5, 0.6} for XGBoost.

The tuned hyperparameter for random forest are,

1. mtry: Number of variables that randomly selected as candidates at each split.

17

Train-mae Test-mae SubSample SubColumn lambda

1 0.7498 0.8360 0.5 0.5 1
2 0.7588 0.8299 0.6 0.5 1
3 0.7386 0.8200 0.5 0.6 1
4 0.7555 0.8408 0.6 0.6 1
5 0.7450 0.8246 0.5 0.5 3
6 0.7553 0.8243 0.6 0.5 3
7 0.7590 0.8275 0.5 0.6 3
8 0.7563 0.8360 0.6 0.6 3

Table 2: XGBoost tuning result

2. node_size: Minimum size of terminal nodes. The larger node size, the smaller tree to
grow.
3. sample_size: ratio to resample observations from original data.

The tuned result for random forest is listed in Table 3. The lowest out-of-bag error is
preferred. Thus, {mtry, node_size, sample_size} = {10, 14, 0.632} for random forest.

mtry nodesize samplesize OOB_RMSE

1 10 6 0.55 1.522354
2 11 11 0.55 1.521293
3 10 12 0.55 1.522118
4 10 13 0.55 1.522575
5) 10 14 0.55 1.521393
6 10 15 0.55 1.522322
7 12 12 0.632 1.522569
8 12 13 0.632 1.522434
9 10 14 0.632 1.521256
10 10 14 0.7 1.522423

Table 3: Random Forest tuning result

18

5.3 Results
5.3.1 Gini Index

Table 4 shows result of Gini index. The models list in column is base premium and list
in row is competing premium. To use “mini-max” strategy, we pick the most competitive
model for each base premium, which are all XGBoost (12.858, 9.844, 7.795, and 14.801,
respectively) except when XGBoost as base premium, 5.940. Among those candidates,
5.940 is the smallest value and it is attributed to XGBoost. Thus, the selected score for
Gini index is XGBoost. The ordered Lorenz curve is displayed in Figure 3, where the
black line is the line of equality and the coloured line the ordered Lorenz curve. The
Figure also shows that the area between line of equality and the ordered Lorenz curve is
relatively larger when picking XGBoost as competing premium and remaining model as
base premium, which again supports XGBoost is the "best” model. In order to ensure the
consistency of results, we randomly split original data 5 times as train set and test set, and
train each time including the tuning parameters. The finalized Gini index is calculated by
taking average of those 5 results. Table 5 shows the result of averaged Gini Indices, which
provides additional confirmation that the XGBoost is the choice for Gini index.

GAM TDboost GBM XGBoost RandomForest

GAM 0.000 9.670 11.215 12.858 9.710
TDboost 6.622 0.000 7.654 9.844 5.161
GBM 1.263 1.185 0.000 7.798 4.110
XGBoost 5.082 4.552 5.940 0.000 1.072
RandomForest 12.742 14.012 14.731 14.801 0.000

Table 4: Gini Indices

5.3.2 Mean Absolute Error

The procedure to measure more consistent result for mean absolute error is similar
as computing Gini index. We trained each model by different training and testing set
for 5 times, and take the average to measure which model is the most accurate. The
corresponding prediction errors are shown in Table 6.

19

GAM TDboost

GBM XGBoost

RandomForest

001
751
501
251

0-

WYo

00+
751
50
251

0-

wao

001
751
50
254

n

15810 JWopuey

00+
754
501
251

isooqqQlL

0-

00

50

AN NN

1s0089X

T

0 25 5 75 1000 25 5 75 1000

25 50 75 1000 25 50 75 1000
Premium

2% 50 75 100

Figure 3: The ordered Lorenz Curve for auto-insurance data

Score
— GAM
""" TDboost
=== GBM
- XGBoost
RandomForest

The value of error is larger than usual because of the imbalanced value of response
variable. As expected, the XGBoost performs best on test set every time. The random
forest performs worst among those 5 models. Random forest is poorer to handle such
regression problem with imbalanced data.

20

GAM TDboost GBM XGBoost RandomForest

GAM 0.000 6.595 8.574 10.920 12.487
TDboost 9.078 0.000 8.772 11.863 12.637
GBM 5.168 -0.912 0.000 8.406 9.664
XGBoost 6.239 3.037 5.606 0.000 7.158
RandomForest 8.479 6.354 8.070 7.682 0.000

Table 5: Averaged Gini Indices

MAE GAM TDboost GBM XGBoost RandomForest
1st Iteraion 0.8688 0.8397 0.8411 0.8317 0.8848
2nd Iteration 0.8428 0.8291 0.8267 0.8157 0.8610
3rd Iteration 0.8554 0.8257 0.8207 0.8089 0.8569
4th Tteration 0.8375 0.8229 0.8242 0.8030 0.8487
5th Iteration 0.8422 0.8126 0.8210 0.8056 0.8661
Average 0.8493 0.8260 0.8267 0.8130 0.8555

Table 6: Mean Absolute Error

5.3.3 Bootstrap

Variance RMSE,10~* GAM TDboost GBM XGBoost RandomForest

1st Iteraion 4.645 4.959 4.880 4.567 4.016
2nd Iteration 5.162 5.614 5.674 5.531 4.082
3rd Iteration 3.718 4.324 4.000 4.942 3.242
4th Iteration 5.246 5.609 5.516 5.431 4.171
5th Iteration 6.126 7.344 6.619 7.250 5.511

Average 4.980 5.570 5.556 5.544 4.204

Table 7: Bootstrap Variance in RMSE

The estimation of prediction error variance by bootstrap is presented in Table 7. For
each iteration, 50 re-sampled bootstraps are used to perform for all models. The result
shows the random forest has lowest variance in RMSE, which indicates random forest is
more robust to alternative dataset. However, the XGBoost is quite sensitive to the change

21

of data.
5.3.4 Computational Time

The computational time for each model in each iteration is presented in Table 8. The
time only involves the training time, and excluding the tuning part. Random forest costs
the least amount of time, even 20 to 30 times less than other models. The time consume
for XGBoost and Gradient boosting also indicates the system design for XGBoost saves
half of time based on gradient boosting.

Computational Time/Sec GAM TDboost GBM XGBoost RandomForest

1st Iteraion 13.47 69.7 111.7 45.75 3.27
2nd Iteration 28.16 68.41 107.17 43.87 3.58
3rd Iteration 23.27 77.63 126.85 62.64 3.5
4th Iteration 13.13 68.59 109.36 43.91 3.76
5th Iteration 34.02 71.61 111.53 46.09 3.73

Average 22.41 71.19 113.32 48.45 3.57

Table 8: Computational Time

5.4 Model Interpretation
5.4.1 SHAP Values

The SHAP (SHapley Additive exPlanation) values [19] can deal with the inconsistent
problems that current feature attribution methods have for tree ensembles. [25] has proved
the SHAP values are the only consistent and locally accurate feature attribution for tree
ensembles. The prediction explanation methods use the features and original complex
model as input, and output an explanation for prediction, which can regards as explana-
tion model. The most explanation models have the same form, called Additive feature
attribution methods,

M
9(Z) = o+ _ ¢i7] (38)
i=1

22

where g is explanation model, z’€ {0, 1}, M is the number of feature, and ¢; € R. The
effect of observation or nor observing a feature is calculated by define function h,, which
maps pattern of missing feature z, to feature space of original complex model f. Let S be
the set of non-zeros indexes in z’, and E|[f(z)|zs| is expected value of function condition
on a subset S of input feature. The SHAP value is calculated by [25],

|S|N(M — |S] = 1)!
2 |
SCN\{i}
where f,(S) = f(h.(2")) = E[f(z)|zs], and N is set of all input feature.

REVOLKEDYes |0.673 ‘ L, Sy . A
MVR_PTS |0.288 | ? immmmen:
JOBCLASSLawyer | 0.160)
MAX_EDUCPHD | 0.096 o
JOBCLASSDoctor |0.093 R
TRAVTIME | 0.083 om0
JOBCLASSHome Maker | 0.078)
BLUEBOOK |0.073 = mee G
JOBCLASS_Blue.Collar |0.071 6:?,’
HOMEKIDS |0.065 ﬁ-r!
1.0 05 0.0 05 10

SHAP value (impact on model output)

e
Feature value |, High

Figure 4: SHAP summary plot for XGBoost on auto-insurance claim data

The visualization of SHAP value is called SHAP summary plot. The traditional vari-
ables importance plot only presents the global feature importance by bar chart. SHAP
summary plot presents how the distribution and range of each feature impacts prediction
and how feature value correlates to the impact. The feature sorted by global importance

23

Z;-V:l |gz§§j)|, which ranked in descending order. Each dot in plot represents an observation
corresponding to its SHAP value. The horizontal location indicates whether the effect of
feature value is associated with lower or higher prediction. The color represents the value
of feature [5]. Figure 4 presents the SHAP value for XGBoost. Revoked (whether license
revoked in 7 years) at baseline is the most important factor for insurance premium. The
color has smooth gradient if the impact for output has changes as the changes of the feature
value smoothly. The density of MVR_PTS (Motor vehicle record point) plot shows how
different record points are in data, and the gradient colors show smooth increase in predic-
tion as record points increase. The majority of people have negative impact on prediction
with whether policyholders are group of laywer, PHD, doctor or blue collar.

5.4.2 SHAP Interaction Value

The interaction effect of pairs of features on prediction can be calculated by Shapley
interaction index [10],

o [SPM -5 -2)' o
®’L7_j - Z ' 2(]\4—_ 1)| Vl](S)7 (40)
SCN\{v.j}

when @ # j, and

= fo(SU{i,j}) = (S U{j}) — [fo(SU{i}) = fa(S)]-

In Equation (40) the SHAP interaction value is same between feature i and feature j, where
®; ; = ®;;. The main effect for model result is defined as,

(41)

D= — »_ Py (42)
J#L

The partial SHAP dependence plots shows the impact on model output when the values
of target features are fixed. The plot explains how model correlates to the features. The
x-axis is the value of feature and the y-axis is the SHAP value of that feature. The dots
still represent the observation in data and trend of curve shows how feature attribution
changes as its value changes. The value of interacting feature is colored in plot. In Figure
5, the red curve is LOESS (locally estimated scatterplot smoothing). It shows the low

value of vehicle is more preferred when the distance to work is short.

24

0.0
S
o) L
i / g
- g / . e ot
=1-0.11 / i, e
o N
8 —_—
o
=
@
D>_ -0.21
<
o
w

-0.34

\5‘ 2U[I\DU 40000 'SDE‘IL'!C\
BLUEBOOK
TRAVTIME

(Feature value) 0 100

Figure 5: SHAP dependence plot for XGBoost on auto-insurance claim data

6. Conclusion

This research explores 5 machine learning methods to predict the pure premium for
auto-insurance. Prior to training the models, defining the distribution of data is extremely
crucial step. The TDBoost proposed in 2018 focuses on predicting the zero-inflated in-
surance data. As we assign the Tweedie distribution to GAM, gradient boosting, and
XGBoost, they all have the better performance and comparable to TDboost. However,
since the random forest is an ensemble of unpruned trees, the prediction error is not as
expected as other methods. The random forest is a user friendly algorithm, which not only
has the lowest computation consuming, but also easy for tuning parameter. Tweedie GAM
is widely used in acturial science for application in insurance, which is a strong statistical
model. It has statistical tools for the further investigation and has strong interpretability.
This research is a preliminary particle experiment to try different methods for predicting
premiums.

In the model assessments, we use the ordered Lorentz curve and the associated Gini

25

index as one of the criteria, which is a statistical measure to evaluate the performance
of each model. The XGBoost outperforms other models, which is an insight for further
research to focus on XGBoost extension. The extension is not limited by improving accu-
racy, but also the interpretability for complicated situation and more tends to statistical
perspectives.

26

References

1]
2]

[4]

[5]
[6]

8]

[9]

[10]

[11]

Leo Breiman. Random forests. Mach. Learn., 45(1):5-32, 2001.

Andy Liaw Chao Chen and Leo Breiman. Using random forest to learn imbalanced
data. University of California, Berkeley, 2004.

Tiangi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. 2016.

Money Control. Pure premium. https://www.moneycontrol.com/glossary/
insurance/pure-premium_1435.html.

Dataman. Explain your model with the shap values. Toward Data Science, 2019.

Glenn Meyers Edward W. (Jed) Frees and A. David Cummings. Insurance ratemaking
and a gini index. Journal of Risk and Insurance, 81(2), 2014.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine.
The Annals of Statistics, 29:1189-1232, 2001.

Jerome H. Friedman and Jacqueline J. Meulman. Multiple additive regression trees
with application in epidemiology. Special Issue: Sth Biennial CDC and ADSTR Sym-
posium on Statistical Methods Issues Associated with Complicated Designs and Data
Structure, 22(9):1365-1381, 2003.

Corrado Gini. Variabilita e mutabilita. Reprinted in Memorie di metodologica statistica
(Ed. Pizetti E, Salvemini, T). Rome: Libreria Eredi Virgilio Veschi, 1912.

Trevor Hastie and Robert Tibshirani. Generalized additive models; some applications.
Lecture Notes in Statistics, 82(398):371-386, 1987.

Ayantee Jana and Sujit Ray. Generalized additive model. https://wuw.youtube.
com/watch?v=3jS47pBu_gN8&t=247s, 2015.

27

[12]

[13]

[14]

[15]

[16]

Trevor Hastie Jerome Friedman and Robert Tibshirani. Additive logistic regression:
A statistical view of boosting. The Annals of Statistics, 28(2):337-407, 2000.

Bent Jorgensen. Exponential dispersion models. Journal of the Royal Statistical
Sociely, 49:127-162, 1987.

Bent Jorgensen and Marta C. Paes De Souza. Fitting tweedie’s compound poisson
model to insurance claims data. Scandinavian Actuarial Journal, (1):69-93, 1994.

Rob Kaas. Compound poisson distribution and glms—tweedie’s distribution. In Han-
delingen van het Contactforum, pages 3—43, 2001.

Ivan Kojadinovic Katsushige Fujimoto and Jean-Luc Marichal. Axiomatic charac-
terizations of probabilistic and cardinal-probabilistic interaction indices. Games and
Economic Behavior, 55:72-99, 2006.

Andy Liaw and Matthew Wiener. Classification and regression by randomforest. For-
est, 23, 2001.

M. O. Lorenz. Methods of measuring the concentration of wealth. Publications of the
American Statistical Association 9, 70:209-219, 1905.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predic-
tions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages
4765-4774. Curran Associates, Inc., 2017.

RAVI MALHOTRA and SWATI SHARMA. Machine learning in insurance.
Alexey Natekin and Alois Knoll. Gradient boosting machiens, tutorial. 2013.

J. A. Nelder and R. W. M. Wedderburn. Generalized linear models. Journal of the
Royal Statistical Society, 135:370-384, 1972.

Srinivas Vadrevu Kilian Weinberger Ya Zhang Oliver Chapelle, Pannagadatta Shiv-
aswamy and Belle Tseng. Multi-task learning for boosting with application to web
search ranking. ACM New York, NY, USA@2010, pages 1189-1198, 2010.

Szilard Pafka. Benchmarking random forest implementation. DataScience. LA, 2015.

Gabriel G. Erion Scott M. Lundberg and Su-In Lee. Consistent feature attribution
for tree ensembles. CoRR, 2019.

28

[26] Xuehan Xiong and Fernando De la Torre. Supervised descent method and its appli-
cations to face alignment. 2013 IEEE Conference on Computer Vision and Pattern
Recognition, 2013.

[27] Thomas W. Yee and Neil D. Mitchell. Generalized additive models in plant ecology.
Journal of Vegetation Science, 2(5):587-602, 1991.

[28] Wei Qian Yi Yang and Hui Zou. Insurance premium prediction via gradient tree-
boosted tweedie compound poisson. American Statistical Association Journal of Busi-
ness Economic Statistics, 36(3), 2018.

[29] Karen C.H. Yip and Kelvin K. W. Yau. On modeling claim frequency data in general
insurance with extra zeros. Insurance: Mathematics and Economics, 36:153—-163, 2005.

29

