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Abstract

Biomanufacturing is method of manufacturing using biological organisms to produce prod-
ucts and molecules for a wide-range of applications. Manufacturing of pharmaceutical
products and precursors alone has generated more than $90 billion in sales in 2017, with
Monoclonal Antibodies (mAb) being the primary product. Representing 60% of mAb
biomanufacturing cell cultures, and 84% of approved products in the period of 2015-
2018, Chinese Hamster Ovary (CHO) cells, and other mammalian cells are becoming the
dominant organism used for biopharmaceutical production.

The problem is that many biological organisms being used, and especially mammalian
cell cultures, are not sufficiently understood to allow for accurate prediction and control
using mathematical models. Moreover, models are based on mechanisms and processes
understood at lab-scale, with volumes of 3.5L to 20L whereas industrial volumes are fre-
quently on the order of 20, 000L. At industrial-scale new processes and mechanisms become
salient that are not captured by traditional first-principles models. Furthermore, it is not
clear how to incorporate many measured quantities into these first-principles bioprocess
models; e.g. pH, temperature, osmolality, and others.

Machine learning methods frequently underuse first-principles or mechanistic knowledge
about systems, primarily using them to direct feature engineering and feature selection.
Neural ordinary differential equation architectures, where a neural network learns a dy-
namical system, are becoming one way to combine both neural networks and mechanistic
models to produce hybrid predictive models. These hybrid models incorporate the flexi-
bility of machine learning with the mechanistic knowledge of first-principles-based models.
One area that has the opportunity to benefit immensely from a hybrid modelling approach
is biomanufacturing process control and prediction, where the jump from lab-scale models
to industrial-scale processes introduces processes and variables unaccounted for in models
developed at the lab-scale. Here I demonstrate the application of hybrid modelling with a
simple toy bioprocess model, and discuss other approaches of combining machine learning
and mechanistic modelling present in the literature.
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Chapter 1

Introduction

Mathematical models are frequently used to describe, predict, and control systems. Yet,
they just as frequently fail to do so accurately or precisely. When they do so, we have
model mismatch, or the discrepancy between how a mathematical model may predict a
system to behave, and how it actually behaves. Model mismatch can be due to a number
of factors some of which are on the modelling side of the mismatch, and some are due to
experimental error and limitations. On the modelling side, mismatch is usually because
of the model simply ignoring essential aspects of a system; excluding drag force when
modelling projectile motion, resulting in a perfect parabola is one such example.

There are many reasons why essential aspects of a system might be missing, such as
ignorance of the system, attempting to simplify the model, or not being able to translate
what we measure into our model’s state variables. In the first case, the system may
have many processes where we do not know the exact mechanisms or interactions of the
processes. In the second case, we may want a model that is relatively simple to use and
simulate, and so we deliberately remove or approximate aspects of a model. In the third
case, monitoring the system of interest may result in measuring variables connected to the
state variables in an unclear way. Each case can contribute to model mismatch.

Machine learning, or the process of algorithmically approximating a function using
data, may provide a method of augmenting differential equation models to reduce model
mismatch. In particular, in the cases of system ignorance, and measurement variables
being different from state variables, machine learning may be especially useful. This is
because, if there is available data, machine learning offers a flexible method to determine
complex non-linear relationships, that once trained is easy to use.

Yet, machine learning frequently ignores previously gathered mechanistic knowledge.
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Instead, domain knowledge is only used to engineer inputs to the model, thereby providing
it with more useful inputs. For example, transforming coordinates from Cartesian to
polar, or using square footage instead of total length and width for a model predicting
prices of houses. In this way, feature engineering enables some usage of previous domain
knowledge. But, it rarely allows full usage of mathematical models, or clear theories, laws,
or predictions.

Combining machine learning and mechanistic modelling may then offer a way of reduc-
ing model mismatch. The machine learning aspect of the model provides flexibility, while
the rest of the model provides explicit encoding of a mechanistic principle. As a result,
the model can use previously gathered mechanistic knowledge and adapt to factors driving
model mismatch based on available data when needed.

This report will review methods of combining machine learning and mechanistic mod-
elling. In addition, hybrid methods based on neural differential equations will be applied
to simulation-based experiments. However, we first introduce biomanufacturing, an area
where model mismatch can be caused by several complexities, and hybrid modelling may
be of particular value.

1.1 Biomanufacturing

Biomanufacturing is the usage of (usually modified) living cellular organisms to manu-
facture products of interest, like insulin, penicillin, vaccines, antibodies, and more. The
essence of it is to take a culture of cells, and grow them in a vat. It is an enormous industry
with sales revenues breaking 123 billion for monoclonal Antibodies alone [50], while also
being an industry producing wide-scale societal benefits in other health domains and in
sustainability. Artemisin, a therapeutic for malaria, is now able to be produced at scale
and cheaply, thanks in large part to large-scale biomanufacturing of precursor molecules [9].
Vaccines are manufactured in this way (though not mRNA-based vaccines like Pfizer and
Moderna’s [41]), as are dairy-based products and fermentation processes for brewing beers.
Biomanufacturing is expected to continue increasing in importance for numerous reasons:
(1) more medicine-related products are being produced in this way, (2) it is a relatively
sustainable way of producing products, (3) because of the Covid-19 pandemic, countries
such as Canada are making large investments in biomanufacturing research, development,
training, and facilities [1].

The process of developing, predicting and controlling a biomanufacturing process is dif-
ficult and extremely important. In 2004 the FDA outlined regulations on the biomanufac-
turing of pharmaceutical products requiring both the product and the process of producing
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it to pass stringent quality assessments before approval [51, 3]. Moreover, trying a given
process at industrial-scale can be time-consuming and resource-intensive as days to weeks
are required for some processes. Hence mathematical modelling of the cellular metabolism
and growth processes is done in an attempt to design optimal process experiments and
control them; sometimes dubbed a Digital Twin [52], the process of modelling bioman-
ufacturing processes has become paramount in determining optimal process conditions,
in order to control the process, and determine short-term scheduling and staffing, all to
maximize process performance and quality.

Furthermore, prototyping, or proof-of-concepts are done at lab-scale in vats of a ≈3L
and up to (but less commonly) ≈15L. Yet, industrial-scale production is frequently done
with tens of thousands of litres with vats of volumes up to 100, 000L. During this scale-up
from lab to industrial-scale, many complexities arise prohibiting optimal production of the
product of interest. Because scale-up frequently prevents lab-successes from easily being
manufactured at scale, it has become dubbed a valley of death [6].

1.1.1 Complexities

Scale-up brings about new complexities, and intensifies others. One category of complex-
ities are transfer phenomena: heat-transfer, gas-transfer, substrate- and product-transfer.
Another complexity emerges from having poorly characterized cellular systems. And the
third complexity is the difficulty of measuring directly quantities of interest in a vat. Each
of them complicate the path from lab-success to industrial-scale production. Moreover,
models must be able to accommodate these complexities, otherwise they become of limited
use [52].

The jump from lab-scale reactors of < 10L to 10, 000− 100, 000L allows for transport
phenomena to become important to the efficiency and productivity of a given process.
Thermal energy released by cells undergoing regular metabolic processes heats the sur-
rounding local environment, and – analogously to compost piles heating up – can increase
the local temperature. Cells then respond to the temperature change in multiple ways,
including initiating stress responses or undergoing metabolic changes, modifying the pro-
duction rate of products-of-interest. Along with local temperature changes, cells consuming
substrate (their source of nutrients) will decrease the local availability of substrate, if it
decreases too much the cells may switch to another nutrient source, or stop growing, chang-
ing the rate of production of the product-of-interest. In addition, local gas concentrations
become a concern when aerobic metabolic processes are desired. The aerobic process re-
quires oxygen, and carbon dioxide is generated as a byproduct. In the absence of oxygen,
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cells may slow down their growth and convert to fermentation, releasing lactic acid. Both
lactic acid from fermentation and carbonic acid from dissolved carbon dioxide will change
the local pH, affecting cells’ growth rate and production of POI.

Along with transport phenomena complexities, cellular metabolism is another com-
plexity. This is due to cellular organisms frequently being poorly characterized, leading to
models ignoring important processes, or being unaware of them in the first place. Moreover,
model parameters are also underspecified, as finding the correct parameter values given
some data yields intervals of parameter values for a given confidence interval. Because the
model dynamics are frequently non-linear, inaccuracies in model parameters lead to large
prediction inaccuracies.

Third primary complexity is that measuring variables of importance during a bioman-
ufacturing process is difficult. Instead, other measurements are conducted. Frequently
the state variables being modelled – substrate concentration, biomass, product concentra-
tion, amino acid concentration(s) – cannot be directly measured during a manufacturing
process. Rather, measurements of pH (how acidic the environment is), gas concentration
(usually dissolved oxygen), optical density (estimate of biomass), osmolality (concentra-
tion of particles dissolved in solution), vessel pressure, temperature, and agitation rate are
available throughout the process. Despite these measurements being available, and related
to or affecting metabolic processes, incorporating them into models is not always done.
E.g. temperature affects the metabolic rate of cells, and is affected by cells undergoing
metabolism, yet relating temperature to the primary state variables is not clear, so the
data is underused.

Each complexity along the path to commercial-scale, industrial biomanufacturing pro-
vides more room for model mismatch. Transport phenomena and the increased likelihood
of heterogeneity in the reactor change the rate parameters and other dynamics involved
when using mathematical models to predict product production. Unspecified or under-
characterized cellular processes become more problematic at large-scale where model mis-
match can become more prominent. Being unable to directly measure many state variables
or process attributes directly undermines the utility of mathematical models relying on
those very concentrations.
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1.2 Combining Machine Learning and Mechanistic Mod-

elling

1.2.1 Sequence prediction with neural networks

Before going into methods of combining machine learning with mechanistic understanding
of a system, first we describe how sequence prediction is already done using neural networks.

Sequence prediction corresponds to the following problem. Given a sequence {x1, x2, . . . , xn}
usually represented using a vector ~x =

[
x1 x2 . . . xn

]T
predict xn+1 the next element

in the sequence. Predicting the next element in the sequence with neural networks requires
a specific type of neural network architecture: the recurrent neural network, and variants
built from that.

Recurrent neural networks (RNNs) have two different input/output types: hidden
states, usually denoted by hi; and, the normal inputs, xi. The major difference from a
normal neural network architecture is the outputted hidden state is recursively updated at
each time step. This enables the neural network to store information about previous ele-
ments of the sequence in a compact ’memory’, in the form of the hidden state as depicted
in Figure 1.1. The RNN is extensively used, having seen success in handwriting synthesis
and text prediction [18], and other time-series prediction tasks such as weather forecasting
[25].

Figure 1.1: Graphical representation of a recurrent neural network (RNN). xt is the initial
input. hi is the hidden state. h1, the first hidden state input is traditionally chosen to be
zeros, or random. ŷi is the predicted output. To extrapolate off of the initial input, the
predicted output is fed back into the recurrent neural network as an input.
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One limitation of RNNs is their memory state is short-term, prioritizing the recent past.
A variant architecture that is frequently used is the Long Short-Term Memory (LSTM)
network. The LSTM resolves the short-term memory problem of RNNs, and is also effective
for time-series forecasting [25].

Both RNNs and LSTMs suffer from two limitations that may be addressed with neu-
ral differential equations, as described below. The first is that they are forced into fixed
time-steps. The time-stepping is implicit to the RNN because it is implicit to the sequence
we are providing the RNN with. However, many problems are irregularly sampled, or we
need more continuous time-series forecasting for control or scheduling purposes. The sec-
ond limitation is the ambiguity regarding incorporating domain knowledge, or mechanistic
knowledge, into RNNs – feature engineering and selection are the primary methods of try-
ing to do so. A third limitation is that many systems of interest have behaviour with at
least continuous first derivatives, and while neural networks can approximate any contin-
uous function, RNNs cannot easily give results that are smooth because we do not require
them to explicitly learn the dynamics governing some behaviour. The sections below will
discuss different methods of incorporating mechanistic knowledge into a machine learning
setting to build hybrid models.

1.2.2 Sparse Identification of Nonlinear Dynamics (SINDy)

Using machine learning and leveraging sparse encoding for determining differential equation
models has been shown to be a successful method of determining governing equations for a
dynamical system [7, 46, 28, 20, 29]. The method works by setting up a regression problem
with an additional term inducing the regression coefficients to become equal to zero [45],
Eq. 1.1. By a clever choice of model, pushing most of the regression coefficients to be
zero, and leaving a small subset of coefficients non-zero, can identify a dynamical system
approximating the data.

We wish to minimize ∑
i

(ytrue,i − ŷi)2 + λ
∑
j

||θj||1 (1.1)

where θj are the regression coefficients, ŷi is the model’s prediction at time ti, and ytrue,i =
dx
dt

(ti). By choosing the model to be

ŷ =
M∑
j=1

θjfj(x(t)) (1.2)
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with each fj(x) a different function of x, then minimizing Eq. 1.1 with respect to θj
results in a sparse model of non-zero coefficients. These non-zero coefficients select the
functions fj(x) best approximating the dynamical system yielding the observed data. λ
is a hyperparameter controlling the cost of having non-zero coefficients. A very large λ
yields a model with very few coefficients, whereas λ ≈ 0 may yield a model with many
non-zero coefficients. The optimal choice of λ requires iterating the process of regression
on a training data set, and testing on a validation set.

In this way, a lasso regression can yield a sparse model, thereby providing a data-
driven method of identifying a mechanistic model. In the biological realm, this method
has been used to reconstruct dynamics of the Michaelis-Menten equation, a yeast glycolysis
model, and a B. subtilis model, albeit using simulated data from those models, and not
observed experimental data [29]. Because this method seems successful at identifying
model dynamics from data, it has been dubbed Sparse Identification of Nonlinear Dynamics
(SINDy).

SINDy procedure

The SINDy method assumes that we have time-series observations xi(tj). From those
time-series observations, we must estimate the time-derivative at the sampled time points
using a numerical differentiation technique. Once we do that we will have approximate
observations of the rate of change of the system at time points tj,

dxi
dt

(tj). Since we have
the (approximate) time-derivative for each dimension of our system, we have a matrix

d

dt
X(t) =


dx1
dt

(t1)
dx1
dt

(t2) . . . dx1
dt

(tM)
dx2
dt

(t1)
dx2
dt

(t2) . . . dx2
dt

(tM)
...

...
. . .

...
dxN
dt

(t1)
dxN
dt

(t2) . . . dxN
dt

(tM)

 =

[
dxi
dt

(tj)

]
(1.3)

where N is the number of dimensions for our dynamical system, and M is the number of
time-points we sampled at. The next step is to build a ’dictionary’, which contains the
matrix of points put through some functions. The family of functions selected and included
in the ’dictionary’ is somewhat arbitrary, and depends on what functions the user supposes
may be relevant to describing the observed dynamics. The choice of functions to use in
the dictionary is one of the major bottlenecks of the SINDy method.

As an example, taking one of the rows of Eq. 1.3 we have that

dx1
dt

=
[
1 ~xT ~xT,2 ~xT,p sin(~xT ) . . .

]
~θ1 (1.4)
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where, ~xp is a multinomial raised to power p; e.g. for ~w ∈ R2, ~w2 = w2
1 + w1w2 + w2

2;

sin(~xT ) =
[
sin(x1) sin(x2)

]
. ~θ1 is the vector of coefficients for the first dimension of the

dynamical system. Minimizing Eq. 1.1 to find the optimal set of coefficients ~θi picks out
the functions best approximating the derivative of ~x, giving us governing equations for the
system we are observing.

One major limitation of the SINDy method is its dependence on the choice of functions
fj, and its memory usage when there is a large number of functions and a large number of
dimensions of the system being modelled.

1.2.3 System-informed Deep Learning

Another method of using machine learning in concert with pre-existing knowledge, or first-
principles, is to add governing equations to the loss function, thereby constraining the
machine learning model to respect a physical principle we believe governs the system we
are measuring.

L = Ldata + LODE (1.5)

where

Ldata =
1

Ndata

Ndata∑
i

(xi(ti)− x̂i(ti))2 (1.6)

LODE =
1

NODE

NODE∑
j

(
dx̂

dt

∣∣∣∣
t=τj

− f(x̂j(τj; θ), τj)

)2

(1.7)

and times ti do not need to equal times τj. Note that the derivative is the time-derivative
of x̂ the prediction from our model. We can compute the derivative of our neural network
model using automatic differentiation, which is readily available and implemented in many
different libraries [19, 26].

The applicability of this method has been shown in many different contexts. Initially
developed for physical systems in two parts [38, 39] in which the authors described the
method and used it for solving PDE problems from physics, and for determining PDE
parameter values. It was then broadly applied in fluid dynamics problems [8], and in
describing surface waves on a metal plate for investigating surface-breaking cracks in metal
plates. [42]. In the biology realm the method was also investigated for solving a yeast
glycolysis model, cell apoptosis model, and an endocrine model, where the system-informed
neural network was used to determine the dynamics of unobserved state variables, and
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also to infer the parameters of the DE system; albeit, this study was a simulation study
with noise added to the simulated datasets to mimic data collection noise, and not using
experimental data.

Both SINDy and system-informed neural networks require, or improve with, having
pre-existing knowledge of the system being modelled. For SINDy, having some idea of
what functions should be used in the sparse regression improves the whether the method
will converge upon an interpretable and predictive system of DEs. For system-informed
neural networks, having an understanding of what DEs or other constraints to include
in the loss function is paramount to the methodology; for the constraint in Eq. ?? we
require that we know f beforehand, this is an important distinction for the next section.
The advantage of SINDy over system-informed neural networks is provides a DE model
when we initially did not have one. While system-informed neural networks can be used
as a way to find the solution for a system and the values of the parameters in its model.
Where SINDy falls short compared to system-informed neural networks is its reliance on
the functions the user pre-selects, rather than having a purely flexible neural network.

1.2.4 Neural Differential Equations

The most common neural differential equation, and especially the most well-known, is the
neural ordinary differential equation of [10]. Neural ODEs are of the form

dx

dt
= fNN(x, t; θ) (1.8)

where fNN is a neural network with x and possibly t as inputs. The neural network’s
learnable weights are θ. In this case, the neural network is defining the vector field of
the dynamical system. This is different from system-informed neural networks, where the
neural network is being used as the solution x of a pre-defined dynamical system f , with the
f being used to constrain the neural network’s outputs to satisfy the differential equation,
whereas with neural differential equations, we do not know f , and instead allow it to be a
neural network fNN that will determine a vector field from data.

As noted in [10], we can be sure a solution exists to Eq. 1.8 because of Picard’s Theorem.
Since a composition of Lipschitz continuous functions is Lipschitz continuous, so long as
we choose Lipschitz continuous activation functions for the neural network fNN, then fNN

will be Lipschitz continuous as well. So, we can apply Picard’s Theorem to guarantee the
existence and uniqueness of a solution to Eq. 1.8, given an initial value.

In this case we are making a distinction between the neural network weights θ, and
the ODE parameters p, however there is work where this distinction is not made and all
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parameters are updated during training [31]. In this form we can then use any numerical
integration method to obtain x(t) at time t.

Evaluation of neural differential equation

Evaluating neural networks is a fairly straightforward task: go through each of the matrix
multiplications and activation functions corresponding to the layers. A neural differential
equation is only a little different. This time we must use a numerical integrator, along with
the neural network, to provide us with the desired output x.

xpred(t) = odeint
(
x(0), fNN(x; θ)

)
(1.9)

with odeint(·, ·) being a ODE integrator taking an initial condition and the function out-
putting the derivative. Unlike other neural network architectures, neural differential equa-
tions enable the user to select any ODE integrator they wish, allowing the use of fixed or
adaptive algorithms. The latter may be useful when modelling a system that is oscillatory,
or having otherwise sharp changes.

Training neural differential equations

Training a neural differential equation has many similarities with training other neural
networks: update the neural network’s weights θi using the gradients of the loss function

θi,new = θi,old − λ∂θiL(xtrue, xpred) (1.10)

where
∂θiL(xtrue, xpred) = ∂xpredL · ∂θixpred (1.11)

is numerically computed using automatic differentiation [19]. A major difference, however
is that we must take a derivative through the ODE integrator in order to correctly compute
the derivative of the loss function. There happen to be two ways to do this. The first is
using forward sensitivities, and the second is using backward sensitivities. The backward
sensitivity method, or adjoint method, is popularized in [10], but used extensively in the
Julia Programming Language, specifically in the Julia package DiffEqFlux [35].

Forward sensitivities compute the right-hand side of Eq. 1.11 by defining a second ODE

10



to solve while solving Eq.1.8

∂θi

( d
dt
xpred

)
= ∂θif(xpred(θj), θj) (1.12)

= ∂xpredf · ∂θi(xpred) + ∂θif (1.13)

=⇒ d

dt

(
∂θi(xpred)

)
= ∂xpredf · ∂θi(xpred) + ∂θif (1.14)

where in the last line we used Clairaut’s theorem. Letting si = ∂θi(xpred) we can write

d

dt
si = ∂xpredf · si + ∂θif (1.15)

and solving for si numerically. The forward sensitivity method was frequently used in
the early bioprocess literature trying to involve neural networks in modelling (as will be
described below). However, the forward sensitivity method has limitations. It requires
computing a large number of intermediate points, each for a different neural network
weight. [27] found that the forward sensitivity method is more efficient on small problems
with few weights, and otherwise adjoint methods should be used.

The backward sensitivities –also known as the adjoint – method, never computes si.
Instead, it computes ∂θiL directly, and is the more commonly used method in the neural
differential equation literature. The required equations for the adjoint method are

da

dt
= −a∂xpredf(xpred, t)

daθ
dt

= −a∂θif(xpred, t)

where

a(t) =
dL

dxpred(t)

aθ(t) =
dL

dθ(t)

with initial conditions a(T ) = dL
dx(T )

and aθ(T ) = 0. We solve the above dynamical equations
backward in time to get the gradients of the loss function aθ. Derivations for this method
have been presented elsewhere [10], and so will not be included here.
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Classification with Neural ODEs

Despite the primary focus of this report being on using neural ordinary differential equa-
tions to combine machine learning and mechanistic modelling for the sake of regression
tasks, the reader may be interested in how they are used for classification tasks. We take
a brief interlude to describe that now.

Performing classification with neural ODEs requires an affine layer after the neural
ODE

d~x

dt
= fNN(t, ~x) (1.16a)

~̂y = g(~x) (1.16b)

ŷpred = argmax(~̂y) (1.16c)

where ~x(0) ∈ R28×28 is a grey-scale image with 28× 28 pixels unrolled into a long vector,
with an associated label from 0 to 9 (if we are looking at images of digits as in the MNIST
dataset [12]). For image classification, we want to map from an image to its label. fNN ∈
R × R28×28 → R28×28 is a neural network defining the neural ODE, and g : R28×28 → R10

is an affine neural network layer outputting into the possible labels. The convention is to
then integrate the neural ODE from 0 to 1 with initial condition ~x(0) being the inputted
image. After time-evolving the image, the new vector ~x(1) is fed into g. g(~x) then provides
a vector with 10 entries, we take the index of the maximum value, and that is the label
predicted of the inputted image. While using this method allows us to use neural ODEs for
classification tasks, the standard is still to use other neural network architectures because
they have been found to perform better.

Augmented Neural ODEs

Conventional artificial neural networks are universal function approximators. However, it
can be shown, and was first described in [13], that Neural ODEs by themselves are not
universal function approximators. Instead, Neural ODEs must be ”augmented” with addi-
tional dimensions compared to their inputs, enabling them to use the additional dimensions
to produce simpler vector fields; experimentally additional dimensions has also been found
to result in performance gains [13, 30].

To show Neural ODEs cannot represent any function, we will show two cases similar
to [13]. The first is in 1D. Consider a classification problem where x = 1 is to be classified
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as 0 and x = 0 is to be classified as 1; let gswap : R→ R define that function. If we define
the neural ODE as

dx

dt
= fNN(t, x) (1.17)

then we know that x(t) will be a continuous path. We can define two continuous trajecto-
ries, one starting at x(0) = 0 and one starting at x(0) = 1, x0 and x1 respectively. At time
T they terminate at x0(T ) = 1 and x1(T ) = 0. We can define x(t) := x1(t)− x0(t) giving
us a continuous function beginning at x(0) = 1 and terminating at x(T ) = −1. From
the intermediate value theorem, we know that there must exist a point c ∈ (0, T ) such
that x(c) = 0 =⇒ x0(c) = x1(c). This implies both trajectories must intersect, despite
beginning at different initial values. But because solutions to ODEs must be unique, we
arrive at a contradiction, giving that a standard neural ODE cannot represent the function
gswap. Note that the proof provided is a variant of the one given in [13].

In higher dimensions the functions to choose to show the result are functions taking
concentric circles to different values. Take 0 < r1 < r2 < r3, define two annuli:

gswap,2D(~x) =

{
1, if ||~x|| < r1

0, if r2 < ||~x|| < r3
(1.18)

Showing that neural ODEs cannot learn the function gswap,2D(~x) is shown in [13], and relies
on two main points:

• Solutions to Eq. 1.8 are homeomorphisms, and therefore preserve topology.

• Classification using Eq. 1.16 requires the two annuli to be linearly separable.

since the only way to make annulus A := {~x ∈ Rd|||~x||2 < r1} linearly separable from
annulus B := {~x ∈ Rd|r2 < ||~x||2 < r3} is to break B or to have overlapping trajectories,
neither of which can occur.

Remedying neural ODEs inability to approximate any function is done by ’augmenting’
it with extra dimensions. This is done by introducing ~a(t) ∈ Rna , with na being the

’augmentation’ dimensions, and concatenating it to the end of ~x(t):

[
~x(t)
~a(t)

]
. And, we

rewrite the neural ODE as

d

dt

[
~x(t)
~a(t)

]
= fNN(t,

[
~x(t)
~a(t)

]
) (1.19a)
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and ~a(0) = ~0. The additional dimensions then enables the the neural ODE to find solutions
that can separate spaces it otherwise would not be capable of separating. Numerical work
also finds that augmented Neural ODEs tend to be more easily trained, and generalize
better, than non-augmented ones [13, 30] because the flows it generates are ’simpler’.

Zero-augmentation, as described, is not the only way to perform augmentation. Ex-
plored in [30], augmentation can also be generalized to input-layer augmentation. In this
scheme we do not necessarily choose ~a(0) = ~0, and instead generalize to other options

hx(~x) : ~x→
[
~xT ~h(~x)T

]T
(1.20)

where 0-augmentation simply has

h(~x) : ~x→
[
~xT ~0T

]T
(1.21)

1.2.5 Hybrid Neural Differential Equations

Now that we have covered the basics of neural ordinary differential equations, and some
related work in the space of combining machine learning with mechanistic modelling, we
can describe specific methods of doing so with neural ODEs. Recall that neural ODEs are
of the form

dxpred
dt

= fNN(x, t; θ) (1.22)

where fNN is a neural network. Because many systems are modelled using differential
equations, we can include explicit terms we believe should model a system of interest. We
can write this as

dxpred
dt

= k(x, t; p) · fNN(x, t; θ) + g(x, t; p) (1.23)

where k(x, t; p) and g(x, t; p) are functions we select to be in the differential equation, and
p are the parameters for those functions. This enables us to develop a hybrid mechanistic-
machine learning dynamical system, where we have terms corresponding to mechanisms
we believe to govern the system (functions k, and g) and terms for a neural network (fNN).
The expressivity of a neural network can then improve our mechanistic model by capturing
dynamics we may have otherwise missed.

Let us consider a simple example: the Lotka-Volterra model. In the Lotka-Volterra
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model, we have

dx1
dt

= αx1 − βx1x2 (1.24a)

dx2
dt

= −δx2 + γx1x2 (1.24b)

Suppose for example, that the modeller did not know the interaction terms in Eq. 1.24,
but they suspected there was some interaction. Then, the modeller could include in each
equation an output of a neural network

dx1
dt

= αx1 + fθ,1(x1, x2) (1.25a)

dx2
dt

= −δx2 + fθ,2(x1, x2) (1.25b)

and, using observations of the predator-prey system, the modeller can train the neural
network to approximate the interaction term(s) that, in this case we know to be present,
but frequently we either do not have a full a model or do not have the correct mechanisms.
In the latter case, we might imagine having an predator-prey system where the prey have
a carrying capacity, but we are modelling it as in 1.24. If we suspected we had the wrong
model, but were able to obtain observations from the system then we could modify our
Lotka-Volterra model to be

dx1
dt

= αx1 − βx1x2 + fθ,1(x1, x2) (1.26a)

dx2
dt

= −δx2 + γx1x2 + fθ,2(x1, x2) (1.26b)

where the neural network is being used to ’correct’ the mismatch between our incorrect
model and the system under question.

Note that here I am calling Eq. 1.23 a ’Hybrid Neural Differential Equation’ while in
other works it is called a ’Universal Differential Equation’ [36, 40]. Moreover, the authors
in [36] go a step further: they use the SINDy method on outputs from the neural network
portion of Eq. 1.23 to find a functional form for it. Having this functional form is meant
to provide a mechanistic interpretation of what the neural network has learned. However,
there is no reason to believe the family of functions chosen in the SINDy method is correct.

Training hybrid neural differential equations can occur in two different ways. In one
method the differential equation parameters – α, β, δ, γ in Eq. 1.26– can be updated along
with the neural network weights, but that removes some of the interpretability aspects
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of the mechanistic part of Eq. 1.23. The alternate method is to first fit Eq.1.23 to data
without the neural network terms, then holding the parameters α, β, δ, γ fixed, re-introduce
the neural network terms and only update their weights ~θ.

Initializing the neural network weights is usually done by starting the weights ~θ at, or
very near, zero. Rather than initializing with random values

1.2.6 Hybrid models in process modelling

Traditionally, modelling of cells and bioprocesses consists of incorporating as many known
or guessed details as possible into a reaction network. That reaction network is then trans-
lated into a system of ODEs usually resulting in high-dimensional models. At the extreme
side of the spectrum is whole-cell modelling, where the modeller(s) attempt to capture
details of every kinetic process in the cell. This approach faces various challenges to its
effectiveness: frequently the models are under-parameterized as the parameters (e.g. rate
parameters, enzyme concentrations, intracellular metabolite concentrations) cannot easily
be measured; or the mechanisms inside and between cells is poorly understood, leading to
phenomenological models or omitting processes known to affect the system. Despite this,
modelling approaches have been invaluable for re-wiring metabolism, informing target se-
lection, controlling bioprocesses, and design of experiments.

As bioprocesses become measured in different ways, high-throughput methods become
more available, and the bioprocess industry continues to invest in process analytical tech-
nology (PAT), the industry is expected to experience a deluge of data [52, 4, 2, 33]. Because
of this, akin to the petrochemical and chemical industries [52], the ground is fertile for the
growth of data-driven methods such as machine learning, and specifically deep learning, to
assist in leveraging this data for automation and optimized production.

Data-driven models rely heavily on data to approximate a function from given inputs to
given outputs using statistical correlations between the input variables. Because they rely
so heavily on existing data, rather than first-principles or mechanistic knowledge, data-
driven models can have difficulty extrapolating to new situations not already explored in
the experiments used to train the model. However, their flexibility allows them to find
non-intuitive, non-linear relationships between input variables and target outputs.

First-principles, or mechanistic, models, are derived from physical, chemical, or bi-
ological principles. In bioprocesses they usually include mass balances, reaction kinetic
pathways, transport phenomena, and thermodynamics, usually expressed as a system of
differential equations. Because they are built from principles about how systems func-
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tion, their parameters usually have a physical meaning, and they generally exhibit good
extrapolation capability.

The avenue explored in this report, and being increasingly discussed in the literature is
hybrid modelling – models incorporating both data-driven and first-principles-based meth-
ods. The basic outline of a hybrid model is to use a mechanistic model with data-driven
approaches estimating unknown parts of the equations, or to estimate unknown functional
relationships between variables of interest. Hybrid modelling is appealing because the flex-
ibility of a data-driven method such as deep learning can make it easier to model unknown
interactions or processes by using historical data sets or during the monitoring of a sys-
tem. As discussed in the section on complexities in scale-up, osmolality, pH, temperature,
and dissolved oxygen can all influence the efficiency and production of a culture used for
a bioprocess. Yet, many models omit those quantities, while also being unable to sys-
tematically account for the effects heterogeneity in industrial-scale reactors has on model
rate parameters. However, a neural network could be used to find a mapping between
those quantities and the product of interest, and to estimate unknown interactions and
processes. The mechanistic model may then improve the overall model’s capacity to ex-
trapolate (compared to a full data-driven method) and reduce the amount of data required
for training.

In process systems research, hybrid mechanistic and machine learning models are usu-
ally categorized into two types: serial and parallel types [15]. This categorization depends
on how the machine learning and the mechanistic model relate to each other. In parallel
hybrid models, the machine learning part is trained on the residual between the mecha-
nistic model and the plant (or observed data) Figure 1.2. Serial hybrid models come in
two flavours: the machine learning model’s output feeds into the mechanistic model Figure
1.2a, or the mechanistic model’s output feeds into the machine learning model Figure 1.2b.

The goal of using parallel models is to correct model-plant mismatch. The ML part
of the model is expected to approximate dynamics inherent in the residuals between the
mechanistic model’s predictions, and the observations from the plant. As the ML part is
trained, it learns to correct the model. Traditionally, the ML part is used at the stage after
integrating the dynamical model.

With serial hybrid models, the basic goal is to use the ML part to approximate some
unknown interactions between state variables. This is done in one of two flavours. In the
first flavour, the ML model’s outputs are outputs into a set of differential equations while
its inputs can be a combination of the state variables, online measurements from the plant,
or other parameters. Most common usages of the serial flavour is to estimate the rate pa-
rameter of a process model as it is expected many details are missing from simply assuming
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it to be constant. There has been some work over the past three decades to use hybrid mod-

a

b

c

Figure 1.2: Graphical representation of the three broad types of hybrid models. On the
left we have the two serial hybrid models (ab) where the mechanistic model and machine
learning model feeds into each other; i.e. the output of a neural network is used as input to
a DE system (a), or vice-versa (b). On the right we have parallel hybrid models, where the
machine learning model’s output is used to estimate the residual between the DE model’s
output and the true observations.

elling techniques to improve biomanufacturing processes [34, 44, 47, 49, 43, 32, 23, 14]. [34]
was the first work to explicitly combine both a neural network and a mechanistic model.
In it, the authors used a serial hybrid model with the neural network’s output replacing a
constant rate parameter, attempting to estimate the dynamics of a ’true’ model from an
approximate model. [44] uses a hybrid model for control of a yeast biomass production
process while trying to balance amount of ethanol produced (not desired in this case); the
authors find that using a hybrid model where the neural network estimates rate parameters
trained with observed data performs just as good or better than a traditional mechanistic
model and is more easily trained than traditional neural network models at the time. [47]
has a comparison of mechanistic modelling, black box modelling, and a hybrid model for
the production of penicilin G. In a pair of works published in 2016 [48, 49] von Stosch,
Hamelink, and Oliveira, described an in depth case study of an industrial E. coli fermen-
tation process. In it, they bring back the idea of using hybrid modeling to improve upon
prediction and control of biomanufacturing processes, particularly to improve on finding
optimal process condition to maximize yield of desired products while reducing variability
between processes; they found that one specific advantage of a machine learning compo-
nent is to enable the usage ”online” process parameters (such as temperature, pH, dissolved
oxygen, agitation rate, air-flow rate, vessel pressure) whose relationship to product yield is
unclear. [43] in 2017 discusses the benefits hybrid models can provide in improving mam-
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malian cell culture process modelling and control, especially in regards to incorporating
online process parameters. In response to that, in 2019 [32] developed a hybrid model
using a 1-layer neural network and a first-principles model consisting of 8 species, with the
neural network being used to predict the rate parameter of the model.

Even more recently, [23] developed a serial hybrid model where a mechanistic model
outputted into a Long-Short Term Memory neural network architecture to predict the pH
trajectory of a cream cheese fermentation to determine how long until the fermentation is
finished, ultimately finding the hybrid model outperformed the mechanistic model alone.
[14] attempted to a similar thing, but compared the hybrid model of [23] to a simple 1-layer
neural network with inputs pH(t), pH(t− 1), pH(t− 2) to predict pH(t + 1), and seemed
to find good results.

The overall trend is that a few studies in the biomanufacturing literature has found
evidence that hybrid models can be effective. Hybrid models allow for some flexibility in
the rate parameters, and in what inputs are used. More recent work has tried ignoring
the mechanistic approach entirely, opting instead to use only artificial neural networks.
Despite these studies, there is still room for exploration and improvement of the hybrid
modelling approach, especially with more and more mammalian processes being used for
biomanufacturing.
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Figure 1.3: Timeline of key hybrid modelling works in the biomanufacturing setting. Note
the break between years 1997 and 2016. Works referred to are as follows: 1992, [34]; 1994,
[44]; 1997, [47]; 2016, [49]; 2017, [43]; 2019, [32]; 2021, [23, 14]
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Chapter 2

Results

2.1 Hybrid Modeling from Simulated Data

The main results of this report are based on investigating the effectiveness of the method
in simulated scenarios with simulated data. This is similar to works done elsewhere [7, 28,
29, 20, 46, 38], with the goal being to motivate using the method on observable systems
where the true model is unavailable.

The methodology used here is to first take a model and treat it as the system we wish
to model and predict, and pretend we do not have access to the model itself. From this
true model, we generate some simulations, and treat it as observations of the system of
interest. Afterwards, we modify the model so we have an incorrect, partial model – this is
what we are imagining a modeller may come up with when looking at a new system. With
this partial model we can apply some of the hybrid methods described above to determine
if the original dynamics are recovered or approximated.

2.1.1 Haldane Model

One of the bioprocess models considered here is a variant of the Haldane model as analyzed
by Ajbar [5]. The Haldane model here is a model of a continuous bioprocess system,
modelling the growth of biomass X at growth rate µ as it uses the substrate S, while
producing product P with yield ε, dilution factor D and a constant feed rate.
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dX

dt
= µ(S,X)X −DX

dS

dt
= D(Sf − S)− σX

dP

dt
= εX −DP

In dimensionless form we have, where the linear assumption that σ = aε is also made

dX̃

dt̃
= µ̃X̃ − D̃X̃ (2.1a)

dS̃

dt̃
= D̃(S̃f − S̃)− λ1ε̃X̃ (2.1b)

dP̃

dt̃
= λ2ε̃X̃ − D̃P̃ (2.1c)

with non-dimensionalized variables relating to the dimensionalized state variables in the
following way

S̃ =
S

Sref

, X̃ =
aX

Sref

, P̃ =
P

Pref

, D̃ =
D

µref

t̃ = tµref, µ̃ =
µ

µref

, ε̃ =
ε

εref
, λ1 =

εref
µref

, λ2 =
εrefSref

aµrefPref

as done in [5]. In the same reference, Ajbar mapped out the parameter values leading to
different regimes of stability. In this model the rate of growth and product synthesis are
both inhibited by high concentrations of product. The rate of cell growth µ̃ and the rate
of synthesis ε̃ are expressed as

µ̃ =
( S̃

β2 + S̃ + γ1S̃2

)( 1

1 + P̃

)
ε̃ =

( S̃

β2 + S̃ + γ2S̃2

)( 1

1 + λ3P̃

)
with λ3 = K1P

K2P
. As mentioned above, this model will be the true model we are trying to

discover.
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We will assume we are unaware of the functional forms of the rate of cell growth µ̃ and
the rate of synthesis ε̃. This means we are assuming the model we constructed is

dX̃

dt̃
= p1X̃ − D̃X̃ (2.2a)

dS̃

dt̃
= D̃(S̃f − S̃)− λ1p2X̃ (2.2b)

dP̃

dt̃
= λ2p2X̃ − D̃P̃ (2.2c)

where we do not know the rate of cell growth nor the rate of synthesis, nor do we know
whether they have different functional forms. Instead, we include the trainable parameters
p1 and p2. In order to use the hybrid method, we replace the trainable parameters with
outputs from a neural network to get

dX̃

dt̃
= NN1(X̃, S̃, P̃ ) · X̃ − D̃X̃ (2.3a)

dS̃

dt̃
= D̃(S̃f − S̃)− NN2(X̃, S̃, P̃ ) · X̃ (2.3b)

dP̃

dt̃
= NN3(X̃, S̃, P̃ ) · X̃ − D̃P̃ (2.3c)

where NN1(X̃, S̃, P̃ ), NN2(X̃, S̃, P̃ ), NN3(X̃, S̃, P̃ ) are outputs of our neural network.

In this case, the true system is still represented by the Haldane model discussed above.
But, now we are pretending that we constructed model Eq. 2.2, and that we wish to
combine that model with a neural network to construct a neural differential equation.

To make training data for the hybrid mechanistic-machine learning model, we simulated
the true Haldane model (Eq. 2.1), using fixed parameter values, and initial conditions
sampled from uniform distributions as listed in Table 2.1.
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N 200
X distribution Unif(0.2,0.5)
S distribution Unif(1.7,2.3)
P0 0.0
D 0.4
β1 0.0471
β2 0.1
γ1 1.2
γ2 1.0
λ1 0.5
λ2 0.1
λ3 1.0

Table 2.1: Values used for parameters in the true Haldane model, along with distributions
used for sampling initial conditions when building a training and validation set. Both
the training and validation sets are of size N, but have distinct trajectories and initial
conditions.

To build the validation set, we sample initial conditions, and reject any that are exactly
equally to any initial condition in the training set. We continue this procedure until we
have a validation set of size 200.
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Network Architecture

This section covers some model building and comparisons. We experiment with two dif-
ferent aspects of neural differential equations: (1) activation functions between layers of
the neural network; (2) number of layers making up the neural network. As discussed in
section 1.2.6, previous work in the hybrid modelling literature uses one-layer networks. In
contrast, here we explore using deeper network architectures.

The final model architecture used here is described in Table 2.2. We used a feedforward
neural network architecture with tanh activation functions. While there are 4 inputs and
outputs, three of them correspond to state vectors, and the other one corresponds to the
extra dimension for zero-augmentation.

Layer N inputs N outputs
Activation
function

1 4 50 tanh
2-6 50 50 tanh
7 50 20 tanh
8 20 4 none

Table 2.2: Neural network architecture for the final network used.

Experimenting with different architectures using the same data set suggests that deeper
networks with smooth activation functions perform better, albeit requiring more time to
train. Results are noted in Table 2.3. The two activation functions we compared are tanh
and the ”leaky” ReLu max(δx, x) where δ is usually small, like 0.01. Leaky ReLus are
intended to have the benefits of ReLu functions (where δ = 0), while also mitigating the
”dead neuron” problem where many coefficients in layers become and stay zero.
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Figure 2.1: The two activation functions compared in this report. Dash-dotted line corre-
sponds to the leaky ReLu of max(0.01x, x), while the solid line corresponds to tanh(x).

When adding layers, we are introducing more 50× 50 hidden layers; e.g. architecture c
of Table 2.3 has 4 layers, meaning it has a 50×4 input layer, then one 50×50 hidden layer,
a 20× 50 layer, and lastly a 4× 20 output layer. When changing activation functions, we
change the activation function between each layer to the one listed in Table 2.3.

Training the neural network requires minimizing a loss function. In each of the cases
presented here, we use a mean-squared error loss function MSE(~ytrue, ~̂y) = 1

N

∑N
i (ytrue,i −

ŷi)
2, where ~ytrue, ~̂y ∈ RN

Lower loss value following increasing depth is commonly found in neural networks used
in image processing and in language understanding, although the neural networks used
in those domains are orders of magnitude larger than the ones used here. As described
in Figure 1.2, previous work in the hybrid bioprocess modelling literature used single
layer neural networks. Table 2.3 lists some evidence we found suggesting more layers may
improve performance in the hybrid bioprocess modelling situation.
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Architecture
Number of
layers

Activation
function

Average time
per epoch (s)

Validation
set loss

a 4 Leaky ReLu 110.1 12.46
b 4 Tanh 13.84 10.68
c 6 Tanh 33.03 9.735
d 8 Tanh 60.59 8.409

Table 2.3: Comparison of different model architecture choices. One ”epoch” corresponds to
the ADAM optimizer iterating through the entire training data set once. While increasing
number of layers increases training time, it tends to decrease the loss value on the validation
set. Note that a leaky relu activation function seems to require more time per epoch
compared to the same architecture with different activation functions. As discussed above,
this might be because the tanh function is smooth while the leaky relu function is not.

Case 1: no noise

Here we trained the neural differential equation on a noiseless data set. First, we simulated
Eq. 2.1 up to t̃ = 75, with 150 equally spaced data points. Next, we take the first 50 data
points (i.e. up to t̃ = 25), and store that along with its randomly chosen initial condition.
We repeat that 200 times, so that we have 200 different sets of 50 data points. This data set
is used to train the hybrid neural differential equation. For some of the initial conditions,
the dynamics have a short transient phase reaching a stationary state before t̃ = 25, while
others have a longer transient phase not reaching a stationary state until after t̃ = 25.

Figure 2.2 shows representative results on new initial conditions, some of which were
not in the training nor in the validation set. Shown are both results from the assumed
model Eq. 2.2 and the hybrid model. The parameters of the assumed model are (p1, p2) ≈
(0.4689, 0.3527), determined by using the Julia differential equation parameter estimation
library DiffEqParamEstim [37] with the training data. Compared to the assumed model,
the hybrid model seems to perform better, predicting the stationary states of biomass,
substrate, and product.
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Figure 2.2: Representative results of integrating the true Haldane model Eq. 2.1, the
assumed model Eq. 2.2, and the hybrid model Eq. 2.3, using initial conditions that were
in the validation set (column a) and neither the training nor validation set (column b).
Initial conditions used are specifically listed in Table 2.4.
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Variable Column a Column b
Biomass, X 0.5804 4.5
Substrate, S 2.059 3.0
Product, P 0.0 0.0

Table 2.4: Initial conditions for results shown in Figure 2.2.

Case 2: noise

In this section we add varying levels of noise to the training data to emulate having some
measurement error in the observed data. We first simulate the deterministic equations 2.1.
Once we have the trajectories ~x(ti) from Eq. 2.1, we add noise to it at each time point
~y(ti) = ~x(ti) + ~ε(ti). ~ε(ti) is distributed normally with standard deviation equal to s% of
the standard deviation of ~x, where below we show results for s = 1, 5, 10.

We used the data set {~y(ti)} with i = 0, . . . , 49 to train the hybrid model Eq. 2.3,
and a similarly built validation set for evaluation. A learning curve depicting the training
progress for 1% noise level is included in Figure 2.3. To produce points along the training
(validation) set loss curve, we took 10 samples randomly from the training (validation)
set, and computed the average loss. In Figure 2.3 we can see the opimization procedure
converges to a loss value < 6. Moreover, the training and validation set losses are fairly
consistent throughout the training procedure, suggesting the model tends to generalize
well to initial conditions found in the validation set. Similar learning curves were found
for higher noise levels.

Following the previous section, we used the Julia DiffEqParamEstim library to estimate
the parameters of Eq. 2.2 from the training set data, Table 2.5 lists the parameters
estimated in each of the cases.

Case p1 p2
no noise 0.4689 0.3527
1% 0.4626 0.3362
5% 0.4610 0.3497
10% 0.4621 0.3402

Table 2.5: Parameters estimated from the training data in each case of levels of added
noise.
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Figure 2.3: Shown is the average loss over 10 trajectories against the optimization step
of an ADAM optimizer. Note that initially the loss value begins at ≈ 6000, and begins
to converge to ≈ 5. The blue (orange) line represents the average loss over trajectories
sampled from the validation (training) set. The amplitude of the noise added to the
simulated trajectories is 0.01 · sd(~x) · N (0, 1).
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Figure 2.4: Representative results of integrating the true Haldane model Eq. 2.1, the
assumed model Eq. 2.2, and the hybrid model Eq. 2.3, using initial conditions that were
not used in the training set for the hybrid model. Left and right columns are two different
initial conditions. The left (right) column has begins with initial condition close to (far
from) the training set. The results of the hybrid model in the right column are worse than
in the left.
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From Figure 2.4 (left column) and Figure 2.5 we can see that the hybrid model still
tends to outperform the assumed, partial model. Moreover, it tends to perform fairly well
when given initial conditions within the validation set, which are similar in range to the
initial conditions found in the training set. Yet, we find that as the noise level increases,
the predictions from the hybrid model seem to have a growing oscillatory nature; Figure
2.4a bottom row, and the bottom row of Figure 2.5 depict this phenomena. Likely, the
increase in oscillations with growing added noise is because the optimization procedure is
trying to match the noisy ’measurements’ exactly.

Moreover, it seems the hybrid model is able to better predict the biomass and substrate
dynamics compared to the product dynamics. This limits its usage, as product prediction
from new initial conditions (and parameters, but that is not explored here) are desired
features of models in biomanufacturing.
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Figure 2.5: Representative results from the validation set when 5% noise is added (column
a) and 10% noise is added (column b). With higher noise levels, the hybrid model seems
to exhibit more oscillations.
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Chapter 3

Conclusion

In this report we discussed usage of combined (or hybrid) mechanistic-machine learning
models to fix model mismatch. This was set in the context of specific application to bioman-
ufacturing processes, where the various complexities – transport phenomena diminishing
homogeneity throughout the system; poor characterization of cellular processes, manifest-
ing as unexpected phenomena at larger scales; sensors measuring variables related to, but
not exactly state variables – result in difficulty designing experiments and designing pro-
cesses with optimal quality and productivity. We simulated simple models of bioprocesses,
then hid factors in the model. Then, using a hybrid neural differential equations, we tried
to fix the partial model to re-approximate the true model. This acts as a simulation study
of the situation where a modeller derives a system of differential equations to describe a
process, but the model is only partially correct. By using historical process data, and online
measurements, the partial model can be improved by having a neural network component
to the model in the form a universal differential equation.

Overall, we found some evidence the hybrid mechanistic-machine learning models were
able to approximate the true system even with few data points, and noisy measurements.
Although, we note that the partial model used in this report (Eq. 2.2) may have been too
constrained to be a fair comparison with the hybrid model used. One way of improving
upon that is to relax the linearity assumption between the rates of growth and synthesis.
Compared to previous hybrid modelling studies in the biomanufacturing literature, we also
found some evidence that using deeper neural networks tends to improve performance. This
suggests that hybrid methods should be attempted on realistic biomanufacturing processes
in order to validate the results presented here, and to validate that this technique may be
useful in an industrial context.
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There are many directions for next steps that could be pursued from these explorations.
Those include more simulation studies with more complex ’true’ models, performing com-
parisons to more traditional methods, and comparing to other methods of combining ma-
chine learning and mechanistic modelling. Furthermore, an exploration of hybrid model
performance sensitivity to amount of data could be performed in order to gauge how sen-
sitive the method is to having few training examples.
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