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Abstract

In this paper we describe an algorithm to simulate two-phase fluid flow. Two-phase
flow refers to the interaction of two fluid mediums which do not mix, such as water and
air. One of the main concerns in two-phase flow simulations is how to represent and evolve
the interface between the two fluids. We elect to implicitly represent the interface as all
points ~x where a scalar function φ is equal to zero. Such level set methods of fluid interface
representation can be seen in the related literature [3, 4, 5, 7, 17, 18, 19, 20]. We largely
discretize the equations of motion (the Navier-Stokes equations) using the discretizations
in [8]. At the interface between the fluids, we employ ideas from the ghost fluid method to
preserve the sharp change in density and viscosity when solving for pressure and discretizing
the stress tensor.

Our description of the algorithm is detailed enough that readers should be able to build
their own implementations. We use our implementation to simulate a water drop falling
through air into a pool of water below. The parameters of the liquid (water) phase are
individually explored and results are presented in Chapter 5. We provide a discussion of
the technical issues of our algorithm and suggest improvements. Directions for future work
are also discussed.
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Chapter 1

Introduction

The first papers in computational fluid dynamics (CFD) were published in 1965 [9, 10], and
since then a variety of techniques have been developed. Each technique will typically look
to solve the Navier-Stokes equations, either directly or indirectly. Particle based methods,
such as Lattice-Boltzmann or Smooth Particle Hydrodynamics (SPH), can be considered
indirect methods. They simulate a number of particles which interact with each other
and whose cumulative behaviour can be shown to conform to the motion described by the
Navier-Stokes equations. When solved directly, the Navier-Stokes equations are treated
as partial differential equations. A variety of techniques exist to solve partial differential
equations such as finite difference, finite volume, finite element and spectral methods.
Each of these methods have been used to solve the Navier-Stokes equations and, hence, to
simulate fluid flows.

We are often interested in fluids that have free boundaries, as opposed to static physical
boundaries like solid walls. An example of such a free-boundary problem is a pitcher of
water being poured into a glass. The space that the fluid occupies continually changes,
and the boundary of that space moves freely. This introduces some complexity to the
simulation since the fluid domain is treated differently than the rest of the domain, but
also changes with time. Creating an algorithm to account for the changing fluid domain
can be a challenge. There are two major ways to represent the boundary between the
fluids: explicitly and implicitly.

Boundaries can be explicitly represented with line segments in two dimensions, or tri-
angles in three dimensions. In these simulations, the boundary must be updated at each
time step. During merging or splitting of fluid bodies, the line segments or triangles must
be connected or split to properly account for the new fluid domain [16], which can be
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difficult to program.

Using level set functions, we can implicitly represent the fluid boundary. This is done
by associating the fluid boundary with all points where a scalar function φ is equal to zero.
These methods implicitly deal with the merging and splitting of fluid bodies. Hence, they
do not require the programmer to “handle” these situations, as in explicit methods.

In this essay, we look to create a free-boundary fluid simulation using a finite difference
method and level set boundary representation. Free-boundary simulations sometimes treat
the region surrounding the fluid domain as empty space as in [8]. These simulations can
be very useful, but do not represent some of our most common experiences with fluid. We
often interact with fluid that is surrounded by air as in the example of water poured from a
pitcher to a glass. In that example, the water must push through the air which offers some
resistance. When the water reaches the glass, we also expect bubbles to form since the air
does not immediately yield its physical space to the water. The term used to reference two
interacting fluids which do not mix is two-phase flow. Our simulations will be of two-phase
flow.

1.1 Finite Difference Two-Phase Flow Techniques

A discussion of all the techniques in CFD would be outside the scope of this essay. We are
focusing here on two-phase flow simulations which use finite difference methods to solve
the Navier-Stokes equations. In the context of finite difference methods, two-phase flow
can be simulated in a manner very similar to single-phase flow. The only difference is how
to treat the interface between the two phases. In finite difference methods, grid points
store parameters found in the equations of motion. Each grid point is updated according
to its current value and the values of its neighbouring grid points. If the interface between
the phases is far from a grid point, that point can be updated in the same manner as for
single-phase flow. Grid points near the interface have to be handled more carefully.

The main problem at the interface is that the fluid parameters, density and viscosity,
change abruptly. In finite differences, this sharp change at the interface has been handled
in two major ways:

• Preserving the sharp interface using the ghost fluid method as in [7].

• Smoothing the sharp interface in a way amenable to finite difference approximations
as in [17, 19].
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We will be using ideas from the ghost fluid method in our simulations. One of the main
features of the ghost fluid method is how it treats the change in pressure and viscosity at
the fluid interface. In most finite difference methods [3, 7, 8, 17, 19] the pressure for the
upcoming time step is solved for implicitly using the current fluid velocity. The pressure
is solved for in the variable coefficient Poisson equation,

∇ ·
(

1

ρ
∇p
)

= b,

where p is pressure, ρ is density, and b is formed using velocities from the current time step.
Away from the interface, ρ can simply be set to the density of the surrounding fluid. Near
the interface, ρ is specially chosen between the two fluid densities in accordance with the
ghost fluid technique. We can also add surface tension by modifying the right hand side b.
We discuss how ρ is chosen in Section 4.2.2. To account for the change in the viscosity µ
at the interface, we will employ similar ideas.

We will begin our discussion by introducing the Navier-Stokes equations in Chapter 2.
In order to track the interface between the fluids, we will use a level set function φ, and so
we will discuss level set methods in Chapter 3. In Chapter 4, we discuss discretization of
the Navier-Stokes equations, and end with a summary of our entire simulation algorithm.
The goal is to provide enough detail in Chapter 4 that any interested readers can replicate
our results.

We will present our results in Chapter 5. In Chapter 6, we conclude with a brief
discussion of the strengths and weaknesses of our algorithm, and outline directions for
future work.
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Chapter 2

Equations of Motion

In general, laminar flows (flows without turbulence) are modelled with the following form
of the well known Navier-Stokes equations , [8]

∂

∂t
ρ+∇ · (ρ~u) = 0, (2.1)

and
∂

∂t
(ρ~u) + (~u · ∇)(ρ~u) + (ρ~u)∇ · ~u− ρ~g −∇ · σ = 0, (2.2)

where ~u is the fluid velocity, p is the pressure, ρ is the density of the fluid, ~g represents
external forces (e.g., gravity) and σ is the stress tensor which represents the internal
friction forces amongst the fluid particles. Equation (2.1) is called the continuity equation
and comes from imposing conservation of mass onto the fluid. Equation (2.2) is called
the momentum equation derived from imposing conservation of momentum onto the fluid.
Both fluid phases will be modelled with these equations after the simplifications below.

We are interested in modelling viscous fluids. Viscosity is a measure of a fluid’s re-
sistance to deformation by shear stress or tensile stress. Informally, it corresponds to the
notion of the “thickness” of a fluid, and it is a result of frictional forces between the parti-
cles. Hence we must incorporate internal friction into our model (which is unnecessary for
inviscid gases). The flows described by these equations depend heavily on the stress tensor
σ. For Newtonian fluids obeying the Stokes assumption the stress tensor can be modelled
as [8]:

σ := −pI + τ := (−p+ λ∇ · ~u)I + 2µδ.
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Here we have τ = (λ∇ · ~u)I + 2µδ. The parameters µ and λ are thermodynamic material
constants and δ is the strain tensor,

δ :=
1

2

[(
∂ui
∂xj

+
∂uj
∂xi

)]
i,j=1,2

.

Substituting this version of the stress tensor into Equation (2.2) gives us

∂

∂t
(ρ~u) + (~u · ∇)(ρ~u) + (ρ~u)∇ · ~u− ρ~g −∇ · ((−p+ λ∇ · ~u)I + 2µδ) = 0,

which, can be simplified to

∂

∂t
(ρ~u) + (~u · ∇)(ρ~u) + (ρ~u)∇ · ~u− ρ~g +∇p− λ∇(∇ · ~u)−∇ · (2µδ) = 0.

Under the assumption of incompressibility (ρ(~x, t) = ρ∞ = constant), the continuity equa-
tion simplifies to

∇ · ~u = 0. (2.3)

This allows us to simplify the momentum equation further to

∂

∂t
(ρ~u) + (~u · ∇)(ρ~u)− ρ~g +∇p−∇ · (2µδ) = 0.

Again, using the incompressibility condition (ρ = ρ∞), we can divide the whole equation
by ρ which gives,

∂

∂t
~u+ (~u · ∇)~u+

1

ρ
∇ · p =

1

ρ
∇ · (2µδ) + ~g.

We nondimensionalize this equation as in [8] by introducing dimensionless variables,

~x∗ :=
~x

L
, t∗ :=

u∞t

L
, ~u∗ :=

~u

u∞
, ~g∗ =

L

u2
∞
~g,

and scaled pressure,

p∗ :=
p− p∞
u2
∞

,

which gives us,

∂

∂t∗
~u∗ + (~u∗ · ∇∗)~u∗ +

1

ρ
∇∗ · p∗ =

1

ρu∞L
∇∗ · (2µδ) + ~g∗.

5



Here we have introduced characteristic length L, characteristic speed u∞, and characteristic
pressure p∞. Typically, pressure is also nondimensionalized by dividing p∗ by the density
ρ. We keep the density out of our scaled pressure since density changes at the interface
between fluid phases. We need to take this density change into account when we define our
discrete pressure derivatives across the fluid interface in Section 4.2.2. Similarly, we leave µ
inside the stress tensor term to motivate our stress tensor discretizations in Section 4.2.3.

The divergence and gradient operators in the previous equation are with respect to the
variable ~x∗ instead of ~x. Dropping the ∗ notation, we get the final version of the momentum
equation:

∂

∂t
~u+ (~u · ∇)~u+

1

ρ
∇ · p =

1

ρu∞L
∇ · (2µδ) + ~g. (2.4)

If we had removed the viscosity µ from the stress tensor term, we would see the reciprocal of
the Reynolds number, Re = ρu∞L/µ, as our coefficient on the right hand side of Equation
(2.4). Since ρ and µ are parameters of the fluid phases, we modify the Reynolds number
by modifying the product u∞L. This is explored in Section 5.5.

So we model laminar flows of viscous, incompressible fluids using Equations (2.3) and
(2.4) [8]. Before moving on we will put these equations into component form in preparation
for the discretization in Chapter 4.

We let ~u =

(
u
v

)
. We will deal with the ∇ · (2µδ) term first. We have

∇ · (2µδ) = ∇ ·

2µ
1

2

 2
∂u

∂x

∂u

∂y
+
∂v

∂x
∂u

∂y
+
∂v

∂x
2
∂v

∂y




=


2
∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ

(
∂u

∂y
+
∂v

∂x

))
∂

∂x

(
µ

(
∂u

∂y
+
∂v

∂x

))
+ 2

∂

∂y

(
µ
∂v

∂y

)


=


∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y

)
∂

∂x

(
µ
∂v

∂x

)
+

∂

∂y

(
µ
∂v

∂y

)
+ µ


∂2u

∂x2
+

∂2v

∂x∂y

∂2v

∂y2
+

∂2u

∂y∂x


6



=


∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y

)
∂

∂x

(
µ
∂v

∂x

)
+

∂

∂y

(
µ
∂v

∂y

)
+ µ


∂

∂x

(
∂u

∂x
+
∂v

∂y

)
∂

∂y

(
∂u

∂x
+
∂v

∂y

)


=


∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y

)
∂

∂x

(
µ
∂v

∂x

)
+

∂

∂y

(
µ
∂v

∂y

)
+ µ∇ (∇ · ~u) .

From the continuity equation we have ∇ · ~u = 0. Hence the second term on the right hand
side of the expression above disappears, and we get

∇ · (2µδ) =


∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y

)
∂

∂x

(
µ
∂v

∂x

)
+

∂

∂y

(
µ
∂v

∂y

)
.

We can now write the momentum Equation (2.4) in component form:

∂u

∂t
+
∂ (u2)

∂x
+
∂ (uv)

∂y
+

1

ρ

∂p

∂x
=

1

ρu∞L

(
∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y

))
+ gx, (2.5)

∂v

∂t
+
∂ (uv)

∂x
+
∂ (v2)

∂y
+

1

ρ

∂p

∂y
=

1

ρu∞L

(
∂

∂x

(
µ
∂v

∂x

)
+

∂

∂y

(
µ
∂v

∂y

))
+ gy. (2.6)

Now we have the equations of motion within the computational domain, and we just
need to consider the boundary conditions. Our simulation assumes solid wall boundaries
with the free-slip condition, as in [19]. This requires that the velocity component normal
to the boundary is zero, and also that the normal derivative of the velocity is zero at the
boundary. This leads to the two conditions,

~u · ~n = 0,
∂~u

∂~n
= 0,

where ~n is the unit normal to the boundary wall, and
∂~u

∂~n
is the directional derivative of

the velocity ~u in the direction of ~n. This allows the simulated fluid to slide along the wall
without passing through it.
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We can now move on to Chapter 3 to discuss the use of level sets to track the interface
between the two fluids. In Chapter 4 we will revisit the fluid equations and introduce their
discretized forms.
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Chapter 3

Interface Tracking with Level Sets

In our two-phase fluid simulation we make use of level sets to track the interface between
the two fluids (e.g., water and air). We will discuss the problem of surface representation
in the following subsection, then move on to the concept of level sets.

3.1 Surface Representation

In our two-phase flow simulations we need to represent the interface between the two
phases. For air and water the interface would be the surface of the water, hence the term
“surface representation”. In two dimensions the surface can be represented as a curve or
multiple curves. There are several ways one can represent a curve mathematically.

• Functional representation: The curve is the plot of y = f(x), where f : R → R is a
continuous function.

• Parametric representation: The curve is defined as all points

(
x(s)
y(s)

)
for s ∈ [a, b] ⊂

R, where x and y are continuous functions of the parameter s.

• Vertices and edges : The curve is a series of connected line segments, represented as
a series of vertices and edges connecting them.

• Implicit representation: The curve is represented as all points ~x ∈ R2 satisfying
φ(~x) = 0 for some function φ : R2 → R.
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With functional representation we cannot represent a curve which does not pass the
vertical line test, such as a circle. Parametric representation is more robust but choosing
functions x and y to represent a general curve can be difficult, and it is unclear how one
would evolve the curve in time to correspond to the fluid flow.

Vertices and edges are robust since we can approximate any curve as a series of line
segments. One can even evolve the curve in time by pushing vertices with the underlying
fluid velocity as in [16]. However, as vertices drift apart it can become necessary to add
more vertices to keep the approximation to the curve accurate. Another difficulty arises
when two fluid bodies must merge, requiring us to “surgically” remove vertices and change
connecting edges, as well as to identify the scenario in the first place. A similar difficulty
arises when a fluid body splits in two.

Luckily, the implicit representation is very robust and useful for fluid interface tracking.
Not only can we evolve the function φ using the fluid velocity, but we can define an interior
and exterior to the curve φ(x, y) = 0 using the sign of φ, which in turn can distinguish
between the two fluid regions. Since the curve is all points where φ is a constant value, we
also call this a level set representation of the curve. The remaining sections of this chapter
discuss level sets more formally, and introduce the relevant tools we will need to work with
them.

3.2 Level Sets

Suppose we have a function φ : Ω → R, with Ω ⊆ Rn. Then the k level set of φ, denoted
by Γk, is defined as,

Γk := {~x ∈ Ω|φ(~x) = k}.
Since we can always cast the k level set of φ as the zero level set of φ − k, we typically
restrict ourselves to discussing the zero level set of a function φ. We will correspondingly
denote Γ0 as simply Γ. Typically a level set of a function φ whose domain is Ω ⊆ Rn is an
(n− 1)-dimensional surface in Ω. As an example, we can describe the surface of a sphere
with radius 1 centered at the origin as the zero level set of the function φ(x, y, z) =√
x2 + y2 + z2 − 1.

The function φ also implicitly separates Ω into two regions Ω+ and Ω− defined simply
as,

Ω+ := {~x ∈ Ω|φ(~x) > 0},
and

Ω− := {~x ∈ Ω|φ(~x) < 0}.
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Ω−

Ω+

z = φ(x, y)

Γ

z = 0

Figure 3.1: In this image the function φ(x, y) =
√
x2 + y2 − 1 defines a cone z = φ(x, y) whose

intersection with the plane z = 0 is the unit circle. Points (x, y) interior to the unit circle have
the property φ(x, y) < 0, and so the interior of the unit circle defines Ω− (in grey). Points (x, y)
exterior to the unit circle have the property φ(x, y) > 0, so the exterior of the unit circle defines
Ω+ (the white portion of the plane z = 0). The unit circle itself defines the zero level set Γ.

The level set Γ separates Ω+ and Ω−, and we can easily check which region a point ~x
belongs to by checking the sign of φ(~x). We often refer to Ω− as the “inside” or “interior”
region and Ω+ as the “outside” or “exterior” region. Figure 3.1, should help illustrate the
concept.

In many applications, we want Γ to belong to either Ω+ or Ω−. For instance, in our
fluid solver, we are going to use Ω+ to define the space occupied by air and Ω− to define
the space occupied by water. If we include Γ in neither Ω+ nor Ω−, then all points ~x with
φ(~x) = 0 are neither air nor water, which makes no physical sense. By convention, we
usually redefine Ω− as

Ω− := {~x ∈ Ω|φ(~x) ≤ 0},

so that Γ ⊂ Ω−.

While this is a fine way to define a surface or a curve, we need some way of controlling
how the surface moves in time. Fortunately, we can control how this surface moves using
the level set equation [6]:

φt + F |∇φ| = 0,

where φt is the time derivative of φ. This PDE describes a function φ(~x, t) whose level set
moves with speed F in the direction of the outward normal to the level set. F does not
need to be a constant, often depending on the curvature of the level set, or on factors in
the environment of the level set.

A major benefit of evolving a surface (or curve) using the level set equation is that the
surface itself is never tracked explicitly. Because of this, when a surface splits or merges
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with another surface, there is no need to “handle” the situation for the programmer. All of
the complications are handled implicitly, and it is simply a matter of being able to identify
the zero level set of a function in general.

3.3 Level Set Motion Under an Externally Generated

Velocity Field

We will be using a slightly modified version of the level set equation. We want to track
the boundary between our two fluids using the level set of a function φ(x, y), and we want
to “push” the level set using the underlying fluid velocity field. In general, if we have an

externally generated velocity field ~u(~x, t) =

(
u(~x, t)
v(~x, t)

)
, we can push the level set in the

direction of ~u by solving the following PDE [6]:

φt + ~u · ∇φ = 0. (3.1)

This equation is just a simple advection equation, and is perhaps easier to work with in
the following form:

φt + uφx + vφy = 0. (3.2)

Here φx is the derivative of φ in the x direction, and φy is the derivative in the y direction.

We can solve this advection equation using an upwinding scheme. To illustrate the use
of upwinding, we can work with the one dimensional advection equation and extend to two
dimensions afterwards. The one dimensional advection equation is

φt + aφx = 0.

Suppose our spatial domain is x ∈ R1, and the time domain is t ∈ [0, T ]. In finite difference
schemes, we discretize time and space. We can discretize space using the points xi := i∆x
for some small grid size ∆x. For explicit time stepping schemes, such as forward Euler, we

typically take timesteps of size ∆t which satisfy the CFL condition ∆t ≤ ∆x

a
. Beginning

with time t0 = 0 we can discretize time by considering our problem only at times tn = n∆t,
where ∆t is the time step. We will denote spatial indices with a subscript and time indices
with a superscript, so that φni := φ(xi, tn).

1Note that if we had a bounded domain such as x ∈ [a, b] then we could choose the N + 1 discretization

points xi := a+ i∆x, i = 0, . . . , N with ∆x :=
b− a
N

.
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We need approximations to the derivative terms in Equation (3.2). Using a forward
Euler time discretization, our differential equation becomes the corresponding difference
equation:

φn+1
i = φni −∆t (aφx) .

We only have to decide on a finite difference approximation of φx to formalize our method.
The upwinding scheme suggests that when a > 0 we approximate φx(xi, tn) with

(
φ−x
)n
i

=
φni − φni−1

∆x
,

and when a < 0 we approximate φx(xi, tn) with

(
φ+
x

)n
i

=
φni+1 − φni

∆x
.

When a = 0 either choice is equivalent since we have aφx = 0. In this case, purely by
convention, we will choose the approximation (φ+)

n
i . For a more thorough discussion of

the motivations behind the upwinding scheme readers can look in Chapter 3 of [6].

Upwinding as presented above is first order accurate, but the accuracy can be improved
by using higher order approximations to φx. In particular, we can use third order accurate
ENO approximations, which we will cover in more detail in Appendix A.

The extension to two dimensions is straightforward. The spatial φ derivatives in Equa-
tion (3.2) can be considered separately. We will have discretized the second space dimen-
sion in the same manner as the first, so that we have discrete points (xi, yj). The spatial
derivatives are then approximated as

(φx)i,j =


φni,j − φni−1,j

∆x
, if ui,j > 0,

φni+1,j − φni,j
∆x

, if ui,j ≤ 0,

and

(φy)i,j =


φni,j − φni,j−1

∆y
, if vi,j > 0,

φni,j+1 − φni,j
∆y

, if vi,j ≤ 0.

For one dimension, we discussed a constant wave speed a, but in two dimensions we

now use wave speeds u and v from ~u(~x, t) =

(
u(~x, t)
v(~x, t)

)
which are not constant. The time
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stepping algorithm still works as described above but the CFL condition now becomes,

∆t ≤ ∆x

max
i,j
{|ui,j|, |vi,j|}

,

where the max of |ui,j| and |vi,j| is taken over the entire computational domain.

3.3.1 Level Set Reinitialization to Signed Distance Function

Let Γ be the level set of a function φ : Ω → R, with Ω ⊆ Rn. Then the corresponding
signed distance function φS satisfies

φS(~x) = min
~y∈Γ
{|~x− ~y|} · sgn(φ(~x))

That is, it gives the distance to the nearest point on Γ, multiplied by the sign of φ(~x).
Notice that φ and φS will share a level set.

An example should help illustrate the idea. Consider two functions

φ1(x, y) :=
√
x2 + y2 − 1,

and
φ2(x, y) := x2 + y2 − 1.

Though both functions share the unit circle as their level set, φ1 is a signed distance function
and φ2 is not. When we move radially outward from the origin we are either approaching
the closest point on the level set or moving away from it. Hence, for a signed distance
function φ with this level set, we expect that moving a unit distace radially outward will
be accompanied by a unit increase in the value of φ. The function φ1 satisfies this property,
but φ2 does not. The function φ1 could be called the corresponding signed distance function
of φ2.

While signed distance functions are simple for circular level sets, for a general function
φ the corresponding signed distance function φS is not given by an analytic formula and
must be computed numerically. It is easy to visually identify a signed distance function by
a plot of its contours, since successive contours will be, informally, “equally spaced” from
one another. The difference is illustrated in Figure 3.2.

In our simulation we will initialize φ as a signed distance function. When evolving φ
by Equation (3.1) Γ will move with the correct velocity but φ will no longer be a signed
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Γ0 Γ1 Γ2 Γ3

φ1

Γ0 Γ3· · ·

φ2

Figure 3.2: The level sets Γ0, Γ1, Γ2, and Γ3 are shown for φ1 (left) and φ2 (right). Notice that
for φ2 the concentric circular level sets are not equally spaced from one another, as is the case
for φ1.

distance function. In [19] the authors note that φ “can become irregular after some period
of time”. The gradients of φ became steep and large volume loss occurred in their water
drop and air bubble simulations. They also observed incorrect qualitative behaviour of
their solutions when φ was left to evolve only under Equation (3.1). We evolve φ to a
signed distance function to avoid these numerical issues, since signed distance functions
are well behaved and do not have extreme gradients.

The fluid simulation only depends on values of φ near the interface Γ. Near the interface,
we would like φ to be well behaved, since forces such as surface tension are dependent on
the curvature of Γ, which is computed using φ. In [19] the authors elect to evolve φ to its
corresponding signed distance function at every time step of the fluid simulation to keep it
well behaved. While evolving φ to a signed distance function it is important that Γ does
not change since it represents the interface between the two fluids.

If we are given a level set function φ0, we can evolve it to a signed distance function φ
by solving the following problem to a steady state [6]:

∂φ

∂t
= S(φ0) (1− |∇φ|) , (3.3)

with initial condition
φ(~x, 0) = φ0(~x), (3.4)
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where S is the sign function. The steady state solution φ to this PDE will share the same
level set as φ0. At the interface the sign function will have a sharp jump which is not
amenable to finite difference discretizations. For that reason, we use a smoothed version
of the sign function,

Sε (φ)i,j =
φi,j√
φ2
i,j + ε

,

where we use ε = ∆x2 as in [6].

We can discretize Equation (3.3) in the same manner as [7, 13, 19]. We use a forward
Euler time discretization to convert Equation (3.3) into the following discrete form

φn+1
i,j = φni,j −∆tSε

(
φ0
i,j

)
G (φn)i,j (3.5)

where

G (φ)i,j =


√

max
(
(a+)2 , (b−)2)+ max

(
(c+)2 , (d−)2)− 1, if φ0

i,j > 0,√
max

(
(a−)2 , (b+)2)+ max

(
(c−)2 , (d+)2)− 1, if φ0

i,j > 0,

0, otherwise.

The “+” superscript denotes the positive part of a number and the “−” superscript de-
notes the negative part of a number. The values a, b, c, and d are forward and backward
differences of φ given by,

a =
φi,j − φi−1,j

∆x
, c =

φi,j − φi,j−1

∆y
,

b =
φi+1,j − φi,j

∆x
, d =

φi,j+1 − φi,j
∆y

.

In [19], the authors noted better results when the forward and backward differences
a, b, c, and d are replaced with second order ENO approximations. We use second order
ENO approximations in our reinitialization as well. With the first order approximations
given above, we observed curvature spikes in the reinitialized φ in axis-oriented directions
as well as near the zero level set itself. This is particularly troublesome since we use φ
to calculate curvature near the zero level set when implementing surface tension. With
second order ENO approximations these issues were remedied. Again, we refer the reader
to Appendix A for a discussion of ENO approximations.

The boundary conditions for φ were set as in Appendix A.6 of [7]

φB = φB−1 + S (φB−1) |φB−1 − φB−2|,
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where φB is the boundary value and φB−1 and φB−2 are the adjacent points in the axis
direction normal to the boundary. This boundary condition keeps the characteristics of
Equation (3.3) flowing outward from the level set and guarantees the sign of φ does not
change at the boundary.

With the use of second order ENO approximations replacing a, b, c, and d this scheme is
identical to the one reported by the authors of [19]. Those authors provided the following
convergence criteria: ∑

|φni,j |<α
|φn+1
i,j − φni,j|

M
< ∆t∆x2,

where M is the number of grid points with |φni,j| < α. That is, the number of grid points
within a distance α of the level set. The authors used α = 3

2
∆x and reported convergence

in typically one iteration during the fluid simulation.

In our simulations, while the level set would approximate a signed distance function
in finite iterations, it did not converge under this criterion. For the purpose of the fluid
simulation, where the level set is reinitialized after each time step, we elected to simply
to run the reinitialization algorithm for 5 iterations. This worked well since the level set
is initialized to a signed distance function and reinitialized after each time step. Hence φ
would never deviate far from a signed distance function, and 5 iterations turned out to be
sufficient for our simulations. We were careful to make sure that the reinitialization step
did not change the fluid volume by checking the volume before and after reinitialization in
tests of the algorithm and during early simulations.
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Chapter 4

Discretization

In this chapter we will describe a finite difference approach to discretizing Equations (2.5)
and (2.6), shown again below:

∂u

∂t
+
∂ (u2)

∂x
+
∂ (uv)

∂y
+

1

ρ

∂p

∂x
=

1

ρu∞L

(
∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y

))
+ gx,

∂v

∂t
+
∂ (uv)

∂x
+
∂ (v2)

∂y
+

1

ρ

∂p

∂y
=

1

ρu∞L

(
∂

∂x

(
µ
∂v

∂x

)
+

∂

∂y

(
µ
∂v

∂y

))
+ gy.

Discretization refers to moving from a continuous problem to one considered only at finitely
many points [8]. When we discretize time and space we need a way to approximate the
terms found in the equations of motion. Unless otherwise indicated, we will largely follow
along with the discretizations found in [8].

4.1 Discretization of the Navier-Stokes Equations

We will be considering a rectangular computational domain Ω. For finite difference meth-
ods, we typically discretize a rectangular region into a rectilinear grid, with grid sizes ∆x
and ∆y in the x and y directions respectively. We will focus on the square cells defined
by the grid lines, associating the indices i and j with cells ci,j, for i = 1, . . . , nx and
j = 1, . . . , ny. We illustrate this in the left panel of Figure 4.1.

When discretizing the Navier-Stokes equations we employ what is known as a staggered
grid, as can be seen in [3, 4, 8, 17, 19, 20]. The main idea of the staggered grid is not to
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i = 1 i = 2 i = 3 i = 4 i = 5

j = 1

j = 2

j = 3

j = 4

j = 5

c1,1 c2,1

c1,2

i = 0 i = 1 i = 2 i = 3 i = 4

j = 0

j = 1

j = 2

j = 3

j = 4

Figure 4.1: On the left, rectilinear grid lines divide the rectangular domain into cells ci,j for
i = 1, . . . , nx, j = 1, . . . , ny, and nx = ny = 5. On the right we have a rectangular domain
surrounded by ghost cells with nx = ny = 3, in which the extremal indices i = 0, i = nx + 1,
j = 0, and j = ny + 1 correspond to the ghost cells.

store the parameters for cell ci,j at the same position. We store pressure pi,j at the center
of cell ci,j. The x-velocity ui,j is stored at the midpoint of the right edge of cell ci,j. Finally,
the y-velocity vi,j is stored at the midpoint of the top edge of cell ci,j. This is shown in
Figure 4.2.

The purpose of the staggered grid set up is to prevent possible pressure oscillations
which could occur were the unknowns evaluated at the same grid points. A consequence of
the staggered grid is that extremal values of the parameters do not all lie on the boundaries
of the physical domain. For instance, there are no v values on the left or right boundaries.
Similarly, there are no u values on the top or bottom boundaries. Since p values are stored
at cell centers, none are stored on any of the boundaries.

Since we will need to specify boundary conditions for the simulation, we need a way
of defining u, v, and p at the boundary. This problem is resolved by surrounding the
physical domain by a layer of ghost cells. These cells store parameters u, v, and p in the
same manner as the original physical cells. Whenever a parameter value is needed on the
boundary, but is not explicitly defined there, it is found by averaging the parameter value
in the adjacent physical and ghost cells. We can refer to ghost cells using the same indexing
as for the physical cells, except that the ghost cells correspond the extremal values i = 0,
i = nx + 1, j = 0, and j = ny + 1. A diagram of a domain with ghost cells can be seen in
the right panel of Figure 4.1.

Now we can discuss the discretization of the Navier-Stokes equations. The continuity
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i− 1 i i+ 1 i+ 2

j − 1

j

j + 1

pi,j ui,j

vi,j

pi+1,j ui+1,j

vi+1,j

ui−1,j

vi,j−1 vi+1,j−1

ui,j

vi,j

ui+1,j

vi+1,j

ui−1,j

vi,j−1 vi+1,j−1

ui,j+1

ui,j−1

Figure 4.2: The left panel shows a staggered grid setup with variables p, u, and v stored at
different positions within each cell. The right panel shows the velocity values needed to update
ui,j using the momentum equation for u, Equation (2.5).

Equation (2.3) is discretized at the center of cells ci,j for i = 1, . . . , nx and j = 1, . . . , ny.
We need approximations to derivatives ∂u/∂x and ∂v/∂y. We use centered differences
given by, [

∂u

∂x

]
i,j

:=
ui,j − ui−1,j

∆x
, and

[
∂v

∂y

]
i,j

:=
vi,j − vi,j−1

∆y
. (4.1)

These look like backward differences, but recall that ui,j and vi,j are located at the mid-
points of the right and top cell edge respectively, not at the cell center.

The momentum Equation (2.5) for u is discretized at the midpoint of the right cell
edges. Similarly, the momentum Equation (2.6) for v is discretized at the midpoint of the
top cell edges.

The terms
∂

∂x

(
µ
∂u

∂x

)
,
∂

∂y

(
µ
∂u

∂y

)
,
∂

∂x

(
µ
∂v

∂x

)
, and

∂

∂y

(
µ
∂v

∂y

)
, known as the diffu-

sive terms, show up in the momentum Equations (2.5) and (2.6), as a result of the stress
tensor σ. The discretization of these terms needs to be handled carefully since µ changes
at the interface between the two fluids. The level set function φ will be used to make the
discretizations. We will discuss how to handle the diffusive terms after discussing how to
solve for the pressure, where similar ideas are used. The finite difference formulas for these
terms will be covered in Section 4.2.3.

The terms ∂ (u2) /∂x, ∂ (uv) /∂y, ∂ (uv) /∂x, and ∂ (v2) /∂y form the convective terms.
The difference formulas for the convective terms are somewhat complicated, so we will
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handle those which appear in Equation (2.5) first, and then move on to Equation (2.6).

Equation (2.5) is the momentum equation for u. Again, we discretize Equation (2.5)
at the midpoint of the right cell edges. The derivatives ∂ (u2) /∂x and ∂ (uv) /∂y show up
in Equation (2.5) and will require the velocity values shown in the left panel of Figure 4.2.

To discretize ∂(uv)/∂y, we will need appropriate values of the product uv above and
below the position of ui,j. One solution is to compute the product uv at the points marked
with an × using the average values of u and v, leading to the discretization:[

∂(uv)

∂y

]
i,j

:=
1

∆y

(
(vi,j + vi+1,j)

2

(ui,j + ui,j+1)

2
− (vi,j−1 + vi+1,j−1)

2

(ui,j−1 + ui,j)

2

)
.

(4.2)
In a similar manner, we can use central differencing to discretize the ∂(u2)/∂x term using
averaged values of u at the positions marked by a + in the right panel of Figure 4.2. This
leads to the following discretization:[

∂(u2)

∂x

]
i,j

:=
1

∆x

((
ui,j + ui+1,j

2

)2

−
(
ui−1,j + ui,j

2

)2
)
. (4.3)

For stability purposes, the convective terms need to be approximated by a mixture of
the centered differences given in Equations (4.2) and (4.3) and donor-cell discretizations.
The resulting formulas are as follows:[

∂(u2)

∂x

]
i,j

:=
1

∆x

((
ui,j + ui+1,j

2

)2

−
(
ui−1,j + ui,j

2

)2
)

+ γ
1

∆x

(
|ui,j + ui+1,j|

2

(ui,j − ui+1,j)

2
− |ui−1,j + ui,j|

2

(ui−1,j − ui,j)
2

)
(4.4)[

∂(uv)

∂y

]
i,j

:=
1

∆y

(
(vi,j + vi+1,j)

2

(ui,j + ui,j+1)

2
− (vi,j−1 + vi+1,j−1)

2

(ui,j−1 + ui,j)

2

)
+ γ

1

∆y

(
|vi,j + vi+1,j|

2

(ui,j − ui,j+1)

2
− |vi,j−1 + vi+1,j−1|

2

(ui,j−1 − ui,j)
2

)
(4.5)

The convective terms for Equation (2.6) are treated in a symmetric manner. For the
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sake of clarity and completeness, these formulas are given below:[
∂(uv)

∂x

]
i,j

:=
1

∆x

(
(ui,j + ui,j+1)

2

(vi,j + vi+1,j)

2
− (ui−1,j + ui−1,j+1)

2

(vi−1,j + vi,j)

2

)
+ γ

1

∆x

(
|ui,j + ui,j+1|

2

(vi,j − vi+1,j)

2
− |ui−1,j + ui−1,j+1|

2

(vi−1,j − vi,j)
2

)
(4.6)[

∂(v2)

∂y

]
i,j

:=
1

∆y

((
vi,j + vi,j+1

2

)2

−
(
vi,j−1 + vi,j

2

)2
)

+ γ
1

∆y

(
|vi,j + vi,j+1|

2

(vi,j − vi,j+1)

2
− |vi,j−1 + vi,j|

2

(vi,j−1 − vi,j)
2

) (4.7)

The parameter γ in Equations (4.4), (4.5), (4.6) and (4.7) is chosen between 0 and 1 and
represents the balance between the centered difference scheme and donor-cell discretization
scheme. When γ = 0 the formulas are purely centered differences, and when γ = 1 the
formulas are purely donor-cell discretizations. In our simulations we used γ = 0.9. In
general, γ should be chosen so that,

γ ≥ max
i,j

(
|ui,j∆t|

∆x
,
|vi,j∆t|

∆y

)
.

We also need spatial pressure derivatives. Equation (2.5) requires a discretization of
∂p/∂x and Equation (2.6) requires a discretization of ∂p/∂y. We use the centered differ-
ences [

∂p

∂x

]
i,j

:=
pi+1,j − pi,j

∆x
, and

[
∂p

∂y

]
i,j

:=
pi,j+1 − pi,j

∆y
. (4.8)

Note that these are centered differences because we discretize Equation (2.5) at the mid-
points of right cell edges (like the u values), and we discretize Equation (2.6) at the mid-
points of top cell edges (like the v values).

4.1.1 Boundary Values

It was mentioned in Section 4.1 that we will require specifications of the values,

u0,j, unx,j, j = 1, . . . , ny,
vi,0, vi,ny , i = 1, . . . , nx,
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on the boundary and,
ui,0, ui,ny+1, i = 1, . . . , nx,
v0,j, vnx+1,j, j = 1, . . . , ny,

outside the physical domain Ω. We will consider how to impose two different types of solid
wall boundary conditions below.

1. No-slip condition: In the no-slip condition, velocity should be zero at the boundary.
This is to ensure fluid never leaves the domain Ω and to ensure the fluid sticks (or,
does not slip) along the boundary. The values which are directly on the boundary
already are thus set to zero.

u0,j = 0, unx,j = 0, j = 1, . . . , ny,
vi,0 = 0, vi,ny = 0, i = 1, . . . , nx.

(4.9)

Considering the vertical boundaries, we have no v values and must average them
from the ghost and physical cells. Similarly, on the horizontal boundaries, we must
average ghost and physical cell values of u to get boundary values. In both cases we
average the two values and want the result to equal zero. This leads to the following
conditions:

ui,0 = −ui,1, ui,ny+1 = −ui,ny , i = 1, . . . , nx,
v0,j = −v1,j, vnx+1,j = −vnx,j, j = 1, . . . , ny.

(4.10)

2. Free-slip condition: In the free slip condition, velocity normal to the boundary should
be zero, as well as the normal derivative of the velocity at the boundary. This
corresponds to a solid wall which allows fluid to flow across it without resistance. The
velocity values lying directly on a boundary are also those normal to the boundary.
For instance, the y-velocities v lie on the horizontal boundaries. Hence we get the
same conditions for the values directly on the boundary as in the no-slip condition.

u0,j = 0, unx,j = 0, j = 1, . . . , ny,
vi,0 = 0, vi,ny = 0, i = 1, . . . , nx.

(4.11)

To impose that the normal derivative at the boundary be zero, we take a centered
difference of the velocity centered at the boundary and set it equal to zero. This
gives the following conditions:

ui,0 = ui,1, ui,ny+1 = ui,ny , i = 1, . . . , nx,
v0,j = v1,j, vnx+1,j = vnx,j, j = 1, . . . , ny.

(4.12)
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4.1.2 Time Discretization

To simulate the fluid flow for times t ∈ [0, T ] we begin our simulation with initial conditions
for all parameters (p, u, and v) at time t0 = 0. The parameters p, u, and v are calculated
at the next time step t1 = t0 + ∆t using spatial derivatives from the previous time step t0.
This process is repeated until we reach a time step tn = tn−1 + ∆t = T . Such a method
would be an explicit method since the parameter values at time tn+1 can be found using
only the parameter values from time tn. In contrast, an implicit method would use spatial
derivatives from both time step tn+1 and tn. We will be using an explicit method in our
simulations.

The time derivatives from Equations (2.5) and (2.6) are discretized using Euler’s method .
Euler’s method uses first order differences,[

∂u

∂t

]n+1

:=
un+1 − un

∆t
,

[
∂v

∂t

]n+1

:=
vn+1 − vn

∆t
,

where the superscripts denote the time level.

The simulation will become unstable if ∆t is too large. We need the following three
conditions:

2∆t

Re
<

(
1

∆x2
+

1

∆y2

)−1

, |umax|∆t < ∆x, |vmax|∆t < ∆y. (4.13)

The |umax| and |vmax| terms are the maximum absolute velocities in the x and y direc-
tions respectively. The last two restrictions correspond to the typical Courant-Friedrichs-
Lewy(CFL) conditions. The first condition uses the Reynolds number, Re. Our simulations
deal with a liquid and air region. Let ρA and µA denote the density and viscosity of the
air, and let ρL and µL denote the density and viscosity of the liquid. Then the Reynolds
number for the time step restriction is given by,

Re = min

{
ρAu∞L

µA
,
ρLu∞L

µL

}
. (4.14)

When surface tension is incorporated in our simulation we have to impose [19],

∆t < ∆ts :=
√

(ρA + ρL)/8πσ ·min {∆x,∆y}
3
2 ,

where σ is a constant coefficient which determines the strength of surface tension. Surface
tension will be discussed in Section 4.2.2 in the context of the variable coefficient Poisson
equation for pressure, Equation (4.18).
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The restrictions above can be summarized as,

∆t := τ min

{
Re

2

(
1

∆x2
+

1

∆y2

)−1

,
∆x

|umax|
,

∆y

|vmax|
,∆ts

}
, (4.15)

where τ ∈ (0, 1) is a safety factor ensuring we do not get too close to the upper limits. In
our simulations we found that τ = 0.5 effectively enforced stability.

4.1.3 Discretization and Initialization of Level Set Function φ

The level set function φ is discretized at the centers of the cells ci,j, just like the pressure
p. When initializing φ, we need to do so in a way that splits the domain Ω into two fluid
regions. For our simulations, we used the convention that φ ≤ 0 corresponds to a liquid
region and φ > 0 corresponds to an air region. The exact location of the boundary depends
on how φ is initialized. Our work was focused on drop simulations where a circular drop
of liquid falls into a pool of fluid below. Hence, we initialized φ so that its level set was
a circle positioned over a horizontal line. The origin is located at the bottom left corner
of the simulation domain. If we want the circle to have radius R and the pool to be at a
height of h then we can initialize φ as

φ(x, y) = min
{
y − h,

√
(x− xc)2 + (y − yc)2 −R

}
,

where (xc, yc) is the center of the drop. This gives a well behaved φ which is similar to a
signed distance function.

Note that since φ values are stored at cell centres, when we advect φ we must linearly
interpolate velocities u and v at the cell centres. This means that the upwinding formulas
from Section 3.3 become

(φx)i,j =


φni,j − φni−1,j

∆x
, if

ui,j + ui−1,j

2
> 0,

φni+1,j − φni,j
∆x

, if
ui,j + ui−1,j

2
≤ 0,

and

(φy)i,j =


φni,j − φni,j−1

∆y
, if

vi,j + vi,j−1

2
> 0,

φni,j+1 − φni,j
∆y

, if
vi,j + vi,j−1

2
≤ 0.
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Similarly, the values of u and v in Equation (3.2) use cell centered velocities
ui,j + ui−1,j

2

and
vi,j + vi,j−1

2
for cell ci,j.

4.2 Algorithm Description

We have most of the tools needed to implement the proposed fluid simulator algorithm.
The only missing pieces are the spatial derivatives arising from the stress tensor, whose
discretizations are similar to those used when solving for pressure. We will first discuss the
algorithm so that we can see how pressure is computed.

4.2.1 The Time Stepping Outline

As noted in Section 4.1.2, we first initialize the values of p, u, and v at time t = 0. In our
simulations, we initialize these parameters uniformly to zero. We also want to initialize φ
as described in Section 4.1.3.

We first perform the time discretization in the momentum Equations (2.5) and (2.6).
This gives the two equations,

un+1 − un

∆t
+
∂ (u2)

∂x
+
∂ (uv)

∂y
+

1

ρ

∂p

∂x
=

1

ρu∞L

(
∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y

))
+ gx,

and

vn+1 − vn

∆t
+
∂ (uv)

∂x
+
∂ (v2)

∂y
+

1

ρ

∂p

∂y
=

1

ρu∞L

(
∂

∂x

(
µ
∂v

∂x

)
+

∂

∂y

(
µ
∂v

∂y

))
+ gy.

We isolate the un+1 and vn+1 terms in the equations above to get,

un+1 = un + ∆t

(
1

ρu∞L

(
∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y

))
− ∂ (u2)

∂x
− ∂ (uv)

∂y
+ gx −

1

ρ

∂p

∂x

)
,

and

vn+1 = vn + ∆t

(
1

ρu∞L

(
∂

∂x

(
µ
∂v

∂x

)
+

∂

∂y

(
µ
∂v

∂y

))
− ∂ (uv)

∂x
− ∂ (v2)

∂y
+ gy −

1

ρ

∂p

∂y

)
.
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Define the following variables:

F := un + ∆t

(
1

ρu∞L

(
∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y

))
− ∂ (u2)

∂x
− ∂ (uv)

∂y
+ gx

)
,

G := vn + ∆t

(
1

ρu∞L

(
∂

∂x

(
µ
∂v

∂x

)
+

∂

∂y

(
µ
∂v

∂y

))
− ∂ (uv)

∂x
− ∂ (v2)

∂y
+ gy

)
.

(4.16)
With these variables, the equations we are working on become,

un+1 = F − ∆t

ρ

∂p

∂x
,

vn+1 = G− ∆t

ρ

∂p

∂y
.

(4.17)

To fully discretize Equation (4.17), we associate F and G with time level tn, and the
pressure derivatives with time step tn+1. In this way our discretization can be considered a
semi-implicit scheme, which is explicit in velocities and implicit in pressure. We will thus
need a way of computing the pressure at time level tn+1.

The pressure is found by making use of the continuity equation ∇ · ~u = 0. We can
apply the continuity equation at time tn+1 to get

0 =
∂un+1

∂x
+
∂vn+1

∂y
=
∂F n

∂x
−∆t

∂

∂x

(
1

ρ

∂pn+1

∂x

)
+
∂Gn

∂y
−∆t

∂

∂y

(
1

ρ

∂pn+1

∂y

)
.

We can rearrange this to get the variable coefficient Poisson equation for pressure at time
tn+1:

∂

∂x

(
1

ρ

∂pn+1

∂x

)
+

∂

∂y

(
1

ρ

∂pn+1

∂y

)
=

1

∆t

(
∂F n

∂x
+
∂Gn

∂y

)
(4.18)

In vector form this could be written as

∇ ·
(

1

ρ
∇pn+1

)
=

1

∆t
∇ ·Hn, (4.19)

where Hn =

(
F n

Gn

)
.

In summary, to get from time step tn to time step tn+1 we follow these steps:

1. Compute F n and Gn according to Equation (4.16) using velocities un and vn.
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2. Solve the variable coefficient Poisson equation (4.18) for pressure pn+1.

3. Compute the new velocities un+1 and vn+1 using (4.17).

We still need to discuss steps one and two a bit more carefully. For step one, we still
need to specify boundary conditions for F and G. We also still need to see the difference
formulas for the diffusive terms showing up in F and G. For step two, we still need to
describe how to solve for the pressure, which involves solving a linear system of equations.
The discussion of how to solve for the pressure will give us the tools needed to discretize
the diffusive terms.

4.2.2 Solving the Variable Coefficient Poisson Equation for Pres-
sure

We update pressure from time tn to tn+1 by solving the variable coefficient Poisson equation
(4.18). We will begin by considering the one dimensional case which will naturally extend
to two dimensions. In one dimension, the variable coefficient pressure equation becomes

d

dx

(
1

ρ

dp

dx

)
=

1

∆t

dF

dx
. (4.20)

The question is how to form a discretization of
d

dx

(
1

ρ

dp

dx

)
at a point xk that captures the

jump at the interface Γ in density, pressure gradient, and, in the case of surface tension,
pressure. These interface conditions are illustrated in the left panel of Figure 4.3, where
pI is the pressure at the interface, κ is the curvature at the interface, and σ is a constant
controlling the strength of the surface tension. Curvature is calculated at cell centers (the

same locations at which φ is stored) using the formula κ = ∇ ·
(
∇φ
|∇φ|

)
, and standard

centered differences.

Consider Figure 4.3. Suppose that xk belongs to the liquid region with density ρL, and
xk+1 belongs to the air region with density ρA. The exact interface between liquid and air
is where φ = 0 at position xk + θ∆x. We can approximate the location of the interface
using a linear interpolation of φk = φ(xk) and φk+1 = φ(xk+1). This gives,

θ =
φk

φk − φk+1

. (4.21)
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xk xk+ 1
2

xk+1

pk
pI

pk+1

θ∆x (1− θ)∆x

σκp

xk xk+ 1
2

xk+1

pk
ρL

pI
ρL

pk+1

ρA

pI+σκ
ρA

(
p
ρ

)G
k+1

(
p
ρ

)G
k

θ∆x (1− θ)∆x

p
ρ

Figure 4.3: The left panel shows a plot of pressure across a fluid interface. The jump in pressure
and pressure gradient can be seen at the interface between xk and xk+ 1

2
(left). The jump in

pressure is a result of surface tension, and is proportional to the curvature κ at the interface.
When we look at the plot of p/ρ (right) our discretization assumes no jump in the gradient of
p/ρ, but the jump in the value of p/ρ still exists. We use linear extensions of the pressure to find
the “ghost” values of pressure, denoted with the G superscript.

We will use a centered discretization scheme for
d

dx

(
1

ρ

dp

dx

)
at xk, which takes the form

[
d

dx

(
1

ρ

dp

dx

)]
k

=

[
1
ρ
dp
dx

]
k+ 1

2

−
[

1
ρ
dp
dx

]
k− 1

2

∆x
. (4.22)

The terms

[
1

ρ

dp

dx

]
k+ 1

2

and

[
1

ρ

dp

dx

]
k− 1

2

are centered differences of
1

ρ

dp

dx
with mesh width

∆x/2. It will help to make these approximations if we look at the graph of p/ρ, shown in
the right panel of Figure 4.3. Our assumptions and description of the discretization will
follow [3] closely. We assume no jump in the slope of p/ρ, and a jump of size σκ/ρA.

In our example, xk and xk−1 both lie in the liquid domain and so the density is ρL at

these locations. We can hence discretize

[
1

ρ

dp

dx

]
k− 1

2

as,

[
1

ρ

dp

dx

]
k− 1

2

=
1

ρL

pk − pk−1

∆x
. (4.23)
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For the term

[
1

ρ

dp

dx

]
k+ 1

2

, we need to be more careful. Note that if we knew the value of pI

we could define our approximation as,[
1

ρ

dp

dx

]
k+ 1

2

=
1

ρL

pI − pk
θ∆x

. (4.24)

To find pI , notice that by comparing the slopes of the solid black lines in the left panel of
Figure 4.3 we get

1

ρL

pI − pk
θ∆x

=
1

ρA

pk+1 − (pI + σκ)

(1− θ)∆x
.

We can rearrange this to get,

pI =
ρL (pk+1 − σκ) θ + ρApk (1− θ)

ρLθ + ρA (1− θ)
.

which can be substituted back into Equation (4.24) to get,[
1

ρ

dp

dx

]
k+ 1

2

=
1

ρ̂

pk+1 − pk − σκ
∆x

, (4.25)

where
ρ̂ = ρLθ + ρA (1− θ) . (4.26)

We can substitute Equations (4.23) and (4.25) into Equation (4.22) to get,[
d

dx

(
1

ρ

dp

dx

)]
k

=

1
ρ̂

pk+1−pk−σκ
∆x

− 1
ρL

pk−pk−1

∆x

∆x
. (4.27)

We can substitute the left hand side of Equation (4.20) with the right hand side of
Equation (4.27), and move the surface tension to the right hand side to get,

1

ρ̂

pk+1 − pk
∆x2

− 1

ρL

pk − pk−1

∆x2
=

1

∆t

dF

dx
+

1

ρ̂

σκ

∆x2
. (4.28)

Similarly, if the interface were located between xk and xk−1, we would have,

1

ρL

pk+1 − pk
∆x2

− 1

ρ̂

pk − pk−1

∆x2
=

1

∆t

dF

dx
+

1

ρ̂

σκ

∆x2
, (4.29)
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where ρ̂ is calculated in a similar manner as above.

Note that the terms

[
1

ρ

dp

dx

]
k+ 1

2

and

[
1

ρ

dp

dx

]
k− 1

2

are discretized independently of each

other. The term

[
1

ρ

dp

dx

]
k+ 1

2

is a standard centered discretization about xk+ 1
2

unless the

interface lies between xk and xk+1, in which case the density ρ becomes a weighted average

between ρL and ρA. Similarly, the

[
1

ρ

dp

dx

]
k− 1

2

term is a standard centered discretization

about xk− 1
2

unless the interface lies between xk and xk−1, in which case the density ρ
becomes a weighted average between ρL and ρA. Hence we can consider the left and right

arms of the finite difference stencil for

[
d

dx

(
1

ρ

dp

dx

)]
k

separately. We can also keep all

surface tension terms on the right hand side of Equation (4.20).

In two dimensions, we can still discretize the

[
∂

∂x

(
1

ρ

∂p

∂x

)]
i,j

term in the same manner

as described above. The k index from the discussion above now corresponds to the i index.

The term

[
∂

∂y

(
1

ρ

∂p

∂y

)]
i,j

can also be discretized just as above, but now the derivatives

are in the y-direction, and hence the k index from above corresponds to the j index.

Readers should also note that we discussed the case where xk (or in two dimensions
xi,j) lied in the liquid domain. In the case that xk lies in the air region, the discretization
turns out to be identical except with the roles of ρL and ρA switched. However, the surface
tension terms reverse sign when xk (or xi,j) lies in the air region. This is because the jump
in pressure from liquid to air becomes a drop in pressure from air to liquid. For a thorough
discussion of the variable coefficient Poisson equation

∇ · (β(~x)∇p(~x)) = f(~x)

on irregular domains Ω defined with level sets, the reader is referred to [11]. The discussion
is more general, but when adapted for our purposes, gives the same discretization formulas.

We now have a discretization of the left hand side of Equation (4.18) for all points xi,j,
i = 1, . . . , nx, j = 1, . . . , ny. The right hand side is more simply discretized as,

1

∆t

(
∂F n

∂x
+
∂Gn

∂y

)
=

1

∆t

(
F n
i,j − F n

i−1,j

∆x
+
Gn
i,j −Gn

i,j−1

∆y

)
, (4.30)

for i = 1, . . . , nx and j = 1, . . . , ny. These discretizations form a linear system of equations
when the surface tension terms are moved to the right hand side. To be well defined,
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we need boundary values of p, F , and G. For the staggered grid setup, we use the same
boundary conditions as in [8], which come from multiplying Equations (4.33) and (4.34)
(introduced in the upcoming section) with the unit exterior normal vector ~n on the bound-
ary of the physical domain. The details are omitted, and the resulting boundary conditions
are,

p0,j = p1,j, pnx+1,j = pnx,j, j = 1, . . . , ny,
pi,0 = pi,1, pi,ny+1 = pi,ny , i = 1, . . . , nx,

(4.31)

and
F0,j = u0,j, Fnx,j = unx,j, j = 1, . . . , ny,
Gi,0 = vi,0, Gi,ny = vi,ny , i = 1, . . . , nx,

(4.32)

for p, F , and G.

The linear equations above form a symmetric “negative definite” matrix system. Tak-
ing the negative of the corresponding matrix equation gives a symmetric positive definite
system which can be solved with the iterative methods Conjugate Gradient (CG), Precon-
ditioned Conjugate Gradient (PCG), or Multigrid (MG) [14, 19].

4.2.3 Fully Discretized Momentum Equations

Using the pressure derivatives from Equation (4.8) and the form of the momentum equa-
tions shown in Equation (4.17), we can get

un+1
i,j = F n

i,j −
∆t

ρ∆x

(
pn+1
i+1,j − pn+1

i,j

)
, (4.33)

for i = 1, . . . , nx − 1, and j = 1, . . . , ny, as well as

vn+1
i,j = Gn

i,j −
∆t

ρ∆y

(
pn+1
i,j+1 − pn+1

i,j

)
, (4.34)

for i = 1, . . . , nx, and j = 1, . . . , ny − 1. As noted previously, F is discretized at the
midpoint of right cell edges, just as the u values are. G is discretized at the midpoint of
the top cell edges, just as the v values are. The discrete versions of F and G are then

Fi,j := ui,j

+ ∆t

(
1

ρu∞L

([
∂

∂x

(
µ
∂u

∂x

)]
i,j

+

[
∂

∂y

(
µ
∂u

∂y

)]
i,j

)
−
[
∂(u2)

∂x

]
i,j

−
[
∂(uv)

∂y

]
i,j

+ gx

)
,

(4.35)
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and

Gi,j := vi,j

+ ∆t

(
1

ρu∞L

([
∂

∂x

(
µ
∂v

∂x

)]
i,j

+

[
∂

∂y

(
µ
∂v

∂y

)]
i,j

)
−
[
∂(uv)

∂x

]
i,j

−
[
∂(v2)

∂y

]
i,j

+ gy

)
.

(4.36)

We defined the discrete convective terms in Equations (4.4), (4.5), (4.6), and (4.7).

We still need the discrete diffusive terms

[
∂

∂x

(
µ
∂u

∂x

)]
i,j

,

[
∂

∂y

(
µ
∂u

∂y

)]
i,j

,

[
∂

∂x

(
µ
∂v

∂x

)]
i,j

,

and

[
∂

∂y

(
µ
∂v

∂y

)]
i,j

, but before discretizing these diffusive terms, we have to discuss how the sur-

face tension terms affect the velocity update in the Equations (4.33) and (4.34). These formulas
can be used when away from the interface Γ. However, if the interface exists between xi,j and
xi+1,j , then the jump in pressure due to surface tension needs to be included on the right hand
side of Equation (4.33) as in [3]. The new formula is then

un+1
i,j = Fni,j −

∆t

ρ̂∆x

(
pn+1
i+1,j − p

n+1
i,j

)
+

σκ

ρ̂∆x
, (4.37)

where ρ̂ is the averaged density used in the pressure equation for the discrete term

[
1

ρ

∂p

∂x

]
i+ 1

2
,j

.

Similarly, if the interface exists between xi,j and xi,j+1, then the jump in pressure due to surface
tension is included on the right hand side of Equation (4.34) as

vn+1
i,j = Gni,j −

∆t

ρ∆y

(
pn+1
i,j+1 − p

n+1
i,j

)
+

σκ

ρ̂∆y
, (4.38)

where ρ̂ is the averaged density used in the pressure equation for the discrete term

[
1

ρ

∂p

∂y

]
i,j+ 1

2

.

The discretization of the diffusive terms in Equations (4.35) and (4.36) is done in a similar
manner as the discrete pressure terms discussed in Section 4.2.2. We will consider the diffuse

terms

[
∂

∂x

(
µ
∂u

∂x

)]
i,j

and

[
∂

∂y

(
µ
∂u

∂y

)]
i,j

from Equation (4.35) first.

We discretize the term

[
∂

∂x

(
µ
∂u

∂x

)]
i,j

in almost exactly the same way that we discretize[
∂

∂x

(
1

ρ

∂p

∂x

)]
i,j

. Indeed, the technique is identical to that discussed in Section 4.2.2, except that

instead of the variable coefficient
1

ρ
we have variable coefficient µ, and our discretization is now
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centered at xi+ 1
2
,j instead of xi,j . Because of the similarities with the pressure solve, we can avoid

a lengthy discussion of the how to derive the formulas for µ on the left and right arms of the
stencil at xi+ 1

2
,j . The discretizations will take the forms

[
∂

∂x

(
µ
∂u

∂x

)]
i,j

=

[
µ∂u∂x

]
i+ 1

2
,j
−
[
µ∂u∂x

]
i− 1

2
,j

∆x
, (4.39)

and [
∂

∂y

(
µ
∂u

∂y

)]
i,j

=

[
µ∂u∂y

]
i,j+ 1

2

−
[
µ∂u∂y

]
i,j− 1

2

∆y
. (4.40)

The subscripts above may seem confusing. The term

[
∂

∂x

(
µ
∂u

∂x

)]
i,j

is the discretization for the

cell ci,j , but it is centered about the point xi+ 1
2
,j . Hence

[
µ
∂u

∂x

]
i+ 1

2
,j

is actually centered about

xi+1,j , and

[
µ
∂u

∂x

]
i− 1

2
,j

is centered about xi,j . On the other hand,

[
µ
∂u

∂y

]
i,j+ 1

2

is centered about

xi+ 1
2
,j+ 1

2
and

[
µ
∂u

∂y

]
i,j− 1

2

is centered about xi+ 1
2
,j− 1

2
.

Let the viscosity of the air be denoted µA and the viscosity of the liquid be µL. The dis-

cretization of

[
µ
∂u

∂x

]
i+ 1

2
,j

is then

[
µ
∂u

∂x

]
i+ 1

2
,j

= µ̂
ui+1,j − ui,j

∆x
(4.41)

where

µ̂ =


µA, if φi+ 1

2
,j > 0 and φi+ 3

2
,j > 0

µL, if φi+ 1
2
,j ≤ 0 and φi+ 3

2
,j ≤ 0

µLµA
µAθ+µL(1−θ) , if φi+ 1

2
,j ≤ 0 and φi+ 3

2
,j > 0

µLµA
µLθ+µA(1−θ) , if φi+ 1

2
,j > 0 and φi+ 3

2
,j ≤ 0

and φi+ 1
2
,j =

φi,j+φi+1,j

2 , φi+ 3
2
,j =

φi+1,j+φi+2,j

2 , and θ =
φi+ 1

2
,j

φi+ 1
2
,j − φi+ 3

2
,j

. Notice that

µLµA
µAθ + µL(1− θ)

=
1

1
µL
θ + 1

µA
(1− θ)

,
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and
µLµA

µLθ + µA(1− θ)
=

1
1
µA
θ + 1

µL
(1− θ)

,

which highlights that this value of µ is derived in the same manner as ρ in the pressure equation
in Section 4.2.2.

The only real difference between the formulas for µ̂ and ρ̂ is that we use φi+ 1
2
,j and φi+ 3

2
,j ,

which are values of φ linearly interpolated at the midpoint of right cell edges, rather than values
of φ at cell centers. This is because we need values of φ located at the same position as ui,j

and ui+1,j . Similarly, for the discrete term

[
µ
∂u

∂x

]
i− 1

2
,j

, we linearly interpolate values of φ at the

positions of ui,j and ui−1,j , and then the resulting discretization formula is derived in a symmetric
manner as above.

For the discretization in Equation (4.40), we derive the discrete terms on the right hand side
in exactly the same manner as discussed above for Equation (4.39). In this case we linearly
interpolate φ to get values located at the same positions as ui,j−1, ui,j , and ui,j−1. Because of
this symmetry, the details are omitted.

The diffuse terms from Equation (4.36) are treated in a manner that is symmetric to the diffuse
terms from Equation (4.35) just discussed, except that now the discretizations are centered at the

midpoints of top cell edges. Because of this, the term

[
∂

∂x

(
µ
∂v

∂x

)]
i,j

from (4.36) corresponds

more closely to the term

[
∂

∂y

(
µ
∂u

∂y

)]
i,j

from Equation (4.35), and the term

[
∂

∂y

(
µ
∂v

∂y

)]
i,j

from Equation (4.36) corresponds more closely to the term

[
∂

∂x

(
µ
∂u

∂x

)]
i,j

from Equation (4.35).

Again, due to symmetry, we omit the details.
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4.2.4 Summary of Fluid Simulation Algorithm

The entire algorithm for simulating the two phase flow is given in Algorithm 1. In order
to analyze the results of the fluid simulation, data about the velocities, pressure, level set, or
any parameters used will need to be saved and stored during the simulation. These details are
implementation dependent and so left out of our discussion.

Algorithm 1 This is the pseudocode describing how to put all the parts of the fluid solver
together.

1: Set t:=0, n:=0
2: Assign initial values to u, v, p, and φ.
3: while t < T do
4: Select the timestep ∆t according to (4.15).
5: Set boundary values for u and v. For no-slip conditions use (4.9) and (4.10). For

free-slip conditions use (4.11) and (4.12).
6: Compute F n and Gn according to (4.35) and (4.36).
7: Compute the right hand side of the pressure equation (4.18) using (4.30). At the

interface Γ, add the surface tension terms described in Section 4.2.2 as well.
8: Solve the pressure equation as discussed in Section 4.2.2 for pressure pn+1.
9: Compute un+1 and vn+1 using (4.33) and (4.34). At the interface Γ, add the surface

tension terms described in Section 4.2.3.
10: Advect the level set using an upwinding scheme as described in Section 3.3 for one

time step of size ∆t.
11: Reinitialize the level set function to a signed distance function as described in

Section 3.3.1.
12: t← t+ ∆t, n← n+ 1.
13: end while
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Chapter 5

Results

Our simulations focused on what we will call the drop problem. That is, we were interested in
simulating a drop of liquid falling through air and into a pool of the same type of liquid. We
are more interested in the liquid than the surrounding air, so the parameters for the air phase
are never changed. We will restrict our analysis to the effects of modifying the parameters of
the fluid phase. The parameters we have control of are the density ρ, viscosity µ, and surface
tension coefficient σ. As a default, all parameters will be set to those of water. So for example, if
we are analyzing viscosity, then we will set density and surface tension forces to those of water.
But first, before changing the parameters of the liquid from those of water, we will do a basic
convergence and qualitative analysis of the simulation with water parameters.

5.1 Convergence Analysis

Our first water drop simulation takes place in a 1×2 m rectangular region with free-slip boundary
conditions. The radius of the water drop is 0.15 m and the pool of water below is 1 m high.
We use physical parameters for the water and air phases provided in [8]. The density of water
is ρwater = 999.9 kg/m3, and the viscosity is µwater = 1.787 · 10−3 kg/(m s). For air the density
is ρair = 1.293 kg/m3, and the viscosity is µair = 1.71 · 10−5 kg/(m s). For the surface tension
coefficient of water we use the value σ = 0.073 kg/s2 found in [3]. Two more parameters which
need to be set are the values of u∞ and L. However, since u∞ and L only appear in Equations
(2.5) and (2.6) as the product u∞L, we effectively just need to set the value of u∞L directly.
Modifying the value of u∞L effectively modifies the value of the Reynolds number Re = ρu∞L/µ.
We found that the best results were obtained with u∞L = 0.001 m2/s and use this as a default
value, but we will explore this parameter as well.
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Figure 5.1: Time evolution (from left to right) of the drop simulation with grid sizes 50 × 100
(top row), 100 × 200 (middle row), and 200 × 400 (bottom row). The times t of the frames are
(from left to right), t = 0, t = 0.233, t = 0.283, t = 0.333, t = 0.383, and t = 0.433.

We first will look at the behaviour of the simulation for different grid sizes nx × ny. In all
simulations we set ∆y = ∆x. Figure 5.1, shows the time evolution of the drop simulation with
grid sizes 50 × 100, 100 × 200, and 200 × 400. As the grid becomes more refined (when ∆x
decreases), finer details of the splash are captured. This is particularly pronounced in the fourth
and fifth columns, as the waves which result from the splash have more detailed crests. The
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improvement in quality is matched by a significant increase in computational time. We compare

computational times in Table 5.1. The time step restriction ∆t ≤ Re

2

(
1

∆x2
+

1

∆y2

)−1

implies

∆x (m) Computation time for one time step (s) Timestep ∆t (s)
1/50 0.4 0.0019
1/100 3.7 0.0009507
1/200 45.8 0.0002377

Table 5.1: A comparison of the typical time taken to evolve the simulation for one time step and
the typical size of a time step ∆t for different grid sizes.

that we have ∆t ∝ ∆x2 when ∆x = ∆y. When ∆x is halved from 1/50 to 1/100 we notice that
∆t is approximately halved as well, which does not fit the proportionality relationship ∆t ∝ ∆x2.
But, when ∆x is halved from 1/100 to 1/200 we notice that ∆t is approximately reduced by a
factor of four, which does follow the relationship ∆t ∝ ∆x2, suggesting that this relationship
becomes more accurate as mesh size ∆x decreases.

The bottleneck in computational time is the implicit pressure solver. While the explicit
velocity update will take longer with more grid points, the update is effectively proportional to
the number of grid points. Solving for pressure using CG algorithm ends up taking more iterations
as ∆x decreases, and each iteration needs to consider more grid points. Hence, the time taken
per time step increases dramatically as ∆x increases. While CG is expected to require more
iterations with decreasing ∆x, another reason may be that with the sharp interface conditions,
the matrix system defined by the variable coefficient Poisson equation becomes ill-conditioned.
If this is the case, then as more grid points border the interface Γ due to decreasing ∆x, the more
ill-conditioned the system may become. This claim has not been verified, though such an issue
may be partly overcome by employing the PCG or MG methods [14]. Even if our claim is not
true, these algorithms would still be expected to improve the pressure solver.

5.2 Surface Tension

In the default simulation, our surface tension coefficient is σ = 0.073, and the drop has a radius of
0.15 m. At this scale, the effects of surface tension are not very pronounced, as would be expected
for such a large body of water. In fact, our simulations with σ = 0 were essentially identical to
those with σ = 0.073. In order to see the effects of surface tension, we need to increase σ. We
explore the parameter σ in Figure 5.2. We can see that the general effect of surface tension is
to smooth out the interface Γ. This is the expected effect of surface tension. What is somewhat
surprising is the extreme coefficient σ needed to observe these effects. In [3] the authors note that
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Figure 5.2: Time evolution (from left to right) for different surface tension coefficients σ. First
we have default surface tension σ = 0.073 kg/m2 in row one, followed by surface tension σ =
2000.0 kg/m2 in row two, and finally surface tension σ = 4000.0 kg/m2 in row three. The times
t of the frames are (from left to right), t = 0, t = 0.233, t = 0.283, t = 0.333, t = 0.383, and
t = 0.433

σ = 0.073 is enough to keep a drop together and rounded. However, their simulations took place
on the scale of centimetres, whereas our simulation is on the scale of metres. This helps explain
why such an extreme value of σ is needed to significantly affect the simulation.
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5.3 Viscosity

The viscosity of the liquid affects how “thick” the fluid appears to be. In Figure 5.3, we compare
low, default, and high values of viscosity, which corresponds to thin, default (water), and thick
fluid respectively. For thin fluid (µ = 0.00001787), we can see that the crests of the splash are
flatter, suggesting that the thin fluid stuggles to push through the air. For thick fluid (µ = 0.1787),
the crests of the splash are also suppressed but to a more extreme degree, which is to be expected.
When a fluid thickens, it is harder for kinetic energy to carry through it since friction between
particles is much higher. For an intuitive (but extreme) example, we would not expect a drop of
honey to create a large splash in a pool of honey.

5.4 Density

Here we will modify the density ρ of the liquid phase. In essence this should affect the weight of
the liquid. For our simulation, we should expect the lighter liquid to be more heavily influenced
by the surrounding air medium. Results are shown in Figure 5.4. We can see that for low density
(ρ = 50.0) the drop becomes more ovular as it approaches the pool below, suggesting the air
resists the falling drop more significantly and deforms it. Also, the pool below deforms well
before the drop reaches it. This means that as the air does not move out of the way of the drop
as easily as for higher density liquids, and as the drop falls the air pushes on the pool below.
Also, since the pressure ratio between the liquid and air is much lower, the drop does not fall as
quickly. This effect is small but noticeable in column three of Figure 5.4. This is to be expected
since as the pressure ratio approaches 1 : 1 we would not expect the drop to fall at all.

In the case of the “high” density drop (ρ = 1500.0), we do not notice a significant difference
in the behaviour of the drop. We were unable to make a more extreme density such as ρ = 2000.0
since these simulations exhibited nonphysical behaviour when the drop hit the pool below and
the time steps also decreased dramatically. It appears that our simulation stops functioning
correctly for extreme pressure ratios. A potential reason for this is that the matrix system for the
pressure solve may become ill-conditioned due to the special conditions imposed at the interface
Γ. If this were true we would expect the matrix system to become even more poorly conditioned
with higher density ratios (compared with a 1:1 ratio which would give a standard, well-behaved
Laplacian system).

5.5 Effect of the Product u∞L

As stated before, we set u∞L = 0.001 in our simulations as it seemed to provide the most
physically believable simulations. But this is an arbitrary choice and so we will briefly explore
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Figure 5.3: Time evolution (from left to right) for different viscosities µ. First we have µ =
0.00001787 kg/(m s) in row one, followed by µ = 0.001787 kg/(m s) in row two, and finally
µ = 0.1787 kg/(m s) in row three. The times t of the frames are (from left to right), t = 0,
t = 0.233, t = 0.283, t = 0.333, t = 0.383, and t = 0.433

some other values of u∞L. Figure 5.5 shows the time evolution for various values of u∞L. We
focus on the falling portion of the drop simulation in Figure 5.5 because the subsequent splash
and sloshing of liquid does not change significantly for the various u∞L values. Due to the scale
of our simulation, the default surface tension is nearly nonexistent, making our simulation closer
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Figure 5.4: Time evolution (from left to right) for different densities ρ. First we have ρ =
50.0 kg/m3 in row one, followed by ρ = 999.9 kg/m3 in row two, and finally ρ = 1500 kg/m3

in row three. The times t of the frames are (from left to right), t = 0, t = 0.233, t = 0.283,
t = 0.333, t = 0.383, and t = 0.433

to the drop simulations from [19] with no surface tension. In their simulations, we see a shape
like the one in row two, column five of Figure 5.5 resulting from the air resisting the falling drop.
Because of this agreement with the results in [19], we chose to keep u∞L = 0.001.
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Figure 5.5: Time evolution (from left to right) for different values of u∞L. First we have u∞L =
0.1 m2/s in row one, followed by u∞L = 0.001 m2/s in row two, and finally u∞L = 0.0001 m2/s
in row three. The times t of the frames are (from left to right), t = 0, t = 0.117, t = 0.167,
t = 0.217, t = 0.267, and t = 0.317

5.6 Volume Loss

A common problem in two phase flow simulations is volume loss. We can see the issue discussed in
the related literature [4, 7, 17, 19, 20]. For methods using level sets to track the interface between
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Figure 5.6: This graph tracks the volume of the drop of fluid with and without reinitialization.
Without reinitialization the simulation becomes numerically unstable after roughly 0.9 seconds.

the fluids, it is common to partially remedy the volume loss by reinitializing the level set to a
signed distance function, as discussed in Chapter 3. The underlying fluid velocity used to advect
the level set function φ is also supposed to be divergence free, and hence volume loss observed in
simulations is a numerical artifact. This means that improvements to the underlying numerical
methods should aid in preventing volume loss. An example of this is to improve the forward and
backward differences used in the upwinding scheme used to advect the level set function using
third order ENO differences (this is discussed in the Appendix). Another way to improve the
numerical method is of course to decrease the mesh size ∆x.

Figure 5.6 shows a volume comparison of the drop simulation from 0 to 1.5 seconds with and
without level set reinitialization. Without reinitialization, the simulation became numerically
unstable after roughly 0.9 seconds. This makes a meaningful comparison of the volume loss
difficult. However, we can see that the volume in the early simulation is not dramatically different
with and without reinitalization. It seems that the major benefit of reinitialization is improved
stability more so than prevention of volume loss.

In Figure 5.7 we see a volume comparison for the drop simulation with and without 3rd order
ENO approximations. The “dropping” portion of the simulation (which roughly spans the first
0.3 seconds) shows improved volume preservation, whereas the subsequent splash and sloshing of
the fluid shows no improvement either way.

We compare volume preservation for two mesh sizes ∆x in Figure 5.8. With the finer mesh
(∆x = 1/200) we notice that the volume is more stable over time compared with the volume
from the larger mesh (∆x = 1/50). During the “dropping” portion of the simulation (roughly
from t = 0 to t = 0.3) both mesh sizes show volume loss but the smaller mesh size shows much
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Figure 5.7: This graph tracks the volume of the drop of fluid with and without ENO approxi-
mations.
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Figure 5.8: This graph compares volume preservation of a drop of radius 0.10 m using a mesh
size of ∆x = 1/50 (blue) and ∆x = 1/200 (red).

less, and is more stable. In the subsequent splash both simulations slow their volume loss and in
fact end up with a similar volume at time t = 1.5. The stability of volume exhibited with the
smaller mesh size is of course more desirable than the comparatively volatile volume shown with
the larger mesh size, as it corresponds more closely to the principle of conservation of mass used
to derive the continuity Equation (2.3).

46



Chapter 6

Conclusion

Here we wish to briefly reflect on several aspects of our fluid solver. We will begin in Section 6.1
with a discussion of technical issues of our simulation and possible improvements. This is followed
by a brief look at potential directions for future work in Section 6.3. For readers looking to
implement the fluid simulator described in Chapter 4, we will share some of the lessons learned
from our implementation experience in Section 6.2.

6.1 Technical Issues

There were a number of technical problems with the results of our simulations. We will discuss
some of them here, looking to related literature for potential solutions.

One notable issue was the problem of volume loss. One volume preservation measure (dis-
cussed in Section 5.6) was the use of third-order ENO approximations while advecting the level
set function φ. We also discussed the reinitialization of φ to a signed distance function as a vol-
ume preservation tool. Both measures partly addressed volume loss, but reinitialization seemed
to be more helpful for stability. Another measure to preserve volume was to reduce the mesh size
∆x at the cost of a dramatic increase in simulation time. If we look in Figure 5.1 at the panel in
row three and column six, we can see two small bubbles formed along the left and right walls at
the peak of the waves. We found that small bubbles such as these would not survive long in our
simulations. We also found that drops with a small enough initial radius would not survive long
enough to reach the pool of liquid below. Similarly, we were not able to observe any small drops
of water breaking away from the drop’s splash.

Our simulations treat the interface in a somewhat simplistic manner, mostly borrowing the
sharp interface techniques employed in [7] when solving for pressure and discretizing the diffusive
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terms of Equations (2.5) and (2.6). Other sharp interface techniques treat the interface more
carefully. In some methods, separate fluid velocities for each phase are used and combined to
advect the level set (as in [3, 7]). Another common technique is to use the motion of particles at
the interface Γ to more accurately capture the motion of the interface [3, 5]. Another technique
is the Coupled Level Set and Volume-of-Fluid (CLSVOF) method which can be found in [3, 18].
In short, many other two phase fluid simulators recognize and address the issue of volume loss
at the interface Γ using more advanced techniques than those used in our simulations. It would
certainly be worth exploring and implementing any of the methods above to help improve our
simulation’s treatment of the interface Γ.

We mentioned that reducing ∆x improved volume preservation at the cost of a much longer
simulation time. We also discussed in Section 5.1 that the matrix system defined by the variable
coefficient Poisson equation may become ill-conditioned due to the conditions imposed at the
interface Γ. It is possible that as more grid points neighbour the interface Γ, due to a smaller
grid size ∆x, that the system becomes more ill-conditioned. If this is the case, then an obvious
technical improvement would be to improve the pressure solver used. In our simulations, we used
the CG algorithm which might have trouble converging for an ill-conditioned system. Perhaps
the use of PCG, which should help to improve the conditioning of the matrix system, or MG,
which takes far fewer iterations to converge, could improve the simulation time of our algorithm
[14]. This would also allow us to reduce ∆x, and hence, improve the accuracy of our simulations
without such a large penalty in simulation time.

Another potential improvement to our simulation is to use a more advanced time discretiza-
tion, such as Runge-Kutta [17, 19]. We used a forward Euler time discretization in our simulations
which is one of the most basic techniques. This may have to be carefully considered since our time
stepping loop is explicit in velocity and implicit in pressure. Hence, implementing a Runge-Kutta
time discretization may not be completely straightforward.

6.2 Notes on Implementation

We have implemented our fluid simulator in C++ exactly as described in Chapter 4. However,
our final simulation is in two dimensions whereas we started with a three dimensional simulation.
We began with a simulation of a single fluid phase in a closed box and then tried to transform this
into a two-phase flow simulation. Unfortunately, we ran into bugs as is to be expected. Finding
and fixing those bugs in three dimensions was very time consuming since the code was much
longer than the current two-dimensional implementation, and also because the three dimensional
simulations took much longer to compute. It was because of these time constraints that we had
to scale back our simulations to two dimensions to work out the bugs.

For any readers looking to implement a fluid simulation, either as described in Chapter 4 or
otherwise, we suggest beginning with a two dimensional simulation. Only once the bugs in the
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two dimensional simulations are worked out, should three dimensional simulations be attempted.
In [8] one can find the three-dimensional equations of motion, but they are simple extensions
of the two dimensional equations of motion. Hence they do not add any fundamentally new
challenges to the implementation.

Visualization can be a challenge in three dimensions. In two dimensions, we used MATLAB’s
contour command to extract the level set of φ after writing the contents of φ in a MATLAB file
format. In three dimensions, one can perform a similar level set extraction using the isosurface
command. However, MATLAB visualization can be limiting, and readers may wish to extract a
mesh of the level set of φ themselves using the well-known marching cubes or marching tetrahe-
drons algorithm. This allows the freedom to visualize the mesh using ray tracing or rasterization
techniques. Before scaling back to two dimensions, we used the marching tetrahedrons algorithm
for mesh extraction and a ray tracer for visualization.

6.3 Future Work

We will only briefly discuss potential avenues for future work. Besides implementing any of
the technical improvements in the previous section, an obvious direction for future work is an
extension to three dimensions. In fact, we originally attempted a three dimensional simulation
before scaling back to two dimensions to work out bugs in our program in a more time efficient
manner. Because the derivative approximations and level set techniques used in our simulation
essentially consider the x and y dimensions separately, there is nothing fundamentally difficult
about extending the algorithm to three dimensions. In component form, the three dimensional
momentum equations are now three separate equations instead of two, each corresponding to an
axis-oriented velocity. A few extra terms show up in the derivation, but they are predictable. A
brief discussion of three dimensional simulations can be found in [8], the book upon which most
of our discretizations were based.

Another direction for future work is to study non-Newtonian fluids such as human blood. This
requires at least a modification of the stress tensor σ, which was derived based on the assumption
of a Newtonian fluid. For blood in particular, the stress tensor should be modified to account for
the interaction of red blood cells and plasma (remember that the stress tensor captures internal
friction forces). Another option would be to model red blood cells directly, perhaps as semi-solid
membranes containing fluid, and simulate these blood cells within plasma. This would require
solid-fluid coupling techniques as in [1, 12].

The fluid solver as presented should be relatively easy to implement for interested readers.
We hope that this work can act as a stepping stone for non-experts looking to implement a first
time fluid solver. We have seen in Section 6.1 that a variety of advanced techniques exist for level
set methods, and we believe our fluid solver should be general enough to explore these advanced
techniques in future work.
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Appendix A

Essentially Non-Oscillatory
Derivative Approximations

Here we will discuss how to find essentially non-oscillatory (ENO) derivative approximations to
a function φ. The derivatives in the x and y directions are approximated symmetrically and so
we restrict the discussion to a one dimensional function φ.

We follow closely the description in [6] and use the smoothest possible polynomial interpolation
of φ across several grid points and then differentiate to get φx. Using standard Newton polynomial
interpolation terminologies, the zeroth divided differences of φ are defined at the cell centers and
defined by,

D0
i φ = φi, (A.1)

for each cell center. The first divided differences of φ are defined at cell edges (midway between
cell centers) as,

D1
i+ 1

2

φ =
D0
i+1φ−D0

i φ

∆x
, (A.2)

given a grid size ∆x. Notice that D1
i− 1

2

φ is just a backward difference of φ and D1
i+ 1

2

φ is a forward

difference of φ. The second divided differences are defined at the cell centers as,

D2
i φ =

D1
i+ 1

2

φ−D1
i− 1

2

2∆x
. (A.3)

Finally, the third divided differences are defined at cell edges as,

D3
i+ 1

2

φ =
D2
i+1φ−D2

i φ

3∆x
. (A.4)
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The divided differences are used to construct a polynomial approximation of φ,

φ(x) ≈ Q0(x) +Q1(x) +Q2(x) +Q3(x) (A.5)

to the function φ near xi. The polynomial approximation can be differentiated and evaluated at
xi to find derivative approximations (φ−x )i and (φ+

x )i. That is, we approximate φx at xi with,

φx(xi) ≈ Q′1(xi) +Q′2(xi) +Q′3(xi). (A.6)

Note that Q0(x) is a constant, and so vanishes after differentiation.

To find φ−x we let k = i− 1, and to find φ+
x we let k = i. Now we define,

Q1(x) = (D1
k+ 1

2

φ)(x− xi), (A.7)

which gives,
Q′1(xi) = D1

k+ 1
2

φ. (A.8)

This says that the contribution of Q′1(x) in Equation (A.5) is the backward difference in the
case of φ−x and the forward difference in the case of φ+

x . If we only included Q′1(x) on the right
hand side of (A.6) then the resulting derivative approximation of φx would simply be the first
order accurate upwinding approximation. Including Q′2(x) in Equation (A.6) gives a second order
approximation, and including Q′3(x) gives a third order approximation.

So far we have included points xk and xk+1 in our approximation. In defining Q2(x), we can
include the next point to the left and use D2

kφ, or the next point to the right and use D2
k+1φ.

ENO approximations look to avoid interpolating near large variations of φ. For this reason we
compare |D2

kφ| and |D2
k+1φ|. If |D2

kφ| ≤ |D2
k+1φ| then we set c = D2

kφ and k∗ = k− 1. Otherwise
we set c = D2

k+1φ and k∗ = k. Now we can define,

Q2(x) = c(x− xk)(x− xk+1), (A.9)

so that we get,
Q′2(xi) = c(2(i− k)− 1)∆x, (A.10)

as the second order accurate correction to the approximation of φx in Equation (A.6).

We have not yet used k∗, and if we stop here we have a second order accurate approximation
of φx. To make our approximation third order accurate we need to define Q3(x) from Equation
(A.5). Similar to the second order accurate correction, we get the third order accurate correction
by comparing |D3

k∗+ 1
2

φ| and |D3
k∗+ 3

2

φ|. If |D3
k∗+ 1

2

φ| ≤ |D3
k∗+ 3

2

φ| we set c∗ = D3
k∗+ 1

2

φ. Otherwise

we set c∗ = D3
k∗+ 3

2

φ. Now we define,

Q3(x) = c∗(x− xk∗)(x− xk∗+1)(x− xk∗+2), (A.11)

so that we get,
Q′3(xi) = c∗(3(i− k∗)2 − 6(i− k∗) + 2)∆x2, (A.12)

as the third order accurate correction to the approximation of φx in Equation (A.6).
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