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Abstract

The Trapezoidal Rule with second order Backward Difference Formula (TR-BDF2)
time stepping method was applied to the Black-Scholes PDE for option pricing. It is
proved that TR-BDF2 time stepping method is unconditionally stable, and compared to
the usual Crank-Nicolson time stepping method, the TR-BDF2 shows fewer oscillations
when computing the derivatives of the solution, which are important hedging parameters.
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Chapter 1

Introduction

By holding an option, the holder obtains the right but not the obligation to enter into a
transaction involving an underlying asset at a predetermined price at a specific date .

The predetermined price is known as the strike price and the specified date is known
as the maturity or expiry date of that option. There are different types of options. A
call option gives the holder the right to buy an underlying asset while a put option gives
the holder the right to sell the asset. European options can only be exercised at maturity
whereas American options may be exercised any time by the expiry date of the option.

Regardless of the different types of options, valuation and hedging of this type of fi-
nancial contracts are always of importance. Different numerical methods can be used to
calculate the price of the option. For example, the valuation of different types of options
can be modelled as calculating the numerical solutions to corresponding partial differen-
tial equations (PDE). By assuming the price of the underlying asset follows a Geometric
Brownian Motion, it was shown by Black and Scholes that the valuation of options can
be done by solving a second order PDE with time and price of the underlying asset as
two independent variables [3]. While the Black-Scholes equation is able to provide a closed
form solution for pricing Europeans options, numerical methods are required for the case of
American options. The PDEs are discretized and solutions are determined using a discrete
set of time steps.

When using numerical methods, it is always possible to have inaccuracies in the solu-
tions, particularly if there are discontinuities in the payoff of the option, or its derivative. As



an example, when using the Crank-Nicolson time stepping method to solve the discretized
system, one often encounters spurious oscillations in the Greeks (i.e. the approximate
values of the first and second order derivatives of the option prices). Though Rannacher
smoothing [13] can be adopted to reduce the oscillations for European options case, it does
not work well for American options.

The Trapezoidal Rule with second order Backward Difference Formula (TR-BDF2) can
be classified as a fully implicit Runge Kutta method with second order accuracy. It has
a wide range of applications in many different areas such as electronics [8], biology [14],
mechanical engineering [2] and clectrical engineering [1].

Since the TR-BDF2 method is mathematically L-stable (see appendix A for the defi-
nition of L-stability and A-stability), it has stronger stability properties than the Crank-
Nicolson time stepping method which is only A-stable [12], we will use this method as
the time stepping method to derive the solution to the option pricing problems under the
Black-Scholes model. In this way, we expect oscillations in Greeks to be damped for both
European and American options.

The principle aims of this paper are as follows:

e Use the TR-BDF2 time stepping method to derive the solution to option pricing
problems under the Black-Scholes model and thus price European and American op-
tions.

e Use Von Neumann stability analysis to analyse the stability properties of the TR-
BDF?2 time stepping method.

e Compare the results obtained from the TR-BDF2 time stepping method and the
Crank-Nicolson time stepping method with Rannacher smoothing in terms of stabil-
ity of Greeks and rate of convergence.



Chapter 2

Formulation

2.1 Basic background

2.1.1 FEuropean options

A European call option is the most basic example of financial derivatives. By holding
a European call option, one has the right, but not the obligation to buy an underlying
asset at a specific maturity or expiry time 7" in the future at a specific strike price K. On
the other hand, by holding a European put option, instead of buying, one has the right,
but not the obligation to sell an underlying asset at the specific expiry day and strike price.

The payoff of a European option can be written mathematically in the following form:

max(K — 5,0), for put options

Option Payoff = { (2.1)

max(S — K,0), for call options

where S denotes the price of the underlying asset.

2.1.2 American options

The key difference between an American option and a European option is that an American
option can be exercised at any time before its maturity or expiry date. When exercising the
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American option, the payoff is the same as the European option. However, due to Ameri-
can option’s early exercise feature, it is always priced no less than a European option with
the same expiry date and strike price, otherwise an arbitrage opportunity is created.

2.2 Black-Scholes model

In the year of 1973, for the purpose of pricing financial derivatives accurately, a partial
differential equation was derived by Black and Scholes [3]. This equation is now referred
to as the Black-Scholes equation, which is the most fundamental equation of the current
mathematical finance studies. The following assumptions should be kept in mind when
using the Black-Scholes equation:

The price of the underlying asset follows geometric Brownian motion with constant
drift and volatility.

The risk-free rate of return is a constant and cash can be borrowed or lent at this rate.

There are no arbitrage opportunities existing in the market.

There are no transaction costs when purchasing or selling the underlying assets.

Short selling is permitted in the market.

2.2.1 European options pricing

A PDE for pricing European options was derived by Black and Scholes:

Consider an underlying asset with price S and assume the price follows the log-normal
stochastic process
dS = pSdt +oSdz, (2.2)
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where p is the drift rate, o is volatility, and dZ is the increment of a Wiener Process which
is defined as:

dzZ = ¢Vdt (2.3)

where ¢ ~ N (0, 1) follows the standard normal distribution and d¢ is defined as the incre-
ment of time.

Suppose we construct a hedging portfolio which consists of a long position in one option
whose value is given by V' and a short position in a number of (« shares) underlying asset.
Then the value of the portfolio is given by:

P=V—-aS (2.4)

In a small time dt, P — P + dP, we have:
dP =dV — (a)dS (2.5)
Considering that a actually depends on S, if we take the true differential of P, we obtain:

dP = dV — ()dS — Sd(c). (2.6)

Since we are not allowed to peek into the future, so a can not contain any information
about the future asset price movements. As a result, [to’s lemma is used here, and we
have VPSPV oV oV

o

AV = (pS— — 4+ —)dt S—dZ. 2.7
WS35+ 7 a5 T T 7553 27

Substituting equation (2.2) and (2.7) into (2.6), we obtain:

ov ov 02520V oV
dP =0S(=5 —a)dZ S— — + — —auS)dt 2.8
755 — Wt WSGg 5 ge T g o) (28)
If we let a = g—‘g, the risk which arise from the randomness of the price of the underlying
asset can be fully hedged. As a result, we can make this portfolio risk-less over the time
interval dt and the change of the value of the portfolio is deterministic. Therefore, by
holding the portfolio, according to the no-arbitrage principle, a risk-free rate of return
should be obtained:

dP = rPdt (2.9)

where r is the risk-free interest rate. As a result, the following equation is obtained:

oV 1, ,0%V oV
- z - - — 2.1
8t+205852+r585 rV =0, (2.10)



which is the Black-Scholes equation.

Define L as: ) 221 o1
— — 52027 7 - _ 2.11
LV 205 532 —|—7"Sas rV, ( )
and
T as:

T=T-—t (2.12)
where T is the expiry date, so 7 is the time variable running backwards.

Then we can rewrite the Black-Scholes equation as:

V, = LV. (2.13)

2.2.2 Boundary conditions

The usual boundary conditions are typically:

put S—o0 V=0 (2.14)
call S—-o00 V=S (2.15)

and, as S — 0, the Black-Scholes PDE reduces to the ODE:

oV
— 5o V=0 (2.16)

We can simply solve this ODE at S = 0.

2.2.3 American options pricing

Since American options have the feature of early exercise, which means the holder of an
American option can choose to exercise at any time by the expiry date of the option and
receive a payoft:

Payoft = P(S, 1) (2.17)
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the American option pricing problem can be viewed as a linear complementarity problems
(LCP) [7].

The payoff of an American option can be denoted as:

(S, 7 =0) = max(K — 5,0), for put options

Vv
Option Payoff = 2.18
ption Payo {V(S (2.18)

,7=0) =max(S — K,0), for call options

where K is the strike price at which the transaction is carried out.

The price of an American option cannot be less than its payoff, otherwise there is an
arbitrage opportunity existing in the market. In addition, because the American option
may not be exercised at the optimal time by the holder, the value of the portfolio created
may not be able to increase at the risk-free rate of return.

With the two constraints above, the linear complementarity problem can be stated as:

2
min[V, — (%O—QSQ% + T’S?—g —rV),V—-P] >0 (2.19)



Chapter 3

Discretization

There is no analytical solution to the linear complementarity problem in equation (2.17),
so in order to price American option, numerical techniques are required.

3.1 Semi-discretization in time

First, we define the discretization of time as: (7,)neqo,...n}, and set A7 = 7,,_; — 7, where
we have 7y as the time of option expiry and 7y is the valuation time.

We will first semi-discretize the V. term in equation (2.17). For example, the Crank-
Nicolson time stepping method would result in:

A
VI =V LV + L), (3.1)
However, this method is not a monotone scheme, hence it may be prone to oscillations
when computing the Greeks.

Recently, the TR-BDF2 method has been proposed to alleviate this problem. The
TR-BDF2 algorithm uses the following time semi-discretization:

For the TR-BDF2 time stepping method, there are two stages at each time step: the
first stage is the Trapezoidal method and the second stage is the Backward Difference For-
mula method which is applied to the first stage output and initial value at 7,,. So we can



obtain the value at 7,,,1.

By using the TR-BDF2 time stepping method to discretize the V. term, we have

th:@iaﬁévh_giﬁﬁwuwl—@Adﬁ”“ﬂ, (3.2)
where
aAT
V=V S (V) 4 L) (3.3)

and 0 < a < 1.

If we choose « to be 1, equation (3.3) will become the Crank-Nicolson time stepping
method.

Now we define the local truncation error (LTE) as:

lnt1 = Ynt1 — y(tn-H) (3-4)

assuming the value y,, computed in previous step is equal to the exact solution for y at
time t = t¢,,.

If we choose a to be 2 — v/2, then the local truncation error is minimized [1], because
the divided-difference estimate of the local truncation error is:

LTE" = CATRV® (3.5)
where e 4 4 )
—3a” +4a —
C = e (3.6)

Although the TR-BDF2 method has two stages, it is still a one step method.

3.2 Spatial discretization

Define the discretization of the price of underlying asset by (.5;);c(o
Using central, forward and backward difference method, we have:

m}7 h,j - S]' - ijl-

.....
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(3_‘/)” _ Vi m Vi (3.7)
38 j hj+1 ‘|‘ hj

for central difference,

ov\" Vi, =-V!
(55) =5+ (38)
7 j+1
for forward difference, and
ovy\" Vi r-Vvnr
(_as> A R - i1 (3.9)
j j

for backward difference. In addition, we have

(32v>ﬂ = thVj?H — (hya + 1)V + than_l. (3.10)

052 hihj1(hj1 + hy)

J

Substituting these discrete approximations into the Trapezoidal stage as well as the
BDF2 stage, we can get tridiagonal linear systems for the unknown values V;* and Vj”“.

Define the vectors V" = [V v+t vmetf oy — [y Vi) Ve = VeV V]
and let tridiagonal matrices M and N be defined so that for row j, we have:

~ alATta; . aAt(a; +bj+71) ., aAtbi
vy = 8Ty g OBT L R BTy ()
and
S (1—-a)Ara; ,, (A —a)A7r(a;+b;j+7)_, (1—a)ATb; .,
mv, = L2 08Ty e AN CRL)

The a; and b; are defined as:
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central |: O-QSJ2 _ TSj }
’ (S; = Sj-1)(Sj+1 = Sj-1) it — i
b;entral |: 025]2 T TSJ :|
(Sj+1 = 53)(Sj41 = 8j-1)  Sjwr — Sj
in the case of central differencing,

forward _ |: O-QSJZ ]

! (S5 = Sj-1)(Sj+1 — Sj-1)

bforward |: U2Sj2 + T‘S’j ]

! (Sjr1 = Sj)(Sjr1 — Sj—1)  Sjy1—S;

in the case of forward differencing, or

backward _ |: 0-2 S]2 _ r Sj ]

’ (S; = Si-1)(Sjr1 = Si-1) S — S
bbackwa’r’d — |: 02 5]2 ]

’ (Sj1 = 55)(Sj+1 — Sj—1)

in the case of backwards differencing.

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

It is important to ensure that all a; and b; are positive for stability reasons. The fol-
lowing algorithm in Table (3.1) is adopted to decide between central or upstream (forward

or backward) discretization at each node.

Thus, for the Trapezoidal stage we have

I+ MV* = [I — M]V",

and for the BDF2 stage we have

- 1
[[+N]Vn+1 — [

(1-a)?

a2 —a)] - [a(2—a)

v,

The boundary conditions will be considered in next section.

11
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For j=0,....m
If( central > 0 and b;entral Z O)then
a] — a;entral
b — bcentral

ElseIf( Joruard >0 and b/ > 0)then

a; forward
b _ bf]orward
Else
a; = abackward
b — bbackuard
EndIf
EndFor

Table 3.1: Positive coeflicient algorithm

3.3 Penalty method for American option pricing

In order to solve the American option pricing problem, which is also a linecar complementar-
ity problem, we can rewrite equation (2.17) as a single equation with a non-linear penalty

term Q(V, P), where P(S,7) is the payoff of an American option:

1 2 , 02V ov
VT_2 8852+T585 rV + Q(V, P),

where the penalty term Q(V, P) is defined as:

Q(V, P) = pmax(P — V,0).

Here p is chosen to be large enough so that:

1 o’V oV )
V:—O’QSQ@—FT’S%—T‘/ if V>P,
or
1 o*V oV .
V> 252052 rios =V it V=P-e

Therefore, Q(V, P) = pe, Where e = Q(V, P)/p, assuming @ is bounded.

12
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For the TR-BDF2 time stepping method, the discrete penalized equations are:

Vi =V 1 * n *
] = Slevi+evil+g (3.25)
(2 — )Vt — Ly Lalyn . .
RrEr o B A (320

where the penalty term ¢; and p !

T are defined as:

q; = OéiT (P — V}*)Large’ if VJ* <D (3.27)
J : .
0, otherwise
and
2—« n : n
bl _ (1(704)&7(]3? — VY Large, i V' < P 398
p] . ( ° )
0, otherwise
where Large is a large number and P; is the payoff at j node.
To solve those non-linear equations, we define diagonal matrices Q and P as:
— Large, ifi=jand V* < P;
Q(V*)i; = . ro (3.29)
0, otherwise
and
Py, = B @karge, =) ad V<D (3.30)
‘ 0, otherwise
Then we are able to rewrite the non-linear equations as:
[[4+M+Q(V)V* = [I — M]V"+[Q(V*)]P, (3.31)
and
[I + N + P(V"—H)]V”—H _ [ 1 ]V* . {(1 — a)Q ]Vn + [P(V”—H)]P (3 32)
a2 —a) a2 —a) ' ‘

13



Next, we will use the following algorithm to price American options with variable
timesteps.

Let (V*)* and (V"T1)* be the k' estimate for V* and V" respectively. Let (V*)? = V™
and (V") = V" The algorithm for pricing an American option with variable timesteps
can be stated as:

While 7<T

For £k =0,...until convergence
[+ M+ Q((V*)R)) (V) = [I — M]V" + Q((V*)F) P
[(V)RH = (V)X

If max
EndFor

For [ =0,...until convergence
\J D —a)? n D n
[[+ N+ P((Vn+1)l)](vn+l)l+1 _ [a(217a)]v* _ [il(%zy)}v + [P((V +1)l)]P
n+1yI14+1_ yynt1yl
If max (V") V)

max(1,|(V;* 1))
EndFor

< tol quit

T=T+AT

_ [vrtt—ve|
MaxRelChange = max |:max(17|V"+1|,|V"|)

_ dnorm
AT = [MaXRelChange AT

Vn — Vn+1

EndWhile

Table 3.2: Penalty method for American option pricing
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In the algorithm, 7" is time to maturity, dnorm is timestep size control parameter, tol
is tolerance value and Large is defined to be tlﬁ

3.4 The Crank-Nicolson time stepping method and
Rannacher smoothing

As mentioned above, if we choose the value of a to be 1, then the Crank-Nicolson time step-
ping method can be written as the first stage of the TR-BDF2 time stepping method.[12].

The Crank-Nicolson time stepping is known to be only A-stable [12]. As a result,
spurious oscillations in the Greeks can be introduced [9]. Rannacher smoothing, which adds
two backward Euler steps before the Crank-Nicolson, is used to smooth off the payoft at
maturity and reduce the oscillation problem [13]. We will illustrate that, though Rannacher
smoothing is effective for European options, it does not work as well for American options.
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Chapter 4

Von Neumann stability analysis of

the TR-BDF2 time stepping method:

European case

It has been shown that the Crank-Nicolson time stepping method is unconditionally sta-
ble [10]. Here, we would also like to study the stability properties of the TR-BDF2 time
stepping method. In this chapter, Von Neumann stability analysis is carried out for the
TR-BDF?2 time stepping method. The coefficients are assumed to be constant and the grid

to be equally spaced in log S coordinates.
By using the change of variable:

x =log S, S = exp ()

we can change the Black-Scholes equation

1
V., = 20282V55 +rSVsg —1rV

into the form of:

— 1 — 1 5=
VT = 50-2me + (T‘ — 50’2)‘/37 —rV

where V(z,7) =V (exp (z),7).

16



The trapezoidal stage and second order backward difference stage of the TR-BDF2 time
stepping method can be written as:

Vi— Vi _ }[EUQ(VJ'H —2V; + ijl) (r— }UQ)VJ'H Via v
aAT 22 Ax? 2 2Ax J (4.4)
L1, V7+1 QV7+V7 1 L, V?;H V:Lfl SVl
357 ( Ax? )+ =30 2Ax — Vil
and
—n+1 n+1 —n+1
—n—+1 1 1 — (1 — CK)Q—n 1 2 V'+1 2V V'—l
V. = -V, - V. 1 —a)AT[= J J J
J 2—a a Q@ j+(1=a) 7[20( Ax? ) A5
1 V?’l-ﬁ-l Vn+1 ( : )
+1 -1 —n+1
—i—(?“ . 0_2) J+ N J . TVJ- ]}
If we let:
1,1 1, 1
1=57 a2~ T3 )aay (4.6)
po Lot L Lyry !
~ 27 Ax? 27 1Ay’
then the equations above can be rewritten as:
Vj-[l +(a+b+r)as] — a%bv;ﬂ — a%av;il
—n A AT —p AT —n
=V;[l— (a+b+r)a77} +aTTij+1 +a77—an_1, (4.7)

and

—n—+1

1 11—
- _270{ ATan—l

V;H[l +(a+b+ T’)%:—zAT] — ;:—gATbV]»_H

17



S S VAN St N vl (4.8)

Let V* = [V, V1,..., V1] be the discrete solution vector to equation (4.4) and (4.5).
Assume the initial solution vector is perturbed by:

Vo=V 4 E° (4.9)

where E™ = [EY, ..., E},]" is the perturbation vector. Since V satisfies the equations:

Vill4 (a+b+r)adt] — o800V, —afraV)

AT AT

= ‘/J [1 — (a—i—b—i—r)a?] —1—0476‘/]-“ +a7an717 (410)
and
Urntl -« -« Snpl 1o a Urntl
VIT 1+ (a+b+r) AT] — ATOVI — ——ATaV
2—« 2 —« J 2 -« J
S e, (4.11)
S a2—a) ! al2-a) 7
by subtracting equations (4.10) and (4.7), (4.11) and (4.8) accordingly, we have:
Erll + (a+b+r)adt] — a8TbEr, — aSlaE]
" AT AT AT
= E] [1 — (CL‘Fb‘FT‘)OZ?} +O[76Ej+1 +047an_1, (412)

and
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Ef L+ (a b4 r);=0 AT| = S0 ATVE — o=g Ara )

1 ] (1—a)?

:a(2—a) ]_a(Q—Q)EJn'

(4.13)

Here, by using Von Neumann stability analysis approach, we want to prove that the
initial perturbation is bounded when the number of steps becomes large.

In order to use the Fourier transform method, we assume that the boundary conditions

can be replaced by periodic conditions. As a result, the inverse discrete Fourier transform
of E7 is defined as:

N
1 2 2T
E!'=— Cy)" —jk 4.14
j XN k_zj\;—'—l( k) exXp (Z Nj )7 ( )
2

where C}, is the discrete Fourier coefficient of E, 7 is v/—1 and the width of the domain is
defined as Xy=wy — 2y . Let W = exp (3%i) so that we can write E7' as:
2 .

N
n 1 - n jk
B =% > (G, (4.15)
k==+1
The inverse discrete Fourier transform of EJ’T‘Jrl and FE7 are then given by:
N
1 2 :
n+l __ n+1 k
Bt = > (G, (4.16)
k==+1
and
N
1 d "
* - * J
E; = X > cwik, (4.17)
== 41

Now we substitute (4.15-4.17) into (4.12) and (4.13). For equation (4.12) we get:
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k==N+1
N
At 1 2
L y— 4 *117(7—1)k
a— aXN Z Cewhy
k==Y +1
N N (4.18)
- Z (Co)" WL = (a+ b+ r)a—] Lot L Z (Cp)" WU+
Xy &~ F 2 2 Xy L
k==N 41 k==N 11
N
At 1 2
- a— nyy =1k
ta— X Z (Cp)" WY,
k=="+1
while for equation (4.13) we have:
y N
LS @ s bt - L LS (oo
XN ~ : 22—« 2 -« XN ~
k==F+1 k==N 41
N
_1—ozA7_aL i (Cy)m W G-k
2—« XN ~
h==N+1
N ) N
1 1 - (1-a)? 1 -
= [ *WJk _ - C TLWJk.
a2 —a) Xy ; lck a2 —a) Xy Z (Cx)

(4.19)
For all Fourier components Cj, we will look at them separately. For equation (4.18), for
each k& we have:

CyWIk[1+ (a+ b+ 1r)adT] — a&TbCrWUHDE — o 8T qCr W =Dk

= (Cu)"W*1 = (a+b+ T)a%] + a%b(ck)”w(j“)k + a%a(Ck)”W(j_l)k, (4.20)
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and for equation (4.19), we have:

. _ 1— . 1— .
(Co)™ WL+ (a+ b+ 1) 5 Ar] = S Arh(C) ™ WO = 22 Ara (G WUk
1 e (1—a)? ,
= ———CfW» — ————(Cy)" W,
al2—a) F a(2—a)( 2
(4.21)
Dividing both equations by (Cj,)"W4* equation (4.20) becomes:
c AT At Cy JAY S G
l+(a+b+7r)a—| —a—> W" —a—a
(Ck)n[ ( ) 2 ] 2 (Ck)n 2 (Ok)n (4.22)
AT AT AN
= [1 — (a + b —|— T’)OéT] + OZTbW "4 OéTCLW /7
and equation (4.21) becomes:
-« -« p 1—« k
Cell+(a+b+7) AT] — ATOC W — AtaC,W
2—« -« 2—« (4.23)

1 ¢, (- a)?
S a2—a) (Gt al2—a)

By factoring out (gﬁ and C} from the two equations above respectively, equation (4.22)

becomes:

Cy  [I—(a+b+ r)“ﬁT] + %”ka + %aW‘k (1.24)

(Co™ L+ (a+b+r)25T] — 22TpWk — 20T}~k

and equation (4.23) becomes:

1 Ci  (1-a)?
Cp = o2 ) (Gp) _ o(2-a) . 4.25
g 14 (a+b+7r)5=2A7] — Z2ATWE — =2 AralV —F (4.25)
Since
1 2 1 1 2 1 1 2 1 1 2 1
_ 1 Rt AL N g S S AL - S 4.26
T ve Rl Gl Lk y el il Ly we Rl Gl LAy ot (4.26)



we can simplify the expressions by noting:

a+b+r=2y+7r and W* +alW " = 2 cos(2k) + i (r — 1o?) sin(2k).

Thus we can write equation (4.24) as:

Cr _ 1- (g—; + T)a%} + %[afg’ cos(Z)k + %27 (r — 1o?) sin(Z k)] (4.27)
(Ce)™ 1+ (g—; + 1)l — 1927 cos(2k) 4+ i%2T(r — 2o2) sin(2 k)]
and equation (4.25) as
1 G (1-a)?
Ck — 0‘( a) (Cp)™ a(2—a) ‘ . ) (428)
1+ (K—;z + T);:—gAT] - [AAT; cos(%k) + zﬁ—;(r — %02) sm(%’rk‘)]
Substituting (4.27) into (4.28), we can obtain the expression of Cj:
[1—1255733 (A 12((;73; %[D‘A'rg (:05(27r k)-l—zaAT (r—faz)sin(%rk)]
C [1+( ] aATcr (27r k)+ alAT (r_702)51n(27r k)] (4 29)
k= . .
1+ (A = + 7“) ”AT] — 1 "[AAT;; cos(%k‘) + zm(r — l02) sm(%\, k)]
The |||, norm of E™ is
%
1E",= > EjNE) (4.30)
J==+1

where (E7)* is the complex conjugate of E7 . Since
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2 .
Bl =— > (Cy)"W, (4.31)

7 X
N k==~+1
we have

%

n N n

1B, = > (G (4:32)
N —N
k==N 141

Thus, in order for ||[E™|, to be bounded, each Fourier coefficient |Cy|*" needs to be
bounded, when n approaches infinity. Consequently, we need:

10y < 1. (4.33)

In our case, we can find the value of |Cy| from equation (4.29):

RN EA= Ladr (102 sin (2 k)

- 2
{171+(1 a) [o§7T+nAT 02(17COS(

a(2—a) 2 Az W’K ) a2—a) 2 Az 2 N
| ’ . {1+[25T r4aBT Aﬂjz(l* 0s(ZTk))|}2+H{3 287 (r—$02) sin(FF k) }2
k — .
{1 + a(é Z))[aAT + aATKsz(l _ COS(WW ))]}2 + {aé Z) L aA;' r— %0'2) SlIl(%r:Zi')}2
(4.34)
If we write: . . ) o1
Yl Gk VA Sl O (4.35)
a2 —a) a2 —a)
then, since 0 < a < 1, we have M > 0,N > 0. Also
aAT alAT o2 2
P= 5 r+ 5 AL (1-— cos(Nk)), (4.36)
1 aAT 1 .27
Q= N (r— 502) sm(ﬁk), (4.37)

23



where P > 0. Then |Cy|? can be written as:

(1-MP)?+(MQ)?

C 2 _ (14+P)2+Q? ‘ 4.38
Cil (1+ NP)? + (NQ)? (4.38)

We can further simplify the equation above:

O = AP APQ - 20 P (4.39)
IR (VDR - (NP )Q@2 + R ‘

where

R=2(N+1)P+2(N?+ N)P?+4NP? + 2N?Q*P + N?*(P* + Q*) + 2N?Q*P* + 2N PQ*.

(4.40)
Notice that R > 0. A little manipulation shows that
N*+1=M? (4.41)
and so we have:
1+ M?P? 4+ M?*Q?) — 2M P
o2 = 0E M) (4.42)

(1+M2P2 4+ M2Q%) + R

Since MP > 0, we have |Ci|* < 1 and so |Cy| < 1.

As the initial perturbation is bounded as the number of steps increases, we prove that
the TR-BDF2 time stepping method is unconditionally stable.
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Chapter 5

Numerical Tests

In this chapter, we solve the Black-Scholes equation to price European options and Amer-
ican options. Both the TR-BDF2 time stepping method and the Crank-Nicolson time
stepping method are used, so we can compare the two in terms of the stability of Greeks
(Vs, Vsg) and rate of convergence.

For the American option pricing problem, we formally state the problem as a linear
complementarity problem:

1 0*V ov

iV, — (202522 2 459 —P|>o0. 1
min[V; (205 852—1—7’585 rV),V 1>0 (5.1)

where P(S, 7) is the payoff condition which as:
P(S,7 =0) =max(K — 5,0) for a put (5.2)
P(S,7=0) =max(S — K,0) for a call (5.3)

with K the strike price.
The boundary conditions at S — 0 is:

min[V; —rV,V — P] > 0. (5.4)

And boundary conditions for large S is:
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V ~0,5 — oo; fora put (5.5)
V~S§ .5 — oo; fora call (5.6)

We will use the penalty method [7] to solve this linear complementarity problem.

5.1 European option case

In this section, we will use both the TR-BDF2 and the Crank-Nicolson time stepping
methods to solve the Black-Scholes equation and thus price European options. In addition,
the properties of Greeks stability and rate of convergence of both methods are compared.

5.1.1 Numerical results

With the data assumed in Table 5.1, a convergence study for the option price was carried
out. A convergence table, which has a series of non-uniform grids, is used. In addition,
variable timestep sizes are used and the initial timestep size on the coarsest grid is A7 =
T'/25. In the convergence study, on each grid refinement, new grid nodes are added halfway
between the original ones. The new grid has twice as many nodes as the previous grid,
the timestep control parameter dnorm is halved, and the initial timestep size is divided by
four.
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Variables Values
o 0.8
r 0.10
Time to expiry (T') | 0.25 years
Strike Price $ 100
Initial asset price S° $ 100

Table 5.1: Data for European Put Option

Nodes | Timesteps | Value | Change | Ratio

TR-BDF?2
62 o8 14.43089
123 141 14.44664 | 0.01575
245 312 14.45059 | 0.00395 | 4.0
489 654 14.45158 | 0.00099 | 4.0
977 1339 14.45182 | 0.00025 | 4.0

Crank-Nicolson (Rannacher smoothing)

62 o6 14.42767

123 142 14.44643 | 0.01876

245 315 14.45058 | 0.00414 | 4.5
489 658 14.45158 | 0.00010 | 4.1
977 1343 14.45182 | 0.00025 | 4.0

Table 5.2: Value of a European Put. Exact solution:14.45191. Change is the difference in
the solution from the coarser grid. Ratio is the ratio of changes on successive grids.
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Figure 5.1: Value, delta(Vs), and gamma(Vsg) of a European Put, 0=0.8, T=0.25, r=0.1,
K=100. Left: TR-BDF2 time stepping method, right: Crank-Nicolson time stepping
method with Rannacher smoothing. Top: option value (V'), middle: delta (Vs), bottom:
gamma(Vgg).
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5.1.2 Analysis

As can be seen from Table 5.2, both time stepping methods converge. In addition, second
order convergence was obtained by both methods. It is known that, the Crank-Nicolson
time stepping method is only A-stable [12] and can introduce spurious oscillations in the
Greeks [9]. As can be observed in the Figure 5.1, there are no oscillations in delta and
gamma for the Crank-Nicolson time stepping method using Rannacher smoothing. On the
other hand, no oscillations are observed in delta and gamma for the TR-BDF2 method as
well.

5.2 American option case

In this section, we will use both the TR-BDF2 and the Crank-Nicolson time stepping
methods to solve American option pricing problem with a penalty method. In addition,
the stability of Greeks and rate of convergence of both methods are compared.

A convergence study of pricing different American option examples was carried out in
a similar way as the European case. The convergence table, which has a series of non-
uniform grids, is used. The tolerance value tol is chosen to be 1075, In addition, variable
timestep sizes are used and the initial timestep size on the coarsest grid is A7 = T'/25. In
the convergence study, on each grid refinement, the new grid has twice as many nodes as
the previous grid, the timestep control parameter dnorm is halved, and the initial timestep
size is divided by four. The convergence table, and figures of the Greeks are given in next
section.
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5.2.1 Numerical results

Variables Values
o 0.2
r 0.10
Time to expiry (T') | 0.25 years
Strike Price $ 100
Initial asset price S° $ 100

Table 5.3: Data for American Put Option

Nodes | Timesteps | Value | Change | Ratio

TR-BDF2
62 25 3.06321
123 55 3.06838 | 0.00517
245 114 3.06967 | 0.00129 | 4.0
489 231 3.07000 | 0.00032 | 4.0
977 464 3.07008 | 0.00008 | 4.0
Crank-Nicolson (Rannacher smoothing)
62 26 3.06049
123 56 3.06794 | 0.00746
245 115 3.06960 | 0.00165 | 4.5
489 232 3.06999 | 0.00039 | 4.3
977 465 3.07008 | 0.00009 | 4.2

Table 5.4: Value of an American Put. Change is the difference in the solution from the
coarser grid. Ratio is the ratio of changes on successive grids.
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Figure 5.2: Value, delta(Vs), and gamma(Vsg) of an American Put, 0=0.2, T=0.25, r=0.1,
K=100. Left: TR-BDF2 time stepping method, right: Crank-Nicolson time stepping
method with Rannacher smoothing. Top: option value (V'), middle: delta (Vs), bottom:
gamma(Vgg).
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Variables Values
o 0.3
r 0.15
Time to expiry (T') | 0.25 years
Strike Price $ 100
Initial asset price S° $ 100

Table 5.5: Data for American Put Option

Nodes | Timesteps | Value | Change | Ratio

TR-BDF?2
62 32 457778
123 73 4.58455 | 0.00677
245 154 4.58627 | 0.00172 | 3.9
489 315 4.58670 | 0.00043 | 4.0
977 638 4.58681 | 0.00011 | 4.0

Crank-Nicolson (Rannacher smoothing)

62 33 4.57365
123 74 4.58391 | 0.01026
245 155 4.58616 | 0.00226 | 4.5
489 317 4.58668 | 0.00052 | 4.3
977 640 4.58681 | 0.00012 | 4.3

Table 5.6: Value of an American Put. Change is the difference in the solution from the
coarser grid. Ratio is the ratio of changes on successive grids.
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Figure 5.3: Value, delta(Vs), and gamma(Vss) of an American Put, 0=0.3, T=0.25,
r=0.15, K=100. Left: TR-BDF2 time stepping method, right: Crank-Nicolson time step-
ping method with Rannacher smoothing. Top: option value (V'), middle: delta (V),
bottom: gamma(Vgg).
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Variables Values
o 0.4
r 0.03
Time to expiry (T') | 5.00 years
Strike Price $ 100
Initial asset price S° $ 100

Table 5.7: Data for American Put Option

Nodes | Timesteps | Value | Change | Ratio

TR-BDF?2

62 73 27.70744

123 192 27.74057 | 0.03314

245 442 27.74948 | 0.00891 | 3.7
489 953 27.75195 | 0.00247 | 3.6
977 1980 27.75256 | 0.00061 | 4.1

Crank-Nicolson (Rannacher smoothing)

62 67 27.68477

123 186 27.73715 | 0.05238

245 443 27.74892 | 0.01177 | 4.5
489 961 27.75186 | 0.00294 | 4.0
977 1989 27.75255 | 0.00069 | 4.3

Table 5.8: Value of an American Put. Change is the difference in the solution from the
coarser grid. Ratio is the ratio of changes on successive grids.
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Figure 5.4: Value, delta(Vs), and gamma(Vss) of an American Put, 0=0.4, T=5.00,
r=0.03, K=100. Left: TR-BDF2 time stepping method, right: Crank-Nicolson time step-
ping method with Rannacher smoothing. Top: option value (V'), middle: delta (V),

bottom: gamma(Vsg).
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Variables Values
o 0.3
r 0.04
Time to expiry (T°) | 0.50 years
Strike Price $ 100
Initial asset price S° $ 100

Table 5.9: Data for American Put Option

Nodes | Timesteps | Value | Change | Ratio

TR-BDF?2
62 42 7.56866
123 99 7.58049 | 0.01183
245 213 7.58348 | 0.00298 | 4.0
489 440 7.58422 | 0.00075 | 4.0
977 894 7.58440 | 0.00018 | 4.0

Crank-Nicolson (Rannacher smoothing)

62 43 7.56265
123 101 7.57959 | 0.01694
245 215 7.58333 | 0.00375 | 4.5
489 442 7.58420 | 0.00086 | 4.3
977 396 7.58440 | 0.00020 | 4.2

Table 5.10: Value of an American Put. Change is the difference in the solution from the
coarser grid. Ratio is the ratio of changes on successive grids.
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Figure 5.5: Value, delta(Vs), and gamma(Vss) of an American Put, 0=0.3, T=0.50,
r=0.04, K=100. Left: TR-BDF2 time stepping method, right: Crank-Nicolson time step-
ping method with Rannacher smoothing. Top: option value (V'), middle: delta (V),

bottom: gamma(Vgg).
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Variables Values
o 0.2
r 0.05
Time to expiry (T') | 1.00 years
Strike Price $ 100
Initial asset price S° $ 100

Table 5.11: Data for American Put Option

Nodes | Timesteps | Value | Change | Ratio

TR-BDF?2
62 37 6.07958
123 87 6.08762 | 0.00804
245 187 6.08969 | 0.00207 | 3.9
489 387 6.09020 | 0.00051 | 4.0
977 785 6.09033 | 0.00013 | 4.0

Crank-Nicolson (Rannacher smoothing)

62 38 6.07395
123 89 6.08677 | 0.01282
245 189 6.08955 | 0.00277 | 4.6
489 389 6.09018 | 0.00063 | 4.4
977 87 6.09032 | 0.00015 | 4.3

Table 5.12: Value of an American Put. Change is the difference in the solution from the
coarser grid. Ratio is the ratio of changes on successive grids.
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Figure 5.6: Value, delta(Vs), and gamma(Vss) of an American Put, 0=0.2, T=1.00,
r=0.05, K=100. Left: TR-BDF2 time stepping method, right: Crank-Nicolson time step-
ping method with Rannacher smoothing. Top: option value (V'), middle: delta (V),
bottom: gamma(Vgg).
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Variables Values
o 0.1
r 0.02
Time to expiry (T') | 1.00 years
Strike Price $ 100
Initial asset price S° $ 100

Table 5.13: Data for American Put Option

Nodes | Timesteps | Value | Change | Ratio

TR-BDF?2
62 26 3.21806
123 D7 3.22310 | 0.00503
245 118 3.22445 1 0.00135 | 3.7
489 239 3.22479 |1 0.00034 | 4.0
977 482 3.22487 | 0.00008 | 4.0

Crank-Nicolson (Rannacher smoothing)

62 27 3.21521
123 o8 3.22267 | 0.00746
245 119 3.22438 | 0.00171 | 4.4
489 240 3.22478 | 0.00040 | 4.3
977 483 3.22487 1 0.00009 | 4.2

Table 5.14: Value of an American Put. Change is the difference in the solution from the
coarser grid. Ratio is the ratio of changes on successive grids.
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Figure 5.7: Value, delta(Vs), and gamma(Vsg) of an American Put, 0=0.1, T=1.00,
r=0.02, K=100. Left: TR-BDF2 time stepping method, right: Crank-Nicolson time step-
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bottom: gamma(Vsg).
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5.2.2 Analysis and conclusion

As can be observed from the examples in last section, results obtained by both time
stepping methods converged to the same value and both methods achieved second order
convergence.

Figure. 5.2-5.7 compare option values, delta (Vs), gamma (Vsg) for both time stepping
methods. It can be observed that though the value and delta are similar for both methods,
Rannacher smoothing cannot reduce all the oscillations in gamma. So there are oscillations
observed in the gamma corresponding to the early exercise boundary for the Crank-Nicoson
time stepping method. This is due to the stability properties of the Crank-Nicolson time
stepping method [4].

However, for the TR-BDF2 time stepping method which has better stability properties,
there are still no oscillations observed in Greeks. So, with comparable speed of convergence,
the TR-BDF2 time stepping method offers better results for Greeks, which are of practical
importance as commonly used hedging parameters.

42



Chapter 6

Summary

In this paper, the Trapezoidal Rule with the second order Backward Difference Formula
(TR-BDF2) time stepping method was studied for option pricing. The Crank-Nicolson
time stepping method, as an alternative method, was compared against this method in the
study.

We first derived the solution to the option pricing problem under the Black-Scholes
model using the TR-BDF2 time stepping method which is a second order fully implicit
Runge Kutta method. Then Von Neumann stability analysis of the TR-BDF2 time step-
ping method was carried out. It was known that the Crank-Nicolson time stepping method
is algebraically unconditionally stable, and in our analysis, it was proved that the TR-BDF2
time stepping method is also unconditionally stable.

When pricing options, the Crank-Nicolson time stepping method can introduce spurious
oscillations, particularly in Greeks. We did numerical tests and showed that, though
Rannacher smoothing can fix this problems for European options priced using the Crank-
Nicolson time stepping method, it does not work well for American options. Obvious
oscillations corresponding to early exercise boundaries can still be observed in gamma in
the American option case.

On the other hand, the TR-BDF2 time stepping method, with better stability proper-
ties, does not introduce any oscillations in Greeks and has comparable speed of convergence
as the Crank-Nicolson time stepping method with Rannacher smoothing.
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Appendix A

Definition of A-stable and L-stable

Consider a linear model problem:

w (t) = Au(t) (A.1)
where A is a complex number.

We say a numerical method is A-stable if its stability region contains the whole left
half plane. If we define 2 = AAt, A-stable can be written as: {z € C: Re(z) < 0}. For
example, forward Euler scheme leads to a discretization of u;j; = (1 + AAt)u; for the

problem stated above and its stability region is |1+ z| < 1. By definition, it is not A-stable
because the stability region is a disc of radius centred at the point -1.

L-stable is stronger than A-stable, we define a numerical method is L-stable if it is
A-stable and “Z% — 0 as [z]| — oo.
J
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