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Abstract

The presence of metal implants in patients can lead to streak artifacts in computed
tomography (CT) scans. We train Convolutional Neural Networks (CNNs) to correct these
errors. We modify the U-Net architecture to reduce overfitting and adopt its output for
metal artifact reduction (MAR) tasks. We train two versions of this network for artifact
correction; one is trained to output residual error in projection values, while the other
outputs corrected projection data directly. Streak artifacts are simulated in clinical CT
images by altering the attenuation of x-rays passing through simulated dual hip prostheses.
Both networks are capable of reducing numerical error more effectively than competing
projection-completion methods (linear interpolation and a CNN inpainting method) in a
majority of test cases.
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Chapter 1

Introduction

The Computed Tomography (CT) scan is one of the most commonly used imaging modal-
ities in modern medicine. In 2016, the number of CT scans performed on older adults in
Ontario was over four times greater than the number of MRI scans and only 30% less than
the number of ultrasounds [5]. One factor explaining the prevalence of CT is that it permits
scans of patients with metal inside their bodies. Considering that hip replacements and
other prostheses reside overwhelmingly in older patients [6] and that the total proportion
of older Canadians has been increasing 2% per annum since 2001 [7], CT imaging may
increase significantly in upcoming years.

CT scanners operate by shooting x-rays through a patient at many angles and measuring
the x-rays which pass through, which in turn determines the how many x-rays did not pass
through. Attenuation along different x-ray paths is called the projection data and it is
used to rebuild a CT image. The resulting scan is a window into the body for medical
practitioners who use its contents to inform diagnoses and design treatments.

While the CT modality assumes an idealized passage of x-rays through the patient,
metals interfere with their transmission and create errors in the projection data. These
errors produce metal artifacts (Figure 1.1) which can occlude diagnostically relevant fea-
tures. Metal artifacts are a particular hindrance in planning cancer treatments, where
imprecise tumor localization leads to improper radiation doses and reduced effectiveness
during treatment [8].

Researchers and medical practitioners have attempted to remedy these artifacts through
the use of metal artifact reduction (MAR) techniques. As an example, by increasing electric
potential across the x-ray emitter it is possible to shift the emission spectrum towards
energies which are less affected by metal. This approach is representative of the acquisition
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Figure 1.1: Metal artifacts from hip replacements, dental caps, and bullet shrapnel.

improvement family of techniques. There are an additional three relevant MAR categories:
physics-based pre-processing, projection-completion, and iterative reconstruction.

We will briefly describe some of the approaches which have been developed in the
literature [9]. Under acquisition improvement, Dual-Energy CT (scans using two distinct
x-ray spectra) [10] is used to build an absorption profile for each pixel in the image. This
attenuation profile can then be used to produce an enhanced CT image and significantly
reduces streaking artifacts. Physics-based pre-processing is performed by [11] using non-
linear multi-dimensional filtering on pixels to correct for photonic effects. One of the
earliest-developed MAR techniques, linear interpolation [12] is a projection-completion
technique that replaces the projection values of x-rays that pass through metal objects.
Finally, [13] demonstrates that the iterative expectation-maximization (EM) and algebraic
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reconstruction technique (ART) algorithms produce fewer metal artifacts than the popular
Filtered Back-Projection (FBP) algorithm when reconstructing images.

However, in recent years a new class of MAR algorithm has emerged. The explosion
of research on neural networks has lead to the development of machine learning (ML)
MAR techniques [14, 15, 16, 3]. Most of these techniques use a variant of the Convolution
Neural Network (CNN) architecture which specializes in isolating features in images [17].
The method of [16] is to use of CNNs is to blend computationally cheap MAR techniques
into a single more accurate output. Sinogram inpainting with CNNs is performed by [15]
to reduce metal artifacts in simulated suitcase objects, and [3] uses a similar method to
interpolate sinogram values for patients with dual hip replacements.

A neural network’s ability to generalize is closely related to its depth and architec-
ture [18]. U-Net [19] is a state-of-the-art network architecture designed for segmentation
tasks in biomedical imaging. It incorporates over two dozen hidden layers and millions
of parameters; repurposing this architecture for MAR has the potential to improve the
performance of network-based MAR approaches. Additionally, many sinogram-inpainting
CNN techniques [16, 3] require knowledge of the position of the metal. This requires an
additional backward and forward projection of the image data, as well as the application
of a metal-identification procedure. We propose avoiding this step entirely by allowing the
neural network to modify all pixels in the projection data. We explore two approaches:
one approach involves training a U-Net to output residual errors in the sinogram, while
the other trains a network to output corrected sinograms directly.

In Chapter 2 we discuss background material such as the CT modality, causes of metal
artifacts, and Convolutional Neural Networks. Chapter 3 outlines our proposed method in-
cluding our network design, machine learning configuration, and the generation of training
data. In Chapter 4 we explore the utility of our proposed model in three test cases and com-
pare performance with linear interpolation [12] and CNN inpainting [3] baselines. Finally
in Chapter 5 we summarize our approach and potential directions for future research.

3



Chapter 2

Background

In this chapter we describe the physical and theoretical principles underpinning Computed
Tomography and highlight the role of CT scans as 2D function approximators. Next we
explore the properties of metals and x-rays which lead to metal artifacts. Finally we
introduce the training and deployment of neural networks for image processing problems.

2.1 Computed Tomography

2.1.1 CT: What is it?

One of the most commonly used imaging modalities in medicine [5], the CT or Computed
Axial Tomography (CAT) scan gives a picture of the different materials inside patients’
bodies. It does this by shooting x-rays through the patient over a 180◦ arc and then
measuring the amount of radiation that manages to pass through the patient. This means
that every CT machine needs two essential components; an emitter for producing x-rays,
and a detector array for measuring them.

The emitter and detector array rotate in synchronization along a gantry, calculating the
proportion of blocked x-rays at each angle. This attenuation data (also called projection
data) is stored in a 2D image image called a sinogram. Sinograms are then fed into a
back-projection algorithm to create the final CT image.

Materials in CT scans are identified based on how readily they attenuate photons.
Attenuation is measured in Hounsfield Units (HU), named after the inventor of the first
commercial CT scanner. The Hounsfield scale is a dimensionless linear transformation
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Figure 2.1: The generation and interpretation of a sinogram. White pixels in the sinogram
represent high attenuation while black pixels represent negligible attenuation.

of physical SI units and is used to map common body materials to known values in the
reconstructed image. Specifically, the scale is defined so that air measures as -1000 HU
and water measures as 0 HU. Fat, bone, and other bodily materials can range anywhere
from -120 to 1900 HU.

Displaying CT scans on monitors poses its own challenges. While CT values are stored
in a 16-bit format and can thus be 216 possible values, most digital displays are only
capable of representing integer grayscale values in the range [0, 255] (28 distinct values).
This means pixel in the CT image must be quantized to fit into a digital display range.

Figure 2.2: A windowing function maps CT image values to displayed intensity.
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A solution to this problem is windowing. To window a CT image, we choose a minimum
window value w− in HU below which all CT image values are mapped to 0 in the displayed
image. Similarly we choose a w+ value such that all CT values above w+ are mapped
to 255. Finally, CT values in the range [w−, w+] are mapped to their displayed value
by linearly interpolating between (w−, 0) and (w+, 255) then rounding the output to the
nearest integer. Windowing is almost always used when CT images are viewed in a digital
format, and the choice of window depends on the diagnostic purpose of the scan.

The SI unit for attenuation is cm−1 and it describes the linear attenuation coefficient
of a region of space. Linear attenuation coefficients are denoted µ and they are connected
to the probability of attenuation by Equation (2.1) (the Beer-Lambert Law).

P (permeation) = exp (−µx) = 1− P (attenuation) (2.1)

where x is the depth of the medium in cm. Another important relationship is the connection
between µ and m, the mass-attenuation coefficient. While µ closely depends on material
density ρ (in g/cm3), m is an intrinsic and density-independent property of a material.
The relationship between these values is expressed in Equation (2.2).

µ = mρ (2.2)

Finally, measurements in CT scans are highly dependent on x-ray energy. In general,
x-rays of higher energies are more likely to pass through a given medium. The energy
dependence of m can vary quite differently between materials, often depending on the
nuclear properties of a material’s composing atoms. Further, CT emitters produce x-rays
over a broad spectrum of energies instead of one singular energy (Figure 2.3). Together
these properties can cause beam-hardening, which we explore further in Section 2.2.1.

The fact that µ is energy dependent gives rise to an additional complication. Conversion
between HU and cm−1 requires linearly mapping the value of µair to −1000 and µwater to 0.
However, this requires that we choose an energy at which to specify µair and µwater. This
chosen energy is referred to as the equivalent monochromatic energy of the scan. Making
this choice lets us convert between HU and cm−1 using Equation (2.3).

HU = 1000
µ− µwater

µwater − µair

(2.3)

2.1.2 The Radon Transform and Radial Projection

In 1917 Johann Radon proved that a function satisfying certain regularity conditions can
be exactly reconstructed from an infinite collection of radial projections [20]. Let f(x, y) be
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Figure 2.3: The emission spectrum of a CT x-ray emitter [1], as well as µ for ASTM-F75
alloy, bone, and water at different energies [2].

the function which maps 2D points in space to µ at that point, where (x, y) is a coordinate
generally defined in reference to the CT scanner. Generally f represents the patient being
scanned. Assume f(x, y) = 0 for all (x, y) outside of the scanner. The objective of CT is
to accurately reconstruct f using a finite set of the function’s radial projections.

The theoretical functional which maps f to its radial projections is known as the Radon
Transform (denoted R) and it is given by Equation (2.4).

R(f)(L) =

∫
`∈L

f(`) |d`| (2.4)

where L is a line in the R2 plane. During a CT scan, x-rays are attenuated according to
the attenuation coefficients inside the patient (Figure 2.4). By measuring the number of
x-rays which permeate the patient, it is possible to calculate the attenuation along x-ray
paths through the patient. The CT scanner estimates R(f)(L) along a large number of
x-ray paths so that the attenuation function f can be later reconstructed.

However, there are many methods to reconstruct f from the set of projections. There
exist two major categories of algorithms: analytic methods and iterative methods. While
analytic methods like Filtered Back-Projection tend to be computationally efficient, the
development of more powerful and cost-effective computing resources has enabled a shift
towards iterative methods. Iterative methods often require solving systems of hundreds
of thousands of variables but tend to produce results with lower error than analytic
approaches. One such method is the Simultaneous Algebraic Reconstruction Technique
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Figure 2.4: The Radon transform of f computes integrals of f along an input line L.

Figure 2.5: While the CT scanner uses x-rays to approximate R(f), a reconstruction
algorithm is required to isolate f . We make use of SART.

(SART) [21] which improves the earlier ART algorithm. For the remainder of this essay
we use R−1 to denote the functional which reconstructs f from evaluations of R(f) along
multiple paths. In our implementation we use the SART algorithm.
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2.2 Metal Artifacts

2.2.1 Causes

Metals leads to several artifact-causing phenomena in CT imaging. These effects include
beam-hardening, scatter, noise, and Non-Linear Partial Volume effect (NLPV).

Beam-hardening results from the interaction of polychromatic x-ray spectra with highly-
attenuating materials. An x-ray spectrum is considered “hard” when energies are dispro-
portionately skewed towards higher values. Low-energy x-rays are attenuated at a greater
rate than those of higher energy, therefore the distribution of x-rays after passing through
metal is “hardened” and more resistant to attenuation.

Figure 2.6: Expected CT spectra before and after passing through various media. Calcu-
lated using Beer’s Law (Equation (2.1)). Metal is ASTM-F75 alloy (Section 3.4.2).

As can be seen in Figure 2.6, just 5 cm of metal has a stronger skewing effect on the
x-ray distribution than 50 cm of water (comparable to passing through a human body).
This leads to under-estimation of attenuation along high-attenuation x-ray paths, resulting
in dark regions or “deletion streaks”. These deletion streaks are particularly noticeable
along paths intersecting multiple metal objects (see the hip scan in Figure 1.1).

Scatter, more specifically Compton scatter, is one of the two principal mechanisms of
attenuation (the other being absorption). Compton scatter occurs when photons interact
with a charged particle (usually an electron) causing the photon to be deflected from its
original path of travel. One drawback of higher energy x-rays in CT is that they have
an increased tendency to scatter instead of being absorbed. Scatter deflects x-rays into
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inappropriate detector cells and can cause bright lines outside of the deletion streak. Metals
are sites of high attenuation and thus are common sources of scattering artifacts.

Background noise also plays an important role in CT imaging. Sources of radiation
such as soil, the sun, and other medical equipment can be observed by CT detector arrays.
This does not normally pose an issue as the number of background events are negligible
relative to the radiation produced by the emitter. However for highly attenuating x-ray
paths, background events make up a more significant fraction of detector readings. This
leads to small dark and bright streaks which appear to change with each performance of a
scan, even when all other CT parameters are held constant.

Lastly we discuss the NLPV effect. Although they are presented as an infinitesimal 2D
slice, CT scans actually measure the average of µ in thin 3D voxels. Excessive voxel depth
can cause the attenuation characteristics of voxels to depart non-linearly from the average
µ of their contents [22]. This produces streaking artifacts at the edges of spatial regions of
high contrast such as the boundaries of metal objects.

2.2.2 A Simple Correction Technique: Linear Interpolation

One of the earliest MAR techniques, Linear Interpolation (LI) is a projection completion
algorithm which replaces metal-affected sinogram values with linearly interpolated values
from their nearest unaffected neighbours. LI is a simple and efficient technique which
has been shown to significantly reduce metal streaking artifacts. However this technique
may also introduce blur, and its performance depends significantly on the accuracy of an
operator-performed segmentation of metal objects [12].

The LI algorithm consists of four main steps and one optional step. We assume that
both the CT projection data and metal-affected reconstructed image are available as inputs.

1. Beginning with the metal-affected CT image, an operator highlights all pixels con-
taining metal. The highlighted area is referred to as the “operator mask”.

2. The operator mask is forward-projected into the sinogram domain using the Radon
transform. The resulting image is called the “mask sinogram”.

3. Non-zero pixels in the mask sinogram indicate metal-affected pixels in the CT sino-
gram. Therefore, we linearly interpolate metal-affected pixels in the projection data
(indicated by values > 0 in the mask sinogram) using data from the two nearest
non-metal attenuation values. This produces the “Corrected” data in Figure 2.7.
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Figure 2.7: Linear interpolation of metal-affected projection values in the sinogram domain.

4. Corrected projection values are transformed to the spatial domain using an inverse
Radon transform.

5. (Optional) Insert attenuation values for metal into the spatial region highlighted
by the operator. This re-introduces the metal whose projection values have been
removed and makes the output image a truer representation of the subject’s interior.

2.3 Deep Learning and Artificial Neural Networks

2.3.1 What are Neural Networks?

Neural networks are machine learning tools that can be used to perform many complex
tasks. Their structure is inspired by that of a biological brain; they are composed of arti-
ficial “neurons” whose activations covary to produce a specific signal or output. Similarly
to humans, networks require trial and error to successfully learn new tasks. Their inputs
and outputs can be images, category labels, text, or even sound.

Training a neural network can be understood as learning to approximate a function f ,
where f is the “true” function mapping inputs to answers for the given task. “True” is
mentioned in quotations because the existence of such an f is assumed but is not proven
for most real-world tasks. Consider the task of classifying animal pictures by species.
While f may be extremely difficult to describe a priori, networks are often able to learn
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Figure 2.8: A small neural network and the activation equation of the third layer. The
activation of the first layer is simply the input data.

accurate representations of f using only labeled pairs of inputs and outputs. Neural nets
are so successful as function approximators that they have been used to outperform human
experts on complex tasks such as predicting breast cancer [23] and playing Go [24].

Neural nets often contain several layers of neurons. The number of layers in a network
describes its depth, and the number of neurons in a layer is that layer’s width. Networks
with a depth beyond 2 or 3 layers are called deep neural networks. Layers are composed of
artificial neurons whose outputs are called activations. The vector containing all activations
of layer i is denoted z(i) in Figure 2.8. The activation of neuron j at layer i is dictated by
four key elements: the activations of the previous layer (z(i−1)), the input weights (W (i))
and biases (b(i)), and the activation function (σ). Weights and biases change during training
while activation generally remain fixed.

Consider the activation of layer 2. W (2) ∈ R4×5 is a matrix whose entries define
the influence of z(1) ∈ R4 on z(2) ∈ R5. This influence is realized by a matrix-vector
multiplication W (2)z(1). Associated with neuron j is a bias b

(2)
j which predisposes z

(2)
j

towards or against activation. Biases are arranged into a vector b(i) ∈ R5 and contribute
additively towards neuron j’s pre-activation value. Finally, σ is a non-linear function
(monotonically non-decreasing in general) which computes the final output of neuron j.
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2.3.2 Supervised Learning

Supervised learning describes the context where a network is trained using labeled input-
output pairs. Consider the problem of recognizing hand-written digits. Training a network
to perform this task may require thousands of image-label pairs called training samples.
During training the network gets better at mapping the input image to its correct label.
The network is learning to approximate f , the function mapping images of digits to the
number they express.

Suppose our input data is x and we are training the network to output y = f(x).
The objective of training is to emulate f(x) in real-world implementations, i.e. predict
f(x) on x which may not be in the training set. A network’s error on unseen samples is
called its generalization error. Restated, the objective when training a neural network is
to minimize generalization error. Networks used in real-world implementations will not be
able to train on new data they see because the label y = f(x), also called the training
target, is unknown. Therefore low generalization error is essential to the utility of neural
networks in real-world implementations.

2.3.3 Training a Neural Network

Define θ ∈ RN to be the vector containing all learnable parameters (weights and biases)
in the network. Suppose D = {(xi, f(xi))} is the set of training samples and their labels.
Assume xi’s are sampled from a distribution PX . The objective of training is to find
parameters that minimize the expected loss of the network over the input distribution;
that is, solve for some

θ̂ ∈ arg min
θ

EX [ l(g(θ;X), f(X)) ] (2.5)

where l( · , · ) is the loss function, f is the function approximated by the network, and
g(θ; · ) is the evaluation of the network with parameter set θ.

Neural networks may contain millions or billions of learnable parameters. This pre-
cludes a brute-force search over the parameter space (the set of possible θ’s) in most cases.
Therefore, some form of local search must be performed over the parameter space.

Loss Functions

An important matter is the quantification of error in a network’s output. The formula
used to calculate error during training is the loss function. Two common loss functions for
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image processing are Root Mean Square Error (RMSE) and Mean Average Error (MAE).
Let x ∈ RM×N be the result of some image processing method and y ∈ RM×N be the ground
truth. Then the RMSE and MAE are given by Equations (2.6) and (2.7) respectively.

RMSE(x,y) = (MN)−1/2

(∑
i≤M

∑
j≤N

|xi,j − yi,j|2
)1/2

(2.6)

MAE(x,y) = (MN)−1

(∑
i≤M

∑
j≤N

|xi,j − yi,j|

)
(2.7)

Stochastic Gradient Descent (SGD)

Local search algorithms perform incremental adjustments of θ to solve Equation (2.5). The
procedure used to update parameters on each iteration is referred to as the optimizer. Such
an optimizer is Stochastic Gradient Descent (SGD).

The core idea of SGD is to evaluate a network’s error on training samples and then
adjust parameters in such a way that would have reduced the network’s error. Implicitly,
the second step requires calculating each parameter’s contribution to the error in the
output. The evaluation of network error is called the forward pass while the calculation of
each parameter’s contribution to the error is called the backwards pass. While a forward
pass is achieved by simply evaluating the network on an input and calculating the error, the
backward pass is only made possible by the backpropagation algorithm [25] which makes
use of the chain rule from calculus.

At this point we introduce the concept of a loss landscape or loss surface. Informally,
the loss landscape is a function L : RN → R which maps choices of network parameters
to the expected loss (w.r.t PX) of a network implementing those parameters. The astute
reader may recognize L as the function being minimized in Equation (2.5), i.e. L(θ) :=
EX [ l(g(θ;X), f(X)) ]. The minimization of L(θ) is achieved by adjusting θ in the direction
of steepest decrease in L(θ). Since ∇L(θ) always inhabits the direction of steepest increase
in L at input θ, the direction of steepest decrease is given by −∇L(θ). Let α be the size
of the step in direction −∇L(θ), also called the step size.

The expected loss function L is not known exactly because PX and f are not known.
Therefore we approximate L using the sample mean of error on the dataset D. The insight
of SGD is to only train on a subset of the data on each iteration; this helps to escape
local minima during training and decreases the computational demand of each training
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iteration. Using a random sampling of the dataset is the origin of the word “stochastic”
in the optimizer’s name. The SGD update formula is given by Equation (2.8).

θi+1 = θi − α∇θi

 1

|Si|
∑

(xi,f(xi))∈Si

l(g(θi;xi), f(xi))

 (2.8)

where Si is a random sampling of chosen size from the dataset. Si is known as the mini-
batch and |Si| as the mini-batch size, although it is often referred to simply as batch size.
We call one epoch the number of training iterations after which the network has trained
on |D| samples.

Recall that the overall objective of training is minimizing expected loss over PX , not
just D. It is the case that when networks are trained extensively, their expected loss on
samples from D continues to decrease while performance over PX may actually worsen.
This problem is known as overfitting and it occurs when the network memorizes the correct
outputs instead of generalizing into an approximation of f .

One solution to overfitting is to randomly partition the dataset into a training set and
a validation set. Samples from the validation set are withheld from the network during
training, and they are representative of unseen samples from the true distribution PX .
Performance on the validation set is monitored during training alongside the network’s
performance on the training set. If performance on the two sets begin to diverge later into
training, this is an indication that training should be terminated as past this point the
network will begin to overfit. A common choice of size for the validation set is 20% of the
size of the original dataset.

Adaptive Moment Estimation (ADAM)

Significant research has been performed on improving the basic program set forth by SGD.
An optimizer that has gained popularity in recent years is Adaptive Moment Estimation
(ADAM) which makes several improvements upon SGD [26]. ADAM is compatible with
mini-batch training, so that updates are performed using a strict subset of the available
data on each iteration. Here we describe some of the relevant features of this optimizer.

Firstly, ADAM uses a separate learning rate for each parameter in the network instead
of a fixed learning rate. Inspired by the RMSProp optimizer [27], this has been shown to
expedite convergence in networks during training. A second important feature of ADAM
is that it implements momentum. Momentum in network training is akin to momentum in
physics whereby θi can be seen as a rolling ball in |θ|-dimensional space, and momentum
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describes the predisposition of θi to continue along its current trajectory in opposition to
the influence of external forces. This can be advantageous when in helping to escape local
minima in L. A third relevant contribution of ADAM is that parameter-specific learning
rates are adaptive. The optimizer makes use of second-moment data to slow training
when the network parameters are nearing convergence. Finally, ADAM fully automates
parameter selection so that no choice of α or any other training parameters are necessary
(although initial learning rates and momentum decay may be specified). For these reasons
we use ADAM as the primary optimizer of our networks.

Stochastic Weight Averaging (SWA)

Stochastic Weight Averaging (SWA) is a modification applied to a base optimizer that
modifies the final iterations of training. The authors of [28] show that many optimizers
will orbit about a region of low loss near the end of training. They show that averaging
network parameters during training successfully produces parameters nearer to the center
of the low loss region which lowers validation error in the network.

The SWA optimizer requires two hyperparameters to be specified: SWA iterations and
sampling period. Suppose the network is to be trained for N total iterations. Then
at iteration N − SWA iterations, SWA takes over the role of the base optimizer and
begins performing SGD at the base optimizer’s learning rate (SWA is compatible with
parameter-specific learning rates such as those used in ADAM). Additionally, a running
average is initialized with the current value of the network’s parameters. SGD is per-
formed for n = “SWA iterations” iterations and the running average is updated every
m = “sampling period” iterations. Upon finishing m iterations of SGD, the network’s
parameters are replaced with the running average and training is terminated.

2.3.4 Convolutional Neural Networks

A key development in research on neural networks was the introduction of so-called Con-
volutional Neural Networks (CNNs). Designed specifically for tasks related to imaging,
CNNs use the convolution operator to isolate features in 2D inputs. CNNs have been
successfully used to win several image processing competitions due to their efficacy [17].

In a CNN, conventional neurons are replaced with learnable units called convolution
kernels. Convolutional kernels are matrices which are “rotated” 180◦ and then slid along
an input image to isolate features and extract relevant information. Convolution is a very
general tool that is used to measure gradients, create blur, or sharpen images. Thus,
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assimilating convolution into neural networks gives them an ability to learn operations
which are specifically suited to manipulating images [29, Ch. 5.4, p. 289].

In a CNN, layers are made up of one or more convolution kernels. While a standard
neural net learns weights between neurons, CNNs learn kernel elements ki,j. Additionally,
instead of having intermediate activations represented as vectors, intermediate activations
in CNNs are 2D images. This is due to the fact that the output of a convolution operation
is also an image. CNNs make use of activation functions by applying them element-wise
to the intermediate outputs of convolutions. Additionally, each convolution kernel has an
associated bias term which acts like the bias term in a regular network.

One issue with convolution is the treatment of convolution near the image border.
Many conventions exist to address this. A convention in deep learning is to only convolve
at pixels where all kernel elements overlap with elements in the input image [30]. While this
avoids convolution with pixels beyond the input, it results in an output image with reduced
dimensions. If maintaining constant input/output dimensions is desired, one solution is to
pad the input with zeros around its perimeter. We make use of this technique in our own
CNN MAR solution.

Figure 2.9: Some conventions result in decreased output dimensions after convolution. One
solution is to pad the input with zeros.

One MAR technique that uses CNNs is to inpaint using output from a neural network
[3]. The CNN predicts corrected projection values by training on a dataset of simulated
metal artifacts. Simultaneously, corrupted projection data is back-projected and used to
isolate pixels containing metal. Then the Radon transform is applied to metal-containing
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pixels and the resulting non-zero sinogram pixels represent locations to be replaced by
CNN output. Although requiring computationally expensive forwards and backwards pro-
jections, corrections are limited to the trace of the metal in the sinogram. This helps to
reduce error in the final reconstructed CT image.

Figure 2.10: The method of [3] is to use a CNN to predict the correct projection values
then replace metal-affected projection data with these values.
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Chapter 3

Methodology

We propose a projection-completion method using a deep CNN to correct values in the
sinogram. While CNN methods have already been used effectively in MAR [3, 16, 14], we
explore the utility of two new techniques:

1. We implement a modified version of U-Net [19], a state-of-the-art architecture for
segmentation tasks in medical imaging.

2. We eliminate the need for information about metal position by adopting all correc-
tions made by the network.

We train networks to reduce artifacts using two different approaches: the first approach
targets residual errors in the sinogram and subtracts them, while the second approach is
to return corrected sinograms directly. To access ground truth during training we sim-
ulate dual hip replacements made of a Cobalt-Chromium alloy commonly used in bone
replacements.

3.1 Overview

Our proposed method belongs within the class of projection-completion MAR algorithms,
which includes techniques such as Linear Interpolation (Section 2.2.2) and [3]. However un-
like most projection-completion methods, we allow our technique to modify all projection
values within the sinogram. Most projection-completion techniques require information

19



about the location of metal to guide the replacement of corrupted values in the sino-
gram. This may require performing computationally expensive forward and inverse Radon
transforms. By ignoring metal location altogether we can avoid the need for these extra
processing steps.

Figure 3.1: The proposed method is applied to projection data rather than images.

The generalizability (Section 2.3.2) of a MAR technique is the measure of its accuracy
on samples which are not like the ones it was trained on. Ability to generalize is an
important feature for CNN-MAR techniques. While achieving good performance would be
assisted by training on a representative dataset of all possible metal artifacts, acquiring
such a dataset would be an expensive and time-consuming task, and using all of the
samples during training would demand great amounts of computational resources. Good
generalization allows a CNN-MAR method to perform well on new implants and patients
without needing such a dataset.

The alternative to good generalization is to train separate CNNs for different MAR
tasks. While this is certainly possible, it introduces numerous complications such as choos-
ing how networks should specialize, increased memory demands, and requiring operator
knowledge to select the right MAR network. Such complications do not arise when using
alternative methods like Linear Interpolation.

The success of deep networks is founded in their superior capability to generalize [18].
Deeper MAR networks are capable of better generalization across patients, implants, and
metal types. However, it was found that adding more layers to the Fully Convolutional
Network (FCN) architecture commonly used MAR networks [3, 15] did not improve per-
formance in most cases. As such, we implement a version of U-Net modified for MAR
tasks. U-Net is a deep network architecture that won several 2015 challenges in image
segmentation due to its low generalization error. Our objective is to leverage the network’s
success in a MAR setting.
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3.2 Training Target

For reasons discussed in Section 2.2.1, metal causes errors in the projection data. We will
construct a mathematical model to express this problem. Let us represent metal artifacts
as additive error ε in the projection data. Suppose that R(f) is the Radon transform of f .
Applying the inverse radon transform to the true projection data plus ε, we get an image
containing metal artifacts which we denote f ′. Algebraically we have

f ′ = R−1 (R(f) + ε) (3.1)

Equivalently, we can write Equation (3.1) as

R(f ′) = R(f) + ε (3.2)

Our proposed method is to correct data at every pixel the sinogram. There are many
ways in which a network can be used to do this. Here we propose two techniques:

1. Train the network to output ε given R(f ′), then subtract the network’s output from
R(f ′) before applying R−1.

2. Train the network to output R(f) given R(f ′), then apply R−1 directly on the output.

Figure 3.2: We explore two ways in which networks can be used to reduce metal artifacts.

In this essay we refer to technique 1 as the “residual” model (as it targets residual
errors in the sinogram) and technique 2 as the “direct” model. While the direct model is
used frequently in the literature [3, 15, 16], targeting residuals in the spatial image with
CNNs has been used to successfully perform MAR [14]. However, targeting residuals in
the sinogram is a novel approach which we will explore during our experiments.
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3.3 Network Architecture: U-Net

There are several challenges associated with choosing a deep network architecture for MAR.
Of primary interest is achieving low generalization error. Networks like GPT-3 [31] which
are highly capable of generalization make use of dozens of layers and billions of learnable
parameters. During development we found that simply adding more layers the popular
Fully Convolutional Network (FCN) architecture did not always reduce generalization er-
ror, and sometimes even increased it. Thus there is motivation in exploring deep network
models with more parameters.

This leads us to consider the U-Net architecture [19, 1]. The inaugural U-Net contained
over 31 million learnable parameters. This, combined with its 25 hidden layers, helped it
to achieve the least generalization error in multiple 2015 cell-tracking competitions [19].
We will make use of this network’s strengths by modifying it to suit our MAR application.
Before discussing our modifications, we describe existing features of the architecture.

Figure 3.3: A sample U-Net architecture which we use to perform MAR.

U-Net gets its name from its shape in network diagrams (Figure 3.3). The network
consists of five “levels” which an input descends and then ascends before yielding an output.
In our diagram, blue rectangles represent intermediate activations between network layers.
Vertical text on the far-left side of the diagram denote the shape of intermediate activations,
while horizontal text on top of activations denotes the number of channels. For hidden
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layers (any non-input/output layers to the network) the number of channels reflects the
number of convolution kernels in the preceding layer. For the input and output layers,
having one channel reflects that the images are in grayscale.

Upon being passed as an input, images pass through two convolutional layers (black
rightward arrows) consisting of many 3× 3 kernels and an activation function. To descend
a level in the “U”, activations are subjected to 2D Max Pooling (red downward arrows).
This down-samples the intermediate activations while preserving the most intense signals.
After down-sampling, images are passed through two new convolutional layers having twice
the kernels as the previous level.

Ascension of the “U” takes three steps per level. First, an up-convolution halves the
number of kernels while doubling the activation’s height and width (green upward arrows).
Up-convolution is an up-sampling technique whose parameters are learned during training.
Next, activations from earlier in the network are concatenated to the up-convolved outputs.
Earlier activations are represented as white squares in Figure 3.3. Such concatenations been
shown to regularize the loss landscape1 of neural networks, expediting training and reducing
generalization error [32]. Lastly we apply two more convolutional layers and conclude our
calculations for the level.

3.3.1 Modifications to U-Net

A direct implementation of U-Net [19] does not work well for our problem; we will discuss
each of our changes and their significance. Firstly, U-Net was originally designed for
segmentation problems. This required a terminal 1x1 convolution layer and a normalized
softmax [33] activation function to map pixels to their probability of being in segmentation
classes. Because our task is MAR as opposed to segmentation, we remove both the 1x1
convolution layer and output normalization from the end of U-Net.

Another change we make is the substitution of ReLU activations for LeakyReLU activa-
tions. While ReLU activations map negative inputs to zero, LeakyReLU instead multiplies
them by a small factor α (Equation (3.3)).

ReLU(x) =

{
x, x ≥ 0

0, x < 0
LeakyReLUα(x) =

{
x, x ≥ 0

αx, x < 0
(3.3)

LeakyReLU is often used to solve the dead neuron problem whereby neurons with con-
sistently negative pre-activation values cease to contribute features in learning. LeakyReLU

1Loss landscapes specify expected error for a particular choice of θ. See Section 2.3.3.
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activations are commonly used in MAR networks [3, 15] and we found that their use re-
duced overfitting in our network (Figure 3.4).

However, sometimes we observed a phenomenon whereby massive explosions in training
loss caused the network to exhibit worse performance than when it was randomly initialized
(Figure 3.5). We describe this phenomenon as a failed training attempt. Failure was closely
related to using values of α > 0.05. In this sense, increasing α can be seen as a tradeoff
between reducing overfitting while risking catastrophic explosions in loss during training.

Figure 3.4: LeakyReLU reduces overfitting in our architecture. Overfitting is characterized
by diverging training and validation error during learning (Section 2.3.3).

When training with α = 0.05 we found that the residual network failed during 25% of
training attempts while the direct network failed during 50% of attempts. To account for
this we reverted to using ReLU activations for the direct model. We also use larger mini-
batch sizes for the direct model during experiments. The combination of these adjustments
made the probability of failure around 25% for both networks.

An additional modification we make is the introduction of padding (Section 2.3.4) in
convolutional layers. In the absence of padding, U-Net [19] requires a strict input shape
and the use of cropping pre-concatenation so that the shapes of intermediate activations
remained integral and concatenated activations have like shapes. By using padding we
maintain a constant activation shape along each level of the “U”. This allows the network
to be used on images with side lengths of 2M for any M greater than the number of U-Net
levels. We make use of this feature in our experiments when we train the network using
down-scaled images.

Lastly, we reduce the number of kernels in each convolutional layer by a factor of 2 from
[19]. This means in the first level we use 32 instead of 64, 64 instead of 128 at the second
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Figure 3.5: Using LeakyReLU parameters beyond 0.05 resulted in worse performance than
the random initial network.

level, etc. This choice was made to expedite training while still preserving a relatively high
number of learnable parameters; even with this reduction, our modified network contains
7.8 million parameters as opposed to the 180 thousand of [3, 15].

3.4 Training Data

A MAR researcher’s ideal dataset contains artifact-affected and artifact-free scans of pa-
tients in identical positions. This can be partially achieved by performing two CT scans
in the same position with different x-ray emission spectra (Figure 3.6). However multiple
scans and higher scan energies increase the effective radiation dose to the patient, which
is a small but statistically significant risk factor in carcinogenesis [34]. As such extensive
MAR datasets do not exist and metal artifacts must be simulated.

Simulating metal artifacts involves recreating the insertion of prostheses into metal-
free scans and then generating artifacts. This technique allows a precise knowledge of the
position and composition of metal objects. Additionally, artifact-free CT data is readily
accessible via online anonymized datasets [35], does not require CT hardware or operation,
and does not expose patients to excess radiation. One downside of artifact simulation
is that generated artifacts may not accurately reflect physical artifacts, leading to poor
generalization on real-world tasks.
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Figure 3.6: Metal artifacts are reduced as the potential across the x-ray tube increases.
Reprinted from [4] with permission from Wolters Kluwer.

3.4.1 Prostheses

We generate datasets of patients with dual hip prostheses. This represents a challenging use
case for MAR as large amounts of metal produce more severe artifacts [9]. Axial sections
of hip prostheses are modeled as circles of slightly smaller diameter than patients’ femurs.
Their material is assumed to be ASTM-F75 standard Cobalt-Chromium alloy, a common
material used in orthopedic implants. The alloy’s composition is approximately 70% cobalt
and 30% chromium by mass, and it has a density of ρ = 8.4 g/cm3. The mass-attenuation
coefficient is approximated as the weighted sum of cobalt and chromium’s respective mass
attenuation coefficients, weighted by their atomic ratios in the alloy. Therefore the linear
attenuation coefficient of the alloy is

µ = ρ× (mCoωCo +mCrωCr) (3.4)

by Equation (2.2), where ωk is the fraction of atoms which are of element k. Mass at-
tenuation data is accessed through [2]. At 100 keV this results in µmetal = 3.102. As
opposed to commonly used Titanium implants which has a µ value of 1.632, ASTM-F75
has a relatively high attenuation value. This increases the overall severity of artifacts.
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3.4.2 Generation

We generate realistic-looking streaking and deletion artifacts by manipulating projection
values in the sinogram (Figure 3.8). We begin with a CT image in cm−1, i.e. an image
converted from HU to linear attenuation units at an equivalent monochromatic energy of
100 keV (Equation (2.3)).

First, a mask image of two circles is generated. These circles are uniformly selected
from a circle around the femur and they represent the location of implants in the patient.
Note that this can result in metal overlapping with or totally outside of the femur. We
consider this to be a form of augmentation, although during testing we position metal
strictly within the femur to more faithfully simulate real implants.

Figure 3.7: Training images have implants which are distributed uniformly around the
femur. This results in some implants exterior to or overlapping with bones.

Next, the hip replacements are “inserted” into the patient by replacing all pixels indexed
by the metal mask with the value of µmetal (Section 3.4.1). The resulting image is the
“clean” image and represents the ground truth during training. Additionally we multiply
the metal mask by µmetal to get an isolated image of the metal. The clean and metal images
are then converted into projection data via the Radon transform.

The final step (denoted ∗○ in Figure 3.8) selects all pixels in the metal sinogram above
a threshold to create a sinogram mask. This threshold controls the number of sinogram
pixels affected in artifact generation. The sinogram mask is then used to select pixels
in the clean sinogram, which are set to the maximum pixel value in the clean sinogram.
This effectively simulates an increased attenuation through metal caused by the large
attenuation gaps between materials at low x-ray energies (Figure 2.3). After applying
the inverse Radon transform, the result is realistic-looking metal artifacts from dual hip
prostheses (Figure 3.9).
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Figure 3.8: Artifact generation process. R denotes the discrete Radon transform.

Figure 3.9: Result of the artifact generation process, with real metal artifacts for compar-
ison. In the clean and simulated image the viewing window is set to [-500, 1200] HU.

As opposed to [16, 1], this technique does not require computationally intensive poly-
chromatic CT simulations and manages to produce realistic-looking artifacts (Figure 3.9).
However our technique does not simulate scatter, and so the manipulated projection values
are localized entirely in narrow bands (Figure 3.10).

3.4.3 Augmentation and Standardization

Data augmentation is the procedure of manipulating data to artificially increase the size
of the dataset. It is important to augment data in such a way that all inputs to the
network could feasibly be observed in test data. Good augmentation strategies can produce
significant performance gains and have the potential to greatly increase the size of a dataset
[36]. Common procedures include vertically or horizontally flipping images, warping, and
combining training samples.

We apply data augmentation at two main phases. The first phase is during data gen-
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Figure 3.10: Simulated image with artifacts, as well as ε, and R−1(ε).

eration. We apply a mild zoom-out transformation to both the metal image and clean
image as well as randomly position the metal implants (Figure 3.7). The zoom-out trans-
formation simulates a resizing and stretching of patients in the dataset. We achieve this
by cropping a region around the image that is 0% to 10% larger than the original and that
has an aspect ratio of 90% to 110% width/height (Figure 3.11). This region is then resized
to a 256px square image, resulting in a random stretching and shrinking of patient scans.

Figure 3.11: Stretching and cropping is performed to simulate patients with different body
shapes. This image exaggerates the technique for demonstration purposes.

The second data augmentation phase is performed at training time. Before sinograms
are passed to the network as input, they are flipped horizontally with a probability of 50%.
This is equivalent to a horizontal flip of the patient and effectively doubles the size of the
dataset. While horizontal flips may yield unrealistic data due to asymmetry in the human
body, we desire a MAR network which is agnostic towards the anatomical realism of its
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inputs. A MAR algorithm should correct the physical phenomena causing artifacts; simply
memorizing human anatomy could lead to the inpainting of false data and may obscure
diagnostic features like tumors, inflammation, or fractured implants.

Standardization is the process of transforming input data to have mean zero and stan-
dard deviation one. It is commonly used by AI practitioners to improve neural networks
performance [37]. Standardizing images is performed by subtracting the mean pixel value
then dividing by the standard deviation (with mean and standard deviation referring to
the distribution of pixels in the dataset). We apply standardization to both the inputs and
training targets, then multiply the network’s output by the standard deviation of pixels
and add the mean pixel value to produce a final image.
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Chapter 4

Experimental Results

In this chapter we perform three experiments to explore the utility of our proposed tech-
niques. We compare the results of our proposed methods against the Linear Interpolation
method [12] (Section 2.2.2) and a CNN-based inpainting technique [3]. In each experiment
we use clinical CT data obtained from [38] and simulate dual hip prostheses and metal ar-
tifacts (Section 3.4.2). CT images are downsized from 512 by 512 to 256 by 256 to expedite
computation.

In Experiment 1 we train and validate using generated images from the same patient.
The objective is to observe if our proposed methods can learn to correct a narrow distri-
bution of metal artifacts. In Experiment 2 we use the same data as Experiment 1, but
isolate the upper femoral region for validation testing. This simulates a use case where
our network is trained to remove metal artifacts in a patient using the metal-free regions
of the patient’s body. In a final experiment we test the ability of our proposed methods to
generalize across patients, a requirement for our MAR technique to be considered practical
in real-world use.

4.1 Experimental Setup

We train our networks to correct metal artifacts from dual hip prostheses. These tests do
not explore the most general use case of correcting artifacts from arbitrary metal objects.
As none of the scans in our original dataset were of patients with hip replacements, we
simulate metal artifacts using the techniques outlined in Section 3.4.2.
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De-identified scans without metal are accessed via the Cancer Imaging Archive (TCIA)
[35], specifically the Head and Neck Cancer CT Atlas [38]. The 98 GB dataset contains
885 CT scans from 215 patients for a total of 159,776 CT images. While all scans contain
the head and neck of cancer patients, many scans contain femoral images which we use for
generating data.

Networks for our proposed methods are each trained for one epoch over their respective
training sets which are described before each experiment. We employ the ADAM optimizer
for all but the last 30 iterations during which SWA is used with sampling period of 6. The
“residual” and “direct” networks are trained to output residuals and corrected sinograms,
respectively. Mini-batch sizes of 12 and 16 are used for the training of “residual” and
“direct” networks.

4.1.1 Performance Metrics

We employ multiple metrics to measure numerical and perceived error in corrected CT
images. To reiterate, performance is measured on the final CT image and not in the sino-
grams, even though loss during training is measured on sinograms. To quantify numerical
error we use the mean average error (MAE) and root mean square error (RMSE) (Equa-
tions (2.7, 2.6)). To approximate perceived error we use the Structural Similarity Index
Measure (SSIM) [39]. The SSIM compares luminance, contrast, and structure in multiple
image patches to quantify perceived error. The SSIM takes values between 0 and 1, where
SSIM = 1 iff the input images are equal. SSIM has been shown to more accurately measure
perceived error than MSE [40].

We also present visual depictions of each method in each experiment. When a CT scan
is shown, the CT viewing window is set to [−700, 1500] HU (see Section 2).

Even using identical metrics, published errors in MAR research may not be immediately
comparable because of choices in units (HU or cm−1) or equivalent monochromatic energy
when converting HU to cm−1 (Equation (2.3)). To further expound performance, we also
provide errors relative to the error of the image with artifacts. If the artifact-free and
metal-affected images are f and f ′ respectively, l is a loss function like RMSE or MAE,
and the MAR technique output is g(f), then relative error is given by

l(g(f ′), f)

l(f ′, f)
× 100%

This unitless metric allows for a more meaningful comparison of results between different
published MAR methods.
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4.1.2 Performance Comparisons

We compare our proposed methods against two other MAR techniques, the first being the
LI algorithm (Section 2.2.2) and the second being a CNN-based inpainting method.

In implementing the LI algorithm we must consider the important detail of highlighting
metal pixels in the metal-affected image, which is a necessary step in the algorithm. It
is impractical to manually highlight pixels in all of our test images. Additionally, human
variance in the highlighting procedure would introduce variance in performance which is
impossible to reproduce. However, simply using the known metal mask to highlight metal
pixels is an unrealistically accurate application of the LI algorithm.

Recall that the “operator mask” is a Boolean mask of the human-highlighted pixels.
Let “mask” be a Boolean image indicating which pixels contain metal in the ground truth
image. To simulate operator highlighting we define the operator mask pixel-wise as follows:

operator mask(x, y) =

{
1, ∃∆x,∆y ∈ {−1, 0, 1} : mask(x+ ∆x, y + ∆y) = 1

0, otherwise

The resulting operator mask is simply the ground-truth mask after being grown by 1
pixel in all directions. This simulates highlighting being performed by a skilled but still
imperfect CT operator, which is the intended use case for the algorithm.

The second technique we compare against is the CNN-based method of [3], which we
refer to at the QiNN method after its author. For a description of the algorithm see Section
2.3.4. The QiNN method uses a CNN to predict corrected sinogram values for x-rays which
pass through metal. Information about metal location is obtained by thresholding; we
designate any pixel with xi,j ≥ µmetal as being made of metal.

We train the QiNN method using the same datasets and number of epochs as the
proposed techniques, and use a mini-batch size of 12. The QiNN network is optimized
using ADAM with MSE loss as per the original implementation. While the training time
for U-Net is longer on average, the application of the proposed methods is faster than the
QiNN method because it requires Radon and inverse Radon transforms required to isolate
the sinogram trace of metal.
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4.2 Experiment 1: Single Patient, Random Valida-

tion Samples

We explore if our proposed methods can correct metal artifacts at different positions in
the same patient. This will validate if the proposed methods can correct artifacts within a
low-variance distribution of scans. Variance of inputs is low because we are training using
only a single patient’s CT images with only one type of metal implants. Figure 4.1 shows
a typical sample from the training set after applying SART (Section 2.1.2).

Figure 4.1: Reconstructed metal-free and metal-affected scans from the single-patient
dataset, and a spatial depiction of metal artifacts. Training occurs on the Radon transform
of these images.

The “clean” image’s projection data is ground truth during training while the “affected”
image’s projection data forms the input to the network. Training targets are either the
residual projection errors or the clean projection data as specified in Section 3.2.

The patient scan used for data generation contains 49 CT images, which are each
subjected to augmentation to produce 204 unique training samples. The training set
consists of 8000 samples with ASTM-F75 hip prostheses placed in or near to the femur.
The validation set of 2000 images is used to monitor overfitting during training. Finally,
a test set of 20 new samples from different slices of the patient is generated with implants
strictly overlapping the femur. Each method is tested and average results are reported.
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Figure 4.2: Training and validation samples form a random partition of the dataset.

4.2.1 Results

Figure 4.3 demonstrates method performances, with one row for each MAR technique and
three columns for random samples from the dataset. Table 4.1 and Table 4.2 quantify the
performance of each method on the test set of 20 images.

Table 4.1: Average performance of each method on the Experiment 1 test set. Error is
measured in cm−1.

Metric No MAR LI QiNN Residual Direct

MAE 1.08e-03 3.03e-04 7.32e-05 8.48e-05 8.82e-05
RMSE 7.78e-04 2.51e-04 2.47e-05 3.43e-05 3.49e-05
SSIM 0.590 0.947 0.960 0.944 0.944

Table 4.2: Average relative error of each method on the Experiment 1 test set. Relative
errors are unitless.

Metric No MAR LI QiNN Residual Direct

Relative MAE 100% 28.1% 6.79% 7.86% 7.86%
Relative RMSE 100% 32.33% 3.18% 4.41% 4.41%

Looking at the qualitative images in Figure 4.3, both the proposed residual and direct
models have residual dark streaks in their outputs. The proposed techniques significantly
reduce the bright lines emanating from the implants. For the QiNN method the most
noticeable remaining artifacts are short bright and dark lines emanating from the implants

35



Figure 4.3: Each column contains a random test sample from Experiment 1 and each row
displaying a different method’s output on those samples.

in all directions, while the dark deletion streak between the prostheses is no longer notice-
able. The LI method exhibits blurring, and inaccuracy in the replaced metal region creates
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noticeable inaccuracy compared to the other methods. However the dark deletion streak
is almost entirely removed.

We find that the proposed methods are able to significantly reduce metal artifacts in
a single patient, although they are certainly not eliminated. Quantitative results confirm
that the qualitative observation that proposed techniques are outperformed by the baseline
CNN method in this experiment. Additionally, the LI method is superior at reducing
metal artifacts although the blur and mislabeling of metal pixels leads it to have the
highest residual error of the techniques. The residual and direct methods perform nearly
identically in this experiment.

This simple experiment demonstrates that our methods can reduce a narrow distri-
bution of metal artifacts, although they are both outperformed visually by both baseline
techniques. Over the upcoming experiments we will explore if our models can generalize
to increasingly dissimilar test distributions.

4.3 Experiment 2: Single Patient, Withheld Femoral

Data

Experiment 1 demonstrates that our methods are capable of somewhat reducing artifacts
within a narrow distribution of similar training and testing data. Experiment 2 will deter-
mine if our methods can extrapolate their learning from patient images to correct artifacts
in unseen regions in the same patient. This makes the upcoming experiment a better test
of generalizability than Experiment 1.

Consider how one might implement our proposed methods using data from only a
single patient. To perform supervised learning we require access to ground truth images,
precluding the use of metal-affected regions during training. Therefore we must train
our networks using artifacts that we simulate outside of the metal-containing region of
the patient. Using the single-patient dataset from Experiment 1, we reserve all images
from the upper-femur as validation samples and simulate artifacts near the hip region for
training. Figure 4.4 displays our data model in this experiment.

Testing takes place on the 16 CT images from the upper-femoral region, where real-
world hip replacements reside. Test images are not subject to any augmentation and metal
implants are placed directly within or over top of the femur. Average performance over
the test set is reported in tables.
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Figure 4.4: Artifacts will be simulated in metal-free body regions to access ground truth
during training. Testing will be performed on previously unseen CT slices.

4.3.1 Results

Figure 4.5 demonstrates each method’s performance on three random samples, with each
column for each sample and one row for each method. Tables 4.3 and 4.4 display the
average performance of each method on the test set.

Table 4.3: Average performance of each method on the Experiment 2 test set. Error is
measured in cm−1.

Metric No MAR LI QiNN Residual Direct

MAE 1.07e-03 3.03e-04 1.08e-04 8.00e-05 8.65e-05
RMSE 7.72e-04 2.53e-04 4.12e-05 3.03e-05 4.25e-05
SSIM 0.593 0.945 0.956 0.954 0.929

Table 4.4: Average relative error of each method on the Experiment 2 test set. Relative
errors are unitless.

Metric No MAR LI QiNN Residual Direct

Relative MAE 100% 28.29% 10.05% 7.46% 8.07%
Relative RMSE 100% 32.77% 5.34% 3.93% 5.50%

Looking at Figure 4.5, the performance of the LI method appears consistent with Ex-
periment 1. This makes sense because LI is a deterministic algorithm whose performance
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Figure 4.5: Each column contains a random test sample from Experiment 2 and each row
displaying a different method’s output on those samples.

is not influenced by any training program. This is confirmed by the quantitative results in
Table 4.3, where the MAE, RMSE, and SSIM all lie within ±10% of their values from Ex-
periment 1. The QiNN outputs look visually similar in quality to Experiment 1 although
there is some degradation in quantitative performance as the MAE and RMSE both in-
crease by about 50% from Experiment 1 (Table 4.3). The QiNN SSIM scores are within
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1% of one another between experiments.

Looking at Figure 4.5 in isolation may make the numerical results in Tables 4.3 and 4.4
confusing; although it appears that LI and QiNN clearly reduce artifacts more effectively,
they exhibit greater MAE and RMSE than the residual network. We offer an explanation
for this phenomenon: windowing (see Figure 2.2). Figure 4.5 displays CT images that
have been windowed between [−700, 1500] HU while the MAE and RMSE are calculated
on the exact outputs of the methods, without any windowing. This means that some of
the errors created by the LI and QiNN method may not be visible inside the displayed
ranges of images in our report. Additionally, blur effects such as those introduced by LI
are difficult to observe in down-scaled report images.

The performance of the proposed methods are notably different in this experiment.
For the residual model, visual artifacts appear more reduced than in the first experiment,
while the opposite is true for the direct model. This is reflected quantitatively by the fact
that the SSIM score of the residual method increases from 0.944 to 0.954 while the direct
method decreases from 0.944 to 0.929. The improvement of the residual method from
Experiment 1 was not expected, and it demonstrates that targeting sinogram residuals is
a feasible representation for learning in MAR.

4.4 Experiment 3: Generalization Across Patients

We train all models using data from four patients and validate their performance on a fifth.
Metal artifacts are simulated in and around the femur during training, while the test set
restricts implants to be strictly within the femur. Figure 4.6 shows our data model for this
experiment.

The four scans used for training contain 193 near-femur images, each of which are used
to generate 72 samples. The training set consists of 14 thousand samples. Prostheses are
modeled as ASTM-F75 circles in the axial plane. The test set consists of 38 CT images
which were not used in training.

4.4.1 Results

Figure 4.7 demonstrates the output of each method on random samples from the dataset.
Tables 4.5 and 4.6 display the average performance of each method over the test set.

Looking at Figure 4.7, we again note that the performance of the LI method has not
changed. However, we note that the QiNN method leaves some more residual artifacts than
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Figure 4.6: Multiple patients are used to generate a training set, while the validation and
test set both draw from a patient not used in training.

Table 4.5: Performance of each method in Experiment 3. Error is measured in cm−1.

Metric No MAR LI QiNN Residual Direct

MAE 9.89e-04 2.98e-04 1.04e-04 1.47e-04 9.65e-05
RMSE 7.13e-04 2.65e-04 5.43e-05 7.42e-05 4.97e-05
SSIM 0.597 0.944 0.947 0.914 0.897

Table 4.6: Relative errors in Experiment 3. Relative errors are unitless.

Metric No MAR LI QiNN Residual Direct

Relative MAE 100.00% 30.13% 10.55% 14.87% 9.76%
Relative RMSE 100.00% 37.19% 7.62% 10.40% 6.96%

in previous experiments. The residual model’s visual performance decreases noticeably
from the previous experiment, although interestingly the direct model performs better
(comparing with Figure 4.5). However, the quantitative data suggests that the visual
improvement of the direct model in Figure 4.7 is mostly due to the particular samples in
the figure, as quantitatively the direct model achieves the lowest SSIM score of all the
proposed methods (Table 4.5).

Again, in this experiment the MAE and RMSE values in Table 4.5 appear to be incon-
sistent with the SSIM scores. While the direct model leaves the most remaining artifacts,
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Figure 4.7: Each column contains a random test sample from Experiment 3 and each row
displaying a different method’s output on those samples.
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it achieves some the lowest MAE and RMSE scores. We believe that, as in Experiment
2, the windowing function used to display images may occlude residual errors which are
significant in the calculation of MAE and RMSE.

Both of the proposed methods exhibit decreased performance from Experiment 2. Most
notably, the SSIM scores decrease from 0.954 to 0.914 for the residual method and 0.929 to
0.897 for the direct method. A decreased ability to perform artifact reduction suggests that
our methods are not as capable of generalizing to new patients as the baseline methods.
The fact that the QiNN method continues to outperform LI in all categories (Table 4.5)
suggests that good generalization across patients is possible using CNN MAR, but that
the proposed model fails to achieve it in its current state.
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Chapter 5

Conclusion

We have developed U-Net architectures which reduce MAE and RMSE more effectively
than linear and CNN-based projection-completion techniques when generalizing to unseen
CT images. However, the proposed methods fail to reduce artifacts as effectively as the
baseline methods. Our approach involves modifying U-Net for MAR which was accom-
plished by removing output normalization, adding padding to convolution, and integrating
LeakyReLU activations into the residual network. Of the proposed methods, the best
generalization across patients is achieved when the objective of the network is to output
corrected sinograms directly. However, eliminating the need for knowledge of metal loca-
tion increased the error of our technique. As such it is recommended to limit the correction
of projection data to the trace of metal in the sinogram.

There are multiple directions in which this research can be expanded. Firstly, a network
trained using a physically realistic artifact model would be more readily transferable to
clinical use. There is no guarantee that our artificial artifact model accurately depicts
real metal artifacts; modifying projection data using physical principles would potentially
result in a network that can generalize to clinical CT images. Additionally, it would be of
great utility to train a network to correct arbitrary metal artifacts. Such a network would
need too be trained on a broad dataset of metal objects, materials, and patient images to
learn MAR in a more general context. Finally, further exploration of architecture design
choices could help to improve performance. Potentially useful modifications include the
incorporation of larger convolution kernels and adjusting the number of U-Net levels or
number of convolutional layers per level.
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