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Abstract

The use of polynomial arithmetic has proven to be quite useful in several areas of
mathematics. In 2002, Shu Tezuka presented a method for building low-discrepancy point
sets by uniting polynomial arithmetic, finite fields and the basis for Hickernell sequences.
The method produces a class of digital (¢, s)-sequences which is a family of constructions
that has been shown to be successful when used for computing numerical integrals of sel-
ected multi-dimensional problems. This success is closely related to the quality of the points
and a known technique for measuring quality is described. This technique is exploited in
conjunction with the leveraging of polynomial properties to search for parameters that
result in high quality point sets for this implementation.
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Chapter 1

Introduction

There are various constructions of deterministic multi-dimensional sequences that belong
to the collection of quasi-Monte Carlo methods. The polynomial arithmetic analogue of
Hickernell sequences (polynomial Hickernell sequences) is one such method and is par-
ticularly attractive because its quality can be readily investigated. We use an existing
technique to investigate parameters resulting in high quality sequences and examine the
performance when applied to problems in finance. The material is presented with the in-
tention to always build on previously introduced content but there are a few areas where
the reader may elect to skip ahead for additional information on a particular topic. The
analysis of polynomial arithmetic provides us with an avenue to effectively assess the qual-
ity of polynomial Hickernell sequences, and in addition to the manner in which this can be
achieved, we show the resulting performance.

The polynomial Hickernell sequence was presented by Shu Tezuka [7] in 2002 and it
constitutes a class of digital (¢, s)-sequences. Hickernell sequences were introduced before
polynomial Hickernell sequences but used integer operations and devising a method for
measuring quality proved to be very challenging. The nature of the analysis of polynomial
arithmetic operations is far simpler than its integer equivalent and this is what propelled
Tezuka to explore this construction. This topic was also considered by Niederreiter inde-
pendently (see [7] and included references). With this more welcome analysis, it is easier to
investigate desirable initialisation parameters for polynomial Hickernell sequences. These
parameters are of interest because quasi-Monte Carlo constructions have been known to
accelerate the process of numerical integration for selected problems in high dimensions.
Our goal is to find good sequences that may have a meaningful impact in this regard.

The method used for evaluating quality, taken from [4], is based on lincar algebra



and incurs a great deal of computational overhead. Consequently, the C programming
language was chosen for this project. It has superior processing capabilities which are
needed to speedily perform extensive polynomial arithmetic and linear algebra operations.
We build a command line interface that gives a user the ability to input the dimension of
the desired sequence and subsequently, provides a list containing the top options emerging
from a hybrid random search. The user will then be allowed to choose from these options
and have the corresponding set of points printed to file. We use this interface to generate
points for real applications and give a comparative overview of the output.

This paper has six sections and is structured in such a way that the material from
the earlier ones is necessary to have a full grasp of the content that comes later. Chapter
2 contains the required background information for understanding polynomial Hickernell
sequences. There are some involved definitions and the reader is not required to internalise
all of these, but they serve as a good reference and will be needed at times. The critical
terms will be clearly identified. The definition and algorithm for polynomial Hickernell
sequences is given in Chapter 3. Searching parameters, the focal point of this paper,
appears in Chapter 4. We give a detailed description of the parameters, the technique
used to examine quality and the method for executing the search. The results are applied
to a mortgage-backed security and an Asian option in Chapter 5, where the comparison
between our implementation and other known constructions is illustrated graphically. Final
remarks are given in Chapter 6 and this includes highlights of areas that are candidates
for further exploration.



Chapter 2

Preliminaries

2.1 Monte Carlo Method

The polynomial Hickernell sequence is a method that falls under the umbrella of Quasi-
Monte Carlo methods. Quasi-Monte Carlo methods are different from Monte Carlo meth-
ods and this difference will be explained in the next section. For now, we will state what
is meant by the Monte Carlo method through referencing [3].

Monte Carlo method: The use of random sampling as a tool to produce
observations on which statistical inference can be performed to extract infor-
mation about a system.

Essentially, Monte Carlo methods seek to use the results of random sampling to help
solve problems within various disciplines such as the physical sciences, finance and others.

A common application of the Monte Carlo method is called Monte Carlo integration.
Since this is one of the key reasons for investigating and implementing the polynomial
Hickernell sequence, we will introduce the term as it appears in [3]:

Monte Carlo Integration: Special use of the Monte Carlo method where we
randomly sample uniformly over some domain V' C R® and use the produced
sample {z1,xs,..., 2y} to construct an estimator for an integral of the form
[, f(z) dz where f is a real-valued function over V.



Example 2.1. If we wanted to compute fol f(x) dx where f(z) = sinz then as an alterna-
tive to the usual analytical method, we can approximate this value using the Monte Carlo
method as follows:

1. Generate N random values x1,x9,...,xy from the standard uniform distribution

(U(0,1))
2. Compute f = % Zf\il f(z:)

The estimated values for Monte Carlo integration improves as the number of samples
increases. A closed form solution for the integral described above is fairly straightforward
but there are instances where this is not so. For these cases, Monte Carlo integration
proves to be quite useful.

2.2 Quasi-Monte Carlo Method and Relevant
Definitions

The quasi-Monte Carlo method is based on low-discrepancy sampling and in [3], an informal
way to think of such a sample is given:

A low-discrepancy sample is one whose points are distributed in a way that
approximates the uniform distribution as closely as possible.

These low-discrepancy samples are used for multi-dimensional numerical integration with
the half-open s-dimensional unit cube I* = [0,1)* for s > 1. We focus on the unit cube
because other domains can usually be appropriately normalised to utilise these points.

In [7], Tezuka recalls the definition of what is known as the star discrepancy and uses
this to formally define a low-discrepancy sequence:

Definition 2.1. For a point set Py = {Xg, X1,...,Xy_1} of N points in ¥ = [0,1)* and
a subinterval J of I, we define E(J, N) = w —V(J) where A(J, N) is the number of n,
0<n<N-—1,with X,, € J and V(J) is the volume of J. Then the (star) discrepancy
of Py is defined by

DR (Py) = sup,|E(J, N)|



where the supremum is taken over all subintervals J of the form [[;_,[0,v;). For an infinite

sequence, X, of points in I*, let Dﬁ) (X)) denote the discrepancy of the point set of its first
N points.

A low-discrepancy sequence is an infinite sequence X such that

DY(X) < Cs—(logNN )

where N > 2 and Cj is an absolute constant depending only on the dimension.

This definition has been included to illustrate that there is a precise way to identify a
low-discrepancy sequence.

A key difference between the quasi-Monte Carlo method and the Monte Carlo method
is that the points for the former need not be independently distributed. In fact, it is often
the case that these points are computed in a deterministic fashion.

The quasi-Monte Carlo method is achieved by replacing the pure random sampling
component of the Monte Carlo method with low-discrepancy samples. This exchange is
particularly useful when applied to Monte Carlo integration. The convergence rate for
low-discrepancy constructions is superior to that of the Monte Carlo method for certain
types of functions and Definition 2.1 can be used to support this.

There is some terminology that will be referenced throughout this paper and as such
we will introduce some key definitions by following [5]:

Definition 2.2. Let b > 2, s > 1, and 0 < ¢t < m be integers. Then a point set consisting of

b™ points of I° forms a (t, m, s)-net in base b if every subinterval J = [[_,[a:b=%, (a; + 1)b~%)
of I* with integers d; > 0 and 0 < a; < b% for 1 < i < s (a so called elementary interval)
and of volume b*~™ contains exactly b’ points of the point set.

Definition 2.3. Let b > 2, s > 1, and t > 0 be integers. Then a sequence g, Y1, ¥, - - -
of points in I* is a (t,s)-sequence in base b if for all £ > 0 and m > t the point set
consisting of y,, with kb™ < n < (k+ 1)0™ forms a (¢, m, s)-net in base b.

Definitions 2.2 and 2.3 refer to three very important parameters:



t: an integer indicator representing the quality of a point set. Small values of
t signify better quality sets. For (t,m,s)-nets, 0 < ¢t < m whereas for (¢, s)-
sequences, t > 0

m: an integer used when describing nets over base b to indicate the size of the
point set. This size corresponds to a set of b™ points

s:  the number of dimensions for the point set

These terms will be used frequently and the reader is encouraged to pay close attention to
their meanings.

In the definition that follows, we present a fairly general description for the construction
of a digital net over an arbitrary finite field ¥, where ¢ is a prime power. In this paper,
our ¢ will be prime and the finite field used will be Z,. However, the definition is given in
terms of an arbitrary finite field for completeness.

Definition 2.4. Let g be a prime-power and let s > 1 and m > 1 be integers. We consider
the following construction principle for point sets P consisting of ¢™ points in I°. We
choose:

1. bijections ¢, : Z, = {0,1,...,¢—1} = F,for 0 <r <m —1
2. bijections n](-i) Fy—Zgfor1<i<sand1<j<m

3. elementscﬁ)E]quorlgigs,1§j§mand0§r§m—1

Forn=0,1,...,¢"™ — 1 let

3
L

a,(n)q" with alla,(n) € Z,

3
I
I
o

T

be the digit expansion of n in base q. We put

ng) = Zygq_j for0<n<g"and1<i<s
j=1

with

ynj—n] (Zc Yr(ar(n)) )EZq for0<n<g" 1<i1<s,and1<j3<m
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Then the point set

2, = (21, 2@ 2y ers forn=0,1,2,...,¢" -1

n ron

is called a digital net constructed over [F,.

Each dimension of the construction defined above is described by a generator matrix.
ie. for 1 <i<s, let C® be the m x m matrix over F, with rows

0= o ) Tri= 12

It is helpful to consider these matrices as a two parameter system
C={eFr:1<i<s 1<j<m}

of vectors in [F 2”.

Definition 2.5. A digital net P provided by matrices C™V, C?), ... C®) is called a digital
(t,m,s)-net over F, if P is a (¢, m, s)-net in base q.

The definition for digital sequences is very similar to that of a digital net and as such,
it will not be included here. The reader may refer to [5] for additional details. The main
difference is that a sequence can have an infinite number of points. Therefore, an infinite
number of bijections 1, and 77 ] ) will be needed and each generator matrix C' ® will be of
order co X o0.

Definition 2.6. A digital sequence provided by matrices CM, C®?), ... C®) is called a
digital (t,s)-sequence over F, if for all integers m > t the s left upper matrices C’m of
C® 1 <i<s, provide a dlgltal (t,m, s)-net in base g.

The definitions given in relation to digital constructions is somewhat complex. We will
now describe a function, which will be followed by an example to illustrate the fundamental

idea of this type of construction in a more concrete manner.

Consider the following method for generating a point, u;:



Point | Expansion ¢3(i—1) || Point | Expansion ¢3(i—1)
Uy 0=0 0 Ug 5=2x3"4+1x3! /o
Us 1=1x3° 1/3 ur | 6=2x3! 2/g
uz | 2=2x3° 2/3 ug | 7T=1x3"+2x3! 5/9
ug | 3=1x3 /o ug | 8=2x3"4+2x3! 8/9
Us 4=1x3"4+1x3! 4/9 U1 9=1x3? /a7

Table 2.1: The first 10 points of the van de Corput sequence in base 3

1. Expand i — 1 over base b where b > 2. That is, we first compute the a(i)’s of the
expansion i — 1 = Y72 a;(i)b" where it is assumed that such an expansion will have
infinitely many zeros

2. Define a function ¢, : N — [0, 1) known as the radical inverse function in base b
as follows: -
oy(i —1) = ay(i)p"" (2.1)
1=0

Compute u; = ¢p(i — 1)

It can be observed that the right hand side of Equation (2.1) contains successive inverse
powers of b where a;(i) < b,V > 0. Hence, u; = ¢p(i — 1) € [0,1),Vi > 1.

The resulting sequence of the radical inverse function in base b is called the van de
Corput sequence in base b.

Example 2.2. By reviewing the sequence in Table 2.1 we see that the first 3 points split
the interval [0, 1) into 3 equal parts. The next point uy fills the space between uy and wus.
us fills the space between us, and uz with other such spaces being filled as the sequence
continues by repeatedly cycling through the interval [0, 1).

Example 2.2 is a special case of Definition 2.4 in a single dimension where F, = Z3 and
the bijections v, and 7)](-1) arc simply the identity mapping for 0 <r <2, and 1 < j < 3.
Also, the generator matrix C(V, is the 3 x 3 identity matrix.

Such a sequence can be extended to higher dimensions by choosing appropriate linear
transformations for the a(i)’s before applying the radical inverse function. This essentially

refers to choosing generator matrices C, C® ... C® that result in good quality point
sets. It turns out that this is exactly the concept presented by Sobol’ [6] in 1967 to define

8



his well known LP,.-sequence which uses base 2. Later on, we will see how the polynomial
Hickernell sequence compares against this and other known methods.

2.3 Formal Laurent Series

The formal Laurent series is used extensively for the implementation of polynomial Hickernell
sequences and we give the definition here as it is presented in [3]:

The field of formal Laurent series over ;2] is defined as the set Fy((271))
of elements L of the form

I =

oo
apz "
=w

r

where the coefficients a, are in [F,.

Rational functions of the form 9(2)/p(z) can be represented by a formal Laurent series. For
now, we will assume that p(z) is monic. We will see later why this assumption can be
made.

We are interested in computing the a; coefficients for the following expansion:

9(2) _

= = az

p(2) ;U

Let g(2) = 2™ + by 12™ 1 4+ ...+ b1z + by and p(2) = 2" + ¢, 12"+ ..+ 12 + .

= b2 b1 2™ bz by = Y F Q1 2T Qg2
awcn—lzn_w_l + aw+1cn_1zn—w—2 4+ ..+
..t

AwC1 2t + Qpy1C127Y + Qa1 27T+
AwCo2 ™" + Qupr1C02 U+ Quyocoz VT2 4L

= b2 by 12 bz by = aytY
+(aw+1 + awcn—l)z
+(aw+2 + Ayy+1Cn—1 + awcn—Q)Z
+...

n—w—1

n—w—2

1—w
+(aw+n—1 + Qyy4+n—2Cn—1 +.. .+ Qy+1C2 + CLwcl)z ‘

+(aw+n =+ Qyy4+n—1Cn—1 + ...+ Aw+1C1 + awCO)Z_

H(Awgni1 + QugnCn1 + -+ Qui2C + Quwy10)2

+ ...

9

w

—w—
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We let n — w be equal to m and by equating coefficients of powers of z, we have that

Gy = by,
i1
Qi = bm—i — Y, QuyjCnirj fori=1,....n—1
Jj=0
n—1
i = by — Quti-ntjC; fori=mn,....m
J=0
n—1
Qi = — 9 Quti—ntiC; fori=m4+1,...
Jj=0

These coefficients will be important since the algorithm for the polynomial Hickernell se-
quence makes use of the fact that rational functions can be expressed as a formal Laurent
series. The reader may also notice that the structure of the Laurent series is similar to the
expansion of :cff) in Definition 2.4.

2.4 Fundamental Algorithms

There are a few key basic algorithms that are incorporated into searching parameters for
the polynomial Hickernell sequence. Three of the important ones are combinations, testing
reducibility and a variant of Gaussian elimination.

2.4.1 Combinations

The combinations described are of the form (’Z) These enumerations are needed to evaluate
low-dimensional projections and to appropriately partition sub-systems of the generator
matrices for quality testing. Both of which, will be explained later. The method is given
in Algorithm 2.1.

2.4.2 Testing Reducibility

One of the parameters to be described is the g parameter. This corresponds to a polynomial
that will be used along with a deliberately chosen irreducible polynomial to generate s other
polynomials. There is an advantage to be gained by using an irreducible polynomial and

10



Algorithm 2.1 COMBINATIONS(n, 1)

1: A[l..?”] <~ 0’s
2 k<1
3: while £ > 1 do

4:  while A[k] <n do

5: Alk] « Alk] +1

6: if k = r then

7 A contains combination!
8: else

9: k+—k+1

10: Alk] « Ak — 1]

11: end if

12:  end while
13: k+k—1
14: end while

because of this, we refer the reader to [8] by Gathen and Gerhard for algorithms on testing
reducibility.

2.4.3 Gaussian Elimination Variant

Gaussian elimination is a well known algorithm and it is used heavily here. However, for
our purposes we have made a slight modification to improve efficiency. Usually, the pivot
element is selected in a specific order but we have chosen to ignore this. Our main goal is
simply to determine whether or not an m x n system is linearly dependent, where m < n.
Consequently, we traverse from row 1 to row m using the first non-zero element in each
row as the pivot. If no such position exists then the system is dependent. The steps are
presented in Algorithm 2.2.

2.5 Polynomial Analogue of the Radical Inverse
Function

Recall that on page 8 we introduced the radical inverse function in base b. The polynomial
analogue is very similar to this. Let F,[z] x (F;[2] —{0}) refer to the set of rational functions
in z over Fj[z].

11



Algorithm 2.2 ISDEPENDENT(A)

1: m <~ ROWDIMENSION(A)

2: n <~ COLUMNDIMENSION(A)

3: fori=1tomdo

4:  pos < FIRSTNONZERO(A[i|[1..n])

5. if Apos then

6: return true

7. end if

8: forj=1i+1tomdo

9:  mp = Alj][pos] x (Ali][pos])~"

10: Alj][1..n] « A[j][1..n] — (mp x A[i][1..n])

11:  end for
12: end for
13: return false

Example 2.3. The rational functions z21+1, ZQZ“, =177 all belong to Fy[z] x (Fy[2] — {0})

Consider the following;:

1. Expand g(z) over base p(z) where degree(p(z)) > 0. That is, compute r’s of the
expansion g(z) = > 7o 11(g(2))p(z)" where it is assumed that such an expansion will
have infinitely many zeros.

2. Define a function ¢y, : Fy2] — Fy[z] x (Fy[2] — {0}) known as the polynomial
analogue of the radical inverse function in base p(z) as follows:

This polynomial version of the radical inverse function is introduced since it is used in the
implementation of the polynomial Hickernell sequence.

2.6 Hickernell Sequences

Once again, we will use the radical inverse function presented on page 8. This time we will
use it to define the Hickernell sequence as it is found in [7]:

12



Point | d5(i— 1) | 2% ¢5(1—1) | 3 x d3(i—1) | 5 X ¢a(i — 1)
Uy 0 0 0 0
U /3 2/3 1 22/3
us 2/3 113 2 31/3
Uy /9 2/9 1/3 5/9
us 4/9 8/9 11/3 22/9

Table 2.2: Computing the first 5 points of Hickernell sequence in base 3

Definition 2.7. The Hickernell sequence is defined as

{g106(n)}, {g206(n)}, . ... {gstu(n)}) forn=0,1,2,...

where the integers g1, go, . . .
the real a.

, gs are suitably chosen and {a} denotes the fractional part of

Example 2.4. Using the first 5 points from Example 2.2 and the integers ¢ = 2,9, =
3,93 = 5 we can obtain the first 5 points of the associated Hickernell sequence by doing
the computations shown in Table 2.2. The resulting point set is

{(0,0,0), (%/3,0,%/3), (/3,0,1/3), (%0, 1/3,5/0), (3/0,1/3,%/0) }

Finding suitable ¢’s that result in a sequence that satisfies the definition of low-
discrepancy sequences is no trivial undertaking. However, some authors have shown that
for some values of b, there exists g’s that result in Hickernell sequences that fulfill these
requirements (see [7] and references therein).

The analysis of polynomial arithmetic over finite fields is simpler than its integer arith-
metic counterpart and this has fueled the drive to explore the polynomial Hickernell se-
quence. As a result, there will be less complicated avenues for evaluating the quality of
point sets and good initialisation parameters can be found in a more speedy fashion.

13



Chapter 3

The Polynomial Arithmetic Analogue
of Hickernell Sequences

3.1 Polynomial Version of Hickernell Sequences

In the same way that the radical inverse function was used for the definition of Hickernell
sequences, we will use the polynomial analogue of the radical inverse function to define the
polynomial version of Hickernell sequences. In the Hickernell sequence, when we generated
a point u; we found a’s such that i —1 = >"° a,(i)b’. However, for the polynomial version,

we proceed to create a polynomial v;_(z) using the coefficients ag, aj, as, . .. such that
(o, ¢]
vi—1(2) = Zal(i)zl
1=0

The following comes from [7]:

Definition 3.1. The polynomial version of Hickernell sequences is defined as

({91(2)ne) (i)} {92(2) By (vi(2))} - {9(2) oy (vi(2))}), fori=0,1,2,..

where ¢1(2),92(2), ..., gs(z) are suitably chosen polynomials over F, and {«(z)} denotes
the fractional part of the formal Laurent series a(z).

The definition given above is not sufficient to obtain the required points. It gives rise
to points that are s-tuples of rational functions with indeterminate z. We need points

14



)

)

Point | base b Polynomial | base p(z) rational function s-tuples
U1 0 0 0 (07 07 0)
uy | 1x2° 1 x (z+1)° (% prug ﬁ)
us | 1x2! 2 Ix(z4+1)°+1x(z2+1) ((2:1)27 (zj—21)2’ (zﬁ)z
Uy I1x204+1x2 | 1+2 I1x(z+1) ((Z—‘:l)27 (zf1)27 (Z_T_Ql)z
us | 1x22 2° Ix (z4+1)°+1x (241) ((zi)w T

)

Table 3.1: Computing the first 5 points of the polynomial Hickernell sequence

€ [0,1)* so we will introduce a function v : F,((27!)) — R as follows:

y (i arz’"> = i a.b~"

By applying this function element-wise we will obtain the vector of real numbers. Of course,
we will have to convert the rational function into its formal Laurent series equivalent before
we can apply the mapping.

Example 3.1. Let us consider the first 5 points of the polynomial Hickernell sequence
using the parameters b = 2,91 = 1,¢9o = 2,93 = 2% and p(z) = z + 1. The breakdown is
given in Table 3.1. By applying the v function to the fractional part of the formal Laurent
series equivalent of the 3-tuple elements, we will obtain the desired points from [0, 1)3.

3.2 Algorithm

The algorithm originally comes from [7] but the method given in Algorithm 3.1 more
closely resembles that which was given in [3] by Lemieux, since the latter was written more
explicitly.

The first three lines of Algorithm 3.1 are straightforward. Lines 4-7 incorporate the use
of a couple functions defined earlier and seems to be more involved but the implementation
is not overly tricky.

The method given only describes how to compute a single point. Usually, N points are
required, so this will be repeated for i =1,2,..., N.

)
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Algorithm 3.1 POLYHICKERNELLPOINT(b, p(2), g(2)’s, 7)

Input: b - a base which is usually a prime power
p(z) - a monic polynomial of degree n
(91(2),...,95(%)) - an s-tuple of polynomials
¢ - a natural number

Output: wu; - the point € [0,1)* corresponding to i

write i — 1 =ao(¢) + a1(i)b+ ...+ ap(0)0™

construct v;(z) = ag(i) + a1(i)z + ... + ap ()"

write v;(2) = ro(vi(2)) + r1(vi(2))p(2) + ... + ru(vi(2))p(2)" {where h = |m =+ n]}
use ro(vi(2)), r1(vi(2)), ..., mh(vi(2)) to compute ¢p.)(vi(2)) as a rational function
for j =1to s do

. 95 (8) XNUMERATOR (¢, ) (vi (2)))
Ui [j] =7 ]Dk}NON’IINA’l‘OR(¢p(Z)(’Ui(z)))

end for
return u;
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4, ot N s atstey * T v N ¢ +3 IR UNES SRE 0 L AR LY L0 £ AL S
3 % A Y, ¥ + .+ tt W y bt " LIC S R R SR L DR
LR S R 4y 4 3 s Tt Pe et et L4 4 0.9 L% o Tas St My o e LA
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(a) 2048 (2!!) random points € [0,1)?2 (b) Polynomial Hickernell digital (0,11, 2)-net

Figure 3.1: 2-dimensional plots of 2048 points € [0,1)?

Example 3.2. In Figure 3.1, the parameters used for the polynomial Hickernell sequence
are as follows:
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p(z)=z2-1

g(z) =1 )

Go(2) = 21T 4 215 4 21 4 218 4 p10 4 59 4 2041
i=1,2,...,2048

By observing the plots it can be seen that the distribution of the points for the poly-
nomial Hickernell sequence is more uniform and well-behaved. The random sampling plot
has wider gaps are more erratic clustering. This example gives an informal graphical rep-
resentation of the contrast between the Monte Carlo method and the quasi-Monte Carlo
method.
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Chapter 4

Searching Parameters

4.1 Parameter Overview

The algorithm for implementing the polynomial Hickernell sequence given in Chapter 3
is presented in a very general way. However, the method we elected to use here is in
accordance with Proposition 2 from [7] where b is prime and p(z) = z — j for 0 < j < b.

We have chosen to use cither 2 or 3 for b. We use the two smallest primes since these
necessitate generator matrices with more columns' and this results in better distinction
for parameters of high quality.

The upper-triangular Pascal matrix, P, is an infinite matrix having the binomial
coefficients as its entries in the upper triangle.

Example 4.1. The truncated 4 x 4 upper-triangular Pascal matrix is written as:

1 111
0123
0013
0001

P can be used to change the base of a polynomial from z to p(z). The transformation
matrix corresponds to P’/ where p(z) = z — j. Since the primes used are very small,
we have chosen to fix p(z) = z — 1 and use the transformation matrix P. Thus, given

!The expansion of 4 — 1 has more terms for a small base b
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f=fot fiz+ ...+ fmz™ we can write f = fo+ fip(2) + ...+ fiup(2)™ by simply applying
the transformation P A

f=rf
where f = (fo, fioeeo, fm)T, f=(fo, f1, .-, fm)T and P is the truncated (m +1) x (m+1)

upper-triangular Pascal matrix.

Example 4.2. Consider expressing the polynomial f(z) = 14+2z+23 in terms of p(z) = z—1
over base 2. Since f(z) is of degree 3, we will need a 4 x 4 Pascal matrix and will apply
this transformation to f for the result.

1 111 1 1
{01 01 11 10 B 2 3
Pxf= 001 11 X1lol=11 = f=14+(:z—-1)0+(z—-1)

0001 1 1

The reader may verify that f written in base p(z) is equivalent to the original in base z.

Soon, we will see how linear algebra can be used to evaluate quality and where the
selection of the g’s affects this process. In [4], we see that the linear recurring sequence
g = (1,g mod r,¢g*> mod r,...,¢° " mod r) is used to select the g polynomials, for some
irreducible polynomial r. The success of their method has inspired our technique. The
equivalent of their 7 in our construction would be p. However, since p is restricted to having
degree 1, this is a very poor choice for us. Instead, we use a polynomial r with degree
corresponding to the size of the biggest point set for which the quality will be computed.
Call this large value HP. We choose r to be the first irreducible polynomial of degree ms,
where my = [log,(HP)]. The ordering is performed lexicographically, starting with the
term of degree ms.

Example 4.3. Samples showing polynomial ordering in base 2:

14+ 224 2° comes before 1+ 22+ 2°
14+ 23425 comes before 1+ z 4 22 4 23 4 2°
14+ 2+ 2242+ 2% comes before 14+ 22423+ 24+2°

If b =2 and my = 5 then we would choose 1 + 22 + 2° as our r.

Given a polynomial g, we choose g = (g1,92,--.,9s) to be the first s terms of the
sequence (g* mod r), ¢ > 0, where (¢* mod r) has a constant term when expressed in terms
of p(z). If such a collection cannot be found quickly then an alternative g is selected. The
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irreducible r is an essential tool used to assist us with selecting ¢g’s and it has proven to be
very effective.

Sometimes a polynomial parameter will be referred to as an integer. In this context,
we are referencing the corresponding polynomial when the integer is written in base b.

Example 4.4. Using base 2, for g = 37, we have that g = 1 +224+ 2% = ¢ =1+2%2+25.

In the search for good parameters, many values of g will be examined. Once the base
has been selected, this will be the only varying parameter during the search.

4.2 Generator Matrices

In Section 2.2, we introduced the concept of generator matrices and mentioned that each
dimension of a digital net construction could be characterised be a generator matrix.

Since the polynomial Hickernell sequence is a class of digital (¢, s)-sequences, this prin-
ciple also applies here. The generator matrices C, C® ... C®) account for the linear
transformation of the vector equivalent of the ith point in base b, to the coefficients used
for the fractional part of the formal Laurent series in each respective dimension. The
description of these matrices comes from [7]:

Let gx(2) = g((]k) + L@Yc)p(z) + gék”)p(z)2 +... fork=1,2,...,s. Then

(k) A(k) Ak
(k) ()g()

ol By %
é(k) _ O QO gl
0 0 ¥

The representation of the generator matrices for Tezuka’s Proposition 2 is written as
C® = pPTGPP fork=1,2,....s

where P is the upper-triangular Pascal matrix.

In Section 4.1, we explained that for a ¢* in the recurring sequence to be chosen, then
the g expressed in base p(z), had to have a non-zero constant term. The reason for this
is to ensure that the matrices C*®) for k = 1,2, ..., s are all non-singular?. This results in
each dimension being better distributed. That is, having a corresponding t-value of 0.

2The product of 3 square triangular matrices with non-zero elements on each of the diagonals is invertible
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For the purposes of evaluating quality, we are forced to restrict the size of the generator
matrices. Since the maximum number of points considered is H P, it is appropriate to use
square matrices of size mo, where my is as previously defined. Hence, C®) is an moy x mo
matrix for k =1,2,...,s.

4.3 Projections

Our introduction of projections is based on [5]. We consider an s-dimensional digital net.
Let V be a subset of {1,2, ..., s} having cardinality u. Then a u-dimensional projection
refers to the u-dimensional digital net containing the corresponding values for the columns
specified by V. Consequently, if CW C® ... C® are the matrices that provide the
s-dimensional digital net then the respective V' matrices will provide the u-dimensional
digital net.

Example 4.5. If we use the points from Example 2.4, then the 2-dimensional projection
corresponding to V' = {2, 3} would be the following point set:

{(0,0).(0,%/3), (0. Y/3), (V/3,5/5), (V/3,%/5) }

Similarly, the 1-dimensional projection corresponding to V' = {1} is:
{0,2/3,1/,%/9,8/0}

Projections are important because there are some practitioners using digital construc-
tions who require that the lower dimensional projections be as well distributed as possible
(see [5] and references therein). They are also important because it has been shown that
some multi-dimensional numerical integrals can be closely approximated by point sects
having good quality low-dimensional projections. In this regard, we have chosen to com-
pute quality only for 2, 3 and 4-dimensional projections. There is no need to consider
1-dimensional projections since the generator matrices are non-singular. By only consid-
ering these low-dimensional projections we significantly reduce the computational burden
of evaluating quality. This will be better understood when the quality algorithm is given
in the next section.
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4.4 Quality Evaluation

4.4.1 Method

The t parameter of digital (¢, m, s)-nets and (¢, s)-sequences is used to indicate the quality
of the respective constructions, where lower values correspond to better quality. In Section
2.2, we saw that the definition of digital (¢, s)-sequences is dependent on that of (¢,m, s)-
nets. This allows us to focus on (¢, m, s)-nets for the purposes of examining quality. We
give a definition and a lemma from [4], that highlight how linear algebra can be used for
quality testing:

Definition 4.1. Let d be an integer with 0 < d < m. The system {cgi) € IF‘;” 1<
J < m,1 < i < s} of vectors is called a (d,m,s)-system over F, if for non-negative
integers dy,ds, ..., ds with Y, d; = d the vectors cg-i), 1<y <d;, 1 <i<s, are linearly
independent over I,.

Lemma 4.1. The m x m matrices CV,C® ... C® provide a digital (m-d,m,s)-net con-
structed over F, if and only if the system {ng) 1 <j<m,1<i<s} of their row vectors
is a (d,m, s)-system over IF,,.

Lemma 4.1 provides us with an algorithm for computing . That is, use the generator
matrices to determine the largest value d, where 1 < d < m, such that the digital net
forms a (d, m, s)-system. Once this is found, we have that t = m — d.

4.4.2 Quality Vectors

The method outlined for computing quality is to be applied to digital nets. However,
having a good quality digital net is not sufficient for our goals, since a sequential subset
starting at the first point, may have very low quality. Having a sequence of points that
maintain high quality from start to finish is what we seck.

We will use HP from Section 4.1 as the finish point and introduce a new term, LP, as
the start point, where LP is a small integer indicating a minimal number of points. Let
my = [log, LP|. We compute ¢ for each of m = my,m; + 1,...,my and call the resulting
vector of ¢ values a quality vector, written ty, where g corresponds to the g’s used and
u indicates the magnitude of the low-dimensional projections considered. The average of
these t values, denoted t, is used to assess the uniformity of the digital construction and
naturally, lower averages are preferred.
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Example 4.6. Suppose b = 2, LP = 100, HP = 1000. Then m; = 7 and my = 10.
Therefore, ¢ will be computed for each of m = 7,8,9,10 and the average of these 4 will be
used for quality assessment.

4.4.3 Algorithm

The core of the method given in Algorithm 4.1 is based on Lemma 4.1 and comes from
[4] but we have made two additions. Computing quality as a vector and the inclusion of
low-dimensional projections. The former is done by adding an outer loop from m; to ms
but the latter is not as straightforward. To account for projections, we have to consider
partitions of d into s parts where exactly u parts are non-zero. We accomplish this by first
considering combinations of s into u parts and then partitions of d into the same u parts.
These separate selections are incorporated to produce the desired partition of d into s parts.

4.4.4 Complexity

Standard school algorithms have been used to conduct polynomial arithmetic for this
implementation and as such, the associated cost of computing will reflect this.

The cost of modular arithmetic over Z; has been left out for simplicity purposes. We
will be considering the worse-case scenario for Algorithm 4.1.

Line 1: O(sm3) Since we do polynomial multiplication
and division with remainder

Line 2: O(sm3) Since we perform matrix multiplication

Lines 4-17: O((m2 —mq) mj (3) (dtzzl)> Since there are four loops and at the
innermost level there is a linear depen-
dence evaluation

By taking all the steps into consideration, we have that the total cost of Algorithm 4.1 is

, s\ (d+u—1
O(sm%-I—sm‘;-i-(mg—ml)m‘z1 (u) ( w1 ))

This upper bound is somewhat harsh since there will be many instances when the row
vector subset is dependent. For these cases, the next iteration will start at the first loop.
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Algorithm 4.1 FINDQUALITY(S, b, u, g, my, ms, 1)

Input: s - the number of dimensions for the point set
b - the prime base (either 2 or 3)
u - the magnitude of the low-dimensional projections (either 2, 3 or 4)
g - the integer representation of the g polynomial used
my - [log,LP]
ms - [log,H P
r - the first irreducible polynomial of degree mso

Output:  t; - the quality vector corresponding to the polynomial g and having its
u-dimensional projections evaluated

1: g < sequence of s vectors generated by ¢ and r

2: C < s generator matrices of size my X mo based on g
3: ty[l.mg —my +1] < 0s

4: for i = m; to my do

5. for d=wutoido

6: for all combinations of s into w parts do

T for all partitions of d into u parts do

8: use both selections to construct partition of d into s parts

9: use the first d; rows of matrix C® for i = 1,2,...,s to compose a subset of
{v1,v9,...,v4} vectors

10: if subset is linearly dependent then

11: tuli —my + 1]« (1 —d+1)

12: continue from loop over

13: end if

14: end for

15: end for

16: end for

17: end for

18: return tg

4.5 Searching Scheme

Searching for good quality initialisation parameters basically boils down to finding a g
that has a low ¢ value. Since the elements of g are each computed modulo r, this con-
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strains the degree of g to being < my. However, it is not practical to explore all such ¢’s
for a reasonable choice of HP in higher dimensions. Initially, we used a uniform random
search of g values within the possibility space?, executed a specific number of times, called
TRIALS. This gave fair results but we also examined searching ¢ values sequentially,
from some starting point TTRIALS times and this consistently gave better results. Con-
sequently, it was determined that an appropriate way to search for good ¢’s is to create
different regions, denoted REGIONS, in the possibility space by randomly selecting a g
value and then performing a sequential search TRIALS times for each of these regions.
The top results based on ¢ are returned and displayed with their associated quality vectors.
The user may choose any of these to initialise a sequence of points. Algorithm 4.2 has the
method.

Algorithm 4.2 SEARCHGS(s, b, u, my, mg, 1)

Input: the input parameters are the same as that of the FINDQUALITY algo-
rithm except that g is excluded

Output: R - a structure used to store the top DISPLAY results sorted by ¢ with
the associated g and tg also being recorded

bound < b™?
R[1.DISPLAY] «+ empty
for i =1to REGIONS do
pivot <— RANDOM(1, bound)
for j =0to TRIALS — 1 do
g < pivot + j
t, < FINDQUALITY(s, b, u, g, my, ma, 1)
t < AVERAGE(t})
INSERTRESULTS(R, g, t}, 1)
end for
: end for
: return R

= o=

39 integers corresponding to polynomials having degree < ms
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4.6 Producing Points

A command line interface is used to enable the user to perform the search and to select a
g to generate the required number of points. Currently, the parameters HP,LP, TRIALS,
REGIONS and DISPLAY are hard-coded into the application. When the program is
started, the user is first prompted for three parameters: the base, the dimension and the
magnitude of the low-dimensional projections. At this stage, a message is printed indicating
that the search has begun and as the search goes on, an update is written to screen at
appropriate intervals describing the progression. After the search is completed, the top
DISPLAY results will be shown and the user will be prompted to select an option. This
will be followed by the number of points needed. The points will then be printed to a
named text file with each point being separated by a new line character and within the
point, each dimension is separated by white space. Screenshots of the interface and the
points file are given in Figures 4.1 and 4.2 respectively.
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Ao Terminal — bash — 179x48

Nicholas-Mc-Neillys—-MacBook-Pro:project namcneil$ ./search_paahs
Polynomial Arithmetic Analogue of Hickernell Seguences

Select base (2 or 3): 2
Enter dimension (> 1): 4
Projection options:
{2) 2-dimensional
(3) 3-dimensional
{4) d-dimensional
Enter choice: 2

300 sequential trials for each of 2 random regions will now be used to determine a good guality g.
The top 18 results will be printed to screen shortly.

Irreducible of degree 1B - ir: 262153

Starting trial #: 1 for region: 1
Starting trial #: 151 for region: 1
Starting trial #: 1 for region: 2
Starting trial #: 151 for region: 2

Results:
t average g t vector

(a) 3.4444 123241 2343345473
1) 3.4444 123274 3234543314
(2) 3.5556 123228 4 323454314
(3) 3.5556 123242 233434445
(4) 3.5556 63457 334434443
{5) 3.5556 63652 3434443314
(6] 3.5556 63651 323445443
(7) 3.6667 123897 234333456
LB 3.BBET 63417 3234345514
(9) 3.6B67 63427 333334455
Vector quality corresponds to # of points: [2718, 2711, ..., 271B]

Enter choice: @
Enter number of points: 18

Finished! Please review "paahickernell.txt" for output.

time elapsed: 36.88
Nicholas-Mc-Neillys—MacBook-Pro:project nameneils |

Figure 4.1: Screenshot of the command line interface

e N o] || paahickernell.txt
8.585235259856A913 0.7A580231A36T3A96 B.5235293626785275 A, 4117646513392639
B.411764651 33026530 B.29411T6205250457 B.1764TARTTILEE2T4 0. ES52352500560915
8.4705362072443738 0.7647T055367729187 B.A535235259056091 A.529411 7331504522
B.5204117331E04522 B.2352041A36224365 09411 TE4144807461 B 4TERSEZO72445730
8.8235293626785275 0.5802352500560913 B.3529411554336548 A, 1764705777168274
B.17647EETTTLER274 0,411 TEES1TI02639 BE4TARITE40617004 B .E2ZIE293626785275
8.78585231859673096 0.6470557399617004 B_5532352590560913 . 29411 76295288457
8.294117629E280957 ©.3529411554336598 0.4117646513302639 0, TO53823103673096
8.1176470515112153 8.9411764144597461 B.TE47053367729157 A.5523520585841370
8.5523528355541378 0.0535235259056091 B.2362041036224365 B, 1176478E15112153
8.6274509429931641 0.0196073419635364 B.9215655725212097 A.B392156539378725
8.3725489974021912 0.9803920934265188 0.0784313678741455 B, 9607842564552525
8.0392156339370725 0.3137254714965820 B.7T46A979948043523 A.62745A9429931641

Figure 4.2: Screenshot of the points file with s = 4
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Chapter 5

Applications

In this chapter, we give graphical comparisons using plots showing the absolute error of
numerical integration for two types of financial problems. The comparisons are illustrated
using the Sobol’ sequence [6], the generalised Halton sequence (2], Monte Carlo points
and the polynomial Hickernell sequence. The first two sequences are well known quasi-
Monte Carlo constructions and were chosen as a gauge for evaluating our results. For each
problem, the parameters used to initialise the polynomial Hickernell sequence will be given.

5.1 Mortgage-Backed Security

A mortgage-backed security (MBS) is a type of fixed income security where the cash flows
are reliant on an underlying pool of mortgages. The pricing of this type of security is in-
vestigated in [1] by Caflisch, Morokoff and Owen for special initialisation conditions. They
consider mortgages of length 30 years and this gives rise to a problem having 360 dimen-
sions since there are 12 months in a year. We use two of their initialisation sets along with
the corresponding solutions. These sets will be referred to as linear and non-linear. For
our purposes, we can think of the linear set as being a basic case and the non-linear set as
being a complex case. More information is available in [1]. The following parameters were
used to search and initialise the polynomial Hickernell sequence:

HP LP | u r REGIONS | TRIALS | b | p(z) g s
200000 | 1000 | 2 | 262153 5) 1000 2| z—11157474 | 360
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In Figure 5.1a, the linear case, we see that the polynomial Hickernell sequence performs
really well. It appears to be far more accurate than the others, with Sobol’ being the closest.
The Monte Carlo has the worst results.

For the non-linear case shown in Figure 5.1b, we see somewhat of a reverse from what
appears in Figure 5.1a. Surprisingly, Monte Carlo seems to give the best results. This is
followed by the generalised Halton sequence and the polynomial Hickernell sequence.

In both cases, we sce that the polynomial Hickernell sequence is able to compete well
with the other constructions and this is very encouraging news.

5.2 Asian Option

In the context of financial instruments, a call option is a contract which gives the holder
the right, but not the obligation to buy an asset for an agreed price at a certain time 7T,
called the strike price, if the asset value rises above the strike. A put option is similarly
defined but for the case where the holder can sell the asset if the value falls below the
strike. Asian options are based on this concept but with a more complex definition of the
payoff at time 7. These options can be priced by simulating a series of price paths and
require the following values:

S - the initial asset price

K - the strike price

r - the risk free rate

T - the expiration time (usually in years)
o - the asset volatility

N - the number of time steps

We consider pricing such a contract using S = 50, r = 0.05, T'= 1.0, 0 = 0.3 and N = 40
for K = 45,50,55. In this case, using N = 40 corresponds to a problem having 40 dimen-
sions. The following parameters were used for searching and initialising the polynomial
Hickernell sequence:

HP LP | u r REGIONS | TRIALS | b | p(2) g s
200000 | 1000 262153 5 1000 2| z—1|42333 | 40

w

In Figure 5.2, where the strike price is below the asset price we see that there is
close competition between the polynomial Hickernell sequence and the generalised Halton
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Figure 5.4: Absolute error for Asian Option (K = 55)

sequence. Sobol” progresses steadily to the result but it isn’t as good as the first two
mentioned. Monte Carlo ends on a good note but it is clearly not in the same class as the
others.

When the strike price is equal to the initial asset price, shown in Figure 5.3, we see
that the generalised Halton sequence edges out the polynomial Hickernell sequence for the
top spot with Sobol’ following closely for the third position. Once again, Monte Carlo is
poor.

In Figure 5.4, the strike price exceeds the initial value and the rivalry between the
generalised Halton sequence and the polynomial Hickernell sequence continues. It is not
clear as to which one is superior but they are followed by Sobol’” and then by Monte Carlo.

The constructions for Sobol” and the generalised Halton sequence are well tested and for
the polynomial Hickernell sequence to compete with these so effectively is quite remarkable.
In contrast to the MBS problem where 2-dimensional projections were used, we decided to
use 3-dimensional projections here. Through experimentation we came to the realisation
that considering 3-dimensional projections is more suitable for the Asian option case.
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Chapter 6

Conclusion

The Polynomial Hickernell sequence is a quasi-Monte Carlo construction that has been
given very little attention. After having the opportunity to experience the computational
burden it imposes, this is hardly surprising. Nevertheless, the performance has been very
good and hopefully other researchers will want to get involved in this area. The implemen-
tation process was riddled with many challenges and as rewarding as it is to have successful
results, there are further aspects that need to be examined before polynomial Hickernell
sequences can be applied in practice.

Using the C programming language to implement this method came with a few addi-
tional responsibilities. The programmer is required to manage memory, so extreme caution
had to be exercised when creating and discarding data structures. This took some atten-
tion away from the problem at hand but was a necessary sacrifice to get results in a timely
fashion. In addition, we elected to write libraries for polynomial and matrix operations.
As a result, tailor-made functions could be written for operations between matrices and
polynomials, and we could eliminate unnecessary system calls for memory allocation.

In the beginning, we could not sensibly manage expectations since very little work had
been done on this topic. By incorporating ideas from other researchers in related areas
we were able to put together a plan for initialising the sequence. The original idea for
selecting the g polynomials was to simply use the first s values of the linear recurring
sequence. Some of these ¢’s did not have a constant term when expressed in terms of
p(2) and this led to singular generator matrices. The associated results were poor and in
revising this approach we came up with what is given in Section 4.1. There was a massive
improvement in the results and it could rub shoulders with some of the giants in relation
to quasi-Monte Carlo constructions. This is very exciting news and augurs well for the

33



future of polynomial Hickernell sequences.

There are a few immediate concerns with the method we have presented. Our imple-
mentation was only tested for two classes of problems and more cases will be needed to
build confidence in this approach. We are not certain about when to choose different low-
dimensional projections. A critical challenge is that as the magnitude of the projections
increases, so does the computational burden. Also, we choose g based on a hybrid random
search. This means that there exists the possibility that our ¢ is not the best available.
Hopefully, these concerns are of sufficient interest to get others involved in developing this
concept further.
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