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Abstract

The EZ Climate model of Daniel et al. (2018) estimates the Social Cost of Carbon (SCC)
- the societal cost of emitting one additional tonne of CO, assuming optimal emission re-
ductions using asset pricing theory. Determination of the SCC is of great interest as this
number underlies many government climate policies. By applying automatic differentiation
and Quasi-Newton optimization to the EZ model, we significantly improve its computational
performance. This improvement allows for increased scalability, parameter sensitivity anal-
ysis, robust optimization, and evaluations of suboptimal policies. We find that postponing
climate change mitigation until 2030 is equivalent to a loss of $5.4 trillion (in 2015 USD).
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1 Introduction

It is well known that emissions of carbon dioxide and other greenhouse gases (GHGs) into
the atmosphere are detrimental to the environment. High concentrations of GHGs in the
atmosphere cause climate change which in turn is a cause of heat waves, flooding, wildfires,
loss of coastal land, reduced crop yields, health problems in human populations, and extreme
weather events. The effect that climate change will have on the global economy and the
quality of life around the world should not be understated. The Fourth National Climate
Assessment predicts the U.S. economy will shrink by up to 10% in 100 years if emissions
continue on their current trajectory (Wuebbles et al. (2017)). This is a loss of billions for the
U.S alone. Producers of carbon emissions do not pay for this future cost to society and thus
there is no market mechanisms to limit emissions in a way that accounts for these future
damages. This makes GHG emissions a negative production externality. The preferred
solution to this problem by many economists is to assign a price to such activities equal
to the monetary value of the damages they cause. In the case of GHG emssions, such a
price is called the social cost of carbon (SCC), the monetary value of damages caused by
each additional ton of COg-equivalent emissions (this price would be used in practice as a
taxation rate or used to design a cap-and-trade program).

Calculating the SCC is of great interest. A review (Wang et al. (2018)) found that estimates
for the SCC in peer-reviewed literature range from —13.36 to 2386.91$ per ton of COs,
with a mean value of 54.703/tCO,. Estimates of the SCC are already used by government
bodies around the globe to decide climate policy. As with any tractable modelling of a large,
complex systems, models of the interactions of economics and climate must make many
simplifying assumptions. It is important that such models are robust to these assumptions
as conclusions drawn from these models have a real world impact. The scale of these models
is often very large (due to the time scale at which climate change occurs), however, and they
often have many modelling variables and parameters due to the size and complexity of the
real systems they represent. This computational complexity makes full robustness checks
nearly infeasible.

In this report, we use the EZ Climate model from Daniel et al. (2018) to compute the SCC.
This is a policy optimization model which uses social welfare (i.e. utiltiy) as the optimization
objective. In this model, the SCC is computed using the optimal GHG emissions policy as
opposed to the current emissions pathway. It is assumed that global consumption is both



reduced by damages from climate change, and by climate policies (i.e. a carbon tax may
decrease the production of certain goods and lower consumption). While a strong policy will
lower consumption, it will also lower climate change damages. A policy/strategy is defined
as the set of carbon prices chosen by a representative agent. To model the uncertainty of the
future effects climate change will have on the economy, a binomial tree is used. The nodes of
the tree are states of the world at different times and in states of nature - these are different
scenarios of the impact of climate change. The agent makes a decision at each node. The
optimal choice of policy is the one that maximizes the expected lifetime utility of global
consumption, modelled using the Epstein-Zin utility function (Epstein and Zin (1989)).

We apply automatic differentiation and gradient-based optimization methods to the EZ
Climate model and show that this significantly reduce its computational time. This allows
us to increase the size of the tree by adding more decision periods. Additionally, we can
check the robustness of the model to assumptions about the cost of emissions mitigation,
the effect of technological change on this cost, and the number of decision periods in the
model. Following this, the problem is reformulated and solved as a robust optimization
problem. Finally, we analyze suboptimal mitigation strategies and determine their monetary
costs. This analysis is very important because it is unlikely that in reality the optimal
strategy would be able to be implemented world-wide. In particular, we find that the cost of
postponing mitigation is equivalent to giving up 5.5 USD - over a sixth of the global economy
in 2015.



2 Related Work

In this chapter, a review of related works will be presented. Models combining both climate
and economic modules together are called integrated assessment models. These models
make large simplifications compared to the climate models used by climate scientists because
such simplifications are required to make it computational feasible to evaluate many policy
scenarios and compute optimal policies. Three such models are used by the Environmental
Protection Agency to estimate the SCC: the DICE model (Dynamic Integrated Model of
Climate and the Economy), Nordhaus (1992), Nordhaus (2008), Nordhaus and Sztorc (2013);
the PAGE model (Policy Analysis of the Greenhouse Effect), Hope (2008); and the FUND
model (Climate Framework for Uncertainty, Negotiation and Distribution), Anthoff and Tol
(2012).

DICE refers to a family of models, for example the RICE model (Regional Integrated
Climate-Economy) which models particular regions as opposed to the whole world. Like
the EZ Climate model, the DICE model aggregates consumption and emissions globally (in-
dividual countries are not modelled separately), and mitigation of GHG emissions is assumed
to reduce consumption today and increase it in the future (by reducing the effect of climate
change). It discretizes time at 5- or 10-year periods. In Cai et al. (2012), a continuous-
time version of DICE model was developed. The DICE model is deterministic. In Cai et al.
(2015) a stochastic generalization with uncertainty in the economic and climate modules was
presented. A constant elasticity utility function is typically used as the objective function
in DICE. In Ackerman et al. (2013), an Epstein-Zin utility was used with DICE and the
results were found to be insensitive to risk aversion. This highlights one common criticism
of the DICE models: catastrophic risks are not well modelled with its polynomial damage
function.

The PAGE and FUND model do not attempt to model the economy at the detail of the
DICE models. Instead of fully modelling the effect of mitigation on the economy, they use
economic scenarios developed elsewhere. FUND simulates 1950 to 3000 in 1-year time steps.
In FUND, climate change damages arc a function of both the change in global temperature
and also the rate of change of the temperature. Damages lower not only consumption but
also economic growth. The model PAGE is a stochastic model, 31 of its inputs are random
variables. It must be run many times to generate a distribution of returned solutions.



3 Method

In Daniel et al. (2018), carbon emissions pricing is seen as a risk management problem.
There is a trade-off between losing wealth or consumption today due to a reduction in
emissions, and losing an uncertain and possibly quite large amount of consumption in the
future due to the damages from climate change. In this chapter, we will begin by describing
how consumption is modelled across time and the problem of finding the optimal trade-off
will be formulated. Next, the model of emissions mitigation as a function of the SCC will
be given. Additionally, the modelling of uncertain damages will developed. Lastly, we will
devise a method of analyzing and assigning a monetary value to suboptimal solutions to this
model.

3.1 Discrete Time Binomial Tree

The EZ Climate model runs from 2015 (¢ = 0) to 2400 (¢t = 6) discretized into 7 periods of
unequal length. The time gaps between the earlier periods are shorter than the gaps later
on. The model not only discretizes time but also states of nature as well. This is because the
the effect of climate change on the future economy is uncertain. At time ¢, the world is in a
certain state 6; that captures the severity of the effect climate change has on the economy
(the "fragility’ of the world). At any time, there are only two possible states the agent can
enter at the next time step, 0}, and 67, ;. This states are equally likely. The world is more
fragile to climate change in state 6}, then in state 67, ;. Thus, time periods and the states
of the world are represented as nodes in a binomial tree, see Figure 3.1.

The model also defines a subinterval length of 5 years. Certain functions are recalculated at
intervals equal to this length between periods so that they are sufficently smooth.

The first N = 6 time periods are decision periods. A rational representative agent makes
decisions about the global climate strategy at these times. In particular, the agent controls
the amount of mitigation (as a percentage of the GHG emissions if there were no intervention
- the business-as-usual case) at every time step and possible state 60;, x;4,. Note that the
effect of the agent’s strategy on the economy is path-dependent and so these levels, z,,
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Figure 3.1: The recombining (path-independent) tree of states of nature over time.

rescind on a non-recombining binomial tree (see Figure 3.2) not a recombining one, and so
the vector of all choices @ = (z1,) has length 63 when N = 6. At the final decision period
N, it is assumed that all uncertainty about the effect of climate change is resolved.
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Figure 3.2: Non-recombining (path-dependent) tree with 63 nodes.

If 2,9, = 0 that means that there is no mitigation and the GHG emissions are what they
would be without any climate mitigation policies. While x;y, = 0 means that emissions are
mitigated 100% - i.e. zero tons of GHG emissions. Mitigation can be above 100%, x;9, > 1,
due to 1) the natural absorption of GHGs from the atmosphere via oceans and trees, and 2)
backstop technologies that remove GHGs out of the atmosphere.



3.2 Consumption & Utility

It is assumed in Daniel et al. (2018) that both climate change and the pricing of carbon
effect consumption. A part of consumption is lost to damages from climate change (i.e.
decreased crop production, loss of land, flooding, extreme weather events, etc.). The price
of carbon shapes government climate policies (i.e. a carbon tax or cap-and-trade program).
These measures reduce emissions, and thus the amount of consumption lost to damages,
while also decreasing production of affected companies, lowering consumption. Thus, a part
of consumption can be considered lost to mitigation of climate change.

The consumption at time period ¢ (where ¢ = 0 is today and ¢ = 1 is one period of time
later), ¢, is given as

Co = Eo(l - lio), (321)
Ct:Et(l —Dt)(l —/it), te {1,27...,]\[}, (322)
CN+1 - EN+1<1 - DN+1). (323)

where ¢; is the consumption at time ¢ if there was no emission pricing or further climate
change damages, D, is the percentage of ¢ lost due damages from climate change (see
Section 3.6), x; is the percentage of ¢ lost due to mitigation policies (see Section 3.4). The
term k; is deterministic while the damages term D, is uncertain.

Today, at time ¢ = 0, damages do not affect ¢o (Eqn 3.2.1) as any damages today are certain
and already included in the current global consumption ¢,. This consumption can only be
reduced by the mitigation choice made today by the agent.

The agent must chose the optimal set of mitigation levels, represented by the vector x =
(wiz) € R2"~'. The agent would like consumption to be as high as possible, but how does
the agent weight the importance of consumption now vs consumption in the future and how
concerned is the agent by worst-case scenarios? In economics, a utility function can be used
to represent an agent’s preferences and allow real numbers to be assigned to a set of options.
The option with the maximum expected utility value should be chosen by the agent.

In this model an Epstein-Zin utility function (Epstein and Zin (1989)) is used. This is a
recursive utility function; its value at a given time is a function of its value at the next
time step. An important feature of Epstein-Zin utility is that it separates two aspects
of preferences: risk aversion and intertemporal elasticity of substitution. The Epstein-Zin
utility, Uy, of consumption is given by



Vo) = [(1 - B)ch + B (B U7 @))] . (32.4)
U@) = [(1 = B} + B (By [U53(2)])"] Y te L Ny, (3.2.5)

r _ 1/p
UN_H(QZ) = %] CN+1- (326)

where 0 < f < 1, @« < 1, p < 1, and r are parameters. The value (1 — )/ is called
the pure rate of time preference. The higher this value, the more importance the agent
places on consumption now vs future consumption. The value 1/(1 — p) is the elasticity
of intertemporal substitution. The higher p is, the more willing the agent is to substitute
consumption across time. The value (1 — «) is the coefficient of risk aversion. The lower «
is, the more averse the agent is to risk. In this report, we will use the values p = —0.1111,
a= -9, and = (1 —0.005)° (where &t is the sub-interval length).

The term E, [Utojrl] is called the certainty-equivalent of future lifetime utility; it is the ex-
pected value of future utility conditioned on the information the agent has at time ¢. It is
given by

1 1
B (U (v00.)] = 5Bd [Ua(@iar,)| + 5B: U (@eae,,) (3.2.7)

t+1

At the last time period N + 1, we assume that all uncertainty on the damages of climate
change have been resolved and that consumption simply grows at a constant rate r (we will
use r = 0.9752).

The optimal @ is the choice that maximizes expected utility of lifetime consumption. Thus,
we must solve the following optimization problem,

max E[Uo] (3.2.8)

3.3 Price of Carbon 7(z)

To compute the SCC given the optimal mitigation pathway we first specify a relationship
between the fraction of emissions mitigated, =, and the marginal cost (from a societal per-
spective) of emissions mitigation, 7. In Daniel et al. (2018), this societal cost is used as a
stand-in for a carbon taxation rate and, thus, the SCC.

It is assumed that  and 7 have a power relation,

x(1) = et (3.3.1)



The parameters ¢ and k are set to fit x(7) to a marginal abatement cost curve (MACC).
One effort to estimate the MACC is the “Pathways to a Low-Carbon Economy” report from
McKinsey & Company (Nauclér and Enkvist (2009)), see Figure 3.3. They used a bottom-up
approach, estimating the cost of many individual mitigation technologies and measures. One
criticism of the McKinsey report is that they include mitigation opportunities with negative
costs (i.e. a positive z from a negative 7). We will use the McKinsey estimates with the
modification that x(0) = 0 (there is no negative cost abatement) to calibrate x(7). The
point estimates that this function is fitted to are given in Table 3.1.

Global GHG emissions
GtCO,e per year

70 70 Business-as-usual

60 |
Technical measures

< €60 per tCO,e

50 r (Focus of the study)

40

Technical measures

30 ¢ "-._"'"--..,_J:"Z €60-100 per tCOe
RECT o (High-level estimates)
- ;0 Behavior changes
2T 23 (High-level estimates)
10
0 L
2005 10 15 20 25 2030

Figure 3.3: Different GHG pathways and their marginal cost of abatement from Nauclér
and Enkvist (2009).

Table 3.1: The modified McKinsey point estimates for 2030.

GHG taxation rate, 7 Fractional GHG reduction, x(7)

€ 0 per tCOqe 0
€ 60 per tCOqe 0.543
€ 100 per tCOqe 0.671

Thus, we should solve the following system of equations

(3.3.2)

c-1.206-60" = 0.543,
c-1.206-100F = 0.671,

where 1.206 $ per e is the exchange rate from 2005 euros to 2015 USD. This yields ¢ = 0.0923
and k£ = 0.414. In other words we have

(1) = 0.09237%44
7(x) = 314.322%7



Once we compute the optimal mitigation levels, we use equation 3.3.4 to compute the cor-
responding carbon prices at all nodes.

It must be stressed that there is a high degree of imprecision in this relationship. Firstly, this
model is based on the assumption that mitigation and its cost have a power relationship. Be-
yond this, the McKinsey estimates themselves have a high degree of uncertainty. In Nauclér
and Enkvist (2009), it is stated that key sources of uncertainty are the actual feasibility of
implementing the abatement measures they include and the development cost of the abate-
ment technologies. Furthermore, the McKinsey abatement costs are costs from a societal
perspective and not a perfect stand-in for the SCC. The implications of the uncertainty of
these parameters will be explored later in this report.

3.4 Mitigation cost (k)

We must now define the fraction of consumption lost to mitigation, x, as a function of the
mitigation level x. Increasing the carbon tax rate will decrease consumption at a rate equal
to emissions:

%z—mﬂ (3.4.1)

where ¢ is the level of GHG emissions.

Solving this, we obtain
o(r) = ¢y — / g(s)ds (3.4.2)
0

This equation is modified by the assumption that the proceeds from the GHG tax, 7¢(7),
are entirely refunded and added to the consumption.

o(1)=¢y — /()Tg(s)ds +g(m)T (3.4.3)

:@—%Gﬂﬂ—l}@@) (3.4.4)

where gy = 52 Gt COae is the baseline level of GHG emissions in 2015. Thus, using equa-
tion 3.3.3,

c(x) = Gy — §092.08x>413
= Co — Gogx"

where g = 92.08, and a = 3.413. The cost of mitigation as a fraction of consumption is the
change in consumption divided by current consumption:

K(z) = i—zgx“ (3.4.7)



where ¢y =$31 trillion per year is the 2015 global consumption.

This fractional cost of mitigation x(z) is not a function of time and is parameterized only by
the McKinsey estimates for current abatement measures. However, in the future one would
expect cheaper abatement technologies to be developed, lowering the cost of abatement.
In addition, backstop technology to remove GHGs directly from the atmosphere may be
developed in the future. We will now discuss three kinds of technological change that will
modify k through time.

The first type of technological change is exogenous technological improvement, these are
changes due to external forces (improvements independent of mitigation). All change of this
type will be characterized by a single parameter, ¢g. The cost xk decreases every year by the
constant percent (. The second type of change is endogenous technological improvement,
these are changes due to internal forces (improvements dependent on mitigation). It is
parameterized by ¢;. The cost x decreases every year by percent ¢;X; where X; is the
average mitigation level to date. an dis given by

t
Y GsTs
X, == (3.4.8)
> s
s=0

where g, is the GHG emissions in period s if there was no mitigation (in gigatons of COs-
equivalent emissions per year).

The intuition behind the expression (X, is that if the average mitigation level, X; has
been high (due to a high taxation rate) then pressure on industries will result in faster
development of mitigation technologies and alternative energy sources. This will cause the
cost of mitigation to decrease.

The third kind of technological change is the development of backstop technology: technology
that would allow GHGs to be directly removed from the atmosphere. The initial marginal
cost of removal of one ton of CO2 is given by parameter 75. This is the value of 7 at which
the marginal cost curve changes from the power function given above to a different shape,
see Figure 3.4. Unlimited amounts of CO; can be removed at marginal cost 75 > 75, at
this value z(7) asymptotes. Note from Figure 3.4 that backstop technology can 'kick in’
at 2% > 1. This is because GHGs are also removed from the atmosphere due to natural
processes and, thus, mitigation levels above 100% can be achieved without the use of backstop
technology. When the default parameters of 75 =$2500 and 759 = $2000 are used, backstop
technology is not used in the optimal solution.

The equation for the marginal cost of abatement with backstop technology included is

314.42 - 22413 1 < 2P,
7(z) = (3.4.9)

" e — (B, 2> a8,

10
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Figure 3.4: The marginal cost of mitigation at time t = 0 for different values of Tp o and
Tpo. At price Tpo (or mitigation level xP), the rate of marginal cost of abatement increase
decreases. It asymptotes to price T .

All together &, is

K(xt), <

5 b k 1/b 5 k 1/b
Ky = (1—(p0—g01Xt)t K}(xB>+g—(0] (xt—l’ )TB’oo_b—_l Tt (a:—t) +x <$_B> 5 .'L't>{EB.

Technological Change Term

Backstop Technology Term

where

ERVE] B
o= <;—€7(01) ’ b= 7;33—'2;?’ k=2"(Tpoc — T80)" (3.4.11)

Note that x; depends not just on z;, the mitigation level at that time, but (z5)s<¢, the path
of mitigation levels taken. This is due to the average mitigation, X, term.

3.5 Temperature as function of GHG levels (AT(G))

The global temperature change change, AT, is a random variable whose probability distri-
bution depends on the GHG levels in the atmosphere, G. Wagner and Weitzman (2015) use
estimates from the Intergovernmental Panel on Climate Change’s (IPCC) Fifth Assessment
and the International Energy Agency to assign probabilities of different values of eventual
temperature change for different atmospheric concentrations of CO,. Daniel et al. (2018)
extrapolate these values to obtain the probabilities given in Table 3.2. The numbers in the
table are P (AT;o9 > T), the probabilities that the change in temperature in 100 years (T1g0)
will exceed T' = {2, 3,4, 5,6}°C, for three different scenarios of maximum atmospheric GHG

11



concentrations: 450, 650, and 1,000 parts per million (ppm) of COy. These scenarios are

correspond to strict, modest, and an ineffective mitigation scenarios.

We will assume that P (AT > T) follows a gamma distribution.

f(x;a,6,0) =

(x+6)

(x+0)*te 7

)

(3.5.1)

where I'(a) = [~ s* e *ds is the Gamma function. Fitting this model to the sets of values
in Table 3.2, we obtain calibrations of the gamma distribution for the three mitigation

scenarios, see Table 3.3.

Wagner and Weitzman (2015).

Table 3.2: Point estimates of P (ATip9 > T) for three scenarios of GHG levels.

Maximum GHG Level (ppm of CO,)

T 450 650 1,000
2°C 0.396 0.870 0.994
3°C 0.139 0.566 0.910
4°C 0.042 0.289 0.696
5°C 0.011 0.124 0.443
6°C 0.003 0.047 0.242

Table 3.3: The gamma distribution parameters fitted to the three scenarios.

Gamma distribution parameters

450 650 1,000
lo% 2.810 4.630 6.100
I¢] 0.600 0.630 0.670
0 —0.250 —0.500 —0.900

To obtain the temperature change at other times, T;, the following relationship is used

AT(G(X,)) = 2AT10(G(X,)) (1 - 0550

(3.5.2)

where AT is a gamma random variable with parameters that depend on level of GHGs in
the atmosphere (see Table 3.2). As time increases, the temperature change asymptotes to

2AT100.



3.6 Climate change damages (D;).

In this section, we will specify the fraction of consumption lost to climate change damages,
D;. The cost of damages is given by

D, = (1 — r;te—13-97vAT<G<Xt>>2> x [1—1pp(1—e %7)] (3.6.1)

. g
g

Non-catastrophic component

where G(X;) is the level of GHGs in the atmosphere. Variables AT(G(X})), v, 1rp, and
drp are independent random variables.

Catastrophic component

The non-catastrophic component of damages is from Pindyck (2013). It was fitted using
data from the IPCC’s Fourth Assessment Report. The problem with using this component
alone is that it does not include any risk of catastrophic damages due to climate change. To
account for this, we will introduce 17p, a random variable.

Lo — 1, if a “tipping point” has been reached and there are catastrophic damages
TP =0 0, if the “tipping point” has not been reached.
(3.6.2)

The probability of catastrophic damages (of hitting this “tipping point”) will be modelled

o arGe) )"
P(lyp=1)=1- (1 — [max(AT(G(Xt))ijakT)} ) (3.6.3)

where peakT is a parameter; as the parameter peakT increases, the probability of having a
catastrophic change decreases. The severity of these catastrophic damages are given by dpp,
a gamma random variable.

The stochastic of the damages D; is modelled using the binomial tree. Monte-Carlo simu-
lations of the damages function are run for four emissions scenarios: GHG concentrations
of 450, 650, and 1,000 parts per million (ppm) of CO,. For each scenario, 6,000,000 sim-
ulations are run. In each simulation, a set of random variables AT(G(X,)), 7, 1rp, and
drp is drawn. The simulations are ordered based on their final damages value, Dy and
grouped into 2V~! = 32 percentiles. The average damages of each group are the value of the
N period’s states of nature in the binomial tree for those emissions scenarios. Results are
interpolated to generalize to other GHG levels.

3.7 Suboptimal Mitigation Strategies

In this section we explain our approach to studying suboptimal mitigation strategies. In
particular, we would like to answer the question: “How much will it cost to employ a non-
optimal mitigation strategy?”. For this reason we will use the suboptimality analysis which
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is well known in literature (Das and Uppal (2004), Liu and Pan (2003), Larsen and Munk
(2012)).

The utility of any strategy x depends on the parameter of initial global consumption cy.
E[U(C)] = E[U(C(x; c))]-

Let 2* be the optimal mitigation strategy, and 2°“ be any other strategy which will be
referred to as a suboptimal strategy. Since the utility function is unit-less it is hard to say
how bad the suboptimal strategy is. The only thing that we can say is that the strategy

2°" is worse than the optimal strategy because it yields lower expected utility. However,

we do not know whether 2% is nearly as good as the optimal strategy in some sense. To
determine how poor a given suboptimal strategy is, we somehow have to compare expected
utilities in dollar terms. This task turns out to be relatively straightforward. First, we
evaluate the expected utility E[U(C(2°%; cy))] for a suboptimal strategy (by definition we

have E[U(C(x*; ¢y))] < E[U(C(x*;¢p))]). Second, we solve for z in the following equation:

E[U(C(z**; )] = E[U(C(x%¢0 — 2))], 0< 2 < ¢ (3.7.1)

Conceptually, the equation (3.7.1) says that acting suboptimally is equivalent to giving up
z dollars of consumption today and then acting optimally. This gives us the monetary cost
z of following a suboptimal strategy. A small 2 indicates that the suboptimal strategy is
nearly as good as the optimal one.

Note that solving for z in (3.7.1) is a root finding problem for a nonlinear equation. It must
be solved numerically using an iterative procedure. As a result, the suboptimality analysis
described in this section could be quite time-consuming because it implies that the optimal
strategy should be evaluated many times until (3.7.1) holds with an acceptable precision
level. This further highlights the importance of the improved computational performance of
the model developed in this paper.
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4 Computational Issues and Implemen-
tation

The model described in Daniel et al. (2018) was originally coded in Python and is publicly
available at GitHub (Litterman and Wagner (2013)). Our version of the EZ Climate model
was coded in Matlab and the following chnages were made

e Vectorization: Computations of variables on the binomial tree were vectorized to take
advantage of parallel computing. This reduced the time to evaluate the utility function
by a factor of 20.

e Automatic Differentiation: We used the Matlab package ADMAT 2.0 (Coleman and
Xu (2016)) to compute gradients of the utility function with automatic differentiation.
The improved scaling behavior of reverse mode AD compared to the numerical differ-
entiation used in the Python model meant that models with higher numbers of decision
periods could be explored. Using 13 decision periods, our AD derivative computation
was more than 30 times faster than the numerical differentiation.

e Optimization method: We use a Quasi-Newton method to solve for the optimal mit-
igation strategy, which is must faster than genetic algorithms used in the original
implementation.

The first three improvements combined result in much faster computation of solutions. This
allows analysis of the model that would otherwise not be feasible. In particular, models with
more periods can be studied and a robust optimization approach can be explored. Next we
discuss the last two improvements in more detail.

4.1 Automatic Differentiation (AD)

A first-order numerical differentiation (ND) method requires n function evaluations to com-
pute the gradient of a function with respect to a n dimensional input. Thus, we say numerical
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differentiation has a relative time complexity of O (n). The control variable x has dimension
2N — 1 and so computational time utility gradients with scales with the number of decision
periods (O (2% — 1)).This can be observed from the ND columns in Table 4.1. The time ratio
is the time of derivative computation divided by the time of evaluating the utility function.

Table 4.1: Time (in seconds) to compute gradients using numerical differentiation (ND),
forward automatic differentiation (FD) and reverse automatic differentiation (RD). Utility
time is the time it takes to evaluate the utility function. The times were measured on a PC

with 64-bit Windows 7 OS.

Decision Decision | Utility | ND ND FD FD RD RD

Periods Nodes Time Time Ratio Time Ratio | Time Ratio
6 63 0.005 0.31 67 0.33 71 0.61 132
7 127 0.007 0.79 114 0.47 68 0.81 117
8 255 0.011 2.36 255 0.79 75 1.24 118
9 511 0.017 8.07 464 1.98 114 2.08 120
10 1023 0.025 24.3 959 5.82 230 3.75 148
11 2047 0.039 73.5 1884 19.1 490 7.24 186
12 4095 0.066 252 3842 68.9 1049 14.7 224
13 8191 0.118 951 8041 245 2072 28.5 241

AD allows us to compute derivatives in forward and reverse modes. Like ND, FD also has a
relative time complexity of O (2N — 1). From Table 4.1, F'D is faster than ND. This is due to
the vectorized derivative computation of ADMAT 2.0. On the other hand, the computation
time of gradients with RD scales with the dimension of the function’s output. The output
of the expected utility of lifetime consumption is a scalar value, and so RD has a constant
relative time complexity (O (1)). Notice that in Table 4.1 that the time ratio of derivative
computation remains flat.

FD is generally the fastest method for gradient computations of models with fewer than
10 decision periods. This is because RD has greater computational overhead than FD. For
models with more than 10 decision periods, the improved scaling of RD makes it the fastest.
As the number of periods grows, the difference in speed becomes greater. For models with
N =13, RD is almost 30 times faster than ND and 8 times faster than FD.

The results of Table 4.1 are also illustrated in Figure 4.1.

4.2 Optimization

Our problem, given in Equation 3.2.8, is to find a mitigation strategy that maximizes the
expected lifetime utility, E[Up]. The objective function is non-linear, continuous, and dif-
ferentiable. To investigate the landscape of the objective function further, its value along a
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Figure 4.1: Time of gradient computations using ND, FD, and RD.

line through the space of mitigation strategies is shown in Figure 4.2. The line is the path
of iterations the Quasi-Newton method (discussed more later in this section) took through
the space while solving. The starting point of the line is the strategy with 100% mitigation
at all nodes in the decision tree. The ending point is the optimal strategy found. Marked
on the plot is a point at which the curvature of the objective function along the line appears
to be negative.

The eigenvalues of the Hessian of E[Up] at these three points are shown in Figure 4.3. At some
points the Hessian has negative eigenvalues, confirming the existence of negative curvature.
Thus, this is a non-convex optimization problem.

To find a global solution to such a problem, usually one must use a global optimization
method. Such methods can be expensive due to the high number of function evaluations
required. In Table 4.2, the optimal utility values found using different optimization meth-
ods are shown. Both derivative-free global methods and gradient-based local methods are
included. All methods converged to solutions with similar utility value with the exception
of the genetic algorithm which found a slightly worse solution. Global methods, such as
pattern search and the genetic algorithm, required tens of thousands of function evaluations.
The local methods, such as Quasi-Newton, found solutions with just as high a utility in run
times several orders of magnitude less than the global methods.

A concern when using a local method to solve a non-convex problem is that it will converge
to a local maxima instead of the global maxima. The Quasi-Newton method was used to
solve the problem for over 200 hundred different initial points with random mitigation levels
between 0% and 100%. The results of these runs are given in Table 4.3. The method always
converged to a solution with utility value of around 9.791. When initial points with levels
well outside this range were used (i.e. levels of -100%, 200%, etc), the method failed to
converge. At such points, the utility value attained it’s minimum, 0, and the norm of the
gradient of the utility is almost zero. The method immediately stops and can make no
progress at such points.
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Figure 4.2: The value of the objective function, E[Uy], for the 6 period model along the path
taken by a Quasi-Newton method through the 63 dimensional space of mitigation strategies.
The x axis is the distance of the points along the path from the origin (the business-as-usual
case, all 0% mitigation levels). Three points have been marked on the plot: the starting
point (all 100% mitigation levels), the final optimal point, and a point where the function’s
curvature appears to be negative.
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Figure 4.3: The values of all eigenvalues of the Hessian of the objective function at the
three marked points from Figure 4.2. From left to right: the point with all 100% maitigation
levels, a point where the function’s curvature appeared negative, and the optimal point.
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Figure 4.4: The background colour of this image is the objective function for the optimal
solution (found with QN and the all 100% starting point) with varying mitigation levels at
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at 2300.The lighter the background colour, the higher the utility value is. The white strip is
the center is where the utility is maximum. The red points are the values solutions found
with QN and different random starting points had for these nodes.

The Quasi-Newton method appears to find solutions with near-optimal utility for all rea-
sonable starting points. But is it finding the same solution each time? In Figure 4.4, these
solutions’ mitigation levels at the first decision made in 2015 and one of the last decisions
made in 2300 are plotted over a contour plot of utility value. This plot shows that the utility
stays constant at its maximum value for a large range of mitigation levels assigned at (one
of) the last decision and a small range for the first decision. The objective function is flat in
a region around the optimum — i.e. the optimal choice of mitigation strategy is insensitive
to decisions made at the later periods. This makes sense because while the first decision
affects utility for all later periods at all states of nature, the value at one of the nodes in the
last period only affects the last period in 3% of damage scenarios since it is one of 32 nodes
at that time. This is why the QN method returns different solutions with the same utility
value.

Note that global methods will have the same problem of finding different solutions with the
same objective value due to the function’s landscape. Since this issue is unavoidable, in
the interest of computational speed the QN method will be used for the remainder of this
report with the knowledge that solution variation in the last 2 periods is expected and not
significant.



Table 4.2: The mazimum expected lifetime utility found using different optimization meth-
ods. In addition, the number of function evaluations and the run times of the algorithms.
Run times are given in seconds and measured on a 2014 Macbook Air running Sierra in
MATLAB 2017a (this will be the computing environment in which all Tun times are mea-
sured unless stated otherwise). The first three methods are derivative-free global methods,

while the last two are local methods that use automatic differentiation to compute gradients
(see section 4.1).

Method Optimal Utility Function Evaluations Time (s)
Nelder-Mead 9.791 8521 56.830
Genetic Algorithm 9.771 193600 1070.764
Pattern Search 9.792 126000 713.381
Quasi-Newton 9.791 29 11.266
Preconditionined NLCG 9.791 26 18.739

Table 4.3:  The results from the Quasi-Newton method with different initial mitigation
strategies. The initials points used were a solution with with levels equal to 0 (the BAU
case), all levels equal to 100%, and random points between these extremes. The results given
for the random points are the averaged results from 200 different starting points.

Initial Point Utility Gradient Norm Iterations
All 0% 9.794 0.000 267
All 100% 9.793 8.491 x 1075 147
Random between 0% and 100%  9.793 —9.394 x 1076 203.6
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5 Results

The optimal mitigation strategy computed using the default parameters is shown in Figure
5.1. It has a expected utility value of 9.791 and a SCC in 2015 of 133.13 USD.
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Figure 5.1: The optimal mitigation strategy for base case parameter values (without jumps).
The plot on the left shows the optimal mitigation levels averaged at each decision period, and
the plot on the right shows the corresponding averaged taxation rates in 2015 $USD. The large
shaded region encloses all of the optimal mitigation levels (for all states of nature represented
by nodes on the tree) at a given period.

It follows from Figure 5.1 that the optimal mitigation level (left panel) and the GHG taxation
rate (right panel) can differ quite drastically depending on the state on the tree. For instance,
in the year of 2,100, the optimal percent of emissions mitigated could be as low as 75% and
as high as 115%. Similarly, the optimal GHG taxation rate for the same year could be as
low as 45 USD and as high as 130 USD.
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5.1 Model Sensitivity

The EZ Climate model makes many assumptions and simplifications. Complex systems are
modelled using relatively simple parameterized equations. Some parameters can be estimated
empirical but even they are often uncertain (i.e. the McKinsey abatement estimates). With
other parameters it is even more unclear what their value should be (i.e. number of decision
periods, utility preferences). It is important that a model for computing the SCC is robust
under such parameter uncertainties. In this section we analyze the sensitivity of the model
to different parameters.

Unless specified otherwise, we use the following base case specification. We assume that
N = 7 implying that the first N — 1 = 6 periods are decision periods, during which the
agent sets a GHG taxation rate. The parameters that determine the technological change
in Equation (3.4.10) have values ¢y = 1.5, 1 = 0, Tp o = $2500 and 75 = $2000. To find
the optimal mitigation strategy we use a Quasi-Newton method.

5.1.1 Effect of Mitigation Point Estimates

Recall that the McKinsey estimates, zMcKinsey(€100) and 2MKinsey (€60)), are the estimated
mitigation levels achieved with a taxation of €100 and €60 respectively. These estimates are
used to derive parameters for the cost function and are highly uncertain. To investigate the
model’s sensitivity to these parameters we will find the optimal strategy for different values of
these points estimates. To choose sensible alternate values, we assume that they come from
independent normal distributions with their mean values given by Table 3.1. To calculate
the variance, one assumes that the midpoint between zMeKinsey(€6() and xMeKinsey (€100) is
three standard deviations away from either point.
B 1 xMcKinsey<€100) _ xMcKinsey(€60)

=5 ; )

~0.671 —0.543

6

This guarantees that P (zMKinsey (€100) > zMKmsey(€60)) < 107°. Let’s define Xyjekinsey 10
be the set of these parameters:

= 0.0213.

McKi €60 McKi €100
XMCKinsey = [.CC eKinsey( ),.’L' Kinsey( )] ~ N(M, Z)

p=10.543,0.671]"

o _ [002132 0
1 0 00213

Solutions found using different draws of Xyickinsey are shown in Figure 5.2. The base case
optimal solution is shown in blue. The optimal mitigation strategy varies drastically for
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different values of these parameters. The average utility value is 9.78 and ranges from 9.62
to 9.85. The average 2015 carbon price is $129.43 and ranges from $116.82 to $142.67.
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Figure 5.2: The optimal mitigation levels (left) and GHG tazation rates (right), averaged
at each time period, given draws from X yeginsey = [xMeKnsev(€60) | MeKinsey(€100)]  Af(py 33).
The blue line is the solution when using the mean values. The other lines are coloured based
on our distance from the mean: the darker/more red the line the further from the mean.

5.1.2 Effect of Technology

As explained in Section 3.4, the cost of mitigation at time ¢, x;, may change in time due to
technological change (endogenous and exogenous) and backstop technologies. In this section
we explore how the optimal solution depends on our assumptions about the technologies.

Effect of Exogenous Technological Change

The parameter ¢ in (3.4.10) gives the percent of yearly cost decrease due to exogenous tech-
nological improvement, that is, the improvement independent of climate mitigation actions.
The optimal solutions for the model with values of ¢q ranging from 0 to 3% are shown in
Figure 5.3.

The following conclusions can be drawn from Figure 5.3. First, lower values of ¢ resulted
in less volatile mitigation levels over time. This is due to the fact that the mitigation cost
changes less over time for lower ¢g. Second, higher g values yield lower carbon taxes at
later periods, and higher mitigation levels. This is because the higher (¢, is, the lower the
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Figure 5.3:  The optimal mitigation levels (left) and GHG taxation rates (right), aver-
aged at each time period for different values of ¢y — the parameter representing erogenous
technological improvement.

mitigation cost at later times will be. Third, the solution is more sensitive to a change of ¢
when g is low.

The initial period GHG taxation rate and the expected lifetime utility values at the optimal
solutions for the analyzed values of g are provided in Table 5.1.

Table 5.1: The expected utility values at the optimal solution for different values of g

Yo 2015 Carbon Price Expected Utility

0% $ 134.10 9.302
0.25% $ 146.19 9.366
0.75% $ 147.98 9.548
1.5% $ 133.13 9.791

3% $ 101.15 10.053

It follows from Table 5.1 that higher values of ¢, resulted in solutions with a higher expected
utility. This is because a higher ¢, means a lower cost of abatement, and thus a higher
fraction of endowed consumption can be retained by the agent.

Effect of Endogenous Technological Change

The parameter ¢; in (3.4.10) describes yearly cost decrease due to endogenous technological
improvement, that is, the improvement that depends on the level of climate mitigation. The
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optimal solutions for the model with ; varying from 0 to 3% are shown in Figure 5.4.

The following observations are worth noting in Figure 5.4. The higher the value of ¢, the
earlier the mitigation level peaks before decreasing. The early high mitigation levels result
in a higher average mitigation later and thus a greater reduction of marginal cost due to
endogenous technology. Greater ¢ values exacerbate this in the sense that for a high ¢ it
is beneficial to start with extremely high mitigation levels to drive down the future price.
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Figure 5.4:  The optimal mitigation levels (left panel) and GHG taxation rates (right
panel), averaged al each time period for different values of @1 — the parameter representing
endogenous technological improvement.

The initial period GHG taxation rate and the expected lifetime utility values at the optimal
solution for different values of ¢, are shown in Table 5.2.

Table 5.2: The expected utility values at the optimal solution for different values of o,

V1 2015 Carbon Price Expected Utility

0% $ 133.13 9.791
0.25% $ 135.84 9.843
0.75% $ 134.46 9.930
1.5% $ 134.98 10.023

3% $ 133.28 10.133

It follows from Table 5.2 that higher values of ¢; resulted in solutions with a higher expected
utility. This is because 1 results in lower mitigation costs, and thus a higher fraction of
endowed consumption can be retained by the agent.
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Effect of Backstop Technology

In this section we explore the effect of backstop technology on mitigation cost. The optimal
solutions for the model with varying values of 75 o and 75 are given in Figure 5.5.

130 140 | Tpo = $100
= $150

120 7-R,ooi
= —~ 120 A 7'37() = $300
£ 110 7 TB,0o = $350
&0 7 ) _
£ £ 100 - 0 = $500
S o Th0o = $550
5 1007 = T80 = $2000
5 ~ 80 A —A B0~
; 90 E TBoo = $2500
o 260
= 80 A &
E ORI
0:' 70 4 tﬁ: 40
L O
o

60 1 20

5() T T T T T 1 U T T

2,000 2,050 2,100 2,150 2,200 2,250 2,300 2,000 2,100 2,200 2,300 2,400
Year Year

Figure 5.5: The optimal mitigation levels (left panel) and GHG tazation rates (right
panel), averaged at each time period for different values of Tp o and Tpo — the parameters
representing backstop technology. Note that the the solution when o = $500 (the green line)
is exactly underneath the 1o = $2000 solution (the purple line). With large enough Tp
and g, backstop technology is not used and solutions stop varying with these parameters.

We have the following observations:

e The base case scenario is 7p. = 2500 and 759 = 2000. For this specification, the
mitigation level at which backstop technology is used is 2 = 2.15 and it is high enough
that the technology is not used if the optimal mitigation strategy is implemented.

e The moderate case is T = 350 and 750 = 300, with 2B = 0.98. In this case,
backstop technology is used to implement the optimal solution. The optimal solution
has slightly lower prices and higher mitigation levels in the fourth period compared to
the base case.

e The aggressive case corresponds to 7p . = 150 and 79 = 100 implying that backstop
technology is used for z > x” = 0.62. For this specification, high abatement is so
cheap that optimal mitigation levels increase quickly to higher values compared with
the other cases.
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The initial period GHG taxation rate and the expected lifetime utility values for the analyzed
parameter values are provided in Table 5.3.

Table 5.3: The GHG tazation rate and the expected utility values at the optimal solutions
found given different values of Tp .o and Tg o

B, 8,0 2015 Carbon Price Utility Value

$ 100 $ 150 $ 90.45 9.948
$300 $ 350 $ 120.99 9.803
$ 500 $ 550 $ 132.96 9.791
$ 2000 $ 2500 $ 133.13 9.791

From Table 5.3, the aggressive case (7p o = 150 and 759 = 100) implies a very low GHG
taxation rate.

5.1.3 Number of Decision Periods and Subinterval Lengths

The model assumes that decisons about GHG emissions mitigation can only take place at a
discrete set of times. In addition., consumption is recalculated at subintervals between the
time periods to smooth the consumption function. The base model uses 6 decision periods
and subintervals lengths of 5 years. In this section we explore how decision periods and
subinterval lengths impact the optimal mitigation levels.

The optimal mitigation strategies for the model with a range of decision periods and subin-
terval lengths are shown in Figure 5.6. It should be noticed that there is little qualitative
difference in the results and most solutions can be described as the solutions for which miti-
gation levels start just below 70%, increase until around year 2200, and then decrease. The
only outlier is the 10 period model where levels peak in 2150 and then decrease. In addition,
the peak mitigation level of this model is higher than the others. This is due to the fact that
all of the other models have a large gap in decisions here. If a model with fewer periods had
a decision at or around 2150, its solution would look more like the 10 period solution (see
Figure 5.7).

The initial period GHG taxation rate, the expected lifetime utility values, and optimization-
specific information for the optimal solutions in Figure 5.6 are provided in Table 5.4.

It follows from Table 5.4 that utility increases with the number of decision periods. Intu-
itively, more decision periods mean more flexibility in the overall mitigation strategy. In
addition, smaller subinterval lengths yield solutions with higher utility value. Indeed, the
finer the grid on which values are computed — i.e., the more accurate the utility calculation
— the better the optimal solution will be.

In addition, computation time goes up as the number of decision periods is increased and
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(c) Subinterval length of 5 years.

Figure 5.6: The optimal mitigation levels and GHG taxation rates, averaged at each time
period for models with different numbers of decision periods (number shown in legend).
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Table 5.4:

The initial period GHG tazation rate and the expected utility values at the

optimal matigation levels for different number of decision periods and subinterval lengths.
Additionally, the number of Quasi-Newton iterations and the computation times in seconds

are given.

(a) For a subinterval length of 1 year

Decision periods 2015 Carbon Price Utility Value Iterations Time
6 $ 136.74 11.905 55 129.594 s
7 $ 134.37 11.916 35 104.097 s
8 $ 131.43 11.937 68 295.545 s
9 $ 127.89 11.963 7 572.210 s
10 $ 126.61 12.009 90 825.988 s

(b) For a subinterval length of 2.5 years

Decision periods 2015 Carbon Price Utility Value Iterations Time
6 $ 136.05 10.459 30 33.471 s
7 $ 130.95 10.469 40 51.835 s
8 $ 130.12 10.486 43 86.051 s
9 $ 126.62 10.510 o4 208.759 s
10 $ 123.11 10.548 80 914.755 s

(c) For a subinterval length of 5 years

Decision periods 2015 Carbon Price Utility Value Iterations Time
6 $ 133.13 9.791 27 17.567 s
7 $ 126.82 9.799 34 28.511 s
8 $ 127.64 9.815 30 51.881 s
9 $ 122.85 9.838 54 220.922 s
10 $ 120.31 9.875 76 491.978 s




the subinterval length is decreased. This is because the function becomes more expensive to
evaluate, and the number of iterations required to solve the optimization problem increases.
More iterations are required due to the increased number of variables.

It should be noticed that the time at which decisions are made (not just the number of
decisions) can also impact the solution. To demonstrate this, let us consider the following
three different decision time selections for the 6-period model:

Choice 1: Decisions are made at 2015, 2030, 2060, 2100, 2200, and 2300.
Choice 2: Decisions are made at 2015, 2070, 2130, 2185, 2245, and 2300.
Choice 3: Decisions are made at 2015, 2020, 2025, 2045, 2105, and 2300.

The last (non-decision) period occurs at 2400 for all cases. The first choice of decision times
above are the times used in the base case model which has decisions spaced closer early on.
The second choice uses approximately evenly spaced decision periods rounded to the nearest
multiple of 5 years. The third choice has approximately exponential spacing between the
decisions so that decisions are concentrated at earlier times.

The resulting solutions, using a subinterval length of 5 years, are shown in Figure 5.7 and
the corresponding utility values are given in Table 5.5.
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Figure 5.7: The optimal mitigation levels (left panel) and GHG tazxation rates (right panel),
averaged at each time period for the three choices of decision times. The legend indicates
which of the numbered choices for decision times the solution corresponds to.

It follows from Table 5.5 and Figure 5.7 that evenly spaced decision times (Choice 2) resulted

in a solution with a lower utility value and higher mitigation levels at intermediate periods
than for the base case model (Choice 1). This implies that decisions at earlier times have
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Table 5.5: The expected utility values and norm of its gradient at the optimal solutions
found for the three choices of decision times.

Choice of decision times Utility Value Norm of Gradient

1 9.790 0.003
2 9.760 0.006
3 9.736 0.004

a greater impact on the utility. Thus, having fewer early decisions on mitigation will mean
that higher mitigation levels are needed at later times to counteract the long early period of
low mitigation. Exponentially spaced decision times (Choice 3) resulted in a solution with
lower utility value and mitigation levels at intermediate periods. While having more early
decisions is better, having very large gaps between decisions, even at later times, restricts
the maximum possible utility the agent can achieve.

5.2 Robust Mitigation Policies

As seen in Figure 5.2, the model is very sensitive to any deviation of the McKinsey estimates,
p = [gMeKinsey(€60) g McKinsey(€100)] "Tf the real point estimates are X3y kinsey» Ut we compute a
mitigation strategy using the values X&CKinsey, how bad will our solution be? In other words,
what is the ’cost’ of using the suboptimal solution z*""°P found with X? compared to

McKinsey
using the optimal 2* when Xy kinse,- TO answer this question we can use the suboptimality
analysis framework developed earlier.

We say that the ’cost’ of using a sub-optimal solution, 2°*°P compared to using the optimum,
x*, is the value z such that E[Uy(z5%"°P; co; p1)] = E[Us(x*; co — 2; p1)], where cq is the global
consumption in 2015.

The cost of using the base case solution found using the McKinsey estimates compared to
all other solutions shown in Figure 5.2 ranged from 0% of the 2015 consumption to 51.3%.
The average was 8.5%. Using this solution is incredibly costly in the worse case scenarios.

We can define a robust solution to SCC problem as the solution which minimizes the expected

value of the loss, z, of using it compared to using solutions found with different draws of
XMcKinsey- Our optimization problem is as follows:
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min E[z]

grobust

such that E[Up(2""""; co; Xniexinsey)] = E[Uo(x™; co — 25 XneKinsey )] s

= m}n —E[Uo(; co; XnteKinsey))

XMcKinsey ~ N(lu’a E)

(5.2.1)

In practice, the expectation of z is computed as the average over a large set of z; computed
from different draws of Xi;cxinsey ~ N (11, X).

Instead of minimizing the expected loss of a mitigation strategy under these uncertain pa-
rameters, we might want to minimize the conditional value at risk (CVaR) instead:

min CVaR,(z)

grobust

such that ]E[Uo(xmb“t; co; Xuekinsey)| = E[Uo(2"; co — 25 XieKinsey) ]

a— ml‘}n —E[U(] (373 Co; XMcKinsey)]a

XMCKinsey ~ N(:“’v E)

(5.2.2)

where CVaR,(z) = E[z|z > VaR,(z)] and Pr[z > VaR,] = a. Again in practice CVaR, is
approximated as the average of the worst «a percent of losses from a large set of z;. We will
use alpha = 5%.

Solving either of these stochastic optimization problems is very costly even with the improved
utility evaluation time and optimization run time. This is because computing the value of
the objective function of these problems requires many draws of X j/cxinsey and for each draw
a utility maximization problem must be solved and the root of a nonlinear equation must be
computed. For the sake of computational feasibility, we will use a fixed set of one hundred
Xisercinsey ~ N (1, ¥) and compute the maximal utility solution x; for each. This set will
be reused for every evaluation of the robust optimization problem.

The two robust solutions were found and are shown in Figure 5.8. The utility value (com-
puted using the base case McKinsey values) of these solutions and the base case and mean
solution along with their average loss and tail loss are given in Table 5.6. The mean of all
solutions found with different draws of X ysckinsey is not very good: it has a high expected loss
and CVaR. The minimized expected loss is around 8% of 2015 global consumption which is
quite close to the average loss of the base case solution. The robust solution with minimized
expected loss and the base case solution are quite similar and both have a high CVaR.

The robust solution with minimized CVaR differs from the base case solution. The minimized
CVaR is 29% of 2015 global consumption — 10% percent lower than the tail loss for the base
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case solution. This solution’s expected loss is almost 16% — double the loss of the min
expected loss robust solution.
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Figure 5.8: The solutions found wusing different draws of Xarerinsey

[z MeKinsey(€60) g MeKinsey(€100)]  Af(y, 33) are in orange. The solution in blue with square
points is the robust solution that minimizes expected loss. The solution in green with triangle
points is the robust solution that minimizes the C'VaR.

Table 5.6: A comparison of the different robust solutions. The original solution is the
optimal strateqy given the McKinsey point estimate values. The mean solution is the average
of all one hundred solutions found with different draws of Xnrcrinsey- The min expected
loss solution is the robust solution found when minimizing the expected loss and the min
CVaR solution is the one found when minimizing the CVaR. The expected utility values were
computed using the mean point estimates. Note that the expectations and CVaR values are
approximate averages and are given in terms of percent of initial GDP lost, not a dollar
amount.

Mitigation Strategy Utility Value E[z] CVaR(z)

Orginal Solution 9.791 0.085 0.380
Mean Solution 9.789 0.116 0.364
Min Expected Loss 9.792 0.080 0.393
Min CVaR 9.780 0.159 0.289
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5.3 Suboptimal Mitigation Policies

5.3.1 Cost of Fewer Decisions

To determine the monetary value of using a model with more decision periods, we will
compare the optimal solution x* found for a model with N decision periods to a suboptimal
mitigation strategy x*"?. The suboptimal strategy used is the optimal solution found for a
model with n < N decision periods scaled up to fit the N period tree.

An example of how this is done is shown in Figure 5.9. Consider the period at 2100: if the
solution computed for the n model was deployed then the mitigation level at 2100 would be
equal to the value at 2060 since that was when the last decision was made. This value would
depend on the state of nature at 2060. Thus, the strategy shown for the N has the same
levels at the same times, given the nature state in the same percentile. Plots of the optimal
solutions for models with N = 7,...,10 periods along with suboptimal solutions are shown
in Figure 5.10.

—0
e —
—
@
—®
———
—e
T T T T T
2015 2030 2060 2100 2200

Figure 5.9: The decision trees for two models. The top with n = 3 decision periods and
the bottom with N = 5. The solution from the n period model is used in the N model. Nodes
with the same colour have the same mitigation level.

The cost of these suboptimal mitigation strategies is shown in Table 5.7. The utility value
of the optimal 6 period solution as measured when scaled up to a 10 period tree is equal to
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Figure 5.10: Optimal and suboptimal strategies for models with the number of decision
periods, N, given in the title. The suboptimal strategies are the solutions for models with
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fewer decision times n < N (shown in the legend).

the utility of the optimal 10 period solution when initial global consumption is reduced by

1.9%.

5.3.2 Cost of Postponement

Next we investigate the cost of postponing mitigation to a later date. We only consider
models with 6 and 10 decision periods because similar conclusions can be reached for models
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Table 5.7:  The cost of using a model with fewer number of decision periods. The costs
are given as a % of the global consumption in 2015 (30.46 trillion $§ USD). The number of
decistons periods, N, is given along the top row. The suboptimal strategy being considered is
the optimal strategy when the agent can make decisions at only n < N periods; n is given in
the first column.

N6 7 8 9 10
6 |0 018504 0.73637 1.19  1.9057
7 0 0.I857 0.68881 1.1407
8 0 0.15983 0.65458
9 0 0.16342
10 0

with other numbers of decision periods. For each model, we find the optimal mitigation
strategy if the mitigation levels until the year 2030 were fixed to a value (0% to 50%) lower
than the optimum value of 70%. These solutions are shown in Figure 5.11.

Figure 5.11: The optimal mitigation levels (on the left) and GHG tazation rates (on the
right), averaged at each time period, for models with different fixed 2015 mitigation levels.
This fixed value is given in the legend. The no postponement solution’s mitigation level at
2015 is not fized.

(a) A model with 6 decision periods and a subinterval length of 5 years.
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As follows from Figure 5.11, the optimal strategies are very close in all periods except for the
very first period. However, the resulting cost of the suboptimal strategies shown in Figure
5.11 can be very high (see Table 5.8).

It is clear from Table 5.8 that the cost of postponing mitigation can very high. For example,
not mitigating GHG emissions at all until 2030 costs almost 17% of global consumption —
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(b) A model with 10 decision periods and a subinterval length of 5 years.
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Table 5.8: The cost of postponing mitigation to 2030, calculated using a 6 decision period
model. Mitigation levels for periods after 2030 were optimized while the mitigation level for
the 2015 to 2030 period was set to different fixed values, given in the first column. The costs
are given as both a % of the global consumption in 2015 (30.460 trillion $USD) and in trillion
$USD.

2015 Mitigation Level Utility Value Cost as % Cost in trillion 2015 $USD

0% 9.700 16.587 % $5.052
10% 9.720 13.590 % $4.140
20% 9.737 10.764 % $3.279
30% 9.755 7.570 % $2.306
40% 9.771 4.567 % $1.391
50% 9.783 2.053 % $0.625

over 5 trillion $USD. These costs are even higher when computed using a 10 period model
(see Table 5.9). Based on the data shown in Tables 5.8 and 5.9 and overall analysis in this
section, it is clear that it is critical to mitigate climate change as soon as possible.
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Table 5.9: The cost of postponing mitigation to 2030, calculated using a 10 decision period
model. Mitigation levels for periods after 2025 were optimized while the mitigation levels for
the 2015 to 2030 period were set to different fized values, given in the first column. The
costs are given as both a % of the global consumption in 2015, 30.460 trillion $USD, and in

trillion $USD.

2015 Mitigation Level Utility Value Cost as % Cost in trillion 2015 $USD

0% 9.786 17.731 % $5.401
10% 9.804 14.726 % $4.486
20% 9.822 11.549 % $3.518
30% 9.839 8.297 % $2.527
40% 9.854 5.197 % $1.583
50% 9.866 2.527 % $0.770
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6 Conclusions

In this report, the EZ Climate model from Daniel et al. (2018) was used to compute the social
cost of carbon in 2015 assuming an optimal GHG emissions mitigation path. The optimal
mitigation strategy was found by maximizing social welfare, modelled using an Epstein-Zin
utility function. The SCC was found to be around 130$/tCO5 — within the range of previous
estimates but higher the average value. By vectorizing the model and applying automatic
differentiation and Quasi-Newton optimization, the model’s run time was reduced by several
orders of magnitude. This improvement in speed made extending the model to use more
decision periods feasible. In addition, robustness checks of the model’s assumptions about
the number of times climate policy can be changed, the cost of abatement, and effect of
technological change could be done. We found that the model was quite sensitive to the
parameters used to fit the relationship between the carbon taxation rate and the fraction of
emissions mitigated. It was even more sensitive to the parameters modelling technological
improvement.

A method to compute a monetary cost to society of acting suboptimality was presented.
A robust optimization problem was formulated and used to find solutions that would not
be ’costly’ to society if certain parameter estimates are inaccurate. This methodology was
further used to find the cost of inaction. The cost of postponing the mitigation of GHG
emissions to 2030 was found to be 5.4 trillion 2015 USD - more than a sixth of the global
economy.
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